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ABSTRACT

Event-based cameras exhibit high dynamic range and temporal precision that
could make them ideal for detecting objects with high speeds and low relative lu-
minance. These properties have made event-based cameras especially interesting
for use in space domain awareness tasks, such as detecting dim, artificial satellites
with high brightness backgrounds using ground-based optical sensors; however,
the asynchronous nature of event-based data presents new challenges to perform-
ing objection detection. While spiking neural networks (SNNs) have been shown
to naturally complement the asynchronous and binary properties of event-based
data, they also present a number of challenges in their training, such as the spike
vanishing problem and the large number of timesteps required for maximizing
classification and detection accuracy. Furthermore, the extremely high sampling
rate of event-based sensors and the density of noisy space-based data collections
can result in excessively large event streams within a short window of recording.
We present a temporally-weighted spike encoding that greatly reduces the number
of spikes derived from an event-based data stream, enabling the training of larger
SNNs with fewer timesteps for maximal accuracy. We propose using this spike
encoding with a variant of convolutional SNN trained utilizing surrogate spiking
neuron gradients with backpropagation-through-time (BPTT) for both classifica-
tion and object detection tasks with an emphasis on space-domain awareness. To
demonstrate the efficacy of our encoding and SNN approach, we present compet-
itive classification accuracies on benchmark datasets N-MNIST (99.7%), DVS-
CIFAR10 (74.0%), and N-Caltech101 (72.8%), as well as state-of-the-art object
detection performance on event-based, satellite collections.

1 INTRODUCTION

In recent years, the number of resident space objects (RSOs) in low-Earth orbit (LEO) and
geosychronous-Earth orbit (GEO) has steadily grown, and consequently driven greater interest in
the detection and tracking of such targets using ground-based optical telescopes. The tracking of
RSOs, such as satellites or space debris, presents a unique challenge in that these targets often have
very few distinguishing features from their surroundings and are difficult to image at high speeds.
Furthermore, such targets are often far dimmer than ambient lighting, especially in both cis-lunar
orbits and daytime viewing. These challenges motivate the need for new hardware sensors and com-
puter vision techniques that can be easily integrated with existing ground-based detection schemes.

Event-based cameras, or dynamic vision sensors, are one attractive technology that presents a solu-
tion to imaging RSOs. These cameras operate without a global clock, allowing each individual pixel
to asynchronously emit events based on detected changes in illuminance at high frequency. Each
pixel exhibits a logarithmic response to illuminance changes, resulting in such cameras having large
dynamic range. Furthermore, since pixels respond only to changes in illuminance, the data produced
is far sparser compared to that of a conventional sensor sampling at comparable rates. Of perhaps
crucial importance for space-based detection tasks, the operation of event-based pixels also prevents
them from saturating, which could prove incredibly useful for imaging near the Moon or in daylight
These qualities suggest that event-based cameras could be ideal for the detection of dim, high-speed
RSOs that generally are too challenging for conventional CCD sensors.
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However, the asynchronous nature of event-based data also poses a challenge to performing object
detection effectively and efficiently. A naive approach to working with event-based data is to inte-
grate over a pre-defined window of time to produce conventional images. Since each pixel generates
events asynchronously, events are given both an (x, y) location as well as a timestamp t that cor-
responds to the time of event generation relative to a recorded starting time. Events are also given
a polarity flag, p ∈ {1,−1}, that denotes the event was generated by an increase in illuminance
(+1) or a decrease in illuminance (-1). For integration, these events, of the form e = (x, y, t, p), are
accumulated over some window ∆t at their respective (x, y) locations to form an equivalent image.
Such integrated frames can then be used with any conventional object detection method; however,
this approach loses much of the temporal information present in the original event stream.

Spiking neural networks (SNNs) differ from conventional neural networks in much the same way
that event-based data differs from conventional images. SNNs function asynchronously, with each
neuron of the network generating spikes only when its inputs cause it to exceed a pre-defined thresh-
old, mimicking the function of biological neurons. The sparsity of SNN activation amounts to spik-
ing networks being exceptionally energy efficient as compared to conventional neural networks of
comparable size. However, the binary nature of spiking neuron output and the subsequent non-
differentiability of their activation makes supervised training of such networks a challenging task.
Furthermore, SNNs are also plagued by the vanishing spike propagation issue, where decreasing
spiking activity in successive layers causes significant performance loss in larger networks (Panda
et al. (2020)). Nonetheless, the unique properties of SNNs naturally complement the data produced
by event-based cameras, and multiple works have already shown the potential for classification and
object detection on event-based data.

In this work, we present a temporal-weight encoding that greatly decreases the number of spikes
derived from event data stream while maintaining overall spiking behavior and preserving temporal
information. This encoding scheme is also shown to reduce the number of timesteps required to
maximize classification and object detection accuracy in spiking neural networks. We also propose
a pseudo-spiking behavior for conventional, convolutional neural networks that removes the need for
temporal credit assignment, but preserves some temporal information. This pseudo-spiking behavior
is readily integrated with encoded, event-based data and enables the training of comparatively deeper
models than true spiking networks. We evaluate detection results using both simulated and real
space-based data collection and demonstrate competitive performance on publicly available event-
based classification and object detection datasets.

2 RELATED WORK

The following sections briefly explore some of the most notable works in each area touched upon in
our own work.

2.1 SPACE DOMAIN AWARENESS

As previously mentioned, the detection of dim, high-speed RSOs is an already challenging task
that is made even more difficult by conditions such as daylight, moonlight, and atmospheric turbu-
lence. Traditionally, small targets are detected using specialized radar or laser equipment, though
ground-based optics have become an attractive alternative due to their power efficiency and cost
effectiveness. However, optical charge-coupled device (CCD) sensors often struggle with high
amounts of background noise as well as with long exposure times that can complicate the detection
of fast-moving objects (Kong et al. (2019)). As an alternative optical device, event-based cameras
could be ideal for replacing or complementing conventional CCD sensors for RSO detection. Re-
cent work has already shown the use of event-based cameras for daytime imaging of LEOs (Cohen
et al. (2019)), and simulated work has investigated star tracking using event-based data (Chin et al.
(2019)). These successes, in addition to the successful application of object detection models such as
YOLOv3 on space imaging datasets (Fletcher et al. (2019)), have motivated our work in investigat-
ing space object detection with event-based cameras. Furthermore, recent advances in space scene
simulation have improved the ability to experiment with high fidelity, optical space collections. In
this work, we make use of the SatSim simulator to generate the large number of samples necessary
for model training (Cabello & Fletcher (2022)).
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2.2 EVENT-BASED CLASSIFICATION AND OBJECT DETECTION

Due to the asynchronous nature of event-based data, ordinary computer vision techniques are not
readily applicable to performing classification or object detection with event-based cameras. In the
simplest case, event streams can be accumulated over time into approximated images that can then
be used with conventional algorithms, but this eliminates much of the rich, temporal information.
Early methods of working with event-based data often relied on updating existing algorithms, such
as the Harris corner detector (Ni et al. (2012)) or Hough transform (Vasco et al. (2016)), to be
compatible with asynchronous data. More sophisticated approaches, such as the HOTS (Lagorce
et al. (2014)) and HATS algorithms (Sironi et al. (2018)), use new representations of event-based
data (time surfaces), to exploit temporal information for classification and object detection. Newer
approaches have begun to modify established machine learning models, such as YOLE or ”You Only
Look at Events”, which adapts the YOLO object detection framework for asynchronous operation
(Cannici et al. (2019)). However, one of the chief challenges for algorithm development and model
training is the relative lack of event-based data publicly available. While neuromorphic versions
of well-known datasets such as N-MNIST, CIFAR10-DVS, and N-Caltech101 exist, all of these
datasets are generated using event-based extrapolations of the original datasets rather than actual
event-based samples (Li et al. (2017)) (Orchard et al. (2015)). However, the N-Cars and Prophesee
Gen1-Automotive datasets are two more recent datasets that include real event-based data collections
(Sironi et al. (2018))(de Tournemire et al. (2020)).

2.3 SPIKING NEURAL NETWORKS

Given the asynchronous nature of event-based data, SNNs are a natural choice for performing classi-
fication and object detection with event-based cameras. Multiple works have already demonstrated
effective use of SNNs for performing a wide array of tasks on event-based data, not only limited
to classification and object detection (Lee et al. (2020))(Samadzadeh et al. (2020)). Furthermore,
the innate compatibility with SNNS have made event-based camera datasets such as CIFAR10-DVS
useful for evaluating a range of spiking models and encoding processes (Fang et al. (2021))(Vicente-
Sola et al. (2021)). However, the greatest challenge to employing SNNs is the method of training
used. The behavior of spiking neurons is not differentiable and therefore not immediately trainable
using ordinary backpropagation. Also, as previously mentioned, the vanishing spike phenomenon is
a further limiting factor on the potential depth of SNN models. As a result, a great deal of research
has gone into finding new methods of spike-based backpropagation, surrogate gradients, or entirely
new training methods (Bellec et al. (2018))(Wu et al. (2018))(Huh & Sejnowski (2018)). Some of
the best results in terms of model accuracy have come from converting pre-trained artificial neural
networks (ANNs) into spiking models, but this method can incur losses in the efficiency and speed
of the resulting SNNs (Rathi et al. (2020)). Despite many possible solutions, training methods for
SNNs continues to be an area of great interest.

3 METHODS

In the following section, we describe the weighted spike representation used to encode event-based
vision streams for use with deep spiking neural networks. We also detail the integration of this en-
coding process with the spiking neural networks and the truncated, surrogate gradient based learning
used to train the large networks used. Finally, we describe the method by which optimal spiking hy-
perparameters are chosen to maximize both classification and object detection performance.

3.1 WEIGHTED SPIKE ENCODING

Given a dynamic vision sensor of width and height W ×H , the stream of events generated by such
a sensor would be of the form

EN = en|Nn=1, en = (xn, yn, tn, pn) (1)

where EN represents the entire stream of N events and each event en is of the form (xn, yn, tn, pn).
In this context, xn and yn are in the range [1,W ] and [1, H] respectively, and represent the pixel
location at which the event occurred, while tn is the timestamp associated with the generated event.
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pn is the polarity of the event with a value of pn =∈ {−1, 1} indicating that the event is generated
by either a increase of luminance, +1, or decrease in luminance, -1. In order to use conventional
computer vision techniques with event-based data, an event stream can be integrated over either
a particular number of events N or a chosen range of time ∆t with events accumulated at their
respective (x, y) locations.

I =

{
I[0,W,H] =

∑N
n=0 δ(xn, yn) pn = +1

I[1,W,H] =
∑N

n=0 δ(xn, yn) pn = −1
∀en (2)

In general, event streams are integrated as described in Eqn. 2, where timestamps are ignored
and simple counts of events are accumulated at their respective locations (xn, yn), with positive
and negative polarity events separated into separate channels to produce 2 × W × H images suit-
able for image-based models and conventional algorithms. In this work, we use this integration in
conjunction with standard object detection and classification models as a baseline for performance
comparison.

In order to reduce the possible number of spikes in dense event-based data, while also encoding some
of the temporal information into the resulting output, we employ a modified form of event stream
integration. While event-based data can be used natively with asynchronous input spiking neural
networks, our encoding greatly reduces the timescale over which spikes are presented to the end
network and enables the application of conventional convolutional networks through additional pre-
processing steps. Our approach to encoding involves a partial integration process that is dependent
on whether feature extraction is performed in real-time or on previously recorded event streams.
In the real-time case, we choose a time window, ∆t, from which events will be accumulated over
the event stream until a total of T timesteps, or windows, have been presented to the network.
Conversely, with previously recorded event streams, we can choose the number of timesteps, T , and
then determine the time window, ∆t, required to evenly divide the event stream into the desired
number of timesteps.

Figure 1: Generation of a temporally-weighted spike frame from an event stream.

Figure 1 depicts an event stream with a window of events accumulated over a given time range, ∆t.
In order to capture temporal information in a reduced representation, events at each x-y location
added as the time difference of their corresponding timestamp with that of the first timestamp in
the associated window, i.e. ts − to. Once integrated, temporal weights are normalized over the
entire range of possible timestamps within the window and organized into a two-dimensional frame
according to their x/y locations. It is also important to note that this integration encoding is applied
separately to positive and negative polarity events such that the final frames have two channels
similar to ordinary integrated frames. This encoding is formalized in Eqn. 3.

I(pn,W,H) =

{
I[0,W,H] =

2
∆t(∆t+1) [

∑N
n=0 δ(xn, yn) ∗ (tn − to)] pn = +1

I[1,W,H] =
2

∆t(∆t+1) [
∑N

n=0 δ(xn, yn) ∗ (tn − to)] pn = −1
∀en (3)

Once encoded, the new sequence of temporal weight frames can be used either directly such as in
a conventional 3D convolutional network or as modified spikes as in our work. Alternatively, the
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frames can be unrolled into individual elements with thresholds applied to produce binary spikes for
use with non-convolutional spiking neural networks; however, the effectiveness of this approach is
not explored in this work.

3.2 SPIKING NEURAL NETWORK INTEGRATION

For performing the classification and object detection, we explore two avenues for incorporating
spiking event data: a true spiking approach and a pseudo-spiking approach. For our true spiking
approach, we use the discretized version of the leaky integrate and fire neuron proposed in Rathi
et al. (2020). Each layer has an associated membrane potential, u(t), that accumulates with the
input of weighted spikes and generates spikes of its own if potential exceeds a voltage threshold,
ut ≥ Vt. The dynamics are detailed in equations 4 and 5

ut
i = λut−1

i +
∑
j

wijo
t
j − Vto

t−1 (4)

ot−1
i =

{
1, ut−1

i > Vt

0, otherwise
(5)

where t is the current timestep, λ is a potential leak constant, wij are weights associated with the
previous layer, otj are outputs of previous layers, and v is the voltage threshold. Eqn. 4 holds for
the soft reset case, in which membrane potential is reduced by the voltage threshold upon firing.
Empirically, we found better classification performance on deep networks when using the hard reset
alternative, where membrane potential ut

i is reduced to 0 when ut ≥ Vt. We use a similar training
process as in (Rathi et al. (2020)) by using the membrane potential at the final timestep as the
network output needed to calculate the relevant loss metrics: cross-entropy in the classification case
and the YOLO loss metrics (box regression, classification, and objectness) in the object detection
case. However, since the exact timing of input spikes is altered due to our temporally weighted spike
encoding, we opt to use the surrogate gradient

δo

δu
= αmax{0, 1− |u− Vt|} (6)

where o is the layer output, u is membrane potential, and Vt is the voltage threshold for output
generation. This surrogate gradient for the spiking neuron output is then used with backpropaga-
tion through time (BPTT) in order to perform supervised training with spatial and temporal credit
assignment.

Conversely, we posit that, for our purposes, a pseudo-spiking approach that removes the need for
temporal credit assignment could still benefit from the temporal information found in the encoded
event stream. Removing the need for BPTT should enable much faster convergence and potentially
the effective training of much larger models normally too memory intensive for true spiking neural
networks. In order to remove the need for temporal assignment, we present the entire spike train to
each layer in series, such that membrane potential is accumulated for all timesteps T on each layer
before passing output to the succeeding layer. In order to impart some of the temporal information
in this pseudo-spiking format, we use the membrane potential directly as the output of active layers.
Equation 7 describes the process for the initial layer, which is also depicted fully in Figure 2, where
Equations 8 and 9 detail the behavior for all successive layers in the network.

U(T ) =
∑
T

λ ∗ I(ti) (7)

Ui(T ) =
∑
T

[λUi(t)− VtO(t− 1)] +
∑
j

wijOj(T ) (8)

OT
j =

{
Uj(T ), Uj(T ) > Vt

0, otherwise
(9)
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Figure 2: Accumulation of temporally-weighted spikes on the membrane potential of a
pseudo-spiking convolutional layer.

As previously mentioned, the positive and negative polarity events (or ON and OFF events, respec-
tively) of the input stream are encoded separately. After encoding, the positive and negative spikes
for a particular time window are accumulated into two-dimensional frames and concatenated to form
two-channel spike frames with shape similar to that of an ordinary image. Figure 3 depicts the broad
process applied to a sample of the N-MNIST dataset.

Figure 3: N-MNIST sample encoded and passed to pseudo-spiking convolutional network.

4 EXPERIMENTS

4.1 SPIKING HYPERPARAMETER SEARCH

In order to choose optimal hyperparameters necessary for spiking behavior, we use the hyperpa-
rameter optimization package Optuna (Akiba et al. (2019)). We perform hyperparameter optimiza-
tion across three network architectures: VGG19, ResNet50, and DarkNet53. While VGG19 and
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ResNet50 are the feature extraction backbones used for classification tasks, we also optimize hyper-
parameters for DarkNet53 to increase object detection performance and to investigate the efficacy
of training larger networks with the pseudo-spiking behavior and encoding. Each feature extraction
backbone is trained on a classification task, using the CIFAR10-DVS dataset, for 10 epochs with hy-
perparameter search performed for voltage threshold (Vt), leakage (λ), gradient output scaling (α),
and total timesteps (T ). Hyperparameters are optimized solely for classification accuracy, which will
tend to maximize timesteps for the pure spiking case due to the strong positive correlation between
spiking timesteps and accuracy. Highest performing parameters are shown in Table 1.

Table 1: Optimal Spiking Hyperparameters

Architecture Voltage Thresh. (Vt) Leakage (λ) Gradient Scale (α) Timesteps (T)
sVGG19 3.191 0.325 2.74 185

sResNet50 2.475 0.127 1.73 113
pseudo-VGG19 2.002 0.145 5.58 12

pseudo-ResNet50 2.505 0.07 3.79 39
pseudo-DarkNet53 1.622 0.054 6.51 95

Based on the remaining hyperparameter tuning results, we find that the parameters that correlate
most strongly with model size are both the leakage coefficient and the number of spiking timesteps.
In general, larger spiking models requiring a greater number of timesteps in order to reach maxi-
mum accuracy is expected, and aligns with other previous results with SNN training. However, the
leakage coefficient being exceptionally small for both ResNet50 and DarkNet53 suggests accuracy
is maximized when output is generated at nearly every timestep for these larger models. This result
may be explained by the overall reduction of input spikes due to the temporal encoding driving the
need for neurons to fire more consistently.

4.2 CLASSIFICATION TASKS

While the primary focus of our work is to adapt event streams and spiking networks for object
detection, we also include performance on classification tasks as both a means of verification and
as a point of comparison with other methods of performing classification on neuromorphic data.
Classification results were evaluated for the N-MNIST, CIFAR10-DVS, N-Cars, and N-Caltech101
datasets and compared to some of the most prominent results from literature. Although not widely
used as an event-based classification dataset, we chose to include the N-Cars classification dataset
due to its relation to the GEN1-Automotive dataset used more prominently for object detection.
In all instances, the indicated model architectures for our method use the same layer structure as
available in pretrained, PyTorch model zoo (Paszke et al. (2019)), albeit with convolutional layer
behavior replaced by the pseudo-spiking behavior previously described.

Table 2: Classification Accuracies (Top 2 best classification accuracies per dataset are bolded).

Method N-MNIST CIFAR10-DVS N-Cars N-Caltech101
sVGG19 + Encoding 0.975 0.7151 0.911 0.689

sResNet50 + Encoding 0.898 0.6119 0.845 0.615
pseudo-VGG19 + Encoding 0.997 0.7404 0.924 0.728

pseudo-ResNet50 + Encoding 0.974 0.6510 0.889 0.662
Sironi et al. (2018) 0.991 0.524 0.902 0.642

Cannici et al. (2019) - - 0.927 0.702
Messikommer et al. (2020) - - 0.944 0.745

Wu et al. (2019) 0.9953 0.605 - -
Samadzadeh et al. (2020) 0.996 0.692 - -
Vicente-Sola et al. (2021) - 0.7298 - -

Fang et al. (2021) 0.996 0.748 - -

In terms of classification accuracy across the general datasets, we see that the VGG19 architecture
outperforms the deeper ResNet50 models, but both pseudo-spiking architectures generally outper-
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form their fully spiking counterparts. As intended, the performance gap between the pseudo-spiking
and fully spiking methods is greater for the ResNet50 model, suggesting that the pseudo-spiking
behavior and temporally-weighted encoding has a positive impact on the training of deeper archi-
tectures.

4.3 OBJECT DETECTION TASKS

For our primary SDA task, we have two object detection datasets denoted Satellite Collect and Sat-
Sim in Table 3. As previously mentioned, the SatSim space scene simulator is capable of generating
high-fidelity, event-based simulations of satellite collections with a degree of tunable conditions and
sensor parameters. Given the small size of real data collections available (about 900 samples) in
the Satellite Collect dataset, we first generate a large collection of simulated samples with approxi-
mately equivalent parameters using the SatSim simulator. As a basis for showing improvement, we
compare results from the pseudo-spiking YOLO model with temporally-weighted encoding to both
a conventional YOLO model using an integrated frame and a pseudo-spiking YOLO model using
spikes generated from Poisson-encoded integrated images. Poisson-encoding has been used in mul-
tiple previous works for generating spike frames from ordinary images (Rathi et al. (2020)), and we
use this encoding here to gauge the effectiveness of adding the temporally-weighted encoding. Both
spiking and non-spiking models are trained and evaluated on this dataset, after which all models are
retrained and evaluated on the real dataset to best estimate real-world performance. In the context of
the SDA datasets, each dataset has only a single class (satellite) and the goal is to achieve maximal
detection. As a result, the metric of greatest interest for the SDA task is the maximum F1 score,
and full precision-recall results are shown for these datasets only. Figure 4 shows an example of
real optical, event-based satellite collection and a simulated approximation generated by the SatSim
simulator.

Figure 4: Real satellite collection (left) vs. SatSim generated sample (right). Samples are generated
as full event streams, but displayed here as integrated frames.

For general comparison, we also evaluate our method on two publicly available datasets: N-
Caltech101 and the Prophesee GEN1-Automotive dataset. As is customary for general object detec-
tion, we show the mean average precision (mAP) (Everingham et al. (2010)) results for our method
and those of other state-of-the-art asynchronous detection methods.

8



Under review as a conference paper at ICLR 2023

Table 3: Performance results for spiking object detection models and conventional models on
equivalent datasets.

Method Dataset Precision Recall F ∗
1 mAP

YOLO+Int. Frame Satellite Collect 0.43909 0.65570 0.52597 -
pseudo-sYOLO+Int. Frame Satellite Collect 0.61765 0.88489 0.72750 -

pseudo-sYOLO+Enc. Satellite Collect 0.67804 0.90103 0.7740 -
YOLO+Int. Frame SatSim 0.65179 0.65710 0.65443 -

pseudo-sYOLO+Int. Frame SatSim 0.745332 0.739609 0.74246 -
pseudo-sYOLO+Enc. SatSim 0.77709 0.74871 0.76264 -

pseudo-sYOLO+Int. Frame N-Caltech101 - - - 0.331
pseudo-sYOLO+Enc. N-Caltech101 - - - 0.595
Cannici et al. (2019) N-Caltech101 - - - 0.398

Messikommer et al. (2020) N-Caltech101 - - - 0.643
pseudo-sYOLO+Int. Frame GEN1-Auto - - - 0.124

pseudo-sYOLO+Enc. GEN1-Auto - - - 0.339
Messikommer et al. (2020) GEN1-Auto. - - - 0.149

Cannici et al. (2020) GEN1-Auto. - - - 0.31
Perot et al. (2020) GEN1-Auto. - - - 0.40

Across these object detection results, we see a significant increase in the maximum F1 score for both
real and simulated satellite data collections when using a pseudo-spiking YOLO as compared to a
conventional YOLO model on integrated frames. Furthermore, the pseudo-spiking model using the
temporally-weighted encoding displays another significant increase in performance that appears to
be even more pronounced on real collections over the simulated equivalents. This may be a result of
the less uniform timestamps of generated events in real versus simulated data, which suggests that
the temporally-weighted encoding is successfully preserving temporal data lost in the integrated
frames. In terms of the public datasets, the pseudo-spiking YOLO model with temporally-weighted
encoding shows competitive mean average-precision (mAP) on N-Caltech101 and the Prophesee
GEN1-Automotive dataset, with its performance only beaten out by some of the most recent and
more complex asynchronous methods available.

5 CONCLUSION

In this work, we have presented a new temporally-weighted spike encoding for event-based camera
streams that greatly reduces the number of spikes required for processing noisy event streams, while
preserving useful temporal information. We have additionally demonstrated a pseudo-spiking be-
havior for convolutional layers that allows us to mimic properties of a spiking network, but allows
us to train deep networks with conventional backpropagation. Both object detection and classifica-
tion results show that the combination of temporally-weighted spike encoding and pseudo-spiking
behavior increase accuracy and performance, especially when used on deeper models. For our own
area of interest, this method also demonstrates superior performance on object detection tasks for
space-domain awareness, while also generalizing well to publicly available datasets.

In the future, we hope to assess the training of a larger array of models, as well as incorporate
the method with newer versions of object detection models. Furthermore, we have introduced the
method by which the temporally-weighted spike encoding could be used to process event streams
in real-time, but this potential is as of yet unexplored. Real-time object detection warrants an ex-
haustive study into the potential energy and memory-saving benefits, and could also highlight the
comparative strengths of event-based cameras for SDA tasks.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623–2631, 2019.

Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass. Long
short-term memory and learning-to-learn in networks of spiking neurons. Advances in neural
information processing systems, 31, 2018.

Alexander Cabello and Justin Fletcher. Satsim: a synthetic data generation engine for electro-optical
imagery of resident space objects. In Sensors and Systems for Space Applications XV, volume
12121, pp. 53–74. SPIE, 2022.

Marco Cannici, Marco Ciccone, Andrea Romanoni, and Matteo Matteucci. Asynchronous convolu-
tional networks for object detection in neuromorphic cameras. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pp. 0–0, 2019.

Marco Cannici, Marco Ciccone, Andrea Romanoni, and Matteo Matteucci. A differentiable recur-
rent surface for asynchronous event-based data. In European Conference on Computer Vision, pp.
136–152. Springer, 2020.

Tat-Jun Chin, Samya Bagchi, Anders Eriksson, and Andre Van Schaik. Star tracking using an
event camera. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pp. 0–0, 2019.

Gregory Cohen, Saeed Afshar, Brittany Morreale, Travis Bessell, Andrew Wabnitz, Mark Rutten,
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