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ABSTRACT

Stochastic latent variable models (LVMs) achieve state-of-the-art performance on
natural image generation but are still inferior to deterministic models on speech. In
this paper, we develop a speech benchmark of popular temporal LVMs and compare
them against state-of-the-art deterministic models. We report the likelihood, which
is a much used metric in the image domain, but rarely, or incomparably, reported
for speech models. To assess the quality of the learned representations, we also
compare their usefulness for phoneme recognition. Finally, we adapt the Clockwork
VAE, a state-of-the-art temporal LVM for video generation, to the speech domain.
Despite being autoregressive only in latent space, we find that the Clockwork VAE
can outperform previous LVMs and reduce the gap to deterministic models by
using a hierarchy of latent variables.

1 INTRODUCTION

Since their introduction, temporal latent variable models (LVMs) for speech (Chung et al., 2015;
Fraccaro et al., 2016) based on the variational autoencoder (VAE, Kingma & Welling, 2014; Rezende
et al., 2014) have seen little development compared to their image domain counterparts. While LVMs
now achieve superior likelihoods on images compared to deterministic models (Child, 2021; Sinha &
Dieng, 2021; Kingma et al., 2021), they are still inferior to deterministic models such as WaveNet on
speech (van den Oord et al., 2016). Development in the image domain has been driven by established
likelihood benchmarks, but in the speech domain, likelihoods are often not reported (van den Oord
et al., 2016; Hsu et al., 2017; van den Oord et al., 2018b) or are incomparable due to subtle differences
in the chosen data distributions (Chung et al., 2015; Fraccaro et al., 2016; Hsu et al., 2017; Aksan &
Hilliges, 2019). This makes it hard to develop explicit likelihood models for speech.

In this paper, we develop a likelihood benchmark for recent temporal LVMs and compare to deter-
ministic counterparts including WaveNet. We introduce a hierarchical LVM without autoregressive
decoder and finally evaluate the learned representations for phoneme recognition. We find that
(i) LVMs achieve likelihoods superior to WaveNet at low temporal resolution, (ii) LVMs with
autoregressive decoders achieve better likelihoods than a non-autoregressive LVM, (iii) LVM like-
lihoods improve when using hierarchies of latent variables as also seen for images and, (iv) LVM
representations are as good or better than Mel spectrograms for phoneme recognition.

Scope and related work. At a high level, this benchmark brings order to LVM model comparisons
for speech and also provides useful reference implementations of the models1. An extended version of
this paper is available at arXiv:2202.12707. LVMs based on the VAE are of interest due to their ability
to learn an approximate posterior distribution over latent variables. This makes them useful beyond
generation for e.g. semi-supervised learning (Kingma et al., 2014) and anomaly detection (Havtorn
et al., 2021). In this paper, we focus on the VRNN (Chung et al., 2015), SRNN (Fraccaro et al.,
2016) and STCN (Aksan & Hilliges, 2019) since they are similar to the original VAE framework. We
exclude some related work from the benchmark. Specifically, the FH-VAE (Hsu et al., 2017) adds a
global latent variable but we exclude it due to it’s segmentation of the training data. We also exclude

1 github.com/JakobHavtorn/benchmarking-lvms
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Figure 1: Generative models of an LSTM, VRNN, SRNN, STCN and CW-VAE for a single time
step. The STCN and CW-VAE are illustrated with a single latent variable. Red arrows indicate purely
deterministic paths from the output xt to previous input x<t without passing a stochastic node. We
provide additional graphical illustrations including inference models in appendix J.

Z-forcing (Goyal et al., 2017) which resembles the SRNN, but deviates from maximum likelihood
training by using an auxiliary loss. We exclude the VQ-VAE (van den Oord et al., 2018b) which is a
hybrid LVM and autoregressive model, since it uses a quantized latent space. Finally, we exclude the
Stochastic WaveNet (Lai et al., 2018) which is similar, but inferior, to the STCN (Aksan & Hilliges,
2019).

All selected models have autoregressive generative models. We therefore formulate and benchmark
a novel temporal LVM which does not use an autoregressive decoder. We do so by adapting the
hierarchical Clockwork Variational Autoencoder (Saxena et al., 2021), originally proposed for video
generation, to speech. Before presenting the results, we provide a brief survey of existing LVMs for
speech in a coherent notation.

2 MODELS

Sequential deep latent variable models. The models we consider are all sequential deep latent
variable models trained with variational inference and the reparameterization trick (Kingma & Welling,
2014). The input is a variable-length sequence x = x1:T = (x1,x2, . . . ,xT ) with xt ∈ RDx . The
models first encode x1:T to a temporal posterior distribution q(z|x) and sample a latent representation
z1:T where zt ∈ RDz . This is then used to reconstruct the input while the posterior distribution is
regularized to be close to a prior distribution p(zt|·) where the dot indicates that it may depend on
latent and observed variables at previous time steps, z<t and x<t where z<t := (z1, z2, . . . ,zt−1).
The models are trained to maximize a lower bound L(θ,ϕ;x) on the marginal likelihood log pθ(x),

log pθ(x) = log

∫
pθ(x, z) dz ≥

∫
qϕ(z|x) log

pθ(x|z)p(z)
qϕ(z|x)

dz ≜ L(θ,ϕ;x) , (1)

where θ are parameters of the generative model and qϕ(z|x) is the variational approximation to the
true posterior. Graphical illustrations of the models can be seen in figure 1 and appendix J.

Variational recurrent neural network (VRNN). The VRNN (Chung et al., 2015) is essentially a
VAE per timestep. As seen in figure 1, it is conditioned on the hidden state of a Gated Recurrent Unit
(GRU, Cho et al., 2014) with state transition dt = f([xt−1, zt−1],dt−1) ∈ RDd where [·, ·] denotes
concatenation. The joint and variational posterior distributions are given by

p(x, z) =

T∏
t=1

p(xt|x<t, z≤t)p(zt|x<t, z<t) , q(z|x) =
T∏

t=1

q(zt|x≤t, z<t) . (2)

Stochastic recurrent neural network (SRNN). The SRNN (Fraccaro et al., 2016) is similar to the
VRNN and its joint can be written as in equation 2. Contrary to the VRNN, the SRNN has GRU
state transitions that are independent of z1:T such that dt = f(xt−1,dt−1). Furthermore, the SRNN
conditions on the full observed sequence for inference, q(zt|x1:T , zt−1) via a second GRU with
transition at = g([xt,dt],at+1). Then zt is inferred from at and zt−1. This better approximates
the true posterior which can be shown to depend on the full observed sequence (Bayer et al., 2021).
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Stochastic temporal convolutional network (STCN). Contrary to VRNN and SRNN, the latent
variables of the STCN are conditionally independent given x1:T since there are no transition functions
connecting them over time. Instead, a latent z(l)

t at layer l is conditioned on the latent variable above
it z(l+1)

t and a window of x1:T defined by R(l)
t = {t− rl + 1, . . . , t} via a WaveNet encoder with

receptive field rl at layer l (van den Oord et al., 2016). The joint and variational posterior are,

p(x, z) =
T∏

t=1
p(xt|zRt)

L∏
l=1

p(z
(l)
t |xR(l)

t−1
, z

(l+1)
t ) , q(z|x) =

T∏
t=1

L∏
l=1

q(z
(l)
t |xR(l)

t
, z

(l+1)
t ) ,

where z
(L+1)
t := ∅ and z = z

(1:L)
1:T for notational convenience and inference is done top-down

(Sønderby et al., 2016). The observation model p(xt|z(1:L)

R
(1)
t

) is also parameterized by a WaveNet.

Clockwork variational autoencoder (CW-VAE). The CW-VAE (Saxena et al., 2021) is a hierar-
chical LVM originally introduced for video generation. As seen in figure 1, it is autoregressive in the
latent space but not in the observed space, contrary to the VRNN, SRNN and STCN. Additionally,
each latent variable is updated only every sl timesteps, where sl is a layer-dependent stride and
s1 < s2 < · · · < sL. We define Jt := {l | t ∈ Tl} and Tl := {t ∈ [1, T ] | (t− 1)mod sl = 0}. Then,

p(x, z) =
T∏

t=1
p(xt|z(1)

t )
∏

l∈Jt

p(z
(l)
t |z(l)

t−sl
, z

(l+1)
t ) , q(z|x) =

T∏
t=1

∏
l∈Jt

q(z
(l)
t |z(l)

t−sl
, z

(l+1)
t ,xt:t+sl) .

The original encoder and decoder are not directly applicable to speech, since the sampling rates of
speech are much higher than those of video (e.g. 16 000Hz compared to 30Hz). Hence, we use a
convolutional ladder network similar to the STCN for inference and downsample the waveform.

Output distribution. Recent work on LVMs for speech modeling, including those considered here,
often uses a Gaussian output distribution (Chung et al., 2015; Fraccaro et al., 2016; Hsu et al., 2017;
Lai et al., 2018; Aksan & Hilliges, 2019; Zhu et al., 2020). Since audio is a naturally continuous
signal, this may seem like an appropriate modeling choice. However, common audio datasets are
sampled at bit-depths of 16 bit (TIMIT, Garofolo 1993; LibriSpeech, Panayotov et al. 2015). This
results in a quantization gap between unique values of 1 × 10−5 which increases the risk of an
ill-posed problem by a likelihood that is unbounded from above unless the variance is lower bounded
(Mattei & Frellsen, 2018). As a result, reported likelihoods can be sensitive to hyperparameter
settings and be hard to compare. We discuss this phenomenon further in appendix H.

In this work, we therefore benchmark models using a discretized mixture of logistics (DMoL) as
output distribution. The DMoL was introduced for image modeling with autoregressive models
(Salimans et al., 2017) but has become standard in other generative models (Maaløe et al., 2019;
Vahdat & Kautz, 2020; Child, 2021). Although continuous distributions can be used if the data is
dequantized (Dinh et al., 2015; Theis et al., 2016; Ho et al., 2019), we do not consider this option
here.

3 SPEECH MODELING BENCHMARK

Data. We train models on TIMIT (Garofolo, 1993) and randomly sample 5% of the training split for
validation. Both input and target are µ-law PCM standardized to [−1, 1]. We report on LibriSpeech
(Panayotov et al., 2015) and linear PCM in appendix G. We further describe datasets in appendix C.

Likelihood. We report likelihoods in units of bits per frame (bpf; lower is better) as this yields a more
interpretable likelihood that has connections to information theory and compression (Shannon, 1948;
Townsend et al., 2019) compared to total likelihood in nats. For LVMs, we report the one-sample
ELBO. The likelihoods can be seen in table 1. We describe how to convert to bpf in appendix F.

Models. We configure WaveNet, VRNN, SRNN, STCN and CW-VAE as in the original papers with
the choices described here. Specifically, WaveNet uses ten layers, five blocks and Dc = 96 channels.
VRNN and SRNN use latent dimension Dz = 256 and an equal number of hidden units. The STCN
is in the dense configuration and uses 256 convolution channels, L = 5 layers and latent variables of
dimensions 16, 32, 64, 128, 256 from the top down. We also run a one-layered ablation with the same
architecture but only one latent variable of dimension 256 at the top. The CW-VAE has L = 1 or 2
latent variables of dimension 96 equal to the number of convolution channels and we let s refer to s1
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s Model Configuration L [bpf]
1 Uniform Uninformed 16.00
1 DMoL Optimal 15.60

1 WaveNet Dc = 96 10.88
1 LSTM Dd = 256 10.97
1 VRNN Dz = 256 ≤11.09
1 SRNN Dz = 256 ≤11.19
1 STCN Dz = 256, L = 5 ≤11.77

64 WaveNet Dc = 96 13.30
64 LSTM Dd = 256 13.34
64 VRNN Dz = 256 ≤12.54
64 SRNN Dz = 256 ≤12.42
64 CW-VAE Dz = 96, L = 1 ≤12.44
64 CW-VAE Dz = 96, L = 2 ≤12.17
64 STCN Dz = 256, L = 1 ≤12.32
64 STCN Dz = 256, L = 5 ≤11.78

Table 1

ASR configuration Result
Data Model Input PER [%]

3.7h Spectrogram Mel 24.1
3.7h WaveNet h(15) 27.7
3.7h LSTM h 23.0
3.7h VRNN z 23.2
3.7h SRNN z 26.0
3.7h CW-VAE z(1) 36.4
3.7h STCN z(2) 21.9
1.0h Spectrogram Mel 30.8
1.0h WaveNet h(15) 34.7
1.0h LSTM h 30.1
1.0h VRNN z 30.4
1.0h SRNN z 31.7
1.0h CW-VAE z(1) 40.0
1.0h STCN z(2) 26.7

Table 2

In table 1 we report model likelihoods L for TIMIT represented as a 16bit µ-law encoded PCM for
different stochastic latent variable models and deterministic autoregressive baselines. In table 2 we
report phoneme error rate (PER) of different representations for phoneme recognition on TIMIT.

and set s2 = 8s1. We also train an LSTM baseline (Hochreiter & Schmidhuber, 1997) configured
similar to the VRNN. All models use a 10 component DMoL output distribution. All LVMs use
diagonal covariance Gaussian priors and posteriors. We train and evaluate models with waveforms
stacked similar to previous work (Chung et al., 2015; Fraccaro et al., 2016; Aksan & Hilliges, 2019)
with stack sizes of s = 1, s = 64 and s = 256. Finally, we evaluate a per-frame discrete uniform
distribution and a two-component DMoL fitted to the training set to estimate worst case performance.
We further describe models and training in appendix D and E and provide results with a Gaussian
output distribution in appendix G.

Results. We present the model likelihoods for s = 1 and 64 in table 1 and for s = 256 in appendix G.
It is clear that deterministic autoregressive models are superior to LVMs at s = 1, but inferior to
them at s = 64 and 256. For strides s > 1, previous work has attributed the inferior performance of
autoregressive models without latent variables to the ability of LVMs to model intra-step correlations
(Lai et al., 2019). It should be noted that at s = 1, the STCN was numerically unstable and that the
CW-VAE was computationally infeasible to train. Surprisingly, the simple LSTM performs almost
on par with WaveNet. The autoregressive STCN is the best-performing LVM. For both CW-VAE and
STCN, increasing the number of latent variables in the hierarchy improves performance, similar to
results in the image domain. The best performing LVMs, STCN and CW-VAE, are not yet scalable to
s = 1 resolution where the highest likelihoods are achieved. Hence, LVMs may be able to outperform
autoregressive models at s = 1 in the future.

Phoneme recognition. Although the likelihood is a practical metric for model comparison, a high
likelihood does not guarantee that a model has learned useful representations (Huszár, 2017). To
assess the usefulness of the representations, we train a model to recognize phonemes on the TIMIT
data. We compare the phoneme error rate (PER) of the model when using input representations
obtained from different unsupervised models, trained on the full TIMIT dataset (3.7h) at s = 64, as
in table 1, and when using a Mel spectrogram (80 filterbanks, hop length 64, window size 128). The
recognition model is a three-layered bidirectional LSTM with 256 hidden units. It is trained with the
connectionist temporal classification (CTC) loss (Graves et al., 2006). We report the PER in table 2.

As expected, Mel spectrograms perform well achieving 24.1% PER using 3.7 hours of labeled data.
However, the ASR trained on STCN representations outperforms the Mel spectrogram with a PER of
21.9%. This indicates that unsupervised STCN representations are phonetically rich and potentially
better suited for speech modeling than the engineered Mel spectrogram. When the amount of labeled
data is reduced, LVM representations suffer slightly less than deterministic ones. Interestingly,
representations from WaveNet are outperformed by all LVMs and the LSTM.
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A REPRODUCIBILITY STATEMENT

The source code used for the work presented in this paper will be made available before the conference.
This code provides all details, practical and otherwise, needed to reproduce the results in this paper
including data preprocessing, model training, model likelihood and latent space evaluation. The source
code also includes scripts for downloading and preparing the LibriSpeech, LibriLight and TIMIT
datasets. The LibriSpeech and LibriLight datasets are open source and can be downloaded with the
preparation scripts. They are also available at https://www.openslr.org/12 and https:
//github.com/facebookresearch/libri-light, respectively. The TIMIT dataset is
commercial and must be purchased and downloaded from https://catalog.ldc.upenn.
edu/LDC93S1 before running the preparation script.

The stochastic latent variable models considered in this work do not provide an exact likelihood
estimate nor an exact latent space representation. For the likelihood, they provide a stochastic lower
bound and some variation in the reproduced likelihoods as well as latent representations must be
expected between otherwise completely identical forward passes. This variance is fairly small in
practice when averaging over large datasets such as those considered in this work. We seed our
experiments to reduce the randomness to a minimum, but parts of the algorithms underlying the
CUDA framework are stochastic for efficiency. To retain computational feasibility, we do not run
experiments with a deterministic CUDA backend.

B ETHICS STATEMENT

The work presented here fundamentally deals with automated perception of speech and generation of
speech. These applications of machine learning potentially raise a number of ethical concerns. For
instance, the these models might see possibly adverse use in automated surveillance and generation
of deep fakes. To counter some of these effects, this work has focused on openness by using publicly
available datasets for model development and benchmarking. Additionally, the work will open source
the source code used to create these results. Ensuring the net positive effect of the development of
these technologies is and must continue to be an ongoing effort.

We do not associate any significant ethical concerns with the datasets used in this work. However,
one might note that the TIMIT dataset has somewhat skewed distributions in terms of gender and
race diversity. Specifically, the male to female ratio is about two to one while the vast majority of
speakers are Caucasian. Such statistics might have an effect of some ethical concern on downstream
applications derived from such a dataset as also highlighted in recent research (Koenecke et al.,
2020). In LibriSpeech, there is an approximately equal number of female and male speakers while
the diversity in race is unknown to the authors.

C DATASETS

TIMIT. TIMIT (Garofolo, 1993) is a speech dataset which contains 16 kHz recordings of 630
speakers of eight major dialects of American English, each reading ten phonetically rich sentences. It
amounts to 6300 total recordings splits approximately in 3.94 hours of audio for training and 1.43
hours of audio for testing. No speakers or sentences in the test set are in the training set. The full train
and test subsets of TIMIT are as in previous work (Chung et al., 2015; Fraccaro et al., 2016; Aksan
& Hilliges, 2019). We randomly sample 5% of the training set to use as a validation set. TIMIT
includes temporally aligned annotations of phonemes and words as well as speaker metadata such as
gender, height, age, race, education level and dialect region (Garofolo, 1993).

LibriSpeech and LibriLight. The LibriSpeech dataset (Panayotov et al., 2015) consists of readings
of public domain audio books amounting to approximately 1000 h of audio. The data is derived
from the LibriVox project. LibriLight (Kahn et al., 2020) is a subset of LibriSpeech created as an
automatic speech transcription (ASR) benchmark with limited or no supervision. We specifically
train on the 100 h train-clean-100 subset of LibriSpeech and the 10 h subset of LibriLight. In all
cases we evaluate on all the test splits dev-clean, dev-other, test-clean, test-other.

Both datasets represent the audio as 16 bit pulse code modulation (PCM) sampled at 16 000Hz.
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D MODEL ARCHITECTURES

This section details model architectures. See appendix J for graphical models and appendix E for
training details.

WaveNet. We implement WaveNet as described in the original work (van den Oord et al., 2016) but
use a discretized mixture of logistics as the output distribution as also done in other work (van den
Oord et al., 2018a). Our WaveNet is not conditioned on any signal other than the raw waveform. The
model applies the causal convolution directly to the raw waveform frames (i.e. one input channel).
An alternative option that we did not examine is to replace the initial convolution with an embedding
lookup with a learnable vector for each waveform frame value.

LSTM. The LSTM baseline uses an MLP encoder to embed the waveform subsegment xt:t+s−1 to
a feature vector before feeding it to the LSTM cell. The encoder is similar to the parameterization of
ϕenc

vrnn for the VRNN described above. The LSTM cell produces the hidden state dt from xt:t+s−1

and passes it to a decoder. Like the encoder, the decoder is parameterized like ϕdec
vrnn of the VRNN. It

outputs the waveform predictions xt+s:t+2s−1 from the hidden state dt. The LSTM model uses a
single vanilla unidirectional LSTM cell.

VRNN. We implement the VRNN as described in the original work (Chung et al., 2015) and verify
that we can reproduce the original Gaussian likelihood TIMIT results. We replace the Gaussian
output distribution with the DMoL.

SRNN. We implement the VRNN as described in the original work (Fraccaro et al., 2016) and
verify that we can reproduce the original Gaussian likelihood TIMIT results. We replace the Gaussian
output distribution with the DMoL.

CW-VAE. We implement the CW-VAE based on the original work (Saxena et al., 2021) but with
some modifications also briefly described in the paper. We replace the encoder/decoder model
architectures of the original work with architectures designed for waveform modeling. Specifically,
the encoder and decoder are based on the Conv-TasNet (Luo & Mesgarani, 2019) and uses similar
residual block structure. However, contrary to the Conv-TasNet, we require downsampling factors
larger than two. In order to achieve this we use strides of two in the separable convolution of each
block. With e.g. six blocks we hence get an overall stride of 26 = 64. We can then add additional
blocks with unit stride. We also need to modify the residual connections that skip strided convolutions.
Specifically, we replace the residual with a single convolution with stride equal to the stride used in
the separable convolution. This convolution uses no nonlinearity and hence simply learns a local
linear downsampling.

STCN. We implement the STCN as described in the original work (Aksan & Hilliges, 2019) and
verify that we can reproduce the original Gaussian likelihood TIMIT results. We replace the Gaussian
output distribution with the DMoL. We use the best-performing version of the STCN reported in the
original paper, namedly the “STCN-dense” variant which conditions the observed variable on all
five latent variables in the hierarchy. For the ablation experiment, we remove the bottom four latent
variables. That is, we completely remove the corresponding four small densely connected networks
that parameterize the prior and posterior distributions based on deterministic representations of the
WaveNet encoder. We keep the top most prior and posterior networks and use them to parameterize a
latent variable of 256. This maintains the widest bottleneck of the model as well as almost all of the
model’s capacity.

ASR model. The ASR model used for the phoneme recognition experiments is a three-layered
bidirectional LSTM. We apply temporal dropout between the LSTM layers and also after the final
layer. Temporal dropout works similar to regular dropout but samples the entries of the hidden state
to mask only once and apply it to all timesteps, i.e. masking ht at vector index i for all t (and i). We
mask by zeroing vector elements. We never mask the first timestep. We apply temporal dropout with
masking probability of 0.3 for the 3.7h subset, 0.35 for the 1h subset and 0.4 for the 10m subset. The
only difference in model architecture between the evaluation of different representations is the first
affine transformation; from the dimensionality of the representation to the hidden state size of the
LSTM. This gives rise to a very small difference in model capacity and parameter count which we
find is negligible. We set the hidden unit size to 256.
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E TRAINING DETAILS

Likelihood benchmark. We implement all models and training scripts in PyTorch 1.9 (Paszke et al.,
2017). For both datasets we use the Adam optimizer (Kingma & Ba, 2015) with default parameters
as given in PyTorch. We use learning rate 3e − 4 and no learning rate schedule. We use PyTorch
automatic mixed precision (AMP) to significantly reduce memory consumption. We did not observe
any significant difference in final model performance compared to full (32 bit) precision.

We train stateful models (LSTM, VRNN, SRNN and CW-VAE) on the full sequence lengths padding
batches with zeros when examples are not of equal length. We sample batches such that they consist
of examples that are approximately the same length to minimize the amount of computation wasted
on padding.

For s = 1, we train stateless models (WaveNet, STCN) on random subsegments of the training
examples and resample every epoch. This reduces memory requirements but does not bias the
gradient. The subsequences are chosen to be of length 16000 which is larger than the receptive fields
of the models and corresponds to one second of audio in TIMIT and LibriSpeech. For s = 64 and
s = 256 we train the stateless models on the full example lengths similar to the stateful models
since the receptive field is effectively s times larger and the shorter sequence length reduces memory
requirements.

In testing, we evaluate on the full sequences. Due to memory constrains, for LibriSpeech, we need to
split the test examples into subsegments since the average sequence length in Librispeech is about
4 times longer than that of TIMIT. Hence, we do multiple forward passes per test example, one for
each of several subsegments. We carry along the internal state for models that are autoregressive
in training (LSTM, VRNN, SRNN, CW-VAE) and define segments to overlap according to model
architecture.

Phoneme recognition. The ASR experiment consists of two stages: 1) pre-training of the unsu-
pervised model and 2) training of the ASR model. The pre-training is done as for the likelihood
benchmark above. The ASR model is trained using the Adam optimizer (Kingma & Ba, 2015) with
default parameters as given in PyTorch. We use learning rate 3e − 4 and no learning rate schedule.

For the spectrogram, WaveNet and the LSTM, we extract the representation only once and train the
ASR model on these. Since the models are deterministic and do not parameterize distributions, this is
the only option. For the LVMs, we resample the latent representation of a training example at every
epoch. This is the most principled approach as these models parameterize probability distributions.
Furthermore, using a single sample would be subject to artificially high variance in the representations
while it is not straightforward to establish a sound mean representation for sequential models.

F CONVERTING THE LIKELIHOOD TO UNITS OF BITS PER FRAME

Here we briefly describe how to compute a likelihood in units of bits per frame (bpf). In the main
text, we use log to mean loge, but here we will be explicit. In general, conversion from nats to bits
(i.e., from loge to log2) is achieved by log2(x) = loge(x)/ log2(e). Remember that log2 p(x1:T )
generally factorizes as

∑
t log2 p(xt|·). In sequence modeling, it is important to remember that each

example xi must be weighted differently according the sequence length of that specific example.
This is in contrast to computing bits per dimension in the image domain where images in a dataset
are usually of the same dimensions. Thus, we compute the log-likelihood in bits per frame over the
entire dataset as

L(xi) =
1∑
i Ti

∑
i

∑
t

log2 p(x
i
t) , (3)

where i denotes the example index, Ti is the length of example xi in waveform frames and t is the
time index. If a single timestep xi

t represents multiple waveform frames stacked with some stack
size s, it is important to note that the sum over t only has Ti/s elements. For the LVMs, the term
log2 p(x

i
t) is lower bounded by the ELBO in equation 1.
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s Model Configuration Likelihood L [bpf]
dev-clean dev-other test-clean test-other
10h/100h 10h/100h 10h/100h 10h/100h

1 Uniform Uninformed 16.00 16.00 16.00 16.00
1 DMoL Optimal 15.66 15.70 15.62 15.71
- FLAC Linear PCM 9.390 9.292 9.700 9.272
1 Wavenet Dc = 96 10.96/10.89 10.85/10.76 11.12/11.01 11.05/10.85
1 LSTM Dd = 256 11.21/11.17 11.10/11.06 11.35/11.29 11.28/11.23

64 Wavenet Dc = 96 13.61/13.24 13.58/13.21 13.61/13.22 13.60/13.21
64 LSTM Dd = 256 13.56/13.25 13.52/13.24 13.55/13.23 13.56/13.25
64 CW-VAE Dz = 96, L = 1 ≤12.32/12.24 12.32/12.23 12.43/12.33 12.43/12.33
64 CW-VAE Dz = 96, L = 2 ≤12.30/12.22 12.30/12.21 12.40/12.31 12.39/12.32
64 STCN Dz = 256, L = 5 ≤11.83/11.47 11.82/11.46 11.94/11.58 11.94/11.60

Table 3: Model likelihoods L on LibriSpeech test sets represented as 16 bit µ-law encoded PCM.
For the CW-VAE, s refers to s1 and the two-layered models have s2 = 8s1. The models are trained
on either the 10 h LibriLight subset or the 100 h LibriSpeech train-clean-100 subset as indicated.
Likelihoods are given in units of bits per frame (bpf).

G ADDITIONAL LIKELIHOOD RESULTS

LibriSpeech, µ-law, DMoL. We provide additional results on LibriSpeech with audio represented
as µ-law encoded PCM in table 3. See appendix C, D and E for additional details.

TIMIT, µ-law, DMoL. We provide additional results on TIMIT with audio represented as µ-law
encoded PCM in table 5. Details are as presented in the main paper.

TIMIT, linear, DMoL. : We provide results on TIMIT with audio represented as linear PCM (raw
PCM) in table 4. Except for the encoding, details are as for µ-law encoded TIMIT

TIMIT, linear, Gaussian. We also provide some results on TIMIT with the audio instead represented
as linear PCM (linearly encoded) and using Gaussian output distributions as has been done previously
in the literature (Chung et al., 2015; Fraccaro et al., 2016; Lai et al., 2018; Aksan & Hilliges, 2019).
We use s = 200 for comparability to the previous work. We provide the results in table 6 and include
likelihoods reported in the literature for reference. For our models, we use the same architectures as
before but replace the discretized mixture of logistics with either a Gaussian distribution or a mixture
of Gaussian distributions.

We constrain the standard deviation of the Gaussians used with our models to be at least σmin = 0.01
in order to avoid it going to zero, the likelihood going to infinity and optimization becoming unstable.
The minimum Gaussian standard deviation of Aksan & Hilliges (2019) is σmin = 0.001.

From table 6 we note that the performance of the CW-VAE with Gaussian output distribution when
modeling linear PCM (i.e. not µ-law encoded) does not compare as favorably to the other baselines
as it did with the discretized mixture of logistics distribution. We hypothesize that this has to do with
using a Gaussian output distribution in latent variable models which, as has been reported elsewhere
(Mattei & Frellsen, 2018), leads to a likelihood function that is unbounded above and can grow
arbitrarily high. We discuss this phenomenon in further detail in section H.

We specifically hypothesize that models that are autoregressive in the observed variable (VRNN,
SRNN, Stochastic WaveNet, STCN) are well-equipped to utilize local smoothness to put very high
density on the correct next value and that this in turn leads to a high degree of exploitation of the
unboundedness of the likelihood. Not being autoregressive in the observed variable, the CW-VAE
cannot exploit this local smoothness in the same way. Instead, the reconstruction is conditioned on a
stochastic latent variable, p(xt|z1

t ), which introduces uncertainty and likely larger reconstruction
variances.
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s Model Configuration L [bpf]
1 Uniform Uninformed 16.00
1 DMoL Optimal 10.70

1 Wavenet DC = 96 7.246
1 LSTM Dd = 256, L = 1 7.295
1 VRNN Dz = 256 ≤7.316
1 SRNN Dz = 256 ≤7.501
1 STCN Dz = 256, L = 5 ≤9.970

64 WaveNet Dc = 96 8.402
64 LSTM Dd = 256, L = 1 8.357
64 VRNN Dz = 256 ≤8.103
64 SRNN Dz = 256 ≤8.036
64 CW-VAE Dz = 96, L = 1 ≤7.989
64 STCN Dz = 256, L = 5 ≤7.768
256 WaveNet Dc = 96 9.018
256 LSTM Dd = 256, L = 1 8.959
256 VRNN Dz = 256 ≤8.739
256 SRNN Dz = 256 ≤8.674
256 CW-VAE Dz = 96, L = 1 ≤8.406
256 STCN Dz = 256, L = 5 ≤8.196

Table 4: Model likelihoods on TIMIT represented as a 16 bit linear PCM, obtained by different
latent variable models and compared to autoregressive baselines all using a discretized mixture of
logistics with 10 components as output distribution. Likelihoods are given in units of bits per frame
(bpf) and obtained by normalizing the total likelihood of each sequence with the individual sequence
length and then averaging over the dataset. The STCN converges to a poor local minimum and
sometimes diverges when modeling linear PCM with s = 1.

H ADDITIONAL DISCUSSION ON GAUSSIAN LIKELIHOODS IN LVMS

As noted in section G, we constrain the variance of the output distribution of our models to be
σ2

min = 0.012 for the additional results on TIMIT with Gaussian outputs. This limits the maximum
value attainable by the prediction/reconstruction density of a single waveform frame xt.

Specifically, we can see that since

log p(xt|·) = logN
(
xt;µt,max

{
σ2

min, σ
2
t

})
, (4)

the best prediction/reconstruction density is achieved when σ2 ≤ σ2
min and µ = xt. Here · indicates

any variables we might condition on such as the previous input frame xt−1 or some latent variables.
We can evaluate this best case scenario for σ2

min = 0.012,

logN
(
xt;xt, σ

2
min

)
= −1

2
log 2π − 1

2
log σ2

min −
1

2σ2
min

(xt − xt)

= −1

2
log 2π − 1

2
log 0.012

= 3.686 . (5)

Hence, with perfect prediction/reconstruction and the minimal variance (0.012), a waveform
frame contributes to the likelihood with 3.686 nats. With an average test set example length of
49 367.3 frames frames this leads to a best-case likelihood of 181967. We provide a list of maximally
attainable Gaussian likelihoods on TIMIT for different minimal variances in table 7. One can note
that the maximal likelihood at σ2

min = 0.12 is lower than the likelihoods achieved by some models
in table 6. This indicates that the models learn to use very small variances in order to increase the
likelihood. Empirically, standard deviations smaller than approximately 0.001 can result in numerical
instability.
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s Model Configuration L [bpf]
1 Wavenet DC = 16 11.27
1 Wavenet DC = 24 11.14
1 Wavenet DC = 32 11.03
1 Wavenet DC = 96 10.88
1 Wavenet DC = 128 10.98
1 Wavenet DC = 160 10.91
1 LSTM Dd = 128, L = 1 11.40
1 LSTM Dd = 256, L = 1 11.11
1 VRNN Dz = 256 ≤11.09
1 SRNN Dz = 256 ≤11.19
1 STCN Dz = 256, L = 5 ≤11.77

4 LSTM Dd = 256, L = 1 11.65

16 LSTM Dd = 256, L = 1 12.54
16 LSTM Dd = 256, L = 2 12.54
16 LSTM Dd = 256, L = 3 12.44

64 WaveNet Dc = 96 13.30
64 LSTM Dd = 96, L = 1 13.49
64 LSTM Dd = 96, L = 2 13.46
64 LSTM Dd = 96, L = 3 13.40
64 LSTM Dd = 256, L = 1 13.27
64 LSTM Dd = 256, L = 2 13.29
64 LSTM Dd = 256, L = 3 13.31
64 LSTM Dd = 512, L = 1 13.37
64 LSTM Dd = 512, L = 2 13.37
64 LSTM Dd = 512, L = 3 13.41
64 VRNN Dz = 96 ≤12.93
64 VRNN Dz = 256 ≤12.54
64 SRNN Dz = 96 ≤12.87
64 SRNN Dz = 256 ≤12.42
64 CW-VAE Dz = 96, L = 1 ≤12.44
64 CW-VAE Dz = 96, L = 2 ≤12.17
64 CW-VAE Dz = 96, L = 3 ≤12.15
64 CW-VAE Dz = 256, L = 2 ≤12.10
64 STCN Dz = 256, L = 1 ≤12.32
64 STCN Dz = 256, L = 5 ≤11.78

256 WaveNet Dc = 96 14.11
256 LSTM Dd = 256, L = 1 14.20
256 LSTM Dd = 256, L = 2 14.17
256 LSTM Dd = 256, L = 3 14.26
256 VRNN Dz = 96 ≤13.51
256 VRNN Dz = 256 ≤13.27
256 SRNN Dz = 96 ≤13.28
256 SRNN Dz = 256 ≤13.14
256 CW-VAE Dz = 96, L = 1 ≤13.11
256 CW-VAE Dz = 96, L = 2 ≤12.97
256 CW-VAE Dz = 96, L = 3 ≤12.87
256 STCN Dz = 256, L = 1 ≤13.07
256 STCN Dz = 256, L = 5 ≤12.52

Table 5: Model likelihoods on TIMIT represented as a 16 bit µ-law encoded PCM, obtained by
different latent variable models and compared to autoregressive baselines all using a discretized
mixture of logistics with 10 components as output distribution. Likelihoods are given in units of bits
per frame (bpf) and obtained by normalizing the total likelihood of each sequence with the individual
sequence length and then averaging over the dataset.
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s Model Configuration L [nats]
1 WaveNet Normal 119656
1 WaveNet GMM-2 120699
1 WaveNet GMM-20 121681

200 WaveNet (Aksan & Hilliges, 2019) GMM-20 30188
200 WaveNet (Aksan & Hilliges, 2019) Normal -7443
200 Stochastic WaveNet∗ (Lai et al., 2018) Normal ≥72463
200 VRNN (Chung et al., 2015) Normal ≈28982
200 SRNN (Fraccaro et al., 2016) Normal ≥60550
200 STCN (Aksan & Hilliges, 2019) GMM-20 ≥69195
200 STCN (Aksan & Hilliges, 2019) Normal ≥64913
200 STCN-dense (Aksan & Hilliges, 2019) GMM-20 ≥71386
200 STCN-dense (Aksan & Hilliges, 2019) Normal ≥70294
200 STCN-dense-large (Aksan & Hilliges, 2019) GMM-20 ≥77438
200 CW-VAE∗ L = 1, Dz = 96, Normal ≥41629

Table 6: Model likelihoods on TIMIT represented as globally normalized 16 bit linear PCM.
Likelihoods are given in units of nats and obtained by summing the likelihood over time and over all
examples in the dataset and dividing by the total number of examples. In the table, Normal refers to
using a Gaussian likelihood and GMM refers to using a Gaussian Mixture Model likelihood with 20
components. Models with asterisks ∗ are our implementations while remaining results are as reported
in the referenced work.

σmin σ2
min maxL

1 1 −45367
0.5 0.25 −11146
0.1 0.01 68307
0.05 0.0025 102525
0.01 0.0001 181979

0.005 0.000025 216198
0.001 0.000001 295651

Table 7: The highest possible Gaussian log-likelihoods (max L) attainable on the TIMIT test set as
computed by equation 4 with different values of the minimum variance σ2

min.

I ADDITIONAL DISCUSSION ON THE CHOICE OF OUTPUT DISTRIBUTION

The DMoL uses a discretization of the continuous logistic distribution to define a mixture model over
a discrete random variable. This allows it to parameterize multimodal distributions which can express
ambiguity about the value of xt. The model can learn to maximize likelihood by assigning a bit of
probability mass to multiple potential values of xt.

While this is well-suited for autoregressive modeling, for which the distribution was developed,
the potential multimodality poses a challenge for non-autoregressive latent variable models which
independently sample multiple neighboring observations at the output. In fact, if multiple neighboring
outputs defined by the subsequence xt1:t2 have multimodal p(xt|·), we risk sampling a subsequence
where each neighboring value expresses different potential realities, independently.

Interestingly, most work on latent variable models with non-autoregressive output distributions seem
to ignore this fact and simply employ the mixture distribution with 10 mixture components (Maaløe
et al., 2019; Vahdat & Kautz, 2020; Child, 2021). However, given the empirically good results
of latent variable models for image generation, this seems to have posed only a minor problem in
practice. We speculate that this is due to the high degree of similarity between neighbouring pixels in
images. I.e. if the neighboring pixels are nuances of red, then, in all likelihood, so is the central pixel.

In the audio domain, however, neighbouring waveform frames can take wildly different values,
especially at low sample rates. Furthermore, waveforms exhibit a natural symmetry between positive
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Figure 2: CW-VAE cell state slt update. The cell state is given as slt = (zl
t,d

l
t) where dl

t is the
deterministic hidden state of a Gated Recurrent Unit (Cho et al., 2014). The vector elt is computed
from xt by the encoder network which outputs L encodings, one for each latent variable, similar to that
of a Ladder VAE Sønderby et al. (2016). All blue arrows are shared between generation and inference.
The dashed arrow is used only during inference. The solid arrow has unique transformations during
inference and generation.

and negative amplitudes. Hence, it seems plausible that multimodality may pose a larger problem in
non-autoregressive speech generation by causing locally incoherent samples than it seems to do in
image modelling.

J ADDITIONAL GRAPHICAL MODELS

In figure 2 we show the graphical model of the recurrent cell of the CW-VAE for a single time step.
As noted in (Saxena et al., 2021), this cell is very similar to the one of the Recurrent State Space
Model (RSSM) (Hafner et al., 2019).

In figure 3 we show the unrolled graphical models of a three-layered CW-VAE with k1 = 1 and
c = 2 yielding k2 = 2 and k3 = 4. We show both the generative and inference models and highlight
in blue the parameter sharing between the two models due to top-down inference.

In figure 4 we show the graphical models of the STCN Aksan & Hilliges (2019) at a single timestep.
The model has three layers and shares the parameters of the WaveNet encoder between the inference
and generative models.

In figure 5 we illustrate the unrolled graphical models of the inference and generative models of
the VRNN (Chung et al., 2015). We include the deterministic variable dt in order to illustrate the
difference to other latent variable models.

Likewise, in figure 6 we illustrate the unrolled graphical models the SRNN (Fraccaro et al., 2016).

K ADDITIONAL LATENT EVALUATION

Here we present additional qualitative assesessment of the learned latent representations selectively
for the CW-VAE.

In figure 7 we present evaluation in terms of phoneme clustering. Specifically, we infer the latent
variables of all utterances by a single speaker from the TIMIT test set. We sample the latent sequence
100 times to estimate the mean representation per time step. We then compute the average latent
representation over the duration of each phoneme using aligned phoneme labels. This approximately
marginalizes out variation during the phoneme. We use linear discriminant analysis (LDA) Fisher
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Figure 3: CW-VAE (Saxena et al., 2021) generative model p(x, z) in (a) and inference model q(z|x)
in (b) for a three-layered model with k1 = 1 and c = 2 giving k2 = 2 and k3 = 4 unrolled over eight
steps in the observed variable. Blue arrows are (mostly) shared between the inference and generative
models. See figure 2 for a detailed graphical model expanding on the latent nodes zl

t and parameter
sharing.

(1936) to obtain a low-dimensional linear subspace of the latent space. We visualize the resulting
representations colored according to test set phoneme classes in figure 7. In the left plot, many
phonemes are separable in the linear subspace and that related phonemes such as “s” and “sh” are
close. In the right plot, we show the average accuracy of a leave-one-out k-nearest-neighbor (KNN)
classifier on the single left-out latent representation reduced with a 5-dimensional LDA as a function
of the number of neighbors. We compare accuracy to a Mel-spectrogram averaged over each phoneme
duration and LDA reduced. The spectrogram is computed with hop length set to 64, equal to s1 for
the CW-VAE, window size 256 and 80 Mel bins. We see that both latent spaces yield significantly
better KNN accuracies than the Mel features.

We visualize the performance of a k-nearest-neighbour classifier for classification of speaker gender
and height in figure 8. The classifier is fitted to time-averaged latent representations and Mel-features.
We divide the height into three classes: below 175 cm, above 185 cm and in-between. Compared to
phonemes, the gender and height of a speaker are global attributes that affect the entire signal. In both
cases, we see improved performance from using the learned latent space over Mel-features. Notably,
z2 is outperformed by the Mel-features for gender identification which may indicate that z2 learns to
ignore this attribute compared to z1.

We provide some additional latent space clustering of speaker gender in figure 9 and of speaker height
in figure 10.
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Figure 4: STCN (Aksan & Hilliges, 2019) generative model p(x, z) in (a) and inference model q(z|x)
in (b) for a single time-step. The WaveNet autoregressive encoder is shared between generative
and inference models. It is depicted here with only one stack of three layers in order to illustrate
the dilated convolution with limited space. In practice, the model uses ten layers in each of five
stacks/cycles resulting in a much larger receptive field. Importantly, the model parameterizes the five
latent variables using the last deterministic representation d(l) from each stack, i.e. only every fifth l
starting from l = 5 and ending at l = 25. Note that the generative model uses the prior to transform
the WaveNet hidden states d(l)

t into the latent variable z
(l)
t+1 one step ahead in time compared to the

approximate posterior which infers z(l)
t . Also note that zt is constructed by concatenating all z(l)

t .
The original paper explores setting zt equal to z

(1)
t . The best-performing STCN for speech, which

also the one we implement, uses a WaveNet decoder to predict xt+1 from a sequence of zt rather
than a per-timestep transform. Blue arrows are shared between the inference and generative models.

All results presented here are obtained with a 2-layered CW-VAE trained on µ-law encoded PCM
similar to the one in table 1.

L DISTRIBUTION OF PHONEME DURATION IN TIMIT

In figure 11 we plot a boxplots of the duration of each phoneme in the TIMIT dataset. We do this
globally as well as for a single speaker to show that phoneme duration can vary between individual
speakers.
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Figure 5: VRNN (Chung et al., 2015) generative model p(x, z) in (a) and inference model q(z|x) in
(b) unrolled over three steps in the observed variable. Blue arrows are shared between the inference
and generative models.
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Figure 6: SRNN (Fraccaro et al., 2016) generative model p(x, z) in (a) and inference model q(z|x)
in (b) unrolled over three steps in the observed variable. Blue arrows are shared between the inference
and generative models.

A description of the phonemes used for the TIMIT dataset can be found at https://catalog.
ldc.upenn.edu/docs/LDC93S1/PHONCODE.TXT.

M MODEL SAMPLES AND RECONSTRUCTIONS

We provide samples and reconstructions for some of the models considered here at the following
URL: https://doi.org/10.5281/zenodo.5704512. The samples are generated from the
prior of Clockwork VAE, SRNN and VRNN and from a WaveNet by conditioning on pure zeros. All
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Figure 7: (left) Clustering of phonemes in a 2D Linear Discriminant Analysis (LDA) subspace of
a CW-VAE latent space (z(1)). (right) Leave-one-out phoneme classification accuracy for a KNN
classifier at different K in a 5D LDA subspace of a CW-VAE latent space.
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Figure 8: Leave-one-out k-nearest-neighbor accuracy with different k for (a) the speaker’s gender
and (b) the height of male speakers (female speakers yield a similar result).
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Figure 9: Clustering of speaker gender in an one-dimensional linear subspace defined by a linear
discriminant analysis of the CW-VAE latent space and of a time-averaged mel spectrogram. The total
overlap is slightly smaller in the subspace of the CW-VAE latent space and the separation between
the distribution peaks is larger.

models are configured as those reported in table 1. Importantly, the samples are unconditional. Hence
they are not reconstructions inferred from a given input nor are they conditioned on any auxiliary
data like text.

Although sample quality is a somewhat subjective matter, we find the quality of the unconditional
Clockwork VAE to be better than those of our VRNN and SRNN. WaveNet is known to produce
samples with intelligible speech when conditioned on e.g. text, but unconditional samples from
WaveNet lack semantic content such as words as do VRNN, SRNN and Clockwork VAE.
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Figure 10: (a) Clustering of speaker height for male speakers and (b) speaker age for female speakers
in an two-dimensional linear subspace defined by a linear discriminant analysis of the CW-VAE latent
space.
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Figure 11: Boxplots of the duration of the pronunciation of phonemes in TIMIT for a specific speaker
DRW0 in (a) and globally in (b). Not all phonemes are pronounced by speaker DRW0 over the course
of their 10 test set sentences and hence they are missing from the x-axis compared to the global
durations.
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