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ABSTRACT

We present a deep learning approach for repairing sequential circuits against for-
mal specifications given in linear-time temporal logic (LTL). Given a defective
circuit and its formal specification, we train Transformer models to output circuits
that satisfy the corresponding specification. We propose a separated hierarchical
Transformer for multimodal representation learning of the formal specification
and the circuit. We introduce a data generation algorithm that enables generaliza-
tion to more complex specifications and out-of-distribution datasets. In addition,
our proposed repair mechanism significantly improves the automated synthesis of
circuits from LTL specifications with Transformers. It improves the state-of-the-
art by 6.8 percentage points on held-out instances and 11.8 percentage points on
an out-of-distribution dataset from the annual reactive synthesis competition.

1 INTRODUCTION

Sequential circuit repair (Katz & Manna, 1975) refers to the task of given a formal specification
and a defective circuit implementation automatically computing an implementation that satisfies the
formal specification. Circuit repair finds application especially in formal verification. Examples
are automated circuit debugging after model checking (Clarke, 1997) or correcting faulty circuit
implementations predicted by heuristics such as neural networks (Schmitt et al., 2021b). In this
paper, we design and study a deep learning approach to circuit repair for linear-time temporal logic
(LTL) specifications (Pnueli, 1977) that also improves the state-of-the-art of synthesizing sequential
circuits with neural networks.

We consider sequential circuit implementations that continuously interact with their environments.
For example, an arbiter that manages access to a shared resource interacts with processes by giving
out mutually exclusive grants to the shared resource. Linear-time temporal logic (LTL) and its
dialects (e.g., STL Maler & Nickovic (2004) or CTL Clarke & Emerson (1981)) are widely used in
academia and industry to specify the behavior of sequential circuits (e.g., Godhal et al. (2013); IEEE
(2005); Horak et al. (2021)). A typical example is the response property (r → g), stating that
it always ( ) holds that request r is eventually ( ) answered by grant g. We can specify an arbiter
that manages the access to a shared resource for four processes by combining response patterns for
requests r0, . . . , r3 and grants g0, . . . , g3 with a mutual exclusion property as follows:

(r0 → g0) ∧ (r1 → g1) ∧ (r2 → g2) ∧ (r3 → g3) response properties
((¬g0 ∧ ¬g1 ∧ (¬g2 ∨ ¬g3)) ∨ ((¬g0 ∨ ¬g1) ∧ ¬g2 ∧ ¬g3)) mutual exclusion property

A possible implementation of this specification is a circuit that gives grants based on a round-robin
scheduler. However, running neural reactive synthesis (Schmitt et al., 2021b) on this specification
results in a defective circuit as shown in Figure 1a. After model checking the implementation, we
observe that the circuit is not keeping track of counting (missing an AND gate) and that the mutual
exclusion property is violated (the same variable controls grants g0 and g1).
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(a) Faulty circuit, predicted by synthesis model.
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(b) Faulty circuit, first iteration of repair model.
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(c) Correct circuit. Final prediction of the repair
model in the second iteration (DOT visualization
on the left, model’s output in AIGER on the right).
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Figure 1: Circuit representations of 4-process arbiter implementation in DOT visualizations: The
triangles represent inputs and outputs, the rectangles represent variables, the diamond-shaped nodes
represent latches (flip-flop), ovals represent AND gates, and the black dots represent inverter (NOT
gates). The output of our repair model is given as an AIGER circuit (bottom right).

We present the first deep learning approach to repair such faulty circuits, inspired by the successful
application of deep learning to the LTL trace generation (Hahn et al., 2021) and reactive synthesis
problem (Schmitt et al., 2021b). We introduce a new Transformer architecture, the separated hi-
erarchical Transformer, that accounts for the different characteristics of the problem’s input. The
separated hierarchical Transformer combines the advantages of the hierarchical Transformer (Li
et al., 2021) with the multimodal representation learning of an LTL specification and a faulty circuit.
In particular, it utilizes that LTL specifications typically consist of reoccurring patterns. This archi-
tecture can successfully be trained on the circuit repair problem. Our model, for example, produces a
correct circuit implementation of the round-robin strategy by repairing the faulty circuit in Figure 1a
in only two iterations. Each iteration predicts a circuit based on the specification and a faulty circuit
as input. The result of the first iteration is shown in Figure 1b. The circuit remains faulty, with
two of the four grants still controlled by the same variable. Progress was made, however, towards a
functioning counter: latch l1 now consists of a combination of AND gates and inverters expressive
enough to represent a counter. The second iteration finally results in a correct implementation, as
shown in Figure 1c.

To effectively train and enable further research on repair models, we provide open-source datasets
and our open-source implementation for the supervised training of the circuit repair problem1. We
demonstrate that the trained separated hierarchical Transformer architecture generalizes to unseen
specifications and faulty circuits. Further, we show that our approach can be combined with the
existing neural method for synthesizing sequential circuits (Schmitt et al., 2021b) by repairing its
mispredictions, improving the overall accuracy substantially. We made a significant improvement
of 6.8 percentage points to a total of 84% on held-out-instances, while an even more significant
improvement was made on out-of-distribution datasets with 11.8 percentage points on samples from
the annual reactive synthesis competition SYNTCOMP (Jacobs et al., 2022a).

1https://github.com/reactive-systems/circuit-repair
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2 RELATED WORK

Circuit repair. The repair problem is an active field of research dating back to Katz & Manna
(1975). Jobstmann et al. (2005; 2012) show a game-based approach to repair programs using LTL
specifications. Baumeister et al. (2020) propose an approach for synthesizing reactive systems from
LTL specifications iteratively through repair steps. Ahmad et al. (2022) presented a framework
for automatically repairing defects in hardware design languages like Verilog. Staber et al. (2005)
combine fault localization and correction for sequential systems with LTL specifications.

Deep learning for temporal logics and hardware. Hahn et al. (2021); Schmitt et al. (2021a)
initiated the study of deep learning for temporal logics; showing that a Transformer can understand
the semantics of temporal and propositional logics. Schmitt et al. (2021b) successfully applied
the Transformer to the reactive synthesis problem. Kreber & Hahn (2021) showed that (W)GANs
equipped with Transformer encoders can generate sensible and challenging training data for LTL
problems. Luo et al. apply deep learning to the LTLf satisfiability problem. Mukherjee et al.
(2022) present a deep learning approach to learn graph representations for LTL model checking.
Vasudevan et al. (2021) applied deep learning to learn semantic abstractions of hardware designs. In
Hahn et al. (2022), the authors generate formal specifications from unstructured natural language.

Reactive synthesis. The hardware synthesis problem traces back to Alonzo Church in
1957 (Church, 1963). Buchi & Landweber (1990) provided solutions, although only theoretically,
already in 1969. Since then, significant advances in the field have been made algorithmically, e.g.,
with a quasi-polynomial algorithm for parity games (Calude et al., 2020), conceptually with dis-
tributed (Pneuli & Rosner, 1990) and bounded synthesis (Finkbeiner & Schewe, 2013), and on
efficient fragments, e.g., GR(1) (Piterman et al., 2006) synthesis. Synthesis algorithms have been
developed for hyperproperties (Finkbeiner et al., 2020). Recently, deep learning has been success-
fully applied to the hardware synthesis problem (Schmitt et al., 2021b). Compared to classical
synthesis, a deep learning approach can be more efficient, with the tradeoff of being inherently in-
complete. The field can build on a rich supply of tools (e.g. (Bohy et al., 2012; Faymonville et al.,
2017; Meyer et al., 2018a)). A yearly competition (SYNTCOMP) (Jacobs & Pérez) is held at CAV.

3 DATASETS

We build on the reactive synthesis dataset from Schmitt et al. (2021b), where each sample consists
of two entries: a formal specification in LTL and a target circuit that implements the specification
given in the AIGER format. We construct a dataset for the circuit repair problem that consists of
three entries: a formal specification in LTL, a defective circuit, and the corrected target circuit.
In Section 3.1, we give details of the domain-specific languages for the circuit repair problem’s
input. Section 3.2 describes the data generation process and summarizes the dataset that resulted in
the best-performing model (see Section 6 for ablations). We approach the generation of the dataset
from two angles: 1) we collect mispredictions, i.e., faulty circuits predicted by a neural model, and
2) we introduce semantic errors to correct circuits in a way that they mimic human mistakes.

3.1 LINEAR-TIME TEMPORAL LOGIC (LTL) AND AND-INVERTER GRAPHS (AIGER)

LTL specifications. The specification consists of two lists of sub-specifications: assumptions and
guarantees. Assumptions pose restrictions on the environment behavior, while guarantees describe
how the circuit has to react to the environment. They jointly build an LTL specification as follows:
spec := (assumption1 ∧ · · · ∧ assumptionn) → (guarantee1 ∧ · · · ∧ guaranteem). A speci-
fication is called realizabile if there exists a circuit implementing the required behavior and called
unrealizable if no such circuit exists. For example, an implementation can be unrealizable if there
are contradictions in the required behavior, or if the environment assumptions are not restrictive
enough. Formally, an LTL specification is defined over traces through the circuit. A circuit C satis-
fies an LTL specification φ if all possible traces through the circuit TracesC satisfy the specification,
i.e., if ∀t ∈ TracesC . t |= φ. For example, the LTL formula (¬g0∨¬g1) from the arbiter example
in Section 3.1 requires all traces through the circuit to respect mutual exclusive behavior between g0
and g1. If a specification is realizable, the target circuit represents the implementation, and if a speci-
fication is unrealizable, the target circuit represents the counter-strategy of the environment showing
that no such implementation exists. The formal semantics of LTL can be found in Appendix A.
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Algorithm 1 Algorithm for introducing errors to correct circuit implementations.
1: Input: circuit C, number of changes standard deviation σc, maximum number of changes Mc,

new variable number standard deviation σv , delete line probability pdelete
2: Output: circuit C

3: changes ∼ N d(0, σc
2, 1,Mc) ▷ Sample from discrete truncated Gaussian

4: for i = 0 to changes do
5: with probability pdelete do
6: l ∼ U(1, number of lines in C) ▷ Sample line number uniformly
7: Remove line l of C
8: else
9: pos ∼ U(1, number of positions in C) ▷ Sample position uniformly

10: var′ ← var ← variable number at position pos in C
11: while var = var′ do
12: var′ ∼ N d(var, σv

2, 0, 61) ▷ Sample from discrete truncated Gaussian
13: replace variable number at position pos in C with var′

AIGER format. The defective and target circuits, are in a text-based representation of And-Inverter
Graphs called AIGER Format (Brummayer et al., 2007); see, for example, bottom-right of Figure 1.
A line in the AIGER format defines nodes such as latches (flip-flops) and AND-gates by defining
the inputs and outputs of the respective node. Connections between nodes are described by the
variable numbers used as the input and output of nodes. A latch is defined by one input and one
output connection, whereas two inputs and one output connection define an AND gate. Inputs and
outputs of the whole circuit are defined through lines with a single variable number that describes
the connection to a node. The parity of the variable number implicitly gives negations. Hence,
two consecutive numbers describe the same connection, with odd numbers representing the negated
value of the preceding even variable number. The numbers 0 and 1 are the constants False and True.
The full definition of AIGER circuits can be found in Appendix B.

3.2 DATA GENERATION

We replicated the neural circuit synthesis model of Schmitt et al. (2021b) and evaluated the model
with all specifications from their dataset while keeping the training, validation, and test split sepa-
rate. We evaluated with a beam size of 3, resulting in a dataset RepairRaw of roughly 580 000
specifications and corresponding (possibly faulty) circuits in the training split and about 72 000 in
the validation and test split, respectively. We model-check each predicted circuit against its speci-
fication with nuXmv (Cavada et al., 2014) to classify defective implementations into the following
classes. A sample is violated if the predicted circuit is defective, i.e., violates the specification
(55%). A sample is matching if the prediction of the synthesis model is completely identical to the
target circuit in the dataset (16%). Lastly, a sample is satisfied when the predicted circuit satisfies the
specification (or represents a correct counter-strategy) but is no match (29%), which regularly hap-
pens as a specification has multiple correct implementations. For example, consider our round-robin
scheduler from the introduction: the specification does not specify the order in which the processes
are given access to the resource.

We construct our final dataset from RepairRaw in two steps. In the first step, we consider the
violating samples, i.e., mispredictions of the neural circuit synthesis network, which are natural
candidates for a circuit repair dataset. In the second step, we introduce mistakes inspired by human
errors into correct implementations (see Figure 6 in the appendix for an overview of the dataset
generation and its parameters). In the following, we describe these steps in detail.

Mispredictions of neural circuit synthesis. We first consider the violating samples from
RepairRaw. Likewise to a specification having multiple correct implementations, a defective
circuit has multiple possible fixes, leading to correct yet different implementations. For a given de-
fective circuit, a fix can thus either be small and straightforward or lengthy and complicated. In a
supervised learning setting, this leads us to the issue of misleading target circuits. This concerns
samples where only a lengthy and complicated fix of the faulty circuit leads to the target circuit,
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Figure 2: The structure of global and local layers in the separated hierarchical Transformer. For
simplicity, shown for a single assumption, a single guarantee and only two tokens each.

although a minor fix would also lead to a correct but different implementation. We identify mislead-
ing targets by searching for alternative solutions with the synthesis model (up to a beam size of 4).
If the model finds a correct alternative circuit with a smaller Levenshtein distance (see Appendix C
for a definition) to the faulty circuit, a fix leading to the alternative circuit is smaller than a fix to the
original target. The target circuit will be replaced accordingly with the alternative circuit. We select
all samples with a Levenshtein distance to the target circuit ≤ 50 for the final dataset.

Introducing errors. We propose Algorithm 1, which probabilistically introduces human-like mis-
takes into correct circuits. Such mistakes include missing latches, AND gates, or inverters and mis-
wired connections between the components. First, we determine the number of mistakes or changes
we will introduce to the circuit. For that, we sample from a discrete truncated normal distribu-
tion around zero, with a standard deviation of 7.5 and bounds from 1 to 50. For each change, we
flip a coin with the probability of pdelete = 0.2 for deleting a line from the AIGER circuit and
1−pdelete = 0.8 for changing a variable number. For deleting, we uniformly choose a line from the
AIGER circuit to remove. We do not remove inputs or outputs to stay consistent with the dataset.
For changing a variable number, we uniformly choose a position of a variable number. The position
can be an input, output, inbound edge(s), or outbound edge of a latch or AND gate. We replace
the variable number at this position with a new variable number that is determined by sampling a
discrete truncated normal distribution around the old variable number, a standard deviation of 10,
and bounds given by the minimal and maximal possible variable number in the dataset (0 to 61).
The new variable number cannot be the mean itself to ensure a definite change. For a visualization
of the discrete truncated normal distributions, see Figure 7 in the appendix. Lastly, we spot-check
altered circuits by model-checking to determine whether introduced changes create a faulty circuit.
Only in less than 2% of the cases the circuit still satisfies the specification.

Final Dataset. In the final dataset Repair, 61% of the samples contain circuits with errors intro-
duced by Algorithm 1, while the others are based on mispredicted circuits. In 38% of cases, the
samples have a Levenshtein distance of less than 10 between the repair circuit and the target circuit.
In total, the Levenshtein distance in the dataset has a mean of 15.7 with a standard deviation of
12.77, and the median is at 13 (see Figure 8 in Appendix D for its composition).

4 ARCHITECTURE

In this section, we introduce the separated hierarchical Transformer architecture, a variation of the
hierarchical Transformer Li et al. (2021), and provide further details on our architectural setup. The
hierarchical Transformer has been shown to be superior to a vanilla Transformer in many appli-
cations including logical and mathematical problems Li et al. (2021); Schmitt et al. (2021b). The
hierarchical Transformer, as well as the novel separated hierarchical Transformer, is invariant against
the order of the assumptions and guarantees in the specification.
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4.1 SEPARATED HIERARCHICAL TRANSFORMER

The encoder of a hierarchical Transformer contains two types of hierarchically structured layers.
Local layers only see parts of the input, while global layers handle the combined output of all lo-
cal layers. Contrary to the original Transformer, the input is partitioned before being fed into the
local layers. A positional encoding is applied separately to each partition of the input. Model pa-
rameters are shared between the local layers, but no attention can be calculated between tokens in
different partitions. The hierarchical Transformer has been beneficial to understanding repetitive
structures in mathematics (Li et al., 2021) and has shown to be superior for processing LTL specifi-
cations (Schmitt et al., 2021b).

We extend the hierarchical Transformer to a separated hierarchical Transformer, which has two types
of local layers: Each separated local layer is an independent encoder; therefore, separated local
layers do not share any model parameters. Attention calculations are done independently for each
local layer. A visualization of the proposed Architecture is shown in Figure 2. Shared local layers
are identical to local layers in the hierarchical Transformer. A separated local layer contains one or
more shared local layers. The results of the separated and shared local layers are concatenated and
fed into the global layer. While the number of shared local layers does not change the model size,
multiple separated local layers introduce slightly more model parameters. The separated hierarchical
Transformer handles multiple independent inputs that differ in structure, type, or length better.

4.2 ARCHITECTURAL SETUP

We separate the specification and the faulty circuit with a separate local layer. The specification
is partitioned into its guarantees and assumptions, which we feed into shared local layers. Let
Attention be the attention function of Vaswani et al. (2017) (see Appendix K). When identifying
the assumptions assumption1, · · · , assumptionn and guarantees guarantee1, · · · , guaranteem
with specification properties p1, . . . , pn+m, the following computations are performed in a shared
local layer:

Attention(Hpi
WQ

S , Hpi
WK

S , Hpi
WV

S ) where pi ∈ {p1, . . . , pn+m} ,

where Hpi denotes the stacked representations of all positions of specification property pi. There-
fore, the attention computation is limited between tokens in each guarantee and between tokens in
each assumption while the learned parameters WQ

S ,WK
S ,WV

S are shared between all guarantees and
assumptions. The separated local layer that processes the circuit performs the attention computation:

Attention(HCW
Q
C , HCW

K
C , HCW

V
C ) ,

where HC denotes the stacked representations of all positions of the circuit. Therefore, the com-
putation is performed over all tokens in the circuit but the parameters WQ

C ,WK
C ,WV

C are different
from the parameters for the specification (see Figure 2).

For embedding and tokenization, we specialize in the Domain Specific Language (DSL) of LTL
formulas and AIGER circuits with only a few symbols. For every symbol in the DSL, we introduce
a token. Variables in properties (i.e., assumptions and guarantees) are limited to five inputs i0 · · · i4
and five outputs o0 · · · o4, for each of which we introduce a token. In the AIGER format (used
for the faulty circuit and the target circuit), we fix the variable numbers to the range of 0 to 61,
thereby indirectly limiting the size of the circuit, while allowing for reasonable expressiveness. We
set a special token as a prefix to the circuit embedding to encode the presumed realizability of the
specification. This determines whether the circuit represents a satisfying circuit or a counter strategy.
We embed the tokens by applying a one-hot encoding which we multiply with a learned embedding
matrix. Properties have a tree positional encoding (Shiv & Quirk, 2019) as used for LTL formulas
by (Hahn et al., 2021). This encoding incorporates the tree structure of the LTL formula into the
positional encoding and allows easy calculations between tree relations. For circuits, we use the
standard linear positional encoding from Vaswani et al. (2017).

5 EXPERIMENTS

In this section, we report on experimental results. We first describe our training setup in Section 5.1
before evaluating the model with two different methods. The model evaluation shows the evaluation

6



Published as a conference paper at ICLR 2023

10 20 30 40 50 60 70
0

50

100

violated
match

Semantic Accuracy (smoothed)
violated (copy)
satisfied

Levenshtein distance
sa

m
pl

es
(%

)

Figure 3: Accuracy broken down by the Levenshtein distance between faulty and target circuit.

of the repair model on the Repair dataset distribution(Section 5.2). In the synthesis pipeline eval-
uation, the repair model is evaluated on the predictions of the synthesis model and then repeatedly
evaluated on its predictions (Section 5.3). We differentiate between syntactic and semantic accuracy,
following Hahn et al. (2021). A sample is considered semantically correct if the prediction satisfies
the specification. We consider the prediction syntactically correct if it is identical to the target.

5.1 TRAINING SETUP

We trained a separated hierarchical Transformer with 4 heads in all attention layers, 4 stacked local
layers in both separated local layers, and 4 stacked layers in the global layer. The decoder stack
contains 8 stacked decoders. The embedding size in the decoder and encoder is 256 and all feed-
forward networks have a size of 1024 and use the Rectified Linear Unit (ReLU) activation function.
We use the Adam optimizer (Kingma & Ba, 2017) with β1 = 0.9, β2 = 0.98 and ϵ = 10−9 and
4000 warmup steps with an increased learning rate, as proposed in Vaswani et al. (2017). We trained
on an single GPU of a NVIDIA DGX A100 system with a batch size of 256 for 20 000 steps. We
restricted the specification input to 5 inputs and 5 outputs, no more than 12 properties (assumptions
+ guarantees) and no properties of a size of its abstract syntax tree (AST) greater than 25.

5.2 MODEL EVALUATION

We evaluated the model up to a beam size of 16. The key results of the model evaluation can be found
at the top of Table 1. With a beam size of 16, the model outputs a correct implementation in 84%
of the cases on a single try. When analyzing the beams, we found that the model shows enormous
variety when fixing the circuits. Almost half of the beams result in correct implementations. To
investigate if the model performs a repair operation, we identify samples where the model copied
the defective circuit (Violated (Copy)). The model only copied 31 of 1024 samples. We, additionally,
track if the predicted circuit contains syntax errors, which rarely happens (a total of 8 errors out of
every beam). We provide insight into the model’s performance by analyzing a) what exactly makes
a sample challenging to solve for the model and b) if the model makes significant improvements
towards the target circuit even when the prediction violates the specification.

Difficulty measures. We consider three parameters to measure the difficulty of solving a specific
repair problem: the size of the specification (the LTL formula’s AST), the size of the target circuit
(AND gates + latches), and the Levenshtein distance between the defective circuit and the target
circuit. The Levenshtein distance is the dominant indicator of a sample’s difficulty (see Figure 3).
However, the specification and circuit size is, perhaps surprisingly, less of a factor (see Figure 11
and Figure 10 in the appendix). This indicates that our approach has the potential to scale up to
larger circuits when increasing the model size.

Improvement measures. We semantically and syntactically approximate whether a violating pre-
diction is still an improvement over the faulty input circuit. For syntactic improvement, we cal-
culate the difference between the distance of the faulty input and target circuit lev(Ci, Ct) and
the distance between prediction and target circuit lev(Cp, Ct). If the difference is below zero:
lev(Cp, Ct) − lev(Cf , Ct) < 0, the model syntactically improved the faulty circuit towards the
target circuit. On our test set, violated circuits improved by −9.98 edits on average. For seman-
tic improvement, we obtained a set of sub-specifications by creating a new specification with each
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Figure 4: Improvements on the reactive synthesis held-out test set (see test in Table 1) broken
down by the size of the specifications AST. We aggregate the best result from all iterations over
16 beams. The annotations new and unchanged indicate whether the status improved from the
evaluation of the synthesis model to the evaluation of the repair model.

guarantee from the original specification: Let a1 to an be the original assumptions and g1 to gm the
original guarantees, the set of sub-specifications is defined as {(a1 ∧ · · · ∧ an)→ gi | 1 ≤ i ≤ m}.
We approximate that, the more sub-specifications a circuit satisfies, the closer it is semantically to
a correct circuit. On our test set, in 75.9%, the prediction satisfied more sub-specifications, and in
2.4%, the prediction satisfied fewer sub-specifications. For a more detailed insight, we supported
violin plots for syntactic (Figure 12) and semantic (Figure 13) improvement in the Appendix. Since
in both approximations, even violating predictions are an improvement over the faulty input, this
poses the natural question if the model’s performance can be increased by iteratively querying the
model on its predictions. In the next section, we investigate this more in-depth by applying our
repair model iteratively to the prediction of a neural circuit synthesis model including real-world
examples.

5.3 SYNTHESIS PIPELINE EVALUATION

We demonstrate how our approach can be used to improve the current state-of-the-art for neural
reactive synthesis (see Figure 5). We first evaluate the synthesis model we replicated from Schmitt
et al. (2021b). If the predicted circuit violates the specification, we feed the specification together
with the violating circuit into our repair model. If the prediction still violates the specification
after applying the repair model once, we re-feed the specification with the new violating circuit
into the repair model until it is solved. Using the presented pipeline, we improve the results of
Schmitt et al. (2021b) significantly, as shown in the bottom half of Table 1. We evaluate held-
out samples from the synthesis dataset and out-of-distribution benchmarks and filtered out samples
that exceed our input restrictions (see Section 5.1). The datasets test contain randomly sam-
pled held-out instances from the repair and neural synthesis dataset, respectively. Figure 4 shows
an in-depth analysis of the status changes of the samples when applying the synthesis pipeline.

Table 1: Syntactic and semantic accuracy of the model (top) and pipeline (bottom) evaluation.

Beam Size 1 16

semantic accuracy 58.3% 84.8%
syntactic accuracy 29.4% 53.2%
correct beams per sample 0.58 6.57

synthesis model after first iteration after up to n iterations n

test (repair dataset) - 84.2% 87.5% (+3.3) 5
test (synthesis dataset) 77.1% 82.6% (+5.5) 83.9% (+6.8) 5
timeouts 26.1% 32.5% (+7.4) 34.2% (+8.1) 5
syntcomp 64.1% 71.7% (+7.6) 75.9% (+11.8) 2
smart home 42.9% 61.9% (+19) 66.7% (+23.8) 2
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Light and dark green represent the instances that were additionally
solved with our repair approach; gray represent the instances that
were already initially solved by the synthesis network. The prob-
lem becomes increasingly more challenging with a larger target cir-
cuit size. In total, we achieve an improvement of 6.8 percentage
points. To show that our improvement over the state-of-the-art is
not due to scaling but rather a combination of new training data, ar-
chitecture and iterative evaluation, we additionally scaled the model
from Schmitt et al. (2021b) to match or exceed the number of pa-
rameters of our model. The parameter-matched models only lead
to insignificant improvements over the base model (see Table 2 in
the Appendix). We further identified a set of held-out samples were
our approach performs significantly better than the classical state-
of-the-art synthesizer tool Strix (Meyer et al., 2018b): Samples in
timeouts could not been solved by Strix in 1h, of which we still
achieve 34.2% with an improvement of 8.1 percentage points. Even
more significant improvement can be observed in real-world sam-
ples from the annual synthesis competitions and out-of-distribution
benchmarks: The dataset smart home are benchmarks for syn-
thesizing properties over smart home applications (Geier et al.,
2022), where we improve by 11.8 percentage points. The dataset
syntcomp contains benchmarks from the annual reactive synthe-
sis competition (Jacobs et al., 2022a;b), where the model pipeline
improves the state-of-the-art by 23.8 percentage points and even by
19 percentage points by applying it once.

6 ABLATIONS

We performed various ablation studies that the interested reader can find in the appendix. In partic-
ular, we parameterized our data generation for constructing the circuit repair dataset (see Figure 6 in
Appendix D). An extensive collection of over 100 generated datasets are available through our code
at GitHub2. We trained various models based on these datasets and different hyperparameters, also
available at GitHub. A hyperparameter study can be found in Figure 3 in Appendix I. An in-depth
analysis of the results of different models tested in the synthesis pipeline can be found in Appendix J.

7 CONCLUSION

In this paper, we studied the first application of neural networks to the circuit repair problem. We
introduced the separated hierarchical Transformer to account for the multimodal input of the prob-
lem. We provided a data generation method with a novel algorithm for introducing errors to circuit
implementations. A separated hierarchical Transformer model was successfully trained to repair
defective sequential circuits. The resulting model was used to significantly improve the state-of-the-
art in neural circuit synthesis. Additionally, our experiments indicate that the separated hierarchical
Transformer has the potential to scale up to even larger circuits.

Our approach can find applications in the broader hardware verification community. Possible appli-
cations include the automated debugging of defective hardware after model checking or testing. Due
to its efficiency, a well-performing neural repair method reduces the necessary human interaction in
the hardware design process. The benefit of a deep learning approach to the circuit repair problem
is the scalability and generalization capabilities of deep neural networks: this allows for an efficient
re-feeding of faulty circuits into the network when classical approaches suffer from the problem’s
high computational complexity. Moreover, neural networks generalize beyond classical repair op-
erations, whereas classical approaches are limited in their transformations, such as the limitation of
replacing boolean functions. Future work includes, for example, the extension of our approach to
hardware description languages, such as VHDL or Verilog, and the extension to other specification
languages that express security policies, such as noninterference or observational determinism.

2https://github.com/reactive-systems/circuit-repair
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A LINEAR-TIME TEMPORAL LOGIC (LTL)

The syntax of linear-time temporal logic (LTL) Pnueli (1977) is given as follows.

φ := p | φ ∧ φ | ¬φ | φ | φU φ ,

where p is an atomic proposition p ∈ AP . In this context, we assume that the set of atomic propo-
sitions AP can be partitioned into inputs I and outputs O: AP = I∪̇O.

The semantics of LTL is defined over a set of traces: TR := (2AP )ω . Let π ∈ TR be trace, π[0] the
starting element of a trace π and for a k ∈ N and be π[k] be the kth element of the trace π. With
π[k,∞] we denote the infinite suffix of π starting at k. We write π |= φ for the trace π satisfies the
formula φ.

For a trace π ∈ TR, p ∈ AP and formulas φ the semantics of LTL is defined as follows:

• π |= ¬φ iff π ̸|= φ

• π |= p iff p ∈ π[0] ; π |= ¬p iff p ̸∈ π[0]

• π |= φ1 ∧ φ2 iff π |= φ1and π |= φ2

• π |= φ iff π[1] |= φ

• π |= φ1 U φ2 iff ∃l ∈ N : (π[l,∞] |= φ2 ∧ ∀m ∈ [0, l − 1] : π[m,∞] |= φ1) .

We use further temporal and boolean operators that can be derived from the ones defined above.
That includes ∨,→,↔ as boolean operators and the following temporal operators:

• φ1Rφ2 (release) is defined as ¬(¬φ1 U ¬φ2)

• φ (globally) is defined as falseRφ

• φ (eventually) is defined as trueU φ .

REACTIVE SYNTHESIS

Reactive synthesis is the task to find a circuit C that satisfies a given formal specification φ, i.e.,
∀t ∈ TracesC . t |= φ, or determine that no such circuit exists. We consider formal specifications
that are formulas over a set of atomic propositions (AP ) in LTL. The specification defines the desired
behavior of a system based on a set of input and output variables. As the system, we consider circuits,
more precisely a text representation of And-Inverter Graphs, called AIGER circuits. And-Inverter
Graphs connect input and output edges using AND gates, NOT gates (inverter), and memory cells
(latches).

B AND-INVERTER GRAPHS

And-Inverter Graphs are graphs that describe hardware circuits. The graph connects input edges
with output edges through AND gates, latches, and implicit NOT gates. We usually represent this
graph by a text version called the AIGER Format Brummayer et al. (2007). The AIGER format uses
variable numbers that define variables. Variables can be interpreted as wired connections in a circuit
or as edges in a graph, where gates and latches are nodes.

• A negation is implicitly encoded by distinguishing between even and odd variable numbers.
Two successive variable numbers represent the same variable, the even variable number
represents the non-negated variable, and the odd variable number represents the negated
variable. The variable numbers 0 and 1 have the constant values FALSE and TRUE.

• Each input and output edge is defined by a single variable number, respectively.

• An AND gate is defined by three variable numbers. The first variable number defines
the outbound edge of the AND gate, and the following two variable numbers are inbound
edges. The value of the outbound variable is determined by the conjunction of the values
of both inbound variables.
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• A latch is defined by two variable numbers: an outbound edge and an inbound edge. The
value of the outbound variable is the value of the inbound variable at the previous time step.
In the first time step, the outbound variable is initialized as FALSE.

The AIGER format starts with a header, beginning with the letters aag and following five non-
negative integers M, I, L, O, A with the following meaning:

M=maximum v a r i a b l e i n d e x
I =number o f i n p u t s
L=number o f l a t c h e s
O=number o f o u t p u t s
A=number o f AND g a t e s

After the header, each line represents a definition of either input, latch, output, or AND gate in
this order. The numbers in the header define the number of lines associated with each type. After
the definition of the circuit, an optional symbol table might follow, where we can define names for
inputs, outputs, latches, and AND gates. In this context, the circuit can either describe a satisfying
system or a counter strategy to the specification.

C LEVENSHTEIN DISTANCE

The Levenshtein distance is an edit distance metric, measuring the degree of distinction between two
strings. Let s1 and s2 two given strings, then the Levenshtein distance lev(s1, s2) is a the number of
actions necessary to transform string s1 into string s2 or vice versa. Possible actions are deletions,
insertions, and substitutions.

D DATA GENERATION

In Figure 6 we sketch the data generation process. The base of the process is the evaluation of a
model for neural circuit synthesis. This is parameterized as multiple beam size are possible. For
mispredicted samples, we replace misleading targets (see Section 3.2). This is optional but our
experiments showed that the training benefits from this step. Up to a given Levenshtein distance, we
collect samples for the final dataset. All other samples (greater Levenshtein distances and correct
predictions) are processed in Section 3.2 and Algorithm 1. This process is optional, can be applied
to only some samples and is also parameterized. The results can be used for the final dataset or are,
depending on various parameters, discarded.

evaluation of
neural circuit sythesis

replace misleading
targets

Introduce artificial
mistakes

mispredicted samples correct samples

distance > 50

distance <= 50

parameterized
optional

FINAL DATASET

Figure 6: Overview over the data generation process.

Figure 7 shows the probability mass function for the used truncated normal distributions used in
Algorithm 1. Figure 8 shows the composition of the final dataset. Samples are sorted into bins
depending on the Levenshtein distance between its faulty circuit and its target circuit. While yellow
shows all samples in the final dataset, blue only shows samples in the final dataset that are based on
Section 3.2 and red only shows samples that are based on Section 3.2.
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Figure 7: Probability mass function for the truncated normal distributions. Left: distribution for
sampling the number of changes. Right: distribution for sampling new variable number with exem-
plary old variable number 12.
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Figure 8: Composition of the final dataset. Outliers > 55 not shown.

In Figure 9, we show the composition three alternative datasets. Samples are sorted into bins
depending on Levenshtein distance between its faulty circuit and its target circuit. The dataset
scpa-repair-alter-19 (blue) shows a dataset that is solely based on Section 3.2. Datasets
scpa-repair-gen-108 and scpa-repair-gen-96 (red and yellow) are the two best per-
forming datasets from all datasets we trained and based on a mixture of Section 3.2 and Section 3.2.
Dataset scpa-repair-gen-96 (yellow) is the dataset presented in this paper.

E DIFFICULTY MEASURES

Figure 10 and Figure 11 (together with Figure 3) show predictions of the presented model, sorted
into bin by specification and target size as well as Levenshtein distance between faulty input circuit
and target circuit. We use beam search (beam size 16) and only display the result of the best beam.
Different colors depict the different classes, a sample is sorted into, i.e. violated for a prediction
that violates the specification and violated (copy) for a prediction that additionally is identical to the
faulty input. satisfied for correct predictions and match for predictions that additionally are identical
to the target circuit. The line shows the semantic accuracy smoothed over several bins.
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Figure 9: Comparison of the two best performing datasets and a dataset that is solely based on
altered circuit data. Range 0 to 100
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Figure 10: Accuracies and sample status broken down by the size of the specification AST.

0 5 10 15 20 25
0

50

100

Semantic Accuracy (smoothed) error
violated (copy) violated
satisfied match

target size

sa
m

pl
es

(%
)

Figure 11: Accuracies and sample status broken down by the size of the target circuit (ands +
latches).
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F IMPROVEMENT MEASURES

Figure 12 shows the Levenshtein distance difference (lev(Cp, Ct) − lev(Cf , Ct)) between faulty
input circuit and prediction. A value below zero implies syntactic improvement towards the target
circuit. Figure 13 shows the number of satisfied sub-specifications. The more sub-specifications a
circuit satisfies, the closer it semantically is to a correct circuit.

-60 -40 -20 0 20 40

Satisfied

Violated

Levenshtein distance improvement
unrealizable realizable

Figure 12: Violin plot of the improvement of the Levenshtein distance from the repair circuit and
prediction to the target. The dashed line shows the mean of the displayed distribution.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

Satisfied

Violated

Figure 13: Violin plot of the difference between the number of sub-specs that are satisfied by the
faulty input circuit vs. the predicted circuit. The larger the number the larger the improvement. In-
side the violin plot is a box plot with the dashed line showing the mean of the displayed distribution.
Only realizable samples.
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G ARBITER

Here, we repeat the arbiter from Figure 1, with the AIGER format for all circuits on the left of each
graph representation.

aag 10 5 2 5 3
2 i n p u t 0 ( i 0 )
4 i n p u t 1 ( r 2 )
6 i n p u t 2 ( r 0 )
8 i n p u t 3 ( r 3 )
10 i n p u t 4 ( r 1 )
12 18 l a t c h 0 ( l 0 )
14 16 l a t c h 1 ( l 1 )
16 o u t p u t 0 ( g 3 )
18 o u t p u t 1 ( g 2 )
20 o u t p u t 2 ( g 0 )
20 o u t p u t 3 ( g 1 )
0 o u t p u t 4 ( o4 )
16 15 13 and − g a t e s
18 14 13 and − g a t e s
20 15 12 and − g a t e s

16

14 12

1820

g3 g2g0 g1 l0l1

(a) Faulty circuit. Predicted in the base model (iteration 0).

aag 11 5 2 5 4
2 i n p u t 0 ( i 0 )
4 i n p u t 1 ( r 2 )
6 i n p u t 2 ( r 0 )
8 i n p u t 3 ( r 3 )
10 i n p u t 4 ( r 1 )
12 13 l a t c h 0 ( l 0 )
14 22 l a t c h 1 ( l 1 )
16 o u t p u t 0 ( g 3 )
18 o u t p u t 1 ( g 2 )
18 o u t p u t 2 ( g 0 )
20 o u t p u t 3 ( g 1 )
0 o u t p u t 4 ( o4 )
16 15 13 and − g a t e s
18 15 12 and − g a t e s
20 14 13 and − g a t e s
22 19 17 and − g a t e s

16

14 12

18 20

22g3 g2g0 g1

l0

l1

(b) Faulty circuit. Predicted in iteration 1 of the repair model.

aag 12 5 2 5 5
2

i n p u t 0 ( i 0 )
4 i n p u t 1 ( r 2 )
6 i n p u t 2 ( r 0 )
8 i n p u t 3 ( r 3 )
10 i n p u t 4 ( r 1 )
12 13 l a t c h 0 ( l 0 )
14 24 l a t c h 1 ( l 1 )
16 o u t p u t 0 ( g 3 )
18 o u t p u t 1 ( g 2 )
20 o u t p u t 2 ( g 0 )
22 o u t p u t 3 ( g 1 )
0 o u t p u t 4 ( o4 )
16 15 13 and − g a t e s
18 15 12 and − g a t e s
20 14 13 and − g a t e s
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(c) Correct circuit. Predicted in iteration 2 of the repair model.

Figure 14: Failed attempt of synthesizing an arbiter and successful repair.
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H SCALING PARAMETERS

In this experiment, we scaled the synthesis model (Schmitt et al., 2021b) to match or exceed the
number of parameters of our model. This shows that the increased number of parameters of the
separated hierarchical Transformer is not the reason for the overall increase in performance. The
detailed results are shown in Table 2.

Table 2: Comparison of model size and semantic accuracy between different configurations of the
synthesis model and our model.

model parameter sem acc. with beam size 16

synthesis model
(baseline) 14786372 77.1%

synthesis model:
8 local layers 17945412 (+21.4%) 46.3% (−30.8)
synthesis model:
8 global layers 17945412 (+21.4%) 46.5% (−30.6)
synthesis model:
6 encoder layers 17945412 (+21.4%) 58.2% (−18.9)
synthesis model:
network size of 2048 (local layers) 16887620 (+14.2%) 77.4% (+0.3)

synthesis model:
network size of 2048 (global layers) 16887620 (+14.2%) 77.2% (+0.1)

synthesis model:
network size of 2048 (encoder) 18988868 (+28.4%) 77.3% (+0.2)

repair model
(ours) 17962820 (+21.5%) 83.9% (+6.8)

I HYPERPARAMETER STUDY

We trained several versions of a model on the presented dataset (scpa-repair-gen-96) as a
hyperparameter study shown in Table 3.

J ABLATIONS

Figure 15 shows the semantic accuracy of an evaluation of the pipeline with a beam size of 16. If a
sample has been solved correctly it will be counted as correct for all further iterations. We show the
results of the model presented in this paper exp-repair-gen-96-0 (blue) and two further mod-
els. The model exp-repair-alter-19-0 (green) shows a model trained on a dataset that is
solely based on Section 3.2. Model exp-repair-gen-108-0 and exp-repair-gen-96-0
(red and blue) are the two best performing models and trained on a mixture of Section 3.2 and
Section 3.2. For insights into the datasets, see Figure 9.
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Table 3: Hyperparameter study. Each column represents a model. The first column shows the final
hyperparameters. Grey values of hyperparameters do not differ from the first column. Bold values
of results show the best value in this row.

parameters
embedding size 256 256 256 256 256 256 128 256 256
network sizes 1024 1024 1024 1024 256 512 1024 1024 256

encoder
heads global 4 4 8 4 4 4 4 8 8
heads spec 4 4 4 4 4 4 4 4 4
heads circuit 4 4 4 4 4 4 4 4 4
layers global 4 4 4 4 4 4 4 4 8
layers spec 4 4 4 4 4 4 4 4 4
layers circuit 4 6 4 4 4 4 4 8 8

decoder
heads 4 4 4 4 4 4 4 4 4
layers 8 6 8 10 8 8 8 8 8

results
training split

loss 0.03 0.05 0.03 0.04 0.04 0.04 0.04 0.06 0.08
accuracy 0.97 0.95 0.97 0.97 0.96 0.96 0.96 0.94 0.92
(per sequence) 0.47 0.40 0.44 0.43 0.39 0.42 0.42 0.32 0.24

validation split
loss 0.06 0.13 0.07 0.06 0.07 0.06 0.07 0.14 0.14
accuracy 0.95 0.91 0.95 0.95 0.95 0.95 0.95 0.89 0.88
(per sequence) 0.32 0.27 0.30 0.30 0.29 0.30 0.30 0.22 0.19
beam size 1 0.59 0.54 0.58 0.58 0.53 0.57 0.53 0.47 0.42
beam size 16 0.82 0.77 0.81 0.82 0.80 0.82 0.81 0.73 0.69

test split
beam size 1 0.58 0.52 0.59 0.57 0.56 0.58 0.59 0.44 0.41
beam size 16 0.85 0.77 0.85 0.82 0.83 0.82 0.81 0.72 0.70
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Figure 15: Accuracy after each iterative step of the pipeline (aggregated).

In Figure 16, we display all models that were trained on different datasets. For all training, we used
the same hyperparameters. We plot the accuracy improvement in the pipeline, hence the perfor-
mance on the reactive synthesis task on the y-axis. On the x-axis, we depict the validation accuracy,
hence the performance on the circuit repair problem. Further, the pipeline accuracy improvement is
based on the same distribution for all models, while the validation accuracy is based on the respec-
tive datasets used for training the model. We can see that models having a higher pipeline accuracy
are trained with a dataset that included evaluation results (Section 3.2) instead of altered circuits
(Section 3.2). This is not surprising, as these datasets are closer to the distribution, on which the
pipeline accuracy is based. We can identify several clusters of models, of which one cluster (yellow)
has relatively good validation accuracy and very good pipeline accuracy improvement. All models
in this cluster improve the synthesis accuracy by more than 5 percentage points, with the highest
gain of 6.8 percentage points by the model exp-repair-gen-96-0.

alter-21-0

gen-82-0

gen-79-0
alter-13-0

alter-1-0alter-16-0
alter-19-0 gen-76-0

gen-84-0gen-75-0
gen-85-0

gen-98-0
gen-1-0

gen-77-0
gen-102-0gen-8-0gen-15-0gen-73-0

gen-16-0
gen-2-0 gen-45-0gen-44-0

gen-78-0
gen-38-0gen-52-0gen-90-0

gen-37-0
gen-51-1

gen-108-0
gen-96-0

0.65 0.7 0.75 0.8 0.85 0.9

0.02

0.03

0.04

0.05

0.06

0.07

validation accuracy

pi
pe

lin
e

ac
cu

ra
cy

im
pr

ov
em

en
t

Figure 16: Pipeline accuracy improvement (percentage points) compared to validation accuracy of
all trained models. Colors are based on k-means clustering with 4 clusters.
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In Figure 17, we plot the mean and median of the Levenshtein distance between the faulty circuit and
the target circuit for all models we trained. In the Figure 17a, the plot is dependent on the validation
accuracy (the accuracy of the repair problem) and in Figure 17b the plot is dependent on the pipeline
accuracy improvement (performance on the synthesis task).
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(a) Validation accuracy (bs = 16)
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Figure 17: Validation accuracy and pipeline accuracy improvement of all trained models compared
to the Levenshtein distance between faulty circuit and target circuit. Mean and median are scaled
from smallest and largest values to 0 and 1. Only the labels of selected models are shown.

K SCALED DOT PRODUCT ATTENTION

For a set of queries, keys and values packed into the matrices Q (queries), K (keys) and V (values),
the scaled dot product attention (Vaswani et al., 2017) is defined as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V
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L REPAIRING CIRCUITS FROM PARTIAL SPECIFICATIONS

To show the widespread applicability of our approach, we conduct another experiment. With a
classical synthesis tool, we generated a test set of potentially faulty circuits from specifications
where we removed the last one or two guarantees compared to the original spec. This method
ensures that only 7.8% of these circuits still satisfy the original specification. We evaluated (not
trained) our model on these out-of-distribution circuits and achieved 71.4% semantic accuracy after
up to 5 iterations (see Table 4).

We further looked into the status of the samples broken down by (original) specification size and
target size (see Figures 18 and 19). While overall results demonstrate the successful application of
our model to this problem, it is noticeable that the model produces more syntax errors, most notably
in larger circuits and specifications. Especially compared to Figures 10 and 11), where the model
did not produce any circuits with syntax errors. This is most likely because the defective circuits in
this test are out-of-distribution.
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Figure 18: Accuracies and sample status broken down by the size of the specification AST. Evalua-
tion on faulty circuits from partial specifications.
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Figure 19: Accuracies and sample status broken down by the size of the target circuit. Evaluation
on faulty circuits from partial specifications.

Table 4: Results on repairing faulty circuits generated with partial specifications. (Extension to
Table 1)

synthesis model after first iteration after up to n iterations n

partial - 64.2% 71.4% (+7.2) 5
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