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ABSTRACT

Most Neural Radiance Fields (NeRFs) exhibit limited generalization capabilities,
which restrict their applicability in representing multiple scenes using a single
model. To address this problem, existing generalizable NeRF methods simply
condition the model on image features. These methods still struggle to learn
precise global representations over diverse scenes since they lack an effective
mechanism for interacting among different points and views. In this work, we
unveil that 3D implicit representation learning can be significantly improved by
mask-based modeling. Specifically, we propose masked ray and view modeling
for generalizable NeRF (MRVM-NeRF), which is a self-supervised pretraining
target to predict complete scene representations from partially masked features
along each ray. With this pretraining target, MRVM-NeRF enables better use
of correlations across different points and views as the geometry priors, which
thereby strengthens the capability of capturing intricate details within the scenes
and boosts the generalization capability across different scenes. Extensive exper-
iments demonstrate the effectiveness of our proposed MRVM-NeRF on both syn-
thetic and real-world datasets, qualitatively and quantitatively. Besides, we also
conduct experiments to show the compatibility of our proposed method with var-
ious backbones and its superiority under few-shot cases. Our codes are available
at https://github.com/Ganlin-Yang/MRVM-NeRF.

1 INTRODUCTION

Neural Radiance Field (NeRF) (Mildenhall et al., 2021) has emerged as a powerful tool for 3D
scene reconstruction (Sun et al., 2022; Yu et al., 2021a; Fridovich-Keil et al., 2022) and genera-
tion (Niemeyer & Geiger, 2021; Lin et al., 2023; Poole et al., 2022). Though most NeRF-based
methods can render striking visual results, they are still restricted to a particular static scene, lim-
iting their application in a wide range. Recent works study Generalizable NeRF (Yu et al., 2021b;
Wang et al., 2021; 2022b; Reizenstein et al., 2021; Liu et al., 2022) to model various scenes with a
single model, which can be directly applied to an unseen scene during inference.

Most of existing methods for generalizable NeRF sample image features from several visible refer-
ence views as the conditions for learning scene representations. However, the correlations among the
sampled features are not well exploited before. Previous masked modeling tasks, including masked
language modeling (MLM) (Devlin et al., 2018) in natural language processing and masked image
modeling (MIM) (Bao et al., 2021; Devlin et al., 2018; Xie et al., 2022; He et al., 2022) in computer
vision, exploiting such correlations among input signals by a mask-then-predict task: masking out
a proportion of inputs and trying to predict the missing information from the remaining ones. In
this way, a high-level global representation could be learned, which is beneficial for downstream
tasks. As for NeRFs, we find that the high-level global information learned through mask-based
pretraining, which we call the 3D scene prior knowledge, is also extremely useful for generalizable
Neural Radiance Field. When applying for a novel scene, such a prior knowledge comes to use for
reconstructing a high-quality new scene from limited reference views.
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To this end, we propose an innovative masked ray and view modeling (MRVM) tailored for NeRF,
considering that there are correlations among the sampled points along rays and across the reference
views naturally. Specially, we introduce a pretraining objective to predict the complete scene repre-
sentations from the ones being partially masked along rays and across views, aiming to encourage
the inner interactions at the two levels. In view of the nature that NeRFs are implicit representa-
tions, and motivated by Grill et al. (2020); Yu et al. (2022), we conduct our proposed predictive
pretraining in the latent space and optimize it together with NeRF’s original rendering task. After
pretraining the generalizable NeRF model with our proposed MRVM, the model is further finetuned
either across various scenes or on a specific scene. Such a simple yet efficient masked modeling
design is actually a model-agnostic method in the sense that it can be widely applicable to various
generalizable NeRF models.

To demonstrate the effectiveness and wide applicability of our proposed MRVM, we conduct ex-
tensive experiments both on commonly used large-scale synthetic datasets and more challenging
real-world realistic datasets, based on both MLP-based and transformer-based network architec-
tures. Quantitative and qualitative experimental results show that our proposed masked ray and view
modeling significantly improves the generalizability of NeRF by rendering more precise geometric
structures and richer texture details. Our contributions can be summarized as follows:

• We find 3D implicit representation learning can be significantly improved by mask-based model-
ing as MLM and MIM, when the inner correlations of 3D scene representations are harnessed in
the right manner.

• We present a simple yet efficient self-supervised pretraining objective for generalizable NeRF,
termed as MRVM-NeRF. To our best knowledge, it is the first attempt to incorporate mask-based
pretraining into the NeRF field.

• We conduct extensive experiments over various synthetic and real-world datasets based on dif-
ferent backbones. The results demonstrate the effectiveness and the general applicability of our
masked ray and view modeling.

2 RELATED WORK

2.1 NEURAL RADIANCE FIELDS

Generalizable NeRF Vanilla Neural Radiance Field (NeRF) introduced by Mildenhall et al. (2021)
requires per-scene optimization which can be time-consuming and computationally expensive. To
tackle with the generalization problem across multiple scenes, the network requires an additional
condition to differentiate them. Several works (Jang & Agapito, 2021; Noguchi et al., 2021; Liu
et al., 2021) use a global latent code to represent the scene’s identity, while more of the others (Yu
et al., 2021b; Wang et al., 2021; Liu et al., 2022; Zhang et al., 2022) extract a pixel-aligned feature
map to be unprojected into 3D space. Generalizable NeRFs reconstruct the NeRF model on the fly
and can synthesize arbitrary views of a novel scene with a single forward pass.

Backbones Several earlier classical NeRF works (Mildenhall et al., 2021; Barron et al., 2021; Yu
et al., 2021b; Liu et al., 2022) adopt Multiple-Layer Perception (MLP) as the backbone for scene
reconstruction. Recently inspired by great success of Transformer (Vaswani et al., 2017) in com-
puter vision area (Dosovitskiy et al., 2020), there have also been some attempts (Reizenstein et al.,
2021; Wang et al., 2022a;b) to incorporate attention mechanisms into NeRF model. We evaluate the
efficacy of our mask-based pretraining strategy on one representative work for each backbone.

2.2 MASKED MODELING FOR PRETRAINING

Mask-based modeling has been widely used for pretraining in various research domains. In Natural
Language Processing, Masked Language Modeling (MLM) is employed to pretrain BERT (Devlin
et al., 2018) and its autoregressive variants (Radford et al., 2018; 2019; Brown et al., 2020). In
Computer Vision, Masked Image Modeling (MIM) (He et al., 2022; Bao et al., 2021; Xie et al.,
2022; Baevski et al., 2022) has also gained significant popularity for self-supervised representation
learning. Different from the aforementioned works, we perform masking and predicting operations
both in the latent feature space drawing inspirations from Grill et al. (2020); Yu et al. (2022), which
better coordinates 3D implicit representation learning for NeRF.
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Figure 1: Overview of our proposed MRVM-NeRF. To render an image from a target view, rays
are cast into 3D space, and a series of points are sampled along each ray. These points are projected
onto reference image planes to obtain pixel-aligned image features. We employ a coarse-to-fine
sampling strategy and mask a portion of feature tokens input into the fine branch. The coarse and
fine branches function as the target and online networks, respectively. Our mask-based pretraining
objective Lmrvm aims to predict the corresponding latent representations of the target branch from
the online ones within the latent space.

3 METHOD

We first briefly introduce the general framework for Generalizable Neural Radiance Field and ana-
lyze the benefits of incorporating mask-based pretraining strategy in Section 3.1. We then elaborate
on the detailed procedure for mask-based pretraining, referred as masked ray and view modeling
(MRVM), in Section 3.2. The pretraining objectives and implementation details are presented in
Section 3.3 and Section 3.4 respectively.

3.1 GENERALIZABLE NEURAL RADIANCE FIELDS

Generalizable neural radiance field aims to share a single neural network across multiple distinct
scenes, which often involves a cross-scene pretraining stage followed by a per-scene finetuning
stage. It often conditions the Neural Radiance Field on image features aggregated from several
reference views. Supposing S reference views {I1, I2, . . . , IS} are available, pixel-aligned feature
maps {F1, F2, . . . , FS} can be extracted using 2D CNNs. To synthesize an image at a target
viewpoint, several rays are cast into the scene, N points {p1, p2, . . . , pN} are then sampled along
each ray. For each point pi, its corresponding multi-view RGB components {c1i , c2i , . . . , cSi } and
feature components {f1i , f2i , . . . , fSi } can be simply obtained by projecting pi onto S reference
image planes and sampling from I1∼S and F1∼S . For j ∈ [1, S], f ji and cji are often merged and
projected to a latent embedding hj

i . hj
i , seen as the geometry and texture information acquired from

reference view j for point i, passes through several blocks of neural network modules for scene-
specific information delivery and fusion. The network module can be either MLP or Transformer
architecture. In this way, hj

i is mapped to the processed latent representation zji . {zji}Sj=1 are then
pooled among S reference views into the global view-invariant latent feature zi, which is finally
decoded into volume density σi and color ci for ray-marching (Mildenhall et al., 2021).

Although the above-mentioned generalizable NeRF framework has made great success, it uses re-
construction loss only to supervise the learning of the mapping hj

i → zji from end to end, which
is at the core of NeRF’s reconstruction. We argue that such a learning scheme lacks an explicit
inductive bias to leverage information from other N − 1 points on the ray and other S − 1 reference
views. Prior works on masked modeling have revealed that the mask-then-predict self-supervised
task can encourage strong interactions between different input signals. Motivated by this, we pro-
pose a mask-based pretraining strategy tailored for NeRF, dubbed masked ray and view modeling,
to better facilitate the 3D implicit representation learning. The learned 3D scene prior knowledge en-
capsulates the correlations among point-to-point and across view-to-view, endowing the model with
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better capacity to effectively generalize to novel scenes with limited observations. We’ll elucidate
the mask-based pretraining strategy in detail in the following.

3.2 MASKED RAY AND VIEW MODELING

Figure 2: Illustration of masking operation.
The striped rectangles denote the masked features
which are randomly selected along the ray. The
solid circles represent the points sampled at coarse
stage and the hollow ones correspond to extra
points sampled at fine stage. The rectangles with
solid boxes are processed global view-invariant
features by coarse and fine stage, and our MRVM
task aims to align them in the same feature space.

We adopt the hierarchical sampling procedure
like most NeRF works (Mildenhall et al., 2021;
Yu et al., 2021b; Liu et al., 2022). At the coarse
stage, we first use stratified sampling within a
depth range along the ray, forward the coarse-
branch neural network to get the processed la-
tent representation zci and σc

i , cci as we de-
scribed in Section 3.1. At the fine stage, ad-
ditional points are sampled towards the rele-
vant parts of the surface using importance sam-
pling (Mildenhall et al., 2021). These points,
together with those sampled at coarse stage,
are processed by the fine-branch neural net-
work, producing zfi and σf

i , cfi . We apply the
masking operation to all the points processed
at fine stage, and further supervise the mask-
based pretraining task in a projected feature
space apart from the 2D pixel space.

We denote the set of points on a single ray at coarse stage as Pc and fine stage as Pf , while the
former is a subset of the latter:

Pc = {pc
1,p

c
2, . . . ,p

c
Nc
}, (1)

Pf = {pf
1 ,p

f
2 , . . . ,p

f
Nf
}

= Pc ∪ {pf
Nc+1,p

f
Nc+2, . . . ,p

f
Nf
},

(2)

To facilitate the pretraining of generalizable NeRF, we propose to employ random masking opera-
tion at two levels, which is illustrated in Figure 2. Specifically, we first perform random masking
at the ray-level to enhance the information interaction along each ray, where we randomly select a
set of candidate points to be masked out from Pf according to a preset mask ratio η. To promote
the message-passing across different reference views, we further employ masking at the view-level.
For each selected masked point pf

i , we randomly mask out 1 ∼ S feature tokens {hj
i}Sj=1 acquired

from S reference views.

Similar to Xie et al. (2022), we perform masking simply by replacing the corresponding masked
feature token hj

i with a shared learnable mask token. In this way, along a specific ray, we randomly
discard partial information at certain depths as well as from certain reference views, in accordance
with our name masked ray and view modeling — masking is executed along cast rays and across
reference views, which aligns more closely with the fundamental nature of NeRF.

Advancing beyond previous generalizable NeRFs which solely rely on the pixel-level rendering
loss, we aim to further regularize the pretraining process by incorporating constraints within the
latent space. Motivated by BYOL (Grill et al., 2020) and several contrastive learning approaches,
we designate the unmasked coarse branch as target branch and the masked fine branch as online
branch. Our pretraining objective is to align the latent representations associated with the identically
sampled points, yet processed through two branches individually. As illustrated in Figure 1, zci and
zfi are further projected to another latent space for feature alignment, which can be formulated as:

zci = Projc(Θ, zci ), (3)

zfi = Predf (ϕ, Projf (θ, zfi )), (4)
where Θ, ϕ and θ are corresponding network parameters. The parameters of coarse-projector Θ are
updated by moving average from the fine-projector θ:

Θ← τΘ+ (1− τ)θ, (5)
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where τ ∈ [0, 1] is the moving average decay rate. The MRVM pretraining objective is defined as
the feature prediction task in z space:

Lmrvm =
1

Nc

Nc∑
i=1

∥∥∥∥∥ zfi

∥zfi ∥2
− zci
∥zci∥2

∥∥∥∥∥
2

2

=
1

Nc

Nc∑
i=1

(2− 2
zfi

∥zfi ∥2
zci
∥zci∥2

),

(6)

Note that the constraint is only applied to the points appeared both at coarse and fine stages, i.e., the
points in set Pc.

Discussion While the mask-based pretraining strategy, as analyzed before, is expected to assist
generalizable NeRFs in learning useful 3D scene prior knowledge, there are many mask-based pre-
training options. Firstly, directly masking a certain percentage of pixels in reference images, as
done in MIM, does not guarantee that each ray sampled during pretraining will be operated mask-
ing, which hampers the pretraining efficiency. This is due to the fact that the image features f ji are
collected along the epipolar lines on reference image planes, not all of these epipolar lines will pass
through the masked pixel regions. Secondly, masking is applied to feature tokens input into the fine
branch, because the rendering results of this branch are used for evaluation. Our goal is to enhance
the fine-branch’s generalization capacity when encountering a novel scene, which is endowed by our
mask-learned prior knowledge. Since the coarse branch plays a key role in guiding re-sampling near
the surface manifold, it is undesirable to downgrade its accuracy by masking out a portion of its in-
puts. Finally, the latent representations output from unmasked coarse branch serve as the prediction
target, not only by the aspiration for a more streamlined architecture devoid of redundant modules,
but also from the inspiration that each of the two branches is dedicated to learning a distinct scale
knowledge of the scene, as claimed in MipNeRF (Barron et al., 2021). Consequently, this design
choice enables the fine branch neural network to receive a different-scale scene information distilled
from the coarse branch. The ablation studies presented in Section 4.3 support our analysis.

3.3 TRAINING OBJECTIVES

To help the NeRF model learn better 3D implicit representations during pretraining stage, we also
incorporate the conventional NeRF’s volume rendering task, and the aforementioned mask-based
prediction task in Section 3.2 acts as an auxiliary task to be optimized jointly.

During training, as long as we get the generated color c and its corresponding density σ as described
in Section 3.1, we use the classical volume rendering equation (Kajiya & Von Herzen, 1984) to
predict the rendering results:

Ti = exp(−
i−1∑
k=1

σkδk), (7)

C(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci, (8)

The rendering loss Lnerf is formulated as:

Lnerf = ∥C∗(r)−Cc(r)∥22 + ∥C∗(r)−Cf (r)∥22, (9)

where Cc(r) and Cf (r) are pixel values rendered by coarse and fine branch respectively, and C∗(r)
is the ground truth. The overall pretraining loss is:

Ltotal =
∑
r∈R

(Lnerf + λLmrvm), (10)

where λ is set to balance different loss terms.

After pretraining, we perform finetuning as most of the masked modeling works do. The projector
and predictor are discarded and no masking operation is performed, only the rendering loss Lnerf

is used to update the model until convergence.
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Table 1: Quantitative results for category-agnostic ShapeNet-all and ShapeNet-unseen settings.
Detailed breakdown results by categories could be found in Appendix. Best in bold.

Method ShapeNet-all ShapeNet-unseen

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

SRN 23.28 0.849 0.139 18.71 0.684 0.280
PixelNeRF 26.80 0.910 0.108 22.71 0.825 0.182
FE-NVS 27.08 0.920 0.082 21.90 0.825 0.150

SRT 27.87 0.912 0.066 — — —
VisionNeRF 28.76 0.933 0.065 — — —
NeRFormer 27.58 0.920 0.091 22.54 0.826 0.159

NeRFormer+MRVM 29.25 0.942 0.060 24.08 0.849 0.117

Table 2: Quantitative results for category-specific ShapeNet-chair and ShapeNet-car settings, with
1 or 2 reference view(s). Best in bold.

Method Chair 1-view Chair 2-views Car 1-view Car 2-views

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS ↓ PSNR↑ SSIM↑ LPIPS ↓ PSNR↑ SSIM↑ LPIPS ↓

SRN 22.89 0.89 — 24.48 0.92 — 22.25 0.89 — 24.84 0.92 —
FE-NVS 23.21 0.92 — 25.25 0.94 — 22.83 0.91 — 24.64 0.93 —

PixelNeRF 23.72 0.91 0.128 26.20 0.94 0.080 23.17 0.90 0.146 25.66 0.94 0.092
CodeNeRF 23.66 0.90 — 25.63 0.91 — 23.80 0.91 — 25.71 0.93 —
VisionNeRF 24.48 0.93 0.077 — — — 22.88 0.91 0.084 — — —
NeRFormer 23.56 0.92 0.107 25.79 0.94 0.078 22.98 0.91 0.115 25.12 0.93 0.088

NeRFormer+MRVM 24.65 0.93 0.076 26.87 0.95 0.058 24.10 0.92 0.084 26.20 0.94 0.067

3.4 IMPLEMENTATION DETAILS

To better demonstrate the wide applicability of our proposed mask-based pretraining strategy, we
conduct experiments on both MLP-based and transformer-based backbones. Specifically, we adopt
NeuRay (Liu et al., 2022) as the MLP-based network, and utilize NeRFormer (Reizenstein et al.,
2021) as the transformer-based model. The additional projector and predictor Θ, ϕ and θ are all
simple two-layer MLPs. We sample 64 points along each ray at coarse stage, and extra 32 points at
fine stage. The moving average decay rate τ in Equation 5 is set to 0.99, the default mask ratio η
is set to 50% and the coefficient λ for loss term Lmrvm is set to 0.1 during mask pretraining stage
unless otherwise stated. Due to the page limits, please refer to the Appendix for more details.

4 EXPERIMENTS

To validate the effectiveness of our proposed mask-based pretraining strategy, we conduct a series
of experiments under various circumstances. Specifically, we adopt transformer-based backbone
under synthetic NMR ShapeNet dataset (Kato et al., 2018), which is introduced in Section 4.1. We
also employ MLP-based backbone under realistic complex scenes, with NeRF Synthetic (Niemeyer
et al., 2020), DTU (Jensen et al., 2014) and LLFF (Mildenhall et al., 2019) as the three evaluation
datasets, presented in Section 4.2. We further conduct a detailed ablation study on 1) mask-based
pretraining options, 2) mask ratios as well as 3) few-shot cases in Section 4.3.

Baselines We take NeRFormer (Reizenstein et al., 2021) and NeuRay (Liu et al., 2022) as
transformer-based and MLP-based baselines respectively. We denote the baselines without any
mask-based pretraining as NeRFormer and NeuRay. Accordingly, the model with MRVM pre-
training followed by finetuning is referred as NeRFormer+MRVM and NeuRay+MRVM. We use
PSNR, SSIM (Wang et al., 2004) and LPIPS (Zhang et al., 2018) metrics for evaluation.

4.1 EFFECTIVENESS ON SYNTHETIC DATASETS

Settings NMR ShapeNet (Kato et al., 2018) is a large-scale synthetic 3D dataset, containing 13
categories of objects. Following the common practices introduced by PixelNeRF (Yu et al., 2021b),
we conduct experiments under three settings. 1) In category-agnostic ShapeNet-all setting, a single
model is trained across all the 13 categories and evaluated over all the 13 categories as well. 2) In
category-agnostic ShapeNet-unseen setting, the model is trained on airplane, car and chair classes
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while evaluated on the other 10 categories unseen during training. 3) In category-specific ShapeNet-
chair and ShapeNet-car setting, two models are trained and evaluated particularly on 6591 chairs
and 3514 cars respectively, which are subsets of the NMR ShapeNet dataset. For all these settings,
we perform masked ray and view modeling simultaneously as we train the generalizable NeRF
model across multiple scenes, and evaluate on testing scenes after finetuning without MRVM.

Results on the category-agnostic setting Table 1 shows the quantitative results under category-
agnostic ShapeNet-all and ShapeNet-unseen settings. Under the two settings, each object has 24
fixed viewpoints, with 1 view randomly selected as the reference view while the remaining 23 views
used for evaluation. We compare our NeRFormer+MRVM with several dominant generalizable
NeRF methods such as SRN (Sitzmann et al., 2019), PixelNeRF (Yu et al., 2021b), FE-NVS (Guo
et al., 2022), SRT (Sajjadi et al., 2022) and VisionNeRF (Lin et al., 2022). It can be seen that our
baseline NeRFormer has already achieved comparable results with other baseline models. When
incorporating mask-based pretraining scheme, its performance is further improved by a large margin
in PSNR, SSIM and LPIPS. It demonstrates that the 3D scene prior knowledge learned through our
proposed masked ray and view modeling significantly improves the model’s generalizability when
applying on new scenes.

Figure 3: Visualizations of ShapeNet-all (row 1-
2), ShapeNet-unseen (row 3), ShapeNet-chair
(row 4) and ShapeNet-car (row 5) settings. Our
MRVM helps render novel views with more plau-
sible structures, finer details and less artifacts.

Results on the category-specific setting
As for category-specific ShapeNet-chair and
ShapeNet-car settings, during training we ran-
domly provide 1 or 2 reference view(s) for the
network with 50 views around per object. Dur-
ing testing, we fix 1 or 2 view(s) as reference(s)
and perform evaluation on the rest of views.
The experimental results are shown in Table
2. SRN (Sitzmann et al., 2019), FE-NVS (Guo
et al., 2022), PixelNeRF (Yu et al., 2021b), Co-
deNeRF (Jang & Agapito, 2021) and Vision-
NeRF (Lin et al., 2022) are taken as baselines.
The enhanced NeRFormer pretrained by our
MRVM, i.e., NeRFormer+MRVM, achieves
better results than previous methods in both 1-
view and 2-view scenarios.

Visualizations Visual comparisons under the
above-mentioned three settings are shown in
Figure 3. During pretraining, the MRVM-
NeRF model is encouraged to predict the
masked information from the rest of available
ones, which drives the model to capture the re-
lationship between sampled points and across reference views. At inference, for a novel scene,
only partial information is accessible due to the limited reference views, so the mask-learned prior
knowledge comes in handy for predicting the implicit representations of unseen parts. Therefore the
rendering results have richer details and more precise structures compared to the baselines rendered
with blurs and artifacts. More visual results could be found in the Appendix.

4.2 EFFECTIVENESS ON REALISTIC DATASETS

Settings To further demonstrate that our proposed MRVM is compatible with different NeRF ar-
chitectures and is applicable beyond simple synthetic datasets, we adopt MLP-based NeuRay (Liu
et al., 2022) as the baseline to evaluate on more challenging realistic scenes. Following its protocol,
we first pretrain a generalizable NeRF across five datasets: Google Scanned Object dataset (Downs
et al., 2022), three forward-facing datasets (Mildenhall et al., 2019; Flynn et al., 2019; Zhou et al.,
2018) as well as DTU dataset (Jensen et al., 2014) except for the testing scenes. The masked ray
and view modeling is incorporated as an auxiliary task when cross-scene pretraining. We use NeRF
Synthetic (Niemeyer et al., 2020), DTU (Jensen et al., 2014) and LLFF (Mildenhall et al., 2019) as
evaluation sets following the train-test split manner of NeuRay (Liu et al., 2022). Afterwards, we
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Table 3: Quantitative results on NeRF Synthetic, DTU and LLFF datasets. Our proposed MRVM
proves to be beneficial for both cross-scene generalization and per-scene finetuning settings. Best
in bold.

Method Synthetic Object NeRF Real Object DTU Real Forward-facing LLFF

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS ↓ PSNR↑ SSIM↑ LPIPS ↓

PixelNeRF 22.65 0.808 0.202 19.40 0.463 0.447 18.66 0.588 0.463
MVSNeRF 25.15 0.853 0.159 23.83 0.723 0.286 21.18 0.691 0.301

IBRNet 26.73 0.908 0.101 25.76 0.861 0.173 25.17 0.813 0.200
NeuRay 28.29 0.927 0.080 26.47 0.875 0.158 25.35 0.818 0.198

C
ro

ss
-s

ce
ne

ge
ne

ra
liz

at
io

n

NeuRay+MRVM 29.29 0.930 0.077 29.48 0.926 0.108 26.91 0.861 0.169

MVSNeRF 27.21 0.888 0.162 25.41 0.767 0.275 23.54 0.733 0.317
NeRF 31.01 0.947 0.081 28.11 0.860 0.207 26.74 0.840 0.178

IBRNet 30.05 0.935 0.066 29.17 0.908 0.128 26.87 0.848 0.175
NeuRay 32.35 0.960 0.048 29.79 0.928 0.107 27.06 0.850 0.172Pe

r-
sc

en
e

fin
et

un
in

g

NeuRay+MRVM 33.09 0.965 0.035 31.98 0.943 0.091 28.37 0.881 0.157

Figure 4: Visualizations on NeRF Synthetic (first row), LLFF (middle row) and DTU (last row)
datasets. Masked ray and view modeling aids in rendering images with enhanced texture details,
reduced blurring and fewer artifacts.

finetune the generalizable NeRF model without masking operation either across five training sets,
dubbed as cross-scene generalization setting, or target on a specific scene in the three evaluation
sets, denoted as per-scene finetuning setting.

Results The experimental results can be found in Table 3. We compare our NeuRay+MRVM with
several well-known baselines including NeRF (Mildenhall et al., 2021), PixelNeRF (Yu et al.,
2021b), MVSNeRF (Chen et al., 2021), IBRNet (Wang et al., 2021) and NeuRay (Liu et al., 2022).
The prior knowledge acquired through mask-based pretraining substantially enhances the model’s
generalization ability when applied to new scenes in cross-scene generalization setting (the first
large row in Table 3). Furthermore, the prior knowledge is still influential after executing per-scene
finetuning (the last large row in Table 3). We show the visual comparisons under per-scene fine-
tuning setting in Figure 4. More rendering results are placed in the Appendix. The model pretrained
by our MRVM delivers better visual effects obviously. It is worth noted that the training and eval-
uation sets encompass a wide variety of scenes, ranging from single object-centric scenes to more
complex forward-facing indoor and outdoor scenes. This indicates that the proposed MRVM still
works well under complex scenarios with complicated geometry, realistic non-Lambertian materials
and various illuminations.
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Table 4: Ablation study on left: masking strategies and right: masking ratios.

Method PSNR↑ SSIM↑ LPIPS↓ #Params(M)

NeRFormer 27.58 0.920 0.091 25.084
RGB mask 27.95 0.925 0.080 25.934
Feat mask1 28.58 0.935 0.069 25.817
Feat mask2 28.02 0.927 0.074 27.240

NeRFormer+MRVM 29.25 0.942 0.060 25.151

Mask ratio PSNR↑ SSIM↑ LPIPS↓

0.1 27.88 0.924 0.083
0.25 28.54 0.930 0.076
0.5 29.25 0.942 0.060

0.75 28.96 0.938 0.068
0.9 28.02 0.927 0.080

4.3 ABLATION STUDY

We execute ablation studies focusing on three aspects as described below.

Different masking strategies To validate the influence of different mask-based pretraining strate-
gies, we evaluate with another three masking variants under category-agnostic ShapeNet-all setting.

• RGB mask: Following MIM, we perform random block-wise masking on reference images and
incorporate an additional UNet-like decoder to reconstruct the masked region of pixels.

• Feat mask1: We take the same masking strategy as described in Section 3.2 but introduce an
additional decoder to recover the masked latent feature hj

i from the output representation zji .

• Feat mask2: Similar to our default MRVM but the target network is replaced by a copy of the
fine-branch instead of the coarse-branch, with parameters updated via moving average.

Table 5: Ablation study for few-shot scenarios on
NeRF Synthetic dataset.

#views method PSNR↑ SSIM↑ LPIPS↓

NeuRay 29.78 0.940 0.07850-5 NeuRay+MRVM 30.88 0.948 0.060
NeuRay 25.01 0.871 0.14520-4 NeuRay+MRVM 26.61 0.891 0.114
NeuRay 22.19 0.809 0.20810-3 NeuRay+MRVM 24.03 0.846 0.159

The comparisons are shown in Table 4 (left).
Although all masking options yield some
degree of improvements, our final proposal
MRVM achieves the most significant improve-
ment with the minimal additional parameters,
demonstrating its superiority over other mask-
ing strategies. Please refer to the Appendix for
more details about the three variants.

Different masking ratios We conduct an
empirical study on the mask ratio η under
category-agnostic ShapeNet-all setting in Table 4 (right). We separately mask 10%, 25%, 50%,
75% and 90% points along each ray. A relatively-large η proves to be more beneficial, as it poses a
more challenging pretraining task. It compels the model to develop a comprehensive understanding
of the entire 3D scene on a global scale, rather than merely interpolating information from adjacent
points. While too large η may lead to a too difficult task, it is inappropriate for pretraining to learn
sufficient 3D scene prior knowledge.

Few-shot scenarios We validate that our MRVM-NeRF could help alleviate the limitation of NeRF’s
requirement on relatively dense inputs, referred as the few-shot scenarios in Table 5. Specifically,
we adopt the per-scene finetuning setting using NeRF Synthetic dataset. The default configuration
in Table 3 uses 100 views for finetuning and renders each image from 8 reference views. For
few-shot scenarios, we decrease the training views to 50, 20, 10 and reference views to 5, 4, 3
respectively. The results indicate that our MRVM achieves more significant improvements under
few-shot scenarios, which implies that the prior knowledge learned through mask-based pretraining
holds substantial potential to alleviate the relatively dense inputs required by NeRF.

5 CONCLUSION

In this paper, we propose masked ray and view modeling (MRVM), a mask-based pretraining strat-
egy specially designed for generalizable Neural Radiance Field. By enhancing inner correlations
among rays and across views, our MRVM shows great efficacy and wide compatibility under vari-
ous experimental configurations. We hope our work could promote the development of introducing
mask-based pretraining into 3D vision research field.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

This work was partially supported by the Natural Science Foundation of China under Grant
61931014.

REFERENCES

Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael Auli. Data2vec:
A general framework for self-supervised learning in speech, vision and language. In International
Conference on Machine Learning, pp. 1298–1312. PMLR, 2022.

Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training of image transformers. arXiv preprint
arXiv:2106.08254, 2021.

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5855–5864,
2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi Yu, and Hao Su.
Mvsnerf: Fast generalizable radiance field reconstruction from multi-view stereo. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 14124–14133, 2021.

Wenyan Cong, Hanxue Liang, Peihao Wang, Zhiwen Fan, Tianlong Chen, Mukund Varma, Yi Wang,
and Zhangyang Wang. Enhancing nerf akin to enhancing llms: Generalizable nerf transformer
with mixture-of-view-experts. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 3193–3204, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman, Ryan Hickman, Krista Reymann,
Thomas B McHugh, and Vincent Vanhoucke. Google scanned objects: A high-quality dataset
of 3d scanned household items. In 2022 International Conference on Robotics and Automation
(ICRA), pp. 2553–2560. IEEE, 2022.

John Flynn, Michael Broxton, Paul Debevec, Matthew DuVall, Graham Fyffe, Ryan Overbeck,
Noah Snavely, and Richard Tucker. Deepview: View synthesis with learned gradient descent.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
2367–2376, 2019.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5501–5510, 2022.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
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A MORE EXPERIMENTAL RESULTS

A.1 RESULTS ON SYNTHETIC DATASETS

Category-agnostic ShapeNet-all and ShapeNet-unseen settings The overall numerical results
have already been presented in the main paper. The detailed results with a breakdown by cate-
gories are provided in Table 6 and Table 7. We provide additional visual results in Figure 10, Figure
11 for ShapeNet-all setting and Figure 12, Figure 13 for ShapeNet-unseen setting, respectively.
We randomly sample 4 object instances for each of the testing categories in ShapeNet dataset and
show visual comparisons to PixelNeRF (Yu et al., 2021b) and our baseline NeRFormer.

Category-specific ShapeNet-car and ShapeNet-chair settings The quantitative comparisons on
PSNR, SSIM and LPIPS are available in the main paper. SRN (Sitzmann et al., 2019), FE-NVS (Guo
et al., 2022) and CodeNeRF (Jang & Agapito, 2021) do not provide LPIPS result in their paper. We
calculate LPIPS result for PixelNeRF (Yu et al., 2021b) using author-provided checkpoints. More
visualizations are shown in Figure 14 and Figure 15. We use view-64 and view-64, 104 as input
view(s) for one-shot and two-shot cases. For each scenario we randomly sample 5 object instances,
and show visual comparisons to PixelNeRF (Yu et al., 2021b) and our baseline NeRFormer.

Figure 5: Visualizations for cross-scene generalization on NeRF Synthetic (first row), LLFF (mid-
dle row) and DTU (last row) datasets.

A.2 RESULTS ON REALISTIC DATASETS

For real-world cross-scene generalization and per-scene finetuning settings, as we illustrated in
the main paper, we adopt NeuRay (Liu et al., 2022) as baseline and evaluate on three datasets: NeRF
Synthetic (Niemeyer et al., 2020), DTU (Jensen et al., 2014) and LLFF (Mildenhall et al., 2019).
The quantitative results are presented in Table 3 in the main paper, and more visualizations for cross-
scene generalization setting and per-scene finetuning setting are shown in Figure 5 and Figure 6
respectively.

A.3 RESULTS ON OTHER BASELINES

We also provide the additional experimental results of adding our proposed masked ray and view
modeling (MRVM) on another advanced generalizable NeRF baseline GNT (Wang et al., 2022b),
on NeRF Synthetic (Niemeyer et al., 2020) and LLFF (Mildenhall et al., 2019) datasets respectively,
and compare with another state-of-the-art method GNT-MOVE (Cong et al., 2023). The default
setting for novel-view synthesis is put in Table 8 and the few-shot setting is located in Table 9. We
conclude that the proposed masked ray and view modeling consistently benefits under all the cases.
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Figure 6: Visualizations for per-scene finetuning on NeRF Synthetic (first row), LLFF (middle
row) and DTU (last row) datasets.

Table 6: Detailed results of category-agnostic ShapeNet-all setting, with a breakdown by cate-
gories. This table is an expansion of Table 1 in the main paper.

Metric Method plane bench cbnt. car chair disp. lamp spkr. rifle sofa table phone boat avg.

SRN 26.62 22.20 23.42 24.40 21.85 19.07 22.17 21.04 24.95 23.65 22.45 20.87 25.86 23.28
PixelNeRF 29.76 26.35 27.72 27.58 23.84 24.22 28.58 24.44 30.60 26.94 25.59 27.13 29.18 26.80
FE-NVS 30.15 27.01 28.77 27.74 24.13 24.13 28.19 24.85 30.23 27.32 26.18 27.25 28.91 27.08

SRT 31.47 28.45 30.40 28.21 24.69 24.58 28.56 25.61 30.09 28.11 27.42 28.28 29.18 27.87
VisionNeRF 32.34 29.15 31.01 29.51 25.41 25.77 29.41 26.09 31.83 28.89 27.96 29.21 30.31 28.76
NeRFormer 30.50 27.19 28.88 28.12 24.49 25.21 29.34 25.22 31.13 27.65 26.67 27.93 30.12 27.58

PSNR↑

NeRFormer+MRVM 32.10 28.91 30.94 29.16 26.20 27.27 31.54 27.24 32.18 29.25 28.82 29.70 31.13 29.25
SRN 0.901 0.837 0.831 0.897 0.814 0.744 0.801 0.779 0.913 0.851 0.828 0.811 0.898 0.849

PixelNeRF 0.947 0.911 0.910 0.942 0.858 0.867 0.913 0.855 0.968 0.908 0.898 0.922 0.939 0.910
FE-NVS 0.957 0.930 0.925 0.948 0.877 0.871 0.916 0.869 0.970 0.920 0.914 0.926 0.941 0.920

SRT 0.954 0.925 0.920 0.937 0.861 0.855 0.904 0.854 0.962 0.911 0.909 0.918 0.930 0.912
VisionNeRF 0.965 0.944 0.937 0.958 0.892 0.891 0.925 0.877 0.974 0.930 0.929 0.936 0.950 0.933
NeRFormer 0.953 0.921 0.922 0.947 0.870 0.879 0.924 0.869 0.971 0.916 0.913 0.928 0.946 0.920

SSIM↑

NeRFormer+MRVM 0.966 0.945 0.941 0.958 0.906 0.912 0.948 0.900 0.978 0.937 0.942 0.944 0.959 0.942
SRN 0.111 0.150 0.147 0.115 0.152 0.197 0.210 0.178 0.111 0.129 0.135 0.165 0.134 0.139

PixelNeRF 0.084 0.116 0.105 0.095 0.146 0.129 0.114 0.141 0.066 0.116 0.098 0.097 0.111 0.108
FE-NVS 0.061 0.080 0.076 0.085 0.103 0.105 0.091 0.116 0.048 0.081 0.071 0.080 0.094 0.082

SRT 0.050 0.068 0.058 0.062 0.085 0.087 0.082 0.096 0.045 0.066 0.055 0.059 0.079 0.066
VisionNeRF 0.042 0.067 0.065 0.059 0.084 0.086 0.073 0.103 0.046 0.068 0.055 0.068 0.072 0.065
NeRFormer 0.063 0.096 0.088 0.081 0.128 0.116 0.093 0.126 0.055 0.099 0.079 0.083 0.090 0.091

LPIPS↓

NeRFormer+MRVM 0.045 0.067 0.064 0.059 0.087 0.083 0.065 0.098 0.042 0.070 0.051 0.063 0.070 0.060

B MORE IMPLEMENTATION DETAILS

We first provide general configurations that are applicable across all settings, followed by configu-
rations specific to each unique setting.

General configurations For mask-based pretraining, we incorporate Lmrvm as an auxiliary loss.
It is optimized together with NeRF’s rendering loss not from the beginning, but starting from 10% of
the total training iterations until finishing. We also use a warm-up schedule for about 10k iterations
which linearly increases the coefficient λ from 0 to the final value 0.1. Both of these technical
strategies contribute to stabilize the pretraining process. At inference time, we use the VGG network
for calculating LPIPS (Zhang et al., 2018) after normalizing pixel values to [-1,1]. We perform ray
casting, sampling and volume rendering all in the world coordinate. All the models are implemented
using Pytorch (Paszke et al., 2019) framework.
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Table 7: Detailed results of category-agnostic ShapeNet-unseen setting, with a breakdown by
categories. This table is an expansion of Table 1 in the main paper.

Metric Method bench cbnt. disp. lamp spkr. rifle sofa table phone boat avg.

SRN 18.71 17.04 15.06 19.26 17.06 23.12 18.76 17.35 15.66 24.97 18.71
PixelNeRF 23.79 22.85 18.09 22.76 21.22 23.68 24.62 21.65 21.05 26.55 22.71
FE-NVS 23.10 22.27 17.01 22.15 20.76 23.22 24.20 20.54 19.59 25.77 21.90

NeRFormer 23.64 22.21 17.77 23.20 20.60 24.11 24.58 21.05 21.24 27.32 22.54
PSNR↑

NeRFormer+MRVM 25.46 23.28 18.72 24.79 21.93 25.19 26.63 22.61 21.78 28.54 24.08
SRN 0.702 0.626 0.577 0.685 0.633 0.875 0.702 0.617 0.635 0.875 0.684

PixelNeRF 0.863 0.814 0.687 0.818 0.778 0.899 0.866 0.798 0.801 0.896 0.825
FE-NVS 0.865 0.819 0.686 0.822 0.785 0.902 0.872 0.792 0.796 0.898 0.825

NeRFormer 0.863 0.808 0.689 0.837 0.774 0.908 0.875 0.786 0.817 0.914 0.826
SSIM↑

NeRFormer+MRVM 0.892 0.815 0.693 0.857 0.786 0.921 0.899 0.822 0.827 0.927 0.849
SRN 0.282 0.314 0.333 0.321 0.289 0.175 0.248 0.315 0.324 0.163 0.280

PixelNeRF 0.164 0.186 0.271 0.208 0.203 0.141 0.157 0.188 0.207 0.148 0.182
FE-NVS 0.135 0.156 0.237 0.175 0.173 0.117 0.123 0.152 0.176 0.128 0.150

NeRFormer 0.141 0.175 0.243 0.181 0.185 0.109 0.127 0.177 0.182 0.101 0.159
LPIPS↓

NeRFormer+MRVM 0.096 0.135 0.220 0.135 0.148 0.082 0.088 0.115 0.146 0.089 0.117

Table 8: Experimental results of adding our proposed masked ray and view modeling on the baseline
of GNT (Wang et al., 2022b) and compare with GNT-MOVE (Cong et al., 2023) on NeRF Synthetic
and LLFF datasets.

Method Synthetic Object NeRF Real Forward-facing LLFF

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
GNT 27.29 0.937 0.056 25.86 0.867 0.116

GNT-MOVE 27.47 0.940 0.056 26.02 0.869 0.108
GNT+MRVM 27.78 0.942 0.052 26.25 0.873 0.110

B.1 IMPLEMENTATION DETAILS FOR SYNTHETIC DATASETS

Considering the images of synthetic datasets have a blank background, we adopt two techniques
following previous works (Yu et al., 2021b; Lin et al., 2022) for better performance. 1) We use
bounding box sampling strategy as Yu et al. (2021b) during pretraining, where rays are only sampled
within the bounding box of the foreground object. In this way, it avoids the model to learn too much
empty information at initial training stage. 2) We assign a white background color for those pixels
sampled from the background to match the rendering ground truths in ShapeNet dataset.

Settings For category-agnostic ShapeNet-all setting, we use a batch size of 16, and sample 256
rays per object. We pretrain the model for 400k iterations on 4 GPUs, with a tight bounding box for
the first 300k iterations, then we finetune the model without bounding box for 800k iterations. The
two-stage training takes about 10 days on GTX-1080Ti.

For category-agnostic ShapeNet-unseen setting, we also use a batch size of 16, and sample 256 rays
per object. We pretrain for 300k iterations with bounding box on 4 GPUs, and finetune the model
for 600k iterations without bounding box, which takes about 8 days on GTX-1080Ti.

For category-specific ShapeNet-car and ShapeNet-chair settings, we use a batch size of 8, and
sample 512 rays per object. We pretrain for 400k iterations on 4 GPUs. For the first 300k iterations,
we use 2 input views for the network to encode with a tight bounding box. For the rest of 100k
iterations, the bounding box is removed and we randomly choose 1 or 2 view(s) as the input to make
the model compatible with both one-shot and two-shot scenarios. We finetune the model for 1 or 2
view(s) respectively on 8 GPUs for 400k iterations. The two-stage training takes about 7 days on
GTX-1080Ti.
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Table 9: The few-shot experimental results of adding our proposed masked ray and view model-
ing on the baseline of GNT (Wang et al., 2022b) and compare with GNT-MOVE (Cong et al., 2023)
on NeRF Synthetic and LLFF datasets.

Method
Synthetic Object NeRF Real Forward-facing LLFF

6-shot 12-shot 3-shot 6-shot

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

GNT 22.39 0.856 0.139 25.25 0.901 0.088 19.58 0.653 0.279 22.36 0.766 0.189
GNT-MOVE 22.53 0.871 0.116 25.85 0.915 0.074 19.71 0.666 0.270 22.53 0.774 0.184

GNT+MRVM 23.52 0.869 0.120 26.10 0.911 0.079 20.88 0.672 0.257 23.54 0.777 0.175

Figure 7: Illustration for mask-based pretraining variant 1 — RGB mask. We mask blocks of pixels
and try to recover them at pretraining.

B.2 IMPLEMENTATION DETAILS FOR REALISTIC DATASETS

Following the training protocol in NeuRay (Liu et al., 2022), we first perform cross-scene pretraining
across five distinct datasets (Downs et al., 2022; Mildenhall et al., 2019; Flynn et al., 2019; Zhou
et al., 2018; Jensen et al., 2014) for 400k iterations. Afterwards, for cross-scene generalization
setting, we finetune the model on the same five training sets for additional 200k iterations. For
per-scene finetuning setting, the model is finetuned on each scene respectively in the three testing
datasets (Niemeyer et al., 2020; Jensen et al., 2014; Mildenhall et al., 2019) for additional 100k
iterations, except for the few-shot scenarios in Table 5 of the main paper where we find only 10k
iterations is sufficient for finetuning. When training the generalizable model across multiple datasets,
we randomly sample 1 scene from the training sets per iteration. We sample 512 rays for each scene
during training. All the training processes are conducted on one V100 GPU, which takes about 5
days for total pretraining and finetuning.

Figure 8: Illustration for mask-based pretraining variant 2 — Feat mask1:. We use the intermediate
representation output (boxes in blue) by Fine-Branch to reconstruct the masked feature tokens.
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Figure 9: Illustration for mask-based pretraining variant 3 — Feat mask2:. We make a copy of
Fine-Branch as the target branch, in place of Coarse-Branch in the main paper.

B.3 VARIANTS OF MASK-BASED PRETRAINING OBJECTIVES

As stated in the main paper, we conduct an elaborated ablation study on different mask-based pre-
training strategies, which are illustrated in Figure 7, Figure 8 and Figure 9.

• RGB mask: As shown in Figure 7, we mask blocks of pixels on input images from reference
views. After extracting pyramid features with a 2D CNN, we additionally introduce an UNet-like
decoder to recover the masked image pixels based on these features. Lmrvm is the L2 distance
between reconstructed pixels and the ground truth, the constraint is only added to masked regions.
We set mask ratio to 50% and patch size to 4 at pretraining.

• Feat mask1: As illustrated in Figure 8, we perform masking operation on sampled points same as
MRVM. Differently, after obtaining intermediate representation zji from the fine branch, we use
it to recover the masked latent feature hj

i by a shallow 2-layer MLP. Lmrvm is the L2 distance
between the reconstructed latent feature vector and the unmasked ground truth. We normalize the
vector to unit-length before calculating the distance.

• Feat mask2: The pipeline for this variant is presented in Figure 9. Different from the architecture
in the main paper, we don’t utilize coarse branch as the target. On the contrary, we make a copy of
the fine branch as the target network. With the gradient stopped manually, this branch is updated
by moving average of the parameters from the online fine branch. We experimentally find that this
option may cause instability at mask-based pretraining stage, making it inappropriate as our final
proposal.
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Figure 10: More visualizations for Category-agnostic ShapeNet-all setting, Part 1.
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Figure 11: More visualizations for Category-agnostic ShapeNet-all setting, Part 2.
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Figure 12: More visualizations for Category-agnostic ShapeNet-unseen setting, Part 1.
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Figure 13: More visualizations for Category-agnostic ShapeNet-unseen setting, Part 2.
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Figure 14: More visualizations for Category-specific ShapeNet-car setting.
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Figure 15: More visualizations for Category-specific ShapeNet-chair setting.
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