
Stepping on the Edge:
Curvature Aware Learning Rate Tuners

Vincent Roulet*

Google DeepMind
vroulet@google.com

Atish Agarwala*

Google DeepMind
thetish@google.com

Jean-Bastien Grill
Google DeepMind

jbgrill@google.com

Grzegorz Swirszcz
Google DeepMind

swirszcz@google.com

Mathieu Blondel
Google DeepMind

mblondel@google.com

Fabian Pedregosa
Google DeepMind

pedregosa@google.com

Abstract

Curvature information – particularly, the largest eigenvalue of the loss Hessian,
known as the sharpness – often forms the basis for learning rate tuners. However,
recent work has shown that the curvature information undergoes complex dynamics
during training, going from a phase of increasing sharpness to eventual stabilization.
We analyze the closed-loop feedback effect between learning rate tuning and
curvature. We find that classical learning rate tuners may yield greater one-step loss
reduction, yet they ultimately underperform in the long term when compared to
constant learning rates in the full batch regime. These models break the stabilization
of the sharpness, which we explain using a simplified model of the joint dynamics
of the learning rate and the curvature. To further investigate these effects, we
introduce a new learning rate tuning method, Curvature Dynamics Aware Tuning
(CDAT), which prioritizes long term curvature stabilization over instantaneous
progress on the objective. In the full batch regime, CDAT shows behavior akin
to prefixed warm-up schedules on deep learning objectives, outperforming tuned
constant learning rates. In the mini batch regime, we observe that stochasticity
introduces confounding effects that explain the previous success of some learning
rate tuners at appropriate batch sizes. Our findings highlight the critical role
of understanding the joint dynamics of the learning rate and curvature, beyond
greedy minimization, to diagnose failures and design effective adaptive learning
rate tuners.

1 Introduction

The learning rate, a.k.a. stepsize, is the main hyperparameter controlling the efficiency and stability
of gradient-based training of deep neural networks. The learning rate is typically adjusted through a
predetermined schedule – often consisting of a warm-up phase, where the learning rate is gradually
increased to a peak, followed by an annealing phase, where it is decreased to zero (Goyal et al., 2017;
Loshchilov and Hutter, 2016). Tuning the shape of the schedule (warm-up time, peak learning rate,
decay scale and shape) is essential for good performance. Despite recent efforts to understand their
effectiveness, the optimal shape of these schedules remains an area of active research (Liu et al.,
2020; Shi et al., 2023). The cost of tuning these schedules has led to interest in automatic selection of
these hyperparameters with learning rate tuners - methods which aim to automatically adjust the
learning rate through training.

*Equal contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

These methods have roots in traditional optimization theory, including inexact linesearch with Armijo-
Goldstein criterion (Armijo, 1966; Nocedal and Wright, 1999) and Polyak stepsizes (Polyak, 1964),
which select the learning rate via estimates of the gap to optimality of the objective. The Armijo-
Goldstein criterion is a crucial component of popular full-batch convex optimizers, such as L-BFGS
(Liu and Nocedal, 1989). Recent efforts have adapted linesearches to stochastic optimization, with
some partial empirical successes and with some approaches offering convergence guarantees (Galli
et al., 2023; Mutschler and Zell, 2020; Vaswani et al., 2019). Similar efforts have been made for
Polyak stepsizes (Berrada et al., 2020; Loizou et al., 2021), in addition to new methods which
combine distance to optimality with online learning convergence bounds (Cutkosky et al., 2023;
Defazio and Mishchenko, 2023; Ivgi et al., 2023; Mishchenko and Defazio, 2023).

Classically-inspired methods, however, have generally struggled to gain traction in deep learning.
This is partly due to their design, which prioritizes convex, Lipschitz-continuous, and/or smooth
(Lipschitz-continuous gradients) objectives. In contrast, the loss landscape of deep networks is known
to be non-convex (Li et al., 2018), and non-Lipschitz continuous (Hochreiter et al., 2001). Moreover,
non-linear models, especially neural networks, will commonly undergo dramatic changes in geometry
during training (Arora et al., 2022; Jastrzębski et al., 2019; Jastrzebski et al., 2020; Kalra et al.,
2023; Kopitkov and Indelman, 2020; Lewkowycz et al., 2020; Wu et al., 2018). In particular, most
models undergo a phase of progressive sharpening - where the sharpness, the largest eigenvalue of
the Hessian, increases during training (Cohen et al., 2021). These potentially detrimental effects are
mitigated by non-linear stabilization arising from the discreteness of the dynamics – namely, the
edge of stability (EOS) phenomenon (Cohen et al., 2021). This causes large Hessian eigenvalues to
stabilize at the critical value for a given learning rate in an equivalent smooth setting (for example,
max Hessian eigenvalue stabilizes at λmax = 2/η for learning rate η) (Cohen et al., 2023, 2021). The
early training time behavior corresponds to the regime where there is the most feature learning (Cohen
et al., 2023, 2021), and is the main focus of this work; at late times, the large eigenvalues of the
Hessian usually drop below the edge of stability. Gilmer et al. (2022) considered EOS stabilization as
a leading candidate for the necessity of the warm-up procedure; as the learning rate η increases, λmax

is effectively annealed.

This raises some natural questions. How do these sharpness dynamics affect the performance of
learning rate tuners? What insights can we gain to design better tuners for deep learning? Our work
takes a first step at answering these questions, starting with a study of some classical learning rate
tuners: a linesearch ensuring sufficient decrease and an approximately greedy method that minimizes
a quadratic approximation of the objective. Specifically, we find the following.

• We empirically observe that classical learning rate tuners qualitatively underperform their constant
learning rate counterparts across several deep learning benchmarks, in the full batch regime, for
which these methods were originally designed.
• Our empirical analysis of curvature dynamics reveals that classical learning rate tuners generally

undershoot the edge of stability. This undershooting creates a snowball effect of ever-increasing
sharpness and ever-decreasing learning rates.

• We propose a theoretical model that effectively captures these empirically observed failures.

Our analysis suggests that stabilizing the sharpness may be a more important goal for the long-term
success of training, compared to greedily optimizing the objective. To explore this idea, we propose
the Curvature Dynamics Aware Tuning (CDAT) method, which dynamically drives the learning rate
to the EOS. In our exploration, we find the following.

• We observe empirically that the proposed learning rate tuner can outperform fine-tuned constant
learning rate counterparts in a full batch regime.

• We analyze the sharpness dynamics induced by CDAT in these examples and observe that the
progressive sharpening is mitigated by the tuner, increasing learning rates at early times before
stabilizing, akin to an automatic warm-up schedule.

• We propose a theoretical model that clarifies the dynamical mechanisms by which CDAT maintains
proximity to the EOS, while highlighting the limitations of existing models of curvature dynamics.

Our work suggests that the design of learning rate tuners benefits from exploiting curvature sta-
bilization rather than focusing on loss decrease. The introduction of simple learning rate tuners
can also refine our understanding of sharpness dynamics through feedback loop effects. Additional
experiments and experimental details are presented in Appendix B and Appendix C respectively.

2

0 5000 10000 15000

Epoch

0.0

0.2

0.4

0.6

0.8

T
ra

in
 L

os
s

ResNet34 with squared loss
 on subset of Cifar10

0 2000 4000 6000 8000

Epoch

0.0

0.1

0.2

0.3

0.4

0.5

T
ra

in
 L

os
s

MixerTi/8 with squared loss
 on subset of Cifar10

GD Linesearch GD Quad. Greedy GD

0 500 1000 1500 2000

Epoch

0

1

2

3

4

5

T
ra

in
 L

os
s

NanoLM with cross-entropy loss
 on subset of Tiny Shakespeare

0 500 1000 1500 2000

Epoch

0

2

4

6

8

T
ra

in
 L

os
s

ViTTi/32 with cross-entropy loss
 on subset of Imagenet

RMSProp Linesearch RMSProp Quad. Greedy RMSProp

Figure 1: Simple learning rates tuners qualitatively underperform their constant learning rate
counterparts. Gradient descent or RMSProp with a tuned constant learning rate versus self-tuned
gradient descent by a linesearch method (1), or a quadratically greedy rule (3) on various datasets,
architectures and losses in a full batch regime. The linesearch may perform better at early times but
stalls in the long term.

2 The Interplay Between Learning Rate Tuners and Curvature Dynamics

A leitmotif in the design of learning rate tuners has been to select the learning rate to ensure a maximal
or sufficient decrease of the objective at each iteration. We focus here on two canonical examples.
Polyak stepsizes and hyper-gradient descent are also briefly examined in Appendix B, Fig. 13.

2.1 Canonical learning rate tuners failures in deep learning

The first classical approach we consider is a linesearch (ls) method that selects the learning rate η
such that the objective f satisfies a certain decrease criterion (Armijo, 1966; Nocedal and Wright,
1999). Formally, given current parameters wt and an update direction ut, the learning rate ηls

t is
chosen such that

f(wt + ηls
t ut) ≤ f(wt) + c ηls

t u
>
t ∇f(wt) . (1)

This rule assumes that ut is a descent direction (∇f(wt)
>ut < 0), which ensures the existence of

a learning rate satisfying (1). This holds true for simple Gradient Descent (GD) or preconditioned
variants like RMSProp (Hinton et al., 2012). In the criterion (1), c is usually a small constant set to
10−4 or 0. A valid learning rate is searched with a usual backtracking linesearch (Appendix C).

The second method we consider involves selecting the learning rate at each iteration to minimize
a quadratic approximation of the objective. Formally, the objective f at parameters wt can be
approximated along an update direction ut by a quadratic approximation qf as

f(wt + ηut) ≈ qf (η;wt, ut) := f(wt) + η∇f(wt)
>ut +

1

2
η2u>t ∇2f(wt)ut. (2)

0 2000 4000 6000 8000

Epoch

0.350

0.375

0.400

0.425

0.450

0.475

0.500

T
ra

in
 L

os
s

Linear model with squared loss
 on subset of Cifar10

GD
Linesearch GD
Quad. Greedy GD

Figure 2: Classical learning rate tuners
can be effective on linear models.

Provided that this quadratic approximation is strongly
convex in η (u>t ∇2f(wt)ut > 0), the minimum of the
quadratic approximation qf (η;wt, ut) is reached for the
quadratically greedy (qg) learning rate ηqg given by

ηqg
t =

−∇f(wt)
>ut

u>t ∇2f(wt)ut
. (3)

Setting the learning rate by minimizing the quadratic ap-
proximations (3) is a simple intuitive idea studied for ex-
ample by Schaul et al. (2013), Martens and Grosse (2015,
Section 6.4). This approach as well as linesearches are
effective on simple linear problems (Fig. 2). While their
rationale originates in non-stochastic optimization, they
have been analyzed in the context of stochastic optimiza-
tion for deep learning (Schaul et al., 2013; Vaswani et al.,
2019).

3

0 5000 10000 15000

Epoch

10 3

10 2

10 1

100

Le
ar

ni
ng

 R
at

e

0 5000 10000 15000

Epoch

101

102

103

H
es

si
an

 S
ha

rp
ne

ss

0 5000 10000 15000

Epoch

0

1

2

3

4

Le
ar

ni
ng

 R
at

e
X

 S
ha

rp
ne

ss

0 5000 10000 15000

Epoch

10 1

100

G
ra

di
en

t N
or

m

ResNet34 with squared loss on subset of Cifar10

GD Linesearch GD Quad. Greedy GD

Figure 3: Classical learning rate tuners can undershoot the edge of stability. Learning rate,
sharpness, their product, and the gradient norm evolution of a constant learning rate and learning rate
tuners, full batch gradient descent. Learning rate decreases by 3 orders of magnitude for tuners (1st

panel) while sharpness increases (2nd panel). Their product remains relatively steady, just below the
edge of stability (3rd panel). The gradient norm increases by less than a factor of 10, consistent with
slow training at late times (4th panel).

2.2 Analyzing learning rate tuners through curvature dynamics

Full batch regime. We revisit the performance of the learning tuners presented in Section 2.1 in
the full batch regime on deep learning problems in Fig. 1. As demonstrated in Fig. 1, a linesearch (1)
or the quadratically greedy rule (3) qualitatively underperform their constant learning rate counterpart
in the deep learning benchmarks considered. Notably, all these results are obtained despite being in
a full batch regime, for which these methods are originally designed. To understand the failures of
these approaches, we consider several measures presented in Fig. 3 (see also Fig. 12).

First, we observe a consistent decrease in the chosen learning rate over time, spanning several orders
of magnitude (1st panel of Fig. 3). This is surprising, as none of these approaches explicitly encode a
decreasing learning rate mechanism. Specifically, the linesearch always initiates its search with a
guess larger than the previously selected learning rate (see Appendix C for implementation details).
Decreasing learning rates are theoretically optimal for non-smooth objectives (Nesterov et al., 2018),
such as the ones induced by using the ReLU activation; however in our example, the gradient norm
does not increase beyond one order of magnitude (4th panel of Fig. 3). This suggests both that an
increase in gradient norm is not the primary cause of learning rate decrease, and also explains why
the learning rate decrease is correlated with slower progress on the training loss.

Following the work of Cohen et al. (2021), we analyze the dynamics of the sharpness, that is the
largest eigenvalue of the Hessian, λmax(∇2f(wt)). In the 2nd panel of Fig. 3, we observe that while
sharpness stabilizes for gradient descent, it does not exhibit the same behavior for the considered
learning rate tuners. By plotting the product of the learning rate ηt and the sharpness (3rd panel of
Fig. 3), we find that this product can exceed the stability threshold of 2, eventually stabilizing below
this threshold for constant learning rate gradient descent. In contrast, for the learning rate tuners, this
product neither surpasses the stability threshold nor stabilizes around 2 in the long run. Therefore,
these classical learning rate tuners do not operate at the edge of stability.

From a theoretical perspective, objectives are typically classified as either smooth or non-smooth.
Smooth objectives have gradients that are Lipschitz-continuous, at least locally around any point.
Non-smooth objectives, on the other hand, may contain points with kinks (non-differentiable points).
However, this taxonomy might not fully capture the curvature dynamics observed by Cohen et al.
(2023, 2021) for constant learning rates, and in Fig. 1 for the classical learning rate tuners. In
particular, the concept of smoothness might not be entirely relevant in the context of deep learning,
where its local estimate (the spectral norm of the Hessian, also known as sharpness) can continue to
increase throughout training. To push the limits of classical smoothness assumptions, we consider
in Section 3 a learning rate tuner that propels the optimizer at the edge of stability or above, a regime
that usual smoothness assumptions would theoretically prohibit.

Mini-batch regime. The results presented in Fig. 1 in the full batch regime do not contradict the
success of linesearches at medium batch size observed by Vaswani et al. (2019) in the stochastic
regime. This observation is illustrated in Fig. 14, and was previously reported by Roulet et al. (2023).
We simply point out that the success of linesearches observed by Vaswani et al. (2019) may not be
entirely attributable to the method’s original rationale.

4

0 25 50 75 100

Steps

0.2

0.4

0.6

0.8

1.0

η

η= 1

η= 1.9/λmax

0 25 50 75 100

Steps

0

5

10

15

λ
m

a
x

η= 1

η= 1.9/λmax

0 25 50 75 100

Steps

1.00

0.75

0.50

0.25

0.00

0.25

0.50

y

η= 1

η= 1.9/λmax

Figure 4: The poor performance of classical learning rate tuners, understood in a simplified
model. The dynamics of learning rate η, sharpness λmax, and normalized centered sharpness
y = ηλmax − 2 are examined in the simplified model (5). With a constant η, λmax stabilizes and y
oscillates around 0 (blue). Classical learning rate tuners often quickly equilibrate around yt = −ε,
which we model using η = 1.9λmax (orange). This equilibration of y away from zero prevents
stabilization in λmax, leading to an increase in λmax, and a corresponding decrease in η.

The actual success of linesearches in a stochastic regime may instead be explained by the attenuated
progressive sharpening observed in such a regime (Agarwala and Pennington, 2024; Cohen et al.,
2021; Jastrzębski et al., 2017). Moreover, linesearches applied to mini-batches tend to select larger
learning rates than they would in a full-batch regime (Mutschler and Zell, 2020) potentially allowing
them to avoid undershooting the full objective’s edge of stability.

2.3 Theoretical analysis

The sharpening effects can be understood theoretically. Previous work has shown that the stabilization
provided by EOS is due to non-linear interaction between the component of the gradient in the
largest eigendirection, and the dynamics of the largest eigenvalues themselves (Agarwala et al., 2023;
Damian et al., 2023). We can use these analyses to understand why there is no stabilization for some
classical learning rate tuners.

We start with the model from Damian et al. (2023), which focuses on the dynamics in the largest
eigendirection of the Hessian. We consider a unique eigenvector for simplicity; we don’t observe
degeneracy in the eigenspace of the largest eigenvalue in any practical models. Given an objective
f parameterized by parameters wt, let λt be the largest eigenvalue of the Hessian ∇2f(wt), i.e.,
λt := λ(wt) := λmax(∇2f(wt)). Let v be its normalized eigenvector; the model assumes slow
eigenvector change, so it is treated as a fixed direction. The joint dynamics of λt and the projection
xt := v>wt can then be written as

xt+1 = (1− ηtλt)xt, λt+1 = ηt(a− bx2t) + λt . (4)

Here, a := −∇λ(w)>∇f(w) corresponds to the instantaneous change of λ along the negative
gradient (the update direction), and b := ‖∇λ(w)‖2 encodes the non-linear negative feedback
between xt and λt. Both a and b are considered constant along iterations. These equations are derived
by Damian et al. (2023) using a Taylor expansion of the iterates combined with a coupling argument.
We provide intuition for the model in Appendix A.1.

In the original model, the learning rate ηt is also fixed to η. This leads to the following dynamics:
while ηλt < 2, the magnitude of xt decreases. This, in turn, leads to an increase in λt. Eventually,
ηλt > 2 and |xt| increases. This eventually leads to the bx2t term becoming large, which decreases
λt. There is a range of learning rates over which this dynamic leads to quasi-stable oscillations of λt
around the edge of stability value 2/η (Fig. 4, blue curves).

When using a learning rate tuner, ηt is also a dynamical variable. This introduces the additional
complication of a shifting edge of stability. Therefore, it is advantageous to analyze the dynamical
system using normalized variables (Agarwala et al., 2023). We define yt := ηtλt − 2, where y = 0
corresponds to the EOS, and pt := x2t . This gives us the dynamical equations (Appendix A.2)

pt+1 = (1 + yt)
2pt, yt+1 = ηt+1 [ηt (a− bpt)] +

(
ηt+1

ηt

)
yt + 2

[
ηt+1

ηt
− 1

]
. (5)

We must then supply a rule for ηt+1. In Fig. 3, we observed that in the full batch setting, the learning
rate multiplied by the sharpness appears to quickly approach a threshold of 2− ε (corresponding to
y = −ε), and then varies slowly below the EOS threshold.

5

0 1000 2000 3000 4000

Epoch

0.0

0.1

0.2

0.3

0.4

T
ra

in
 L

os
s

0 1000 2000 3000 4000

Epoch

10 3

10 2

10 1

100

Le
ar

ni
ng

 R
at

e

ResNet34 with squared loss on subset of Cifar10

GD
GD CDAT Scale 1.0
GD CDAT Scale 1.94

GD CDAT Scale 2.0

GD CDAT Scale 2.06
GD CDAT Scale 2.5

0 1000 2000 3000 4000

Epoch

0

1

2

3

4

T
ra

in
 L

os
s

0 1000 2000 3000 4000

Epoch

10 8

10 6

10 4

10 2

100

Le
ar

ni
ng

 R
at

e

NanoLM with cross entropy loss on subset of Tiny Shakespeare

RMSProp
RMSProp CDAT Scale 1.0
RMSProp CDAT Scale 1.94

RMSProp CDAT Scale 2.0

RMSProp CDAT Scale 2.06
RMSProp CDAT Scale 2.5

0 1000 2000 3000 4000

Epoch

10 4

10 3

10 2

10 1

100

T
ra

in
 L

os
s

0 1000 2000 3000 4000

Epoch

10 4

10 3

10 2

10 1

100
Le

ar
ni

ng
 R

at
e

MixerTi/8 with squared loss on subset of Cifar10

GD Mom
GD Mom CDAT Scale 1.0
GD Mom CDAT Scale 1.94

GD Mom CDAT Scale 2.0

GD Mom CDAT Scale 2.06

0 1000 2000 3000 4000

Epoch

10 6

10 4

10 2

100

T
ra

in
 L

os
s

0 1000 2000 3000 4000

Epoch

10 5

10 3

10 1

101

Le
ar

ni
ng

 R
at

e

ViTTi/32 with cross entropy loss on subset of Imagenet with edge EMA

Adam
Adam CDAT Scale 1.0
Adam CDAT Scale 1.94

Adam CDAT Scale 2.0

Adam CDAT Scale 2.06
Adam CDAT Scale 2.5

Figure 5: Enforcing optimizers to stay on edge (σ = 2.0) improves performance over greedy
approximation (σ = 1.0). Train loss and learning rate behaviors for fine-tuned optimizers vs
self-tuned counterparts with CDAT on various datasets, architectures, losses in a full batch regime.
Tuning the learning rate “on edge” (σ ≈ 2) improves performance over greedy tuning (σ = 1) as
well as constant learning rate.

We model the varying learning rate as

ηt := 2(1− ε)/λt . (6)

This maintains yt = −ε. Notably, this schedule was explicitly proposed by Cohen et al. (2021) (see
also Fig. 15). In this regime, pt decreases monotonically, aligning with the original goal of these
methods to decrease the loss (Fig. 10). However, this eliminates feedback for controlling the increase
in λt, resulting in significant progressive sharpening (Fig. 4, orange curve).

Consequently, when attempting to enforce monotonicity, learning rate tuners may inadvertently
disrupt the non-linear stabilization that makes gradient descent robust and effective for training deep
neural networks. Continually undershooting the EOS triggers a snowball effect of decreasing learning
rate and increasing sharpness. If there is no corresponding increase in gradient norms, this causes
optimization to slow down.

The poor performance of the classical learning rate tuners in Fig. 1 therefore appear strongly correlated
with their tendency to undershoot the edge of stability in the normalized sharpness coordinate y. In
the following, we focus on understanding tuners that prioritize training at or near the edge of stability.

3 Optimizing on the Edge of Stability

Based on our observations in Section 2, we design learning rate tuners that position the underlying
optimizer on the edge of stability (y = 0). We analyze a tuner capable of operating both slightly
below and slightly above the EOS in order to exploit nonlinear stabilization.

Formally, we investigate a generalization of the quadratically greedy rule from Section 2, which
sought ηt to minimize the quadratic approximation qf in (2). We instead choose the learning rate to
be on edge by seeking the largest value of η such that qf is smaller or equal to the original value of f ,

ηoe
t := max{η ≥ 0 : qf (η;wt, ut) ≤ f(wt)} = −2

∇f(wt)
>ut

u>t ∇2f(wt)ut
, (7)

where the last formula holds provided that u>t ∇2f(wt)ut > 0 (convex quadratic) and∇f(wt)
>ut <

0 (ut is a descent direction).

6

0 5000 10000 15000

Epoch

101

102

103

H
es

si
an

 S
ha

rp
ne

ss
0 5000 10000 15000

Epoch

1

2

3

4

5

6

Le
ar

ni
ng

 R
at

e
X

 S
ha

rp
ne

ss

0 5000 10000 15000

Epoch

10 2

10 1

100

G
ra

di
en

t N
or

m

ResNet34 with squared loss on subset of Cifar10

GD
GD CDAT Scale 1.0

GD CDAT Scale 1.94
GD CDAT Scale 2.0

GD CDAT Scale 2.06

Figure 6: Optimizing on edge induces different curvature dynamics. Sharpness, product between
learning rate and sharpness, and gradient norm evolutions for gradient descent with CDAT. By putting
the learning rate on edge (σ ≈ 2), the sharpness does not ever increase and actually decreases slightly
over time. GD with CDAT operates slightly above the edge constantly during training. Its gradient
norm evolution is akin to a fine-tuned constant learning rate baseline.

For ut = −∇f(wt), and if −∇f(wt) is aligned with the eigendirection vmax associated with the
largest eigenvalue λmax of H , we recover the familiar ηoe

t = 2/λmax. Note however, that contrarily
to using directly ηt = 2/λmax, the on-edge rule can naturally take into account the alignment with
vmax (see Fig. 15). We note that we recover the edge of stability even when the updates are given
by the gradient multiplied by a preconditioner, e.g. ut = −P−1∇f(wt) for a matrix P . In this
case, we have −u>Hu/u>g = g>P−1HP−1g/g>P−1g for H = ∇2f(wt), g = ∇f(wt). This is
maximized when P−1/2g lies in the largest eigendirection of the PSD matrix H̃ ≡ P−1/2HP−1/2,
which for σ = 2 gives us the learning rate ηt = 2/λ̃max, where λ̃max is the maximum eigenvalue of
H̃ . This is exactly the edge of stability for adaptive methods (Cohen et al., 2023).

We note that the only difference between this and the quadratically greedy rule is a factor of 2 in the
numerator. Inspired by this observation, and with an eye towards robustness, we define our Curvature
Dynamics Aware Tuning (CDAT) rule by:

ηcdat
t = σ

nt
dt
, for nt = max{−∇f(wt)

>ut, 0}, dt = |u>t ∇2f(wt)ut|+ ε. (8)

The scaling factor σ lets us interpolate between greedy (σ = 1) and on-edge (σ = 2). We are most
interested in the behavior near σ = 2, (also studied in Rosca et al. (2023)). In (8), the max function
takes care of the case where ut is an ascent direction (∇f(wt)

>ut > 0), the absolute value takes
care of cases where the objective has negative curvature in the update directions (see Appendix C
for additional justification), and we simply set ε = 0 as we always observed non-negligible positive
curvature. The definitions of the numerator nt and the denominator dt allow for the possibility of
exponential moving averages (EMA) of each quantity such as ñt+1 = (1 − βcdat)nt + βcdatñt for
βcdat referred to as the CDAT EMA parameter thereafter. We observed that smoothing the estimates
of nt and dt by an EMA is particularly relevant when the updates are themselves defined through an
exponential moving average as in Adam, or when using the proposed rule in a stochastic setting.

CDAT has two major advantages: it is sensitive to information from all eigenvalues of ∇2f(wt), and
it depends on updates ut coming from any base optimizer. We will take advantage of these properties
to explore the behavior of “on edge” optimization in a variety of settings.

3.1 On edge optimizers in practice

Full batch regime. Fig. 5 presents results for training with CDAT across various optimizers,
architectures, datasets, and losses. Overall, selecting the learning rate to be on edge (σ = 2) is on
par with or better than a fine-tuned constant learning rate and is always better than a quadratically
greedy approach (σ = 1). This observation holds even though the quadratically greedy rule ensures
larger instantaneous decrease (Fig. 16). One notes that targeting slightly above the edge (σ = 2.0625)
provides even better performance than the on edge rule (σ = 2) on all examples except the MLP
Mixer on CIFAR10. However, targeting higher above the edge (σ = 2.5) generally gives diverging
results in the short or long terms. To integrate the proposed rule with the Adam optimizer, we also
observed that the estimation of the curvatures through nt, dt in (8) was necessary.

7

32 64 128 256 512 1024

Batch Size

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

S
ca

lin
g

F
ac

to
r

CDAT EMA : 0.0

32 64 128 256 512 1024

Batch Size

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

S
ca

lin
g

F
ac

to
r

CDAT EMA : 0.9

32 64 128 256 512 1024

Batch Size

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

S
ca

lin
g

F
ac

to
r

CDAT EMA : 0.99

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

A
vg

. e
nd

 tr
ai

n
lo

ss
/In

iti
al

 tr
ai

n
lo

ss

ResNet50 with squared loss SGD Mom on Cifar10

Figure 7: Stochasticity shifts the optimal scaling. Normalized performance of gradient descent
with momentum equipped with CDAT in a stochastic regime with varying batch sizes. In a mini-batch
regime, the optimal scale decreases as the batch size decreases. Using an exponential moving average
smooths out the performance of the CDAT rule over batch sizes.

Remarkably, all choices around the edge (1.9375, 2.0, 20625) show a progressive increase of the
learning rate that results generally in a better performance than the constant learning rate counterparts,
except for RMSProp on the NanoLM experiment. The increasing learning rate behavior is akin to
the warm-up phase generally hard-coded by a scheduler. In Fig. 19, we observe that the CDAT rule
displays similar behavior as warm-up schedules, yet it may not fully capture the benefits of prefixed
schedules.

In Fig. 6, we analyze the dynamics of the curvature when optimizing on edge. We observe that the
sharpness can be pushed to reduce over the iterations (1st panel of Fig. 6). The CDAT rule may
operate constantly slightly above the edge (2nd panel of Fig. 6). By reducing the sharpness, the
algorithm may be able to take larger stepsizes and converge faster. Sensitivity to architecure’s width
and depth, as well as weight decay, are also analyzed in Fig. 18.

Mini batch regime. The CDAT rule can be used in a stochastic regime by replacing f in (8) by its
stochastic counterpart f (mt) on a mini-batch mt. However, two difficulties may arise.

First, the on edge rule is motivated by the sharpening effects of the overall objective, which can be
overestimated or underestimated by a single mini-batch. Previous work shows that the trace of the
Hessian may best capture the sharpening and stabilization effects in a stochastic regime (Agarwala
and Pennington, 2024; Wu and Su, 2023); it is unclear what function of the Hessian spectrum, the
CDAT rule captures in the stochastic regime. As a result the optimal scaling factor may vary with
the mini-batch. In Fig. 7, we observe that the optimal scaling of the on-edge rule is proportional
to the batch size up to some size. In particular, at specific batch sizes, we observe that the greedy
rule (σ = 1) outperforms the on-edge rule. This result is consistent with the good performance of
linesearches or greedy rules in a mini-batch regime previously mentioned and observed in Fig. 14.
We also observe in Fig. 7, that integrating an EMA into the estimation of the edge in (8) smooth out
the selection of the optimal scaling factor.

Finally, the sharpening effects are known to be generally mitigated in the stochastic regime (Agarwala
and Pennington, 2024; Cohen et al., 2021; Jastrzębski et al., 2017). The benefits of the on edge rule
appear also subdued in this regime (Fig. 8, Fig. 20, Fig. 21).

3.2 Modeling CDAT dynamics

The classical optimization framework is insufficient to fully explain the benefits of CDAT. For
example, on a convex quadratic objective, σ = 1 is the optimal choice, and σ > 2 results (in the
worst case) in a divergent algorithm. However, we can use a simplified model to begin understanding
the joint dynamics of the learning rate and sharpness under CDAT.

We approximate the gradients around a stationary point w?, where ∇f(w?) = 0, as ∇f(wt) ≈ Hw̄t

for w̄t := wt − w?, and H being a symmetric matrix. In this scenario, the learning rate given by
CDAT is ηcdat

t = σ(w̄>t H
2w̄t)/(w̄

>
t H

3w̄t). Consider the case where H has two eigenvalues λ and
ν, with λ > ν ≥ 0. In this case the CDAT learning rate can be written as

ηcdat
t = σ

λ2pt + ν2gt
λ3pt + ν3gt

= σ
λ2pt/gt + ν2

λ3pt/gt + ν3
. (9)

8

0 100 200 300 400 500

Epoch

0.0

0.1

0.2

0.3

0.4

T
ra

in
 L

os
s

0 100 200 300 400 500

Epoch

0.2

0.4

0.6

0.8

T
es

t E
rr

or

Batch size: 256

0 100 200 300 400 500

Epoch

10 4

10 3

10 2

10 1

100

Le
ar

ni
ng

 R
at

e

ResNet50 with squared loss on Cifar10

GD Mom Scheduled GD Mom GD Mom On Edge

0 25 50 75 100 125

Epoch

2

4

6

T
ra

in
 L

os
s

0 25 50 75 100 125

Epoch

0.4

0.6

0.8

1.0

T
es

t E
rr

or

Batch size: 256

0 25 50 75 100 125

Epoch

10 6

10 5

10 4

10 3

Le
ar

ni
ng

 R
at

e

ViTS/16 with cross-entropy loss on Imagenet

Adam Scheduled Adam Adam On Edge

Figure 8: The performance of CDAT is subdued in the stochastic regime. Fine-tuned constant,
scheduled, and self-tuned with CDAT learning rates in a stochastic regime. In a stochastic regime,
CDAT can also exhibit a form of learning rate warm-up (top figure). However, the interplay between
sharpening and learning rate are known to be mitigated in a stochastic regime which may explain the
underperformance of CDAT in this regime (bottom figure).

Here pt, gt are the projections pt := (w̄>t v)2, gt := (w̄>t v⊥)2, respectively onto the eigendirections
v and v⊥ associated with λ, ν. Therefore, ηcdat

t interpolates between its minimum value σ/λ to the
larger value σ/ν, depending on the alignment ratio pt/gt. For 2ν/λ < σ < 2, this rule can achieve
learning rates both above and below the EOS.

We can gain additional insight by modeling a dynamical λt, extending the model of Section 2.3.
While model (5) captures the dynamics in the largest eigendirection v, here we aim to model the
dynamics in the orthogonal subspace. To simplify, we consider the eigendirections v, v⊥, and small
eigenvalue ν fixed. We then model the gradients as∇f(wt) ≈ Htw̄t with Ht = λtvv

> + νv⊥v
>
⊥ . If

we update w in the direction v⊥ using gradient descent on νgt, we obtain the following dynamical
system describing the CDAT learning rate tuner:

ηt+1 = σ
λ2tpt + ν2gt
λ3tpt + ν3gt

, gt+1 = (1− ηtνt)2gt, pt+1 = (1 + yt)
2pt . (10)

Combining this with the update rule for yt given in (5) completes the model.

There are two important regimes of behavior in this model. First, if yt > 0, pt will increase and
eventually yt will decrease as in the normal EOS case. If yt < 0, the key threshold is yt < −ηtνt.
In this case, the ratio pt/gt decreases - leading to an increase in ηt according to the on edge rule. If
a− bpt > 0 (as it is if pt has become small due to yt < 0), then we see from (5) that this leads to
an increase in yt. This suggests that CDAT has a tendency to push yt closer to the EOS – sending y
towards 0 if the learning rate is driven by the eigendirections corresponding to smaller eigenvalues.

Numerical simulations on this model (Fig. 9) suggest that this effect can indeed cause remarkably
small values of y (3rd panel of Fig. 9). We emphasize that this is due to the joint dynamics of ηt
(induced by the learning rate tuner), and λt, pt, and gt (induced by GD). There are also important
limitations in this model’s ability to fully explain CDAT’s behavior. For example, the model predicts
runaway sharpening for σ < 2 (2nd panel of Fig. 9), and divergence for σ > 2. In practice, we saw a
range of stable and useful settings for scale centered around 2. This modeling limitation likely stems
from neglecting the dynamics orthogonal to v as well as higher-order terms, which empirically tend
to stabilize EOS dynamics (Agarwala et al., 2023).

9

0 101 102

Steps

0.050

0.055

0.060

0.065

0.070

η

σ= 1.9

σ= 2.0

0 200 400 600

Steps

3.1 × 101

3.2 × 101

3.3 × 101

3.4 × 101

3.5 × 101

3.6 × 101

3.7 × 101

3.8 × 101

λ
m

ax σ= 1.9

σ= 2.0

0 101 102

Steps

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

y

σ= 1.9

σ= 2.0

Figure 9: A simple model partially captures the benefits induced by the proposed CDAT rule.
Dynamics of theoretical model of CDAT (10). For σ = 2, feedback stabilizes y close to the EOS
(y = 0), which stabilizes λmax (orange). For σ = 2− ε and small ε (blue, ε = 0.1), model predicts
that λmax slowly grows (middle), but predicts that y stabilizes to a value −ε� yt < 0 (right).

4 Conclusion and Future Directions

Summary. Our empirical results showed that simple linesearches and approximate greedy learning
rate tuners underperform constant learning rate approaches in the full batch regime – despite being
better on individual steps. The idea that “locally greedy” methods perform poorly on long time scales
has been shown in other settings as well, including evolutionary dynamics Agarwala and Fisher
(2019). Our experiments and theoretical work suggest the failure of these classical tuners is due to
the fact that they suppress the feedback which stabilizes sharpness in the fixed learning rate setting.
As the sharpness increases, tuners are forced to take smaller steps, which ends up leading to slower
learning.

We find, in contrast, that prioritizing stability of the sharpness yields tangible benefits. Our CDAT
method pushes the network towards the edge of stability via a dynamically driven process. It also
naturally displays some form of progressive increase of the learning rate akin to prefixed warm-up
schedules. CDAT also sheds light on the more complicated dynamics in small mini batch regime,
where estimation of a locally greedy rule may actually place the optimizer on the edge of stability of
the full batch objective.

Limitations and future directions. We explored some limitations of the current modeling frame-
work in Section 2.3 – in particular, the failure to capture stabilization due to higher order terms.
Developing improved models (either analytically or numerically) would allow for powerful tools from
other disciplines to aid algorithm design – particularly, methods from control theory. For example,
state feedback schemes can be designed through the analysis of nonlinear dynamical systems to
ensure asymptotic stabilization (Isidori, 1995, Chapter 7). We believe a cross disciplinary approach
will be useful for designing the next generation of learning rate tuners.

The proposed CDAT rule may also help to understand and refine the design of learning rate schedules
through scaling ladders (Wortsman et al., 2024). Recent work has shown that transfer of learning
rates over different scales is related to consistency of curvatue dynamics (Noci et al., 2024); this
suggests that approaches like ours may be useful to increase predictability of optimal learning rates
across scale.

Acknowledgements. We thank James Martens and Mihaela Rosca for fruiftul discussions on
related ideas. We also thank the reviewers for their insightful comments that helped us refine the
manuscript.

10

References
Agarwala, A. and Fisher, D. S. (2019), ‘Adaptive walks on high-dimensional fitness landscapes and

seascapes with distance-dependent statistics’, Theoretical population biology 130, 13–49.

Agarwala, A., Pedregosa, F. and Pennington, J. (2023), Second-order regression models exhibit
progressive sharpening to the edge of stability, in ‘International Conference on Machine Learning’,
PMLR, pp. 169–195.

Agarwala, A. and Pennington, J. (2024), ‘High dimensional analysis reveals conservative sharpening
and a stochastic edge of stability’, arXiv preprint arXiv:2404.19261 .

Almeida, L. B., Langlois, T., Amaral, J. D. and Plakhov, A. (1999), Parameter adaptation in stochastic
optimization, in ‘On-line learning in neural networks’, pp. 111–134.

Armijo, L. (1966), ‘Minimization of functions having Lipschitz continuous first partial derivatives’,
Pacific Journal of mathematics 16(1), 1–3.

Arora, S., Li, Z. and Panigrahi, A. (2022), Understanding gradient descent on the edge of stability in
deep learning, in ‘International Conference on Machine Learning’, PMLR, pp. 948–1024.

Ba, J. L., Kiros, J. R. and Hinton, G. E. (2016), ‘Layer normalization’, arXiv preprint
arXiv:1607.06450 .

Baydin, A. G., Cornish, R., Rubio, D. M., Schmidt, M. and Wood, F. (2018), Online learning rate
adaptation with hypergradient descent, in ‘International Conference on Learning Representations’.

Berrada, L., Zisserman, A. and Kumar, M. P. (2020), Training neural networks for and by interpolation,
in ‘International conference on machine learning’, PMLR.

Blondel, M. and Roulet, V. (2024), ‘The Elements of Differentiable Programming’, arXiv preprint
arXiv:2403.14606 .

Cohen, J., Ghorbani, B., Krishnan, S., Agarwal, N., Medapati, S., Badura, M., Suo, D., Cardoze, D.,
Nado, Z., Dahl, G. E. and Gilmer, J. (2023), Adaptive gradient methods at the edge of stability, in
‘NeurIPS 2023 Workshop Heavy Tails in Machine Learning’.

Cohen, J., Kaur, S., Li, Y., Kolter, J. Z. and Talwalkar, A. (2021), Gradient descent on neural networks
typically occurs at the edge of stability, in ‘International Conference on Learning Representations’.

Cutkosky, A., Defazio, A. and Mehta, H. (2023), Mechanic: A learning rate tuner, in ‘Advances in
Neural Information Processing Systems’.

Dagréou, M., Ablin, P., Vaiter, S. and Moreau, T. (2024), How to compute hessian-vector products?, in
‘ICLR Blogposts 2024’. https://iclr-blogposts.github.io/2024/blog/bench-hvp/.

Damian, A., Nichani, E. and Lee, J. D. (2023), Self-stabilization: The implicit bias of gradient descent
at the edge of stability, in ‘International Conference on Learning Representations’.

DeepMind, Babuschkin, I., Baumli, K., Bell, A., Bhupatiraju, S., Bruce, J., Buchlovsky, P., Budden,
D., Cai, T., Clark, A., Danihelka, I., Dedieu, A., Fantacci, C., Godwin, J., Jones, C., Hemsley, R.,
Hennigan, T., Hessel, M., Hou, S., Kapturowski, S., Keck, T., Kemaev, I., King, M., Kunesch, M.,
Martens, L., Merzic, H., Mikulik, V., Norman, T., Papamakarios, G., Quan, J., Ring, R., Ruiz, F.,
Sanchez, A., Sartran, L., Schneider, R., Sezener, E., Spencer, S., Srinivasan, S., Stanojević, M.,
Stokowiec, W., Wang, L., Zhou, G. and Viola, F. (2020), ‘The DeepMind JAX Ecosystem’.
URL: http://github.com/google-deepmind

Defazio, A. and Mishchenko, K. (2023), Learning-rate-free learning by d-adaptation, in ‘International
Conference on Machine Learning’, PMLR, pp. 7449–7479.

Dehghani, M., Gritsenko, A., Arnab, A., Minderer, M. and Tay, Y. (2022), Scenic: A jax library for
computer vision research and beyond, in ‘Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR)’, pp. 21393–21398.

11

https://iclr-blogposts.github.io/2024/blog/bench-hvp/

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and Fei-Fei, L. (2009), Imagenet: A large-scale hier-
archical image database, in ‘2009 IEEE Conference on Computer Vision and Pattern Recognition’,
IEEE, pp. 248–255.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J. and Houlsby, N. (2021), An image is
worth 16x16 words: Transformers for image recognition at scale, in ‘International Conference on
Learning Representations’.

Galli, L., Rauhut, H. and Schmidt, M. (2023), Don’t be so monotone: Relaxing stochastic line search
in over-parameterized models, in ‘Advances in Neural Information Processing Systems’.

Ghorbani, B., Krishnan, S. and Xiao, Y. (2019), An investigation into neural net optimization via
Hessian eigenvalue density, in ‘International Conference on Machine Learning’, PMLR, pp. 2232–
2241.

Gilmer, J., Ghorbani, B., Garg, A., Kudugunta, S., Neyshabur, B., Cardoze, D., Dahl, G. E., Nado, Z.
and Firat, O. (2022), A loss curvature perspective on training instabilities of deep learning models,
in ‘International Conference on Learning Representations’.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y.
and He, K. (2017), ‘Accurate, large minibatch SGD: Training imagenet in 1 hour’, arXiv preprint
arXiv:1706.02677 .

He, K., Zhang, X., Ren, S. and Sun, J. (2016), Deep residual learning for image recognition, in
‘Proceedings of the IEEE conference on computer vision and pattern recognition’, pp. 770–778.

Hinton, G., Nitish, S. and Swersky, K. (2012), ‘Divide the gradient by a running average of its recent
magnitude’, COURSERA: Neural Networks for Machine Learning .

Hochreiter, S., Bengio, Y., Frasconi, P. and Schmidhuber, J. (2001), ‘Gradient flow in recurrent nets:
the difficulty of learning long-term dependencies’, A Field Guide to Dynamical Recurrent Neural
Networks pp. 237–244.

Howard, J. (2019), ‘imagenette’.
URL: https://github.com/fastai/imagenette/

Ioffe, S. and Szegedy, C. (2015), Batch normalization: Accelerating deep network training by reducing
internal covariate shift, in ‘International conference on machine learning’, pmlr, pp. 448–456.

Isidori, A. (1995), Nonlinear control systems, third edn, Springer.

Ivgi, M., Hinder, O. and Carmon, Y. (2023), DoG is SGD’s best friend: A parameter-free dynamic
step size schedule, in ‘International Conference on Machine Learning’, PMLR, pp. 14465–14499.

Jastrzębski, S., Kenton, Z., Arpit, D., Ballas, N., Fischer, A., Bengio, Y. and Storkey, A. (2017),
‘Three factors influencing minima in SGD’, arXiv preprint arXiv:1711.04623 .

Jastrzębski, S., Kenton, Z., Ballas, N., Fischer, A., Bengio, Y. and Storkey, A. (2019), On the relation
between the sharpest directions of DNN loss and the SGD step length, in ‘International Conference
on Learning Representations’.

Jastrzebski, S., Szymczak, M., Fort, S., Arpit, D., Tabor, J., Cho, K. and Geras, K. (2020), The
break-even point on optimization trajectories of deep neural networks, in ‘International Conference
on Learning Representations’.

Kalra, D. S., He, T. and Barkeshli, M. (2023), ‘Universal sharpness dynamics in neural network train-
ing: Fixed point analysis, edge of stability, and route to chaos’, arXiv preprint arXiv:2311.02076
.

Karpathy, A. (2015), ‘The unreasonable effectiveness of recurrent neural networks’, http://
karpathy.github.io/2015/05/21/rnn-effectiveness/.

Kopitkov, D. and Indelman, V. (2020), Neural spectrum alignment: Empirical study, in ‘International
Conference on Artificial Neural Networks’, pp. 168–179.

12

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Krizhevsky, A., Hinton, G. et al. (2009), Learning multiple layers of features from tiny images,
Technical report, University of Toronto, ON, Canada.

LeCun, Y., Cortes, C. and Burges, C. (2010), ‘Mnist handwritten digit database’, ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist 2.

Lewkowycz, A., Bahri, Y., Dyer, E., Sohl-Dickstein, J. and Gur-Ari, G. (2020), ‘The large learning
rate phase of deep learning: the catapult mechanism’, arXiv preprint arXiv:2003.02218 .

Li, H., Xu, Z., Taylor, G., Studer, C. and Goldstein, T. (2018), ‘Visualizing the loss landscape of
neural nets’, Advances in neural information processing systems 31.

Liu, D. C. and Nocedal, J. (1989), ‘On the limited memory bfgs method for large scale optimization’,
Mathematical programming .

Liu, H., Li, Z., Hall, D. L. W., Liang, P. and Ma, T. (2024), Sophia: A scalable stochastic second-order
optimizer for language model pre-training, in ‘International Conference on Learning Representa-
tions’.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J. and Han, J. (2020), On the variance of the
adaptive learning rate and beyond, in ‘International Conference on Learning Representations’.

Loizou, N., Vaswani, S., Laradji, I. H. and Lacoste-Julien, S. (2021), Stochastic Polyak step-size for
SGD: An adaptive learning rate for fast convergence, in ‘International Conference on Artificial
Intelligence and Statistics’, PMLR.

Loshchilov, I. and Hutter, F. (2016), SGDR: Stochastic gradient descent with warm restarts, in
‘International Conference on Learning Representations’.

Martens, J. and Grosse, R. (2015), Optimizing neural networks with Kronecker-factored approximate
curvature, in ‘International conference on machine learning’, PMLR, pp. 2408–2417.

Mishchenko, K. and Defazio, A. (2023), ‘Prodigy: An expeditiously adaptive parameter-free learner’,
arXiv preprint arXiv:2306.06101 .

Mutschler, M. and Zell, A. (2020), ‘Parabolic approximation line search for DNNs’, Advances in
Neural Information Processing Systems 33, 5405–5416.

Nesterov, Y. et al. (2018), Lectures on convex optimization, Vol. 137, Springer.

Nocedal, J. and Wright, S. J. (1999), Numerical optimization, Springer.

Noci, L., Meterez, A., Hofmann, T. and Orvieto, A. (2024), ‘Why do learning rates transfer?
reconciling optimization and scaling limits for deep learning’, arXiv preprint arXiv:2402.17457 .

Polyak, B. T. (1964), ‘Some methods of speeding up the convergence of iteration methods’, USSR
computational mathematics and mathematical physics 4(5), 1–17.

Riedmiller, M. and Braun, H. (1992), Rprop: a fast adaptive learning algorithm, in ‘Proc. of the Int.
Symposium on Computer and Information Science VII’.

Rosca, M., Wu, Y., Qin, C. and Dherin, B. (2023), ‘On a continuous time model of gradient descent
dynamics and instability in deep learning’, Transactions on Machine Learning Research .

Roulet, V., Agarwala, A. and Pedregosa, F. (2023), On the interplay between stepsize tuning and
progressive sharpening, in ‘OPT 2023: Optimization for Machine Learning’.

Schaul, T., Zhang, S. and LeCun, Y. (2013), No more pesky learning rates, in ‘International conference
on machine learning’, PMLR, pp. 343–351.

Shi, B., Su, W. and Jordan, M. I. (2023), ‘On learning rates and Schrödinger operators’, Journal of
Machine Learning Research 24(379), 1–53.

Tolstikhin, I. O., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., Yung, J., Steiner,
A., Keysers, D., Uszkoreit, J. et al. (2021), ‘MLP-mixer: An all-MLP architecture for vision’,
Advances in neural information processing systems 34, 24261–24272.

13

Vaswani, S., Mishkin, A., Laradji, I., Schmidt, M., Gidel, G. and Lacoste-Julien, S. (2019), ‘Pain-
less stochastic gradient: Interpolation, line-search, and convergence rates’, Advances in neural
information processing systems .

Wortsman, M., Liu, P. J., Xiao, L., Everett, K. E., Alemi, A. A., Adlam, B., Co-Reyes, J. D., Gur, I.,
Kumar, A., Novak, R., Pennington, J., Sohl-Dickstein, J., Xu, K., Lee, J., Gilmer, J. and Kornblith,
S. (2024), Small-scale proxies for large-scale transformer training instabilities, in ‘International
Conference on Learning Representations’.

Wu, L., Ma, C. et al. (2018), ‘How SGD selects the global minima in over-parameterized learning: A
dynamical stability perspective’, Advances in Neural Information Processing Systems 31.

Wu, L. and Su, W. J. (2023), The implicit regularization of dynamical stability in stochastic gradient
descent, in ‘International Conference on Machine Learning’, PMLR, pp. 37656–37684.

14

A Theoretical Model

A.1 Intuition for model of curvature dynamics

In Section 2.3, we extend the model from Damian et al. (2023) in order to understand the curvature
dynamics. Here we provide some intuition for the basic structure of the model.

The analysis in Damian et al. (2023) is based on a 3rd order expansion of the loss function. A third
order approximation of f around some w0 reads

f(w) ≈ f(w0) +∇f(w0) · (w − w0) +
1

2
(w − w0)>∇2f(w0)(w − w0)

+
1

6
∇3f(w0)[w − w0, w − w0, w − w0].

Assuming without loss of generality that w0 = 0, f(w0) = 0, we can write:

f(w) ≈ ∇f(w0) · w +
1

2
w>∇2f(w0)w +

1

6
∇3f(w0)[w,w,w] (11)

Consider the gradient descent dynamics with learning rate η under this model. We can write:

wt+1 − wt ≈ −η(∇f(w0) +H(wt)wt) (12)

where H(wt) ≡ ∇2f(w0) + 1
2∇

3f(w0)[wt, ·, ·] is the Hessian at the current parameter wt.

Let v be the direction of the largest eigenvalue of H(w0). For small enough wt − w0, this is a
good approximation of the largest eigendirection of H(wt). Consider the dynamics of the projection
xt ≡ v · wt. We make the additional assumption that v · ∇f(w0) = 0 (which can be achieved with a
coordinate transformation). We then get

xt+1 ≈ (1− ηλt)xt (13)

where λt := λ(wt) := λmaxH(wt) is the largest eigenvalue of the current Hessian H(wt). The
dynamics of λt are generally slower than the dynamics ofwt (and xt), and are governed approximately
by

λt+1 − λt ≈ (∇λ(wt)) · (wt+1 − wt) = −η(∇λ(wt)) · ∇f(wt) (14)
This gradient is given by

∇λ(wt) = ∇(v>H(wt)v) ≈ ∇3f(w0)[v, v, ·]. (15)

For very small xt, it has been observed (see e.g. Cohen et al. (2021)) that λt+1 − λt is increasing
during most of training. Early in this regime xt is often very close to 0 (that is, the gradient
has small component in the v direction). Therefore we are interested in the contribution of the
gradient orthogonal to v, ∇f(wt)⊥ ≡ (I − vvT)∇f(wt), to the dynamics. We define at ≡
−(∇λ(wt)·∇f(wt)⊥) as the instantaneous change in the top eigenvalue, due to gradient contributions
orthogonal to v. We assume that this contribution is positive and, to simplify, independent of t, that
is, at := a > 0.

From (13), while λt < 2/η, xt is decreasing and from (14) λt is increasing.

Once λt > 2/η, the dynamics of xt changes from convergence towards 0 to increasing values with
alternating sign. We can write down the contribution to the gradient from xt using our third order
expansion of the loss. We have:

∇wf(w0 + xtv) ≈ ∇f(w0) + xtH(wt)v +
1

2
x2t∇3f(w0)[v, v, ·] (16)

We can now understand how these terms contribute to the dynamics of λt. The first term contributes
to sharpening (increasing λt) via the constant a. The second term has oscillating sign and its long
term contribution to λt is small. From Equation 13 we know that

xt+1 + xt ≈ (2− ηλt)xt (17)

Near the edge of stability, ηλt is close to 2, and the sum of successive xt are small; therefore we
neglect the linear xt term in Equation 16.

15

0 25 50 75 100

Steps

10 8

10 6

10 4

10 2

100

p
η= 1

η= 1.9/λmax

Figure 10: Dynamics of the largest eigenvalue
projection p. For constant learning rate, p cy-
cles between stability and instability and λmax

stabilizes (blue). If learning rate tuner sets
ηt = 2(1− ε)/λmax,t, p decays to 0 and there is
no negative feedback preventing sharpening.

0 200 400 600

Steps

10 6

10 4

10 2

100

102

p

σ= 1.9

σ= 2.0

pmax

porth

Figure 11: Dynamics of p for toy model of
CDAT. For σ = 2, p is stable, which induces sta-
bilization of sharpness (orange). For σ = 2− ε
for small ε (blue, ε = 0.1), p decreases but the
ratio of p to the orthogonal projection remains
constant which stabilizes y near 0.

The sign of the x2t term is constant and there are no such issues. Therefore, in the non-linear regime
the dynamics of λt can be approximated by:

λt+1 − λt ≈ ηa−
η

2
x2t
(
∇3f(w0)[v, v, ·] · ∇3f(w0)[v, v, ·]

)
(18)

If we define b ≡ 1
2

(
∇3f(w0)[v, v, ·] · ∇3f(w0)[v, v, ·]

)
(guaranteed to be positive), then we arrive

at the dynamical equations presented in Equation 4:

xt+1 − xt = (2− ηλt)xt, λt+1 − λt = η(a− bx2t) (19)

This system leads to a quasi-stable oscillation of λt around 2/η; when λt < 2/η, xt goes to 0, and
eventually λt increases; when λt > 2/η, xt increases in magnitude, eventually leading to a decrease
in λt.

This heuristic argument is made rigorous in the appropriate regimes in Damian et al. (2023); there
they compute the difference between the full dynamics and the dynamics with the gradient projected
away from the largest eigendirection using a coupling argument. The key point is that higher order
contributions to the gradient are guaranteed to be anti-aligned with the gradient of the large Hessian
eigenvalues. This leads to a restoring force which counteracts eigenvalue growth (progressive
sharpening) if the largest eigenmode becomes unstable.

A.2 Dynamics of rescaled variables

In Section 2.3, we used Equation 4 to derive equations in p := x2 and y := ηλ− 2. We arrived at

pt+1 = (1 + yt)
2pt, yt+1 = ηt+1 [ηt (a− bpt)] +

(
ηt+1

ηt

)
yt + 2

[
ηt+1

ηt
− 1

]
. (20)

The dynamical equation for p is obtained by squaring the equation for xt in Equation 4. To derive the
equation for yt, we first derive the dynamics of ηtλt+1 as

ηtλt+1 = ηt [ηt (a− bpt)] + ηtλt. (21)

We then have
yt+1 =

ηt+1

ηt
[ηtλt+1 − 2] + 2. (22)

Evaluating completes Equation 5.

A.3 Dynamics of the projection on the largest eigenvector

We present results on the dynamics of p in the various models; these were omitted from the main text
in order to simplify the presentation. For constant learning rate, p initially decreases until EOS is
crossed, after which it enters into a cycle of increase and decrease (Figure 10, blue). For our model

16

of linesearches, where ηt = 2(1 − ε)/λmax,t, p decays to 0 quickly and there is no mediation of
sharpening (orange, ε = 0.1).

For our model of CDAT presented in Section 3.2, p stabilizes for σ = 2 (Figure 11, orange). For
σ < 2, the model still predicts decay of p, but the ratio of pt to the orthgonal component gt remains
constant (Figure 11, blue). This fixed ratio stabilizes y to a value near 0.

In practice, the higher order terms in the dynamics provide additional stability, in the on-edge model,
which allows p to stabilize as well, see Fig. 12, Fig. 17. The key is that these terms can operate when
y is close to 0 for long periods of time. These results suggest that additional model development is
required to understand the behavior of learning rate tuners which target the EOS.

B Additional Experiments

B.1 Further analyzes of base learning rate tuners

Fig. 12 completes Fig. 3 with measures of sharpening and learning rates on the settings considered
in Fig. 1. For RMSProp we considered the preconditioned Hessian following the observations done
by Cohen et al. (2023) that for adaptive gradient methods such as RMSProp or Adam, the sharpness
of the preconditioned Hessian, rather than the sharpness of the Hessian, defines the edge of stability.
Namely, recall that RMSProp takes updates of the form

wt+1 = wt − P−1t ∇f(wt), forPt = diag(
√
νt + ε)

for
νt = (1− β2)g2t + β2νt−1, ν−1 = 0, gt = ∇f(wt),

with β2 an exponential moving average parameter. The preconditioned Hessian takes then the form

H̃t = P
−1/2
t ∇2f(wt)P

−1/2
t ,

and we report λmax(H̃t).

We observe similar behaviors in these regimes as in Fig. 3. Namely, the sharpness or preconditioned
sharpness ever increase (2nd panels of Fig. 12), while the learning rates ever decrease (1st panels
of Fig. 12). The constant learning counterpart can operate above the edge of stability while the
self-tuned methods generally avoid crossing the edge of stability (3rd panels of Fig. 12).

B.2 Analyzing additional learning rate tuners

We consider the performance of two additional classical learning rate tuners, Polyak stepsize (Berrada
et al., 2020; Loizou et al., 2021; Polyak, 1964) and hyper-gradient descent (Almeida et al., 1999;
Baydin et al., 2018) akin to the resilient backpropagation scheme (Riedmiller and Braun, 1992).

Briefly, Polyak stepsizes consider setting the learning rate as

ηt = min

{
f(wt)− f?

‖∇f(wt)‖2
, ηmax

}
, (23)

where f? = minw f(w) is the minimum of the objective set to 0 by assuming that a neural network
can overfit the data, and ηmax is a maximal stepsize selected as 1 or 100 in our experiments (we take
the best instance).

Hyper-gradient descent considers updating the stepsize towards maximal decrease of the objective.
Namely, defining the objective obtained after one step ht(η) = f(wt + ηut), the algorithm updates
ηt by a gradient step on ht resulting a priori in ηt+1 = ηt − α∇f(wt + ηtut)

>ut for a given
hyper-learning rate α. Almeida et al. (1999); Baydin et al. (2018) argued for using multiplicative
updates of the form

ηt+1 = ηt

(
1− β ∇f(wt + ηtut)

>ut
‖∇f(wt + ηtut)‖2‖ut‖2

)
. (24)

Intuitively, the learning rate increases if the update is aligned with the negative gradient direction and
decreases otherwise. Resilient backpropagation (Riedmiller and Braun, 1992) adopts a similar logic

17

componentwise. In our experiments we vary β and select the best instance, see Appendix C.5 for
more details.

We observe that Polyak stepsizes (top figure of Fig. 13) generally select larger learning rates than the
constant learning rate counterpart. The efficiency of Polyak stepsizes is not reached by the CDAT rule
with σ = 2 but with a slightly larger scale σ = 2.06. The efficiency of the Polyak stepsize method, in
particular compared to a simple linesearch, in a full batch regime, has also been reported by Roulet
et al. (2023). The proposed CDAT rule may capture the benefits of aggressive learning rates taken by
Polyak stepsizes in a smoother way by allowing various scales.

On the other hand, the hyper-gradient descent performs just on par with the fine-tuned constant
learning rate counterpart (bottom figure of Fig. 13). We also observe a slow, yet steady, progressive
sharpening when using the hyper-gradient descent. As with the linesearch method or the quadratically
greedy rule, the hyper-gradient descent focuses on selecting a learning rate that decreases the loss,
which appears, across those tuners, to potentially suppress effective stabilization effects naturally
appearing with constant learning rate.

B.3 Base learning rate tuners in a stochastic regime

In Fig. 14, we report the performance of classical learning rate tuners (linesearch or quadratically
greedy method) in a stochastic regime for varying batch-sizes. As observed previously by Vaswani
et al. (2019) or Roulet et al. (2023), a linesearch for example can perform well in a stochastic regime.
Note that the two approaches (linesearch and quadratically greedy method) display similar behaviors
(just as they displayed similar behaviors in the full batch regime). This hints that, rather than playing
with the numerous hyperparameters of a linesearch we may focus simply on an additional scaling
factor for the quadratically greedy rule, which motivated the proposed CDAT rule.

B.4 Targeting the edge of stability using the exact sharpness

Cohen et al. (2021, Appendix F) reported bad performance of adaptive learning rate tuners selecting
the stepsize as

η = 2/λmax(∇2f(w)) ,
which may fix the learning rate just at the edge of stability. Note that such a definition does not
take into account the additional alignment of the update with the largest eigenvector. Our proposed
diagnostic rule CDAT rather considers the edge of stability given by a local approximation of the
objective along the update so to take into account the alignment of the update with the largest
eigenvector of the Hessian. We ran experiments with a rule

η = σ/λmax(∇2f(w)) , (25)
that lets the scaling factor vary just as done with CDAT. The only difference is in the estimation of
the base estimate of the edge of stability (CDAT does it with the help of a quadratic approximation of
the objective, while the rule (25) uses an exact computation of the sharpness). In Fig. 15, we observe
that setting the scale σ ≈ 2 leads to poor performance as previously observed by Cohen et al. (2021).
Note however that by setting the scaling much above 2 (like σ = 3) such a rule may outperform a
constant learning rate. This hints that the rule (25) misses the alignment of the update with the largest
eigenvector, which motivated the CDAT rule.

B.5 Analyzing instantaneous gains versus long-term gains

In Fig. 16, we investigate the difference of instantaneous decrease using the quadratically greedy
rule (CDAT with σ = 1) compared to the on edge rule (CDAT with σ = 2). Throughout a training,
the quadratically rule ensures a larger instantaneous decrease as intended through its definition
as a learning rate that minimizes the loss. Yet, in the long term, the quadratically greedy rule
underperforms the on edge rule (Fig. 5).

B.6 Additional metrics for the CDAT rule

In Fig. 17, we additionally measure the alignment of the updates with the largest eigenvector and the
angle between successive updates. We observe that the CDAT rule for σ ≈ 2 behaves similarly as the
constant learning rate counterpart. In particular, the updates tend to quickly be in opposed directions.
The quadratically greedy rule does not demonstrate such a behavior.

18

B.7 Sensibility analysis to architecture hyperparameters

In Fig. 18, we study CDAT for simple MLPs in a full batch regime on the MNIST dataset. Our goal is
to understand the benefits of the proposed CDAT rule for varying hyperparameters. First, we analyze
the sensibility to width and depth of an MLP in a similar fashion as Cohen et al. (2021, Appendix D)
did to analyze progressive sharpening.

We observe that accrued gains can be obtained with the CDAT rule for larger widths (top left panel
of Fig. 18). Note that Cohen et al. (2021, Appendix D) found less sharpening at higher widths. In
terms of depth (top right panel of Fig. 18), the CDAT rule works best with larger depths while we
note a slight shift of optimal scaling factors from 2 to slightly below 2.

The CDAT rule appears to work best with small or no weight decay (bottom left panel of Fig. 18)
while its benefits fade with larger weight decay (no difference between greedy σ = 1 and on edge
σ = 2). Finally, while the method naturally finds smaller train losses with larger subsets of data,
we do not observe a significant shift of relative performance between scales as the size of the data
increases (bottom right panel of Fig. 18).

B.8 CDAT rule versus prefixed schedule in full batch regime

In Fig. 19, we compare the proposed CDAT rule with prefixed schedules in a full batch regime. We
observe that while placing the optimizer on edge could improve on constant learning rate counterparts,
prefixed schedules can outperform the CDAT rule. This points out that the feedback loop exploited
by CDAT may miss some additional nonlinear effects that could further enhance self-tuning rules.

B.9 Detailed performances of CDAT in stochastic regime

In Fig. 20 and Fig. 21, we detail the performances of the CDAT rule in the stochastic regime for
varying batch sizes. In the stochastic regime, recall that the heatmap of the performance of CDAT
in terms of batch-size heavily depended on the appropriate scaling factor Fig. 7 (in comparison
a scaling factor of approximately σ = 2 appeared generally good in the full batch regime). In
both Fig. 20 and Fig. 21, we observe that the method may generally work better at larger batch sizes.
Understanding better the right statistics to estimate as well as appropriate estimators of the edge of
stability in a stochastic regime is a future direction.

19

0 5000 10000 15000

Epoch

10 3

10 2

10 1

100

Le
ar

ni
ng

 R
at

e

0 5000 10000 15000

Epoch

101

102

103

H
es

si
an

 S
ha

rp
ne

ss
0 5000 10000 15000

Epoch

0

1

2

3

4

Le
ar

ni
ng

 R
at

e
X

 S
ha

rp
ne

ss

0 5000 10000 15000

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

H
es

si
an

 A
lig

n
E

ig

ResNet34 with squared loss on subset of Cifar10

GD Linesearch GD Quad. Greedy GD

0 1000 2000 3000 4000

Epoch

10 2

10 1

100

Le
ar

ni
ng

 R
at

e

0 1000 2000 3000 4000

Epoch

102

H
es

si
an

 S
ha

rp
ne

ss

0 1000 2000 3000 4000

Epoch

0

1

2

3

4

Le
ar

ni
ng

 R
at

e
X

 S
ha

rp
ne

ss
0 1000 2000 3000 4000

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

H
es

si
an

 A
lig

n
E

ig

MixerTi/8 with squared loss on subset of Cifar10

GD Linesearch GD Quad. Greedy GD

0 1000 2000 3000 4000

Epoch

10 6

10 5

10 4

10 3

10 2

Le
ar

ni
ng

 R
at

e

0 1000 2000 3000 4000

Epoch

103

105

107

109

P
re

co
nd

 H
es

si
an

 S
ha

rp
ne

ss

0 1000 2000 3000 4000

Epoch

0

1

2

3

4

5

6

Le
ar

ni
ng

 R
at

e
X

 S
ha

rp
ne

ss

0 1000 2000 3000 4000

Epoch

0.0

0.2

0.4

0.6

0.8

P
re

co
nd

 H
es

si
an

 A
lig

n
E

ig

NanoLM with cross entropy loss on subset of Tiny Shakespeare

RMSProp Linesearch RMSProp Quad. Greedy RMSProp

0 1000 2000 3000 4000

Epoch

10 6

10 5

10 4

10 3

10 2

10 1

Le
ar

ni
ng

 R
at

e

0 1000 2000 3000 4000

Epoch

104

106

108

1010

1012

P
re

co
nd

 H
es

si
an

 S
ha

rp
ne

ss

0 1000 2000 3000 4000

Epoch

0

1

2

3

4

5

6

Le
ar

ni
ng

 R
at

e
X

 S
ha

rp
ne

ss

0 1000 2000 3000 4000

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

P
re

co
nd

 H
es

si
an

 A
lig

n
E

ig

ViTTi/32 with cross entropy loss on subset of Imagenet

RMSProp Linesearch RMSProp Quad. Greedy RMSProp

Figure 12: Learning rates and sharpness dynamics of baseline learning rate tuners. Learning
rate, Hessian or preconditioned Hessian sharpness, their product, and the alignment between the
update and the largest eigenvector of the Hessian or the preconditioned Hessian. As in Fig. 12, we
observe that a linesearch (1) or a quadratically greedy (3) learning rate tuner display decreasing
learning rates along training. The sharpness of the Hessian (for GD) or preconditioned Hessian (for
RMSProp) keep increasing for the self-tuned baselines while they stabilize for the constant learning
rate counterparts. The self-tuned methods perform generally below the edge of stability or at least
much less above than the constant learning rate counterpart.

20

0 5000 10000 15000

Epoch

10 3

10 2

10 1

100

T
ra

in
 L

os
s

0 5000 10000 15000

Epoch

10 5

10 4

10 3

10 2

Le
ar

ni
ng

 R
at

e

0 5000 10000 15000

Epoch

103

104

105

H
es

si
an

 S
ha

rp
ne

ss
0 5000 10000 15000

Epoch

0

2

4

6

8

10

Le
ar

ni
ng

 R
at

e
X

 S
ha

rp
ne

ss

ResNet34 with squared loss on subset of Cifar10

GD Polyak GD GD CDAT Scale 2.0 GD CDAT Scale 2.06

0 5000 10000 15000

Epoch

10 3

10 2

10 1

100

T
ra

in
 L

os
s

0 5000 10000 15000

Epoch

10 4

10 3

10 2

Le
ar

ni
ng

 R
at

e

0 5000 10000 15000

Epoch

103

104

H
es

si
an

 S
ha

rp
ne

ss

0 5000 10000 15000

Epoch

0

2

4

6

8

10

Le
ar

ni
ng

 R
at

e
X

 S
ha

rp
ne

ss

ResNet34 with squared loss on subset of Cifar10

GD Hyper GD GD CDAT Scale 2.0 GD CDAT Scale 2.06

Figure 13: Analyzing additional learning rate tuners. Train loss, learning rate, sharpness, and their
product along training with gradient descent using a constant or self-tuned learning rate with various
tuners. Polyak stepizes (23) are effective in a full batch regime (top figure) outperforming CDAT
on edge (σ = 2). The effectiveness of the Polyak stepsizes are partially captured by an aggressive
CDAT rule placing the optimizer on edge σ = 2.06. On the other hand, a hyper-gradient descent (24)
performs just on par with the constant learning rate counterpart in this regime. It also displays an
ever-increasing sharpening akin to the one observed for a linesearch or the quadratically greedy
rule Fig. 3.

21

0 200 400

Epoch

0.05

0.10

0.15

0.20

0.25

0.30

0.35

T
ra

in
 L

os
s

0 200 400

Epoch

0.40

0.45

0.50

0.55

T
es

t E
rr

or

Batch size: 64

0 200 400

Epoch

10 4

Le
ar

ni
ng

 R
at

e

0 200 400

Epoch

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

T
ra

in
 L

os
s

0 200 400

Epoch

0.45

0.50

0.55

0.60

T
es

t E
rr

or

Batch size: 256

0 200 400

Epoch

10 4

Le
ar

ni
ng

 R
at

e

0 200 400

Epoch

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.41

T
ra

in
 L

os
s

0 200 400

Epoch

0.525

0.550

0.575

0.600

0.625

0.650

T
es

t E
rr

or

Batch size: 1024

0 200 400

Epoch

10 4

Le
ar

ni
ng

 R
at

e

ResNet50 with squared loss on Cifar10

SGD Linesearch SGD Quad. Greedy SGD

Figure 14: Classical learning rate tuners can work well in stochastic regime. In a stochastic
regime, we observe that, e.g., a linesearch can perform on par or even better than the constant
learning counterparts. However, this good performance is not explained by the common belief that
linesearches work well in a full batch regime (Fig. 1). The linesearch and quadratically greedy rule
perform similarly in this setting.

0 5000 10000 15000

Epoch

0.0

0.1

0.2

0.3

0.4

T
ra

in
 L

os
s

0 5000 10000 15000

Epoch

10 2

10 1

Le
ar

ni
ng

 R
at

e

0 5000 10000 15000

Epoch

1

2

3

4

5

Le
ar

ni
ng

 R
at

e
X

 S
ha

rp
ne

ss

MLP[256, 256, 256] with squared loss on subset of Cifar10

GD
GD Exact CDAT Scale 1.94

GD Exact CDAT Scale 2.0
GD Exact CDAT Scale 2.06

GD Exact CDAT Scale 2.5
GD Exact CDAT Scale 3.0

Figure 15: On edge with exact sharpness. We consider a rule similar to CDAT (8) but using the
exact sharpness, that is the largest eigenvalue of the Hessian, as a base learning rate while varying an
additional scale factor (see (25)). By using the exact sharpness, a scaling factor of σ = 2 leads now
to poor performance, while a scaling factor of σ = 3 is performant. By using the exact sharpness (25)
we do not take into account the actual alignment of the update with the largest eigenvector which
may explain the shift of optimal scaling factors in this case.

22

0 100 200 300 400

Steps

0

1

2

3

4

5
T

ra
in

 lo
ss

GD CDAT Scale 1.0
GD CDAT Scale 2.0

0 100 200 300 400

Steps

0.0

0.1

0.2

0.3

0.4

D
iff

. i
n

lo
ss

 a
fte

r
on

e
up

da
te

bt
w

 C
D

A
T

 S
ca

le
 2

.0
 a

nd
 1

.0

Training with CDAT Scale 1.0

0 100 200 300 400

Steps

0.0

0.1

0.2

0.3

0.4

D
iff

. i
n

lo
ss

 a
fte

r
on

e
up

da
te

bt
w

 C
D

A
T

 S
ca

le
 2

.0
 a

nd
 1

.0

Training with CDAT Scale 2.0

Figure 16: The quadratically greedy rule ensures larger instantaneous decrease of the loss.
Train losses and difference in loss between one step using the on-edge rule (CDAT, scale=2) and
one step using quadratically greedy rule (CDAT, scale=1). Results averaged over 10 initializations
and disjoint 4096-sample subsets of CIFAR100. MLP architecture: single hidden layer of size
1024, ReLU activations, trained with GD and cross-entropy loss in a full batch setting. We plot
f(wt + ηoeut)− f(wt + ηqgut) along a training performed either with the quadratically greedy rule
(σ = 1) or the on-edge rule (σ = 2). In both cases, this difference is positive meaning that the
quadratically greedy rule ensures a larger instantaneous decrease of the loss. Yet the quadratically
greedy rule underperforms in the long term (see Fig. 5, also holds in this full batch setting).

0 5000 10000 15000

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

H
es

si
an

 A
lig

n
E

ig

0 5000 10000 15000

Epoch

1.0

0.5

0.0

0.5

1.0

A
ng

le
 U

pd
at

es

ResNet34 with squared loss on subset of Cifar10

GD
GD CDAT Scale 1.0

GD CDAT Scale 1.94
GD CDAT Scale 2.0

GD CDAT Scale 2.06

Figure 17: Further analysis of the CDAT rule. This is the same setting as in Fig. 6 except that
we plot the alignment between the largest eigenvector of the Hessian and the update, and the angle
between successive updates. We observe that the CDAT rule for σ ≈ 2 behaves similarly as the
constant learning rate counterpart. In particular, the updates tend to quickly be in opposed directions.
The quadratically greedy rule does not demonstrate such a behavior.

23

32 64 128 256 512

Width

1.0
1.5

1.75
1.875

1.9375
1.96875

1.984375
2.0

2.015625
2.03125

2.0625
2.125

2.25
2.5
3.0

S
ca

lin
g

F
ac

to
r

Subset of Mnist MLP Square Loss SGD On Edge
 Depth 3

1e-04

1e-03

1e-02

1e-01

1e+00

F
in

al
 tr

ai
n

lo
ss

/In
it

tr
ai

n
lo

ss

1 2 3 4 5 6

Depth

1.0
1.5

1.75
1.875

1.9375
1.96875

1.984375
2.0

2.015625
2.03125

2.0625
2.125

2.25
2.5
3.0

S
ca

lin
g

F
ac

to
r

Subset of Mnist MLP Square Loss SGD On Edge
 Width 256

1e-04

1e-03

1e-02

1e-01

1e+00

F
in

al
 tr

ai
n

lo
ss

/In
it.

 tr
ai

n
lo

ss

0.0 1e-05 0.0001 0.001

Weight Decay

1.0
1.5

1.75
1.875

1.9375
1.96875

1.984375
2.0

2.015625
2.03125

2.0625
2.125

2.25
2.5
3.0

S
ca

lin
g

F
ac

to
r

Subset of Mnist MLP Square Loss SGD On Edge
 Hidden sizes [256, 256, 256]

1e-04

1e-03

1e-02

1e-01

1e+00

F
in

al
 tr

ai
n

lo
ss

/In
it.

 tr
ai

n
lo

ss

2048 4096 8192

Data Size

1.0
1.5

1.75
1.875

1.9375
1.96875

1.984375
2.0

2.015625
2.03125

2.0625
2.125

2.25
2.5
3.0

S
ca

lin
g

F
ac

to
r

Subset of Mnist MLP Square Loss SGD On Edge
 Hidden sizes [256, 256, 256]

1e-04

1e-03

1e-02

1e-01

1e+00

F
in

al
 tr

ai
n

lo
ss

/In
it.

 tr
ai

n
lo

ss

Figure 18: Improvements of CDAT rule on edge for varying hyperparameters. Varying width,
depth, weight decay and size of the subset considered when using the CDAT rule with varying scaling
factors. We observe that accrued gains can be obtained with the CDAT rule for larger widths (top left
panel). In terms of depth (top right panel), the CDAT rule works best with larger depths, while we
note there a slight shift of optimal scaling factors from 2 to slightly below 2. The CDAT rule appears
to work best with small or no weight decay (bottom left panel) while its benefits fade with larger
weight decay (no difference between greedy σ = 1 and on edge σ = 2). Finally, while the method
naturally finds smaller train losses with larger subsets of data, we do not observe a significant shift of
relative performance between scales as the size of the data increases (bottom right panel).

0 1000 2000 3000 4000

Epoch

0.0

0.1

0.2

0.3

0.4

T
ra

in
 L

os
s

0 1000 2000 3000 4000

Epoch

10 3

10 2

10 1

100

Le
ar

ni
ng

 R
at

e

ResNet34 with squared loss on subset of Cifar10

GD
GD CDAT Scale 1.0

Scheduled GD
GD CDAT Scale 2.0

0 1000 2000 3000 4000

Epoch

0

1

2

3

4

T
ra

in
 L

os
s

0 1000 2000 3000 4000

Epoch

10 6

10 5

10 4

10 3

10 2

Le
ar

ni
ng

 R
at

e
NanoLM with cross entropy loss on subset of Tiny Shakespeare

RMSProp
RMSProp CDAT Scale 1.0

Scheduled RMSProp
RMSProp CDAT Scale 2.0

0 1000 2000 3000 4000

Epoch

10 5

10 4

10 3

10 2

10 1

100

T
ra

in
 L

os
s

0 1000 2000 3000 4000

Epoch

10 4

10 3

10 2

10 1

100

Le
ar

ni
ng

 R
at

e

MixerTi/8 with squared loss on subset of Cifar10

GD Mom
GD Mom CDAT Scale 1.0

GD Mom CDAT Scale 2.0
Scheduled GD

0 1000 2000 3000 4000

Epoch

10 6

10 4

10 2

100

T
ra

in
 L

os
s

0 1000 2000 3000 4000

Epoch

10 5

10 3

10 1

101

Le
ar

ni
ng

 R
at

e

ViTTi/32 with cross entropy loss on subset of Imagenet with edge EMA

Adam
Adam CDAT Scale 1.0

Scheduled Adam
Adam CDAT Scale 2.0

Figure 19: CDAT rule may not fully capture the benefits of pre-fixed schedules. Train loss and
learning rate behaviors for fine-tuned optimizers with or without schedules vs self-tuned counterparts
with CDAT on various architecture, datasets, losses in a full batch regime. While the CDAT rule
displays a behavior to warmup schedules, it does not completely catch the benefits of pre-fixed
schedules. Note for the top-left part that the performance of the pre-fixed schedule is akin to the
performance reported with CDAT σ = 2.5 at early times suggesting that a varying scaling factor, or
taking higher order dynamics may be important to fully capture the benefits of warm-up schedules.

24

0 100 200 300 400 500

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

T
ra

in
 L

os
s

0 100 200 300 400 500

Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
es

t E
rr

or

Batch size: 32

0 100 200 300 400 500

Epoch

10 5

10 4

10 3

10 2

Le
ar

ni
ng

 R
at

e

0 100 200 300 400 500

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

T
ra

in
 L

os
s

0 100 200 300 400 500

Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
es

t E
rr

or

Batch size: 64

0 100 200 300 400 500

Epoch

10 4

10 3

10 2

10 1

Le
ar

ni
ng

 R
at

e
0 100 200 300 400 500

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

T
ra

in
 L

os
s

0 100 200 300 400 500

Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
es

t E
rr

or

Batch size: 128

0 100 200 300 400 500

Epoch

10 4

10 3

10 2

10 1

Le
ar

ni
ng

 R
at

e

0 100 200 300 400 500

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

T
ra

in
 L

os
s

0 100 200 300 400 500

Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
es

t E
rr

or

Batch size: 256

0 100 200 300 400 500

Epoch

10 4

10 3

10 2

10 1

100

Le
ar

ni
ng

 R
at

e

0 100 200 300 400 500

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

T
ra

in
 L

os
s

0 100 200 300 400 500

Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
es

t E
rr

or

Batch size: 512

0 100 200 300 400 500

Epoch

10 4

10 3

10 2

10 1

100

Le
ar

ni
ng

 R
at

e

0 100 200 300 400 500

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

T
ra

in
 L

os
s

0 100 200 300 400 500

Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
es

t E
rr

or

Batch size: 1024

0 100 200 300 400 500

Epoch

10 4

10 3

10 2

10 1

100

Le
ar

ni
ng

 R
at

e

ResNet50 with squared loss on Cifar10

GD Mom Scheduled GD Mom GD Mom CDAT

Figure 20: Performance of fine-tuned algorithms in stochastic regime with SGD Momentum.
In the stochastic regime with SGD momentum, we observe that the CDAT rule may outperform the
constant learning rate counterpart (particularly for large batch sizes) while performing on par or
underperforming the scheduled learning rate counterparts. Interestingly, a warm-up phase appears
naturally induced by the CDAT rule (right plots).

25

0 25 50 75 100 125

Epoch

1

2

3

4

5

6

7

T
ra

in
 L

os
s

0 25 50 75 100 125

Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
es

t E
rr

or

Batch size: 64

0 25 50 75 100 125

Epoch

10 7

10 6

10 5

10 4

10 3

Le
ar

ni
ng

 R
at

e

0 25 50 75 100 125

Epoch

1

2

3

4

5

6

7

T
ra

in
 L

os
s

0 25 50 75 100 125

Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
es

t E
rr

or

Batch size: 256

0 25 50 75 100 125

Epoch

10 6

10 5

10 4

10 3

Le
ar

ni
ng

 R
at

e

0 25 50 75 100 125

Epoch

1

2

3

4

5

6

7

T
ra

in
 L

os
s

0 25 50 75 100 125

Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
es

t E
rr

or

Batch size: 1024

0 25 50 75 100 125

Epoch

10 6

10 5

10 4

10 3

10 2

Le
ar

ni
ng

 R
at

e

ViTS/16 with cross-entropy loss on Imagenet

Adam Scheduled Adam Adam CDAT

Figure 21: Performance of fine-tuned algorithms in stochastic regime with Adam. In the stochas-
tic regime with Adam we observe varying performance of the CDAT rule, generally on par or under-
performing the baselines. Several factors can explain the underperformance. The scaling factor is
not well understood, and a finer grid search could improve the scheme. Similarly, a better estimate
or a better understanding of the edge of stability in a stochastic regime could improve the approach.
Tackling curvature dynamics by analyzing feedback effects as in the CDAT rule may help such
design.

26

C Experimental Details

C.1 Datasets

MNIST. MNIST is an image classification dataset of handwritten digits (LeCun et al., 2010). We
normalized the pictures so that each pixel is between 0 and 1. We did not standardize the data.
We only used this dataset to test varying MLP architectures in Fig. 18. See Appendix C.5 for any
additional relevant details.

CIFAR10. CIFAR10 is an image classification dataset of colored images of size 32× 32 with 10
classes (Krizhevsky et al., 2009). We normalized the pictures so that each pixel is between 0 and 1.
We did not standardize the data. In the full batch regime, we considered a subset of 4096 samples. In
the mini batch regime, we considered the full dataset of 50, 000 samples for training (dropping out
the remainder batch) and tested on the 10, 000 validation samples.

Tiny Shakespeare. This consists in 40, 000 lines of Shakespeare from a variety of Shakespeare’s
plays (Karpathy, 2015). The task consists in a character-level prediction task among 64 characters. In
the full batch regime, we considered a subset of 2048 samples consisting of blocks of 64 characters.

Imagenet. Imagenet is an image classification dataset of various images from the web (Deng et al.,
2009). The images have various sizes. The original Imagenet-1K dataset contains 1000 classes. For
the full batch experiments, we consider the Imagenette (Howard, 2019) subset that consists in only
10 classes and took 1024 samples out of it. We consider the usual prepreocessing for Imagenet as
detailed in the Scenic library (Dehghani et al., 2022). Namely, for training we consider random
cropping and random flip at training. For testing, we center crop the images. Each time the cropping
reduces the colored images to a 224× 224 size. In the mini-batch regime we consider the complete
training dataset of 1.2 million images (Imagenet-1K), dropped the remainder batch, and reported test
error on the 50, 000 validation images.

C.2 Architectures

Residual Network (ResNet). We considered the standard ResNet architectures (ResNet34,
ResNet50) of He et al. (2016) as implemented in the Scenic library (Dehghani et al., 2022). For
the examples with ResNet34 we removed the batch normalization layers (Ioffe and Szegedy, 2015).
For the examples with ResNet50 we replace the batch normalization layers with layer normalization
layers (Ba et al., 2016).

Multi-Layer Perceptron (MLP) Mixer. We consider the standard MLP Mixer architec-
tures (Tolstikhin et al., 2021) as implemented in the Scenic library (Dehghani et al.,
2022). By Mixer Ti/8, we mean the tiny model of Mixer provided in the Scenic li-
brary (see https://github.com/google-research/scenic/blob/main/scenic/projects/
baselines/configs/imagenet/imagenet_augreg_mixer_config.py) with patches of size
8× 8. We removed dropout (both layer and depth wise).

Nano Language Model (NanoLM). We consider a simpel sequence-to-sequence Transformer
model implemented in Optax (https://github.com/google-deepmind/optax/blob/main/
examples/nanolm.ipynb). The model consists of 6 stacked transformer blocks, each of which
contains a multi-head attention layer followed by a feed-forward layer. Layer normalization is used
used within the transformer blocks to improve training stability. Finally, a dense layer maps the
model’s output to the vocabulary size, producing probabilities for each character as the next potential
character. The only difference with respect to the previous code is that we removed dropout (for
deterministic training) and, as mentioned in the previous subsection, reduced the size of the dataset to
be able to estimate the sharpness.

Vision Transformer (ViT). We consider the standard Vision Transformer architecture (Doso-
vitskiy et al., 2021) as implemented in the Scenic library (Dehghani et al., 2022). By
ViT Ti/32, we mean the tiny model of Vision Transformer provided in the Scenic li-
brary (see https://github.com/google-research/scenic/blob/main/scenic/projects/

27

https://github.com/google-research/scenic/blob/main/scenic/projects/baselines/configs/imagenet/imagenet_augreg_mixer_config.py
https://github.com/google-research/scenic/blob/main/scenic/projects/baselines/configs/imagenet/imagenet_augreg_mixer_config.py
https://github.com/google-deepmind/optax/blob/main/examples/nanolm.ipynb
https://github.com/google-deepmind/optax/blob/main/examples/nanolm.ipynb
https://github.com/google-research/scenic/blob/main/scenic/projects/baselines/configs/imagenet/imagenet_augreg_vit_config.py
https://github.com/google-research/scenic/blob/main/scenic/projects/baselines/configs/imagenet/imagenet_augreg_vit_config.py

baselines/configs/imagenet/imagenet_augreg_vit_config.py) with patches of size 32×
32. We removed dropout (both layer and depth wise).

Weight decay. In all examples, except mentioned otherwise, we consider a fixed weight decay of
10−5. See Fig. 18 (bottom left panel) for an analysis of sensitivity of the proposed CDAT rule with
varying weight decay.

C.3 Algorithms

In all experiments, when selecting the "best" tuner we considered the average train loss over the last
5 iterates.

Fine-tuning base optimizers. The implementation of all optimizers are taken from the Optax
library (DeepMind et al., 2020). In all experiments, we fix all hyperparameters of the base optimizer
((S)GD, (S)GD with Momentum, RMSProp, Adam) to their default values: 0.9 for the momentum
of (S)GD with Momentum, 0.999 for the EMA parameter of the second moment of RMSProp and
Adam, 0.9 for the EMA parameter of the first moment of Adam. We fine-tune the learning rate on a
logarithmic base of 2 around a base learning rate such as 10−3 or 10−4 (depending on the algorithm,
the architecture and the mini-batch size in the stochastic regime as detailed below in Appendix C.5),
while making sure that the grid is sufficiently large such that the best learning rate is found inside the
grid and not as the smallest or the largest.

For the scheduled versions of the base optimizers, we consider three shapes: linear warm-up followed
by constant learning rate, linear warm-up followed by linear decay, linear warm-up followed by
cosine decay. The number of iterations for the warm-up period is chosen as a fraction of the overall
number of steps detailed in Appendix C.5. We also varied the horizon for the decaying schedules, see
again Appendix C.5.

Implementation of the linesearch procedure. To implement the linesearch procedure described
in Section 2, we consider the following criterion

f(wt + ηls
t ut) ≤ (1 + δ)f(wt) + cηls

t ∇f(wt)
>ut.

Compared to (1), we added a relative decrease hyperparmeter δ as we observed that the linesearch
can sometimes stay stuck at vanishing learning rates otherwise.

To find a valid criterion we consider a usual backtracking linesearch that starts from a guess ηt,0 =
min{c+ηls

t−1, 1}. Choosing c+ = +∞ means that we start with an initial guess of 1 at each iteration.
The learning rate is then decreased by a factor c− until the criterion is satisfied. Formally, the selected
stepsize is then

ηls
t = max{ηt,k = ck−ηt,0 : f(wt + ηt,kut) ≤ (1 + δ)f(wt) + cηt,k∇f(wt)

>ut}.
We run the search until the criterion is satisfied in the full batch regime and for a maximum of 30
iterations in the mini-batch regime. In the experiments, we consider the following variations.

• c ∈ [0, 10−4, 0.5],
• c+ ∈ [4,+∞],
• c− ∈ [0.8, 0.9],
• δ ∈ [0, 1e− 3] for c = 0 and δ = 0, for c ∈ [10−4, 0.5].

Implementation of quadratically greedy tuner and CDAT. To implement the quadratically
greedy tuner or CDAT, we compute the denominator u>∇2f(w)u as the second partial derivative of
f along u, that is,

u>∇2f(w)u = ∂2f(w)[u, u] = ∂(∂f(·)[u])(w)[u],

where ∂g(w)[u] amounts to a Jacobian vector product (jvp) computed with forward mode auto-diff
in differentiable programming languages such as JAX (DeepMind et al., 2020).

Computing the denominator in the CDAT rule by forward mode automatic differentiation enables a
much lower memory consumption than using Hessian vector products (see, e.g., (Blondel and Roulet,
2024, Chapter 8), (Dagréou et al., 2024) for more details). The computation of the denominator by
applying twice forward mode automatic differentiation still incurs approximately three times the

28

https://github.com/google-research/scenic/blob/main/scenic/projects/baselines/configs/imagenet/imagenet_augreg_vit_config.py
https://github.com/google-research/scenic/blob/main/scenic/projects/baselines/configs/imagenet/imagenet_augreg_vit_config.py

memory necessary to compute the objective (Blondel and Roulet, 2024, Chapter 8). The computa-
tional cost of computing the denominator is also approximately three times the computational cost
of computing the objective. The above approximations are done with the following reasoning. The
second partial derivative requires to follow the graph of computation but with three variables, one
for the parameters, one for a copy of the update direction, one for another copy. At each node in
the computation graph, the program computes the original computation, computes its first derivative
along the first copy of the update direction, and computes the second derivative along the second
copy.

In practice, we observed for, e.g., the experiment on the full Imagenet dataset in mini-batch that
the proposed CDAT rule required twice the wall time of the constant or scheduled learning rates
counterparts. For this project, we considered CDAT as a diagnostic tool to understand the interplay
between curvature and learning rate tuners. For future work, the cost of computing the approximate
edge may be circumvented or amortized by using, e.g., parabolic approximations as done by Mutschler
and Zell (2020), or by computing it at given intervals as done by Liu et al. (2024).

Further justification for the CDAT formula. In (8) we took the absolute value of the denominator
to deal with concave approximations. Eigenvalue modifications in a Newton method are discussed
by Nocedal and Wright (1999, Section 3.4). Taking the absolute value is one possible option. In
practice, we observed positive curvatures along the update direction such that this choice did not
matter.

C.4 Metrics implementation

Sharpness estimation. We estimated the sharpness by a power iteration method run for 1000
iterations with an early stopping criterion defined by less than 10−3 relative accuracy. We accessed
the Hessian by Hessian vector products, which limited the size of the full batch datasets considered
on TPUs. The power iteration a priori returns the largest eigenvalue in magnitude |λ|max and not
necessarily the largest positive eigenvalue λmax. But in practice the largest eigenvalue in magnitude
is the largest eigenvalue, see, e.g., (Ghorbani et al., 2019) for an in-depth study of the spectrum of the
Hessian along the iterations of deep learning.

C.5 Additional experimental details per figure

We detail here any additional detail per figure not detailed in the summary above.

Fig. 1. The ResNet34 has no batch normalization layers. For the GD baseline on ResNet and
the MLP Mixer the constant learning rate was tuned on a grid {10−3 · 2i, i ∈ {−1, . . . , 7}}. For
the RMSPRop baseline on the NanoLM and ViT, the constant learning rate was tuned on a grid
{10−3 · 2i, i ∈ {−1, . . . 7}} and {10−5 · 2i, i ∈ {0, . . . 7}} respectively.

Fig. 2. We consider a linear classification (in other words using an MLP without hidden layers)
on the subset of CIFAR10 detailed above. We search the constant stepsize of gradient descent in
{10−3 · 2i, i ∈ {0, 1, 2}]}. The grid is centered around 1/‖∇2f(w0)‖2, that is the optimal stepsize
in a convex smooth setting. As for above experiments, the largest learning rate in the grid led to
divergence.

Fig. 3. This is the same setting as in the first panel of Fig. 1.

Fig. 4. For constant learning rate, model settings were given by a = 3 · 10−2, b = 3 · 10−1, η = 1.
For fixed y = −0.1 training, a = 1, b = 0.5, η0 = 1.0.

Fig. 5. We considered the same settings as in Fig. 1. The grid search for GD on ResNet34 and
RMSProp on NanoLM are the same as in Fig. 1. For the MLPMixer, we fine-tuned GD with
momentum on a grid {10−2 · 2i : i ∈ {1, . . . , 8}}. For the ViT, we fine-tuned Adam on a grid
{10−5 · 2i : i ∈ {1, . . . , 8}}.

Fig. 6. This is exactly the same setting as in the first panel of Fig. 5.

29

Fig. 7. We considered the full dataset of CIFAR10 with ResNet50 with layer normalization in place
of batch normalization.

Fig. 8. See the details given for Fig. 20 and Fig. 21.

Fig. 9. For both values of σ, a = 5 · 10−2, b = 10−1, ν = 0.1, λ0 = 18, η0 = 0.05, g0 = p0 = 4.

Fig. 10. Same settings as Figure Fig. 4.

Fig. 11. Same settings as Figure Fig. 9.

Fig. 12. This is the same setting as in Fig. 1.

Fig. 13. We consider the same setting as in Fig. 3. For the Polyak stepsizes (23), we let ηmax vary
between 1 and 100 and select the best. For the hypergradient descent, we let the hyper learning rate
vary in β ∈ {10i, i ∈ {−3, . . . , 0}}.

Fig. 14. We considered again the ResNet50 with layer normalization instead of batch normalization.
For the constant learning rate baseline we searched over a grid of {ηm · 2i, i ∈ {−1, . . . , 5}]}, for
ηm = 10−4 ·

√
m/4096 for m the batch size.

Fig. 15. We considered a simple MLP with hidden sizes (256, 256, 256), ReLU activations. We
tuned the constant learning rate baseline on {10−3 · 2i, i ∈ {−1, 7}]}.

Fig. 16. Details are provided in the legend.

Fig. 17. This is the same setting as in Fig. 6.

Fig. 18. In this figure, the MLPs considered use ReLu activations. If not detailed, the weight decay
is set to 10−5 and the subset considered is of size 8192.

Fig. 19. The settings are the same as in Fig. 5. For the constant learning rate baselines we searched
on a gird {ηbase ·2i, i ∈ {−3, . . . , 9}}. The base learning rate ηbase was chosen to be 10−3 for ResNet,
10−2 for the Mixer, 10−4 for the NanoLM and ViT. For the schedules’ shapes, we searched over
linear warm-up, linear warm-up with linear decay, linear warm-up with cosine decay. The initial and
end learning rate were set to 0. The horizons for the schedules were chosen in [N,N/2, N/4] for
N = 8192 for the NanoLM, N = 16384 for the ViT, Mixer and ResNet. The fraction of warm-up
steps was searched in {0.05, 0.1, 0.2}.

Fig. 20. For the constant learning rate baseline, we consider searching the best constant learning
rate on a grid {ηm · 2i, i ∈ {−1, . . . , 7}} for ηm = 10−4 ·

√
m/4096 where m denotes the varying

batch size.

For the scheduled baseline, we consider the variants presented above (linear warm-up followed by
constant, linear warm-up followed by cosine decay, linear warm-up followed by linear decay) with
varying fraction of warm-up steps (0.05, 0.1, 0.2) and an initial learning rate of 0, a final learning rate
of 0 for a fixed horizon of 512 epochs, and a peak learning rate searched over {ηm ·4i, i ∈ {4, . . . , 9}}.
The scaling factor σ of CDAT was searched on a grid {0.4, 0.6, . . . , 2.8}, and we also tuned the EMA
parameter βcdat in the computation of the numerators and denominators of the edge in {0, 0.9, 0.99}.
The best parameters found for CDAT can be inferred from Fig. 7. Namely, we found that non-zero
EMA parameter for the estimation of the edge decay was essential for good performance and that the
best scaling factor varied with the batch size. For example, at batch size 256 the best scaling factor is
σ = 1.8 with βcdat = 0.9.

Fig. 21. For the constant learning rate baseline, we consider searching the best constant learning
rate on a grid {ηm · 2i, i ∈ {−1, . . . , 7}} for ηm = 10−4 ·

√
m/1024 where m denotes the varying

batch size.

30

For the scheduled baseline, we consider a linear warm-up followed by cosine decay, with a fraction
of warm-up steps of 0.1 and an initial learning rate of 0, a final learning rate of 0 for a fixed horizon
of 128 epochs, and a peak learning rate searched over {ηm · 4i, i ∈ {1, . . . , 5}}.
The scaling factor σ of CDAT was searched on a grid {0.4, 0.6, . . . , 2.6}, and we also tuned the EMA
parameter βcdat in the computation of the numerators and denominators of the edge in {0, 0.9, 0.99}.

C.6 Assets license and computing ressources

Assets. All experiments are done in the open-source JAX ecosystem (DeepMind et al., 2020): archi-
tectures are taken from Scenic (Dehghani et al., 2022), datasets from TensorFlow Dataset, algorithms
from Optax. The datasets are MNIST (LeCun et al., 2010), (Creative Commons Attribution-Share
Alike 3.0 license) CIFAR10 (Krizhevsky et al., 2009) (no available license), Imagenet (Deng et al.,
2009) (ImageNet explicitly permits the use of the dataset for non-commercial research purposes,
however there is no single license since the images are scrapped from different sources with different
licenses), TinyShakespeare (Karpathy, 2015) (Apache 2.0 license in TensorFlow dataset, though the
works of William Shakespeare are in the public domain).

Computing resources. Experiments have mostly been run on Tensor Processing Units (TPUs)
v2 (180 Tera Floating-Point Operations per Second (TFLOPS), 64 GB High Bandwidth Memory
(HBM)). Experiments on MLP Mixers required TPUs v3 (420 TFLOPS 128 GB HBM). Very small
scale experiments on MNIST with MLPs were run on CPUs. In terms of wall time, as discussed in
Appendix C.3, we observed that the CDAT rule can be twice slower than the constant or scheduled
learning rate counterparts. We consider CDAT as a diagnostic tool and leave as future work efficient
implementations. Preliminary experiments and additional attempts to further adapt the momentum
parameter on edge are not reported.

Authors contributions.

• Vincent Roulet conducted the experimental work from the failures of linesearches to the analysis
of the CDAT rule in various settings.

• Atish Agarwala developed the theoretical model, with associated figures, interpretations and
comments. He also helped to guide the experimental study with the insights gathered by the model.

• Jean Bastien Grill did an initial empirical study that gathered first intuitions on the method. He
participated in the discussions and contributed to the writing.

• Grzegorz Swirszcz participated in the discussions.
• Mathieu Blondel participated in the discussions, contributed to the writing and proposed an

alternative rule using a Gauss-Newton approximation of the objective.
• Fabian Pedregosa initiated the project, performed a larger scale empirical study of the CDAT rule

on the MLCommons benchmark, participated in the discussions, and contributed to the writing.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This is an exploratory work that poses questions and attempts at answers from
experiments and simplified models.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We clearly point out the subdued effects of the proposed CDAT rule in the
stochastic framework. In addition, we discuss the limitations of the current simplified models
of the sharpness dynamics to explain the performance of CDAT in a full batch regime.

3. Theory Assumptions and Proofs

31

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Paper includes numerical experiments on models, derived from previous work
(Damian et al., 2023). Modeling assumptions are clearly labelled, and accompanied with
simulations. We also discuss the limitations of the modeling assumptions.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We present detailed experimental setups in Appendix C.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We are not able to open source the code yet. We hope to release it with
the arxiv version of the manuscript later. Note that the data is in open access, and the
algorithms are based on open source libraries such as JAX (DeepMind et al., 2020), Optax,
and Scenic (Dehghani et al., 2022).

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We present detailed experimental setups in Appendix C.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We privileged varying settings (datasets, architectures, losses, base optimizers)
over varying the seeds to provide a global overview of the CDAT rule as a diagnostic tool.
We also provided additional experiments with varying mini-batch sizes (Fig. 20, Fig. 21),
varying depths, widths, weight decays in a MLP setting (Fig. 18). Our goal has been to
extract qualitative conclusions rather than quantitative conclusions. We also show in all
transparency that the proposed rule does not outperform prefixed schedules (Fig. 19), and
highlight limitations in the stochastic regime (Fig. 8).

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This is detailed in Appendix C.6.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

10. Broader Impacts

32

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: No societal impact of the work is foreseen.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: This is detailed in Appendix C.6.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects

33

	Introduction
	The Interplay Between Learning Rate Tuners and Curvature Dynamics
	Canonical learning rate tuners failures in deep learning
	Analyzing learning rate tuners through curvature dynamics
	Theoretical analysis

	Optimizing on the Edge of Stability
	On edge optimizers in practice
	Modeling CDAT dynamics

	Conclusion and Future Directions
	Theoretical Model
	Intuition for model of curvature dynamics
	Dynamics of rescaled variables
	Dynamics of the projection on the largest eigenvector

	Additional Experiments
	Further analyzes of base learning rate tuners
	Analyzing additional learning rate tuners
	Base learning rate tuners in a stochastic regime
	Targeting the edge of stability using the exact sharpness
	Analyzing instantaneous gains versus long-term gains
	Additional metrics for the CDAT rule
	Sensibility analysis to architecture hyperparameters
	CDAT rule versus prefixed schedule in full batch regime
	Detailed performances of CDAT in stochastic regime

	Experimental Details
	Datasets
	Architectures
	Algorithms
	Metrics implementation
	Additional experimental details per figure
	Assets license and computing ressources

