

000 PSC: EFFICIENT GRAMMAR-CONSTRAINED DECOD- 001 002 003 004 005 006 007 008 009 ING VIA PARSER STACK CLASSIFICATION

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 LLMs are widely used to generate structured output like source code or JSON.
 012 Grammar-constrained decoding (GCD) can guarantee the syntactic validity of the
 013 generated output, by masking out tokens that violate rules specified by a context-
 014 free grammar. However, the online computational overhead of existing GCD
 015 methods, with latency typically scaling linearly with vocabulary size, limits the
 016 throughput of LLMs, especially for models with large vocabularies. To address
 017 this issue, we propose PSC, a novel grammar-constrained decoding method. By
 018 combining acceptance conditions of all vocabulary tokens into a single classifier
 019 of the parser stack during preprocessing, PSC can compute the complete vocabu-
 020 lary mask by checking the parser stack exactly once per decoding step, with time
 021 complexity independent of the vocabulary size. Experiments show that PSC com-
 022 putes masks up to 770 \times faster than baselines on complex programming language
 023 grammars, and up to 30 \times faster for schema-conformant JSON; end-to-end LLM
 024 throughput with PSC approaches that of unconstrained decoding.

027 1 INTRODUCTION

029 In recent years, the ability for Large Language Models (LLMs) to generate structured output has
 030 been widely recognized and utilized (Qwen et al.; Grattafiori et al.; Gemma Team et al.). Source
 031 code can be viewed as structured output that adheres to the syntax of programming languages, and
 032 LLM-based coding assistants, such as GitHub Copilot (GitHub) and Cursor (AnySphere Inc.), have
 033 been widely adopted by developers to assist in writing code to improve their productivity. When
 034 LLMs are used as a tool, users often expect the generated output to conform to a specific format,
 035 such as Markdown or JSON with custom schemas (Liu et al., 2024; vLLM Team; OpenAI). All of
 036 these applications rely on the ability of LLMs to generate output that adheres to a specific syntax.

037 However, generating in a structured format is complex, as it requires not only understanding the
 038 semantics of given input but also adhering to the specific grammars of target formats. Since language
 039 models are essentially probabilistic models, there is no guarantee that the generated output will
 040 always conform to the required grammar.

041 To address this issue, *grammar-constrained decoding* (GCD) (Geng et al., b; Scholak et al.; Poesia
 042 et al.; Ugare et al.) is proposed to ensure that the generated output always conforms to the specified
 043 context-free grammar. A GCD method works by incorporating a grammar checker into the decoding
 044 process, as shown in Figure 1a. At each decoding step, the checker determines which tokens in
 045 the vocabulary can be appended to the current prefix while not violating the grammar. The logits
 046 generated by the language model are then masked to only allow the valid tokens, and the next token
 047 is generated by sampling from the masked logits.

048 The overhead of GCD is determined by the newly introduced step of validity calculation. A naive
 049 implementation, as shown in Figure 1b would require calling the parser for *every* token in the vocab-
 050 ular to check its validity, resulting in a time complexity of $\mathcal{O}(|\mathcal{V}|)$ per decoding step, where $|\mathcal{V}|$ is
 051 the vocabulary size. This can add significant overhead, especially for large vocabularies in modern
 052 language models, e.g. 128k tokens in Llama-3 (Grattafiori et al.), 151k tokens in Qwen series (Bai
 053 et al.), or 262k tokens in Gemma 3 (Gemma Team et al.). The overhead is particularly pronounced
 for smaller models, where the time taken by model inference is relatively small.

Figure 1: An illustration of grammar-constrained decoding, showing (a) the overall working process, (b) the naive implementation that directly simulates the PDA, and (c) our method PSC that precomputes the DFA and the valid token masks.

To speed up GCD, various techniques have been proposed in the literature, summarized in Section 2.4. However, none of them can fundamentally change the $\mathcal{O}(|V|)$ worst-case time complexity **while maintaining correctness**.

We propose a novel GCD method PSC that replaces the repetitive runtime parsing over the whole vocabulary with a one-time classification of the current parser stack, as shown in Figure 1c. The checking process of the parser can be seen as a function of both the token and the state of the parser, which is usually a stack. For each token, our method PSC constructs a finite-state automaton (FSA) that represents the exact requirements on the parser stack to accept that token, i.e., the FSA accepts a parser stack if and only if that token is accepted by a parser with that stack. All these FSAs can then be combined into a single FSA that classifies the parser stack into a finite number of classes, each corresponding to a different vocabulary mask. During decoding, we only need to check the parser stack exactly once per decoding step to get the vocabulary mask, which is ready to be applied to the logits. This eliminates the need to call the parser for each token in the vocabulary, resulting in a significant speedup.

We conduct extensive experiments on grammar-constrained decoding in Java, Go, SQL, and schema-conformant JSON to evaluate the efficiency of our method. Compared to the current state-of-the-art method LLGuidance, our method achieves up to 770 times speedup in mask computation on complex programming language grammars, and up to 30 times speedup for schema-conformant JSON generation. In the end-to-end decoding throughput experiments, the throughput of PSC approaches that of unconstrained decoding, and is significantly higher than LLGuidance, especially on smaller models and larger batch sizes.

In summary, our contributions are as follows:

- We propose a novel GCD method PSC that leverages finite-state automata to classify parser states to use the precomputed vocabulary mask, significantly reducing the time overhead of grammar-constrained decoding.
- We provide a theoretical analysis of PSC. We prove that the set of the parser stacks that can accept a given token can be formally described as a regular language. This justifies the correctness of our method and provides a theoretical foundation for future research on grammar-constrained decoding.
- We demonstrate the efficiency of PSC through extensive experiments on grammar-constrained decoding in Java, Go, Python, and schema-conformant JSON, achieving significant speedup in mask computation compared to existing techniques; end-to-end decoding throughput with PSC approaches that of unconstrained decoding.

108

2 BACKGROUND AND RELATED WORK

110 We introduce the task of grammar-constrained decoding in this section, give some brief and informal
111 definitions of the concepts used in the paper, and then review the related work. A quick lookup table
112 for the symbols, notations, and the exact definitions can be found in Appendix A.2.114

2.1 THE TASK: GRAMMAR-CONSTRAINED DECODING

116 Let Σ be the character set used by the language model, e.g. the Unicode. Given a prefix of tokens,
117 the task of a language model is to generate the next-token distribution over the vocabulary $\mathcal{V} \subset \Sigma^+$.
118 For a language $L \subseteq \Sigma^*$, the task of *constrained decoding* aims to generate a sample in L from the
119 language model. In each step, given prefix $x \in \Sigma^*$, it calculates the set of valid tokens in \mathcal{V} , i.e.
120 tokens that, when concatenated after x , become a prefix of some strings in L .

121
$$c(x \in \Sigma^*) := \{v \in \mathcal{V} \mid \exists y \in \Sigma^*, xvy \in L\}. \quad (1)$$

123 When the language L is defined by a context-free grammar, the task is called *grammar-constrained*
124 *decoding* (Ugare et al.; Koo et al.; Park et al.; Moskal et al.). Determining whether a string is syntac-
125 tically valid usually involves two phases: lexical analysis and syntax analysis¹ (Aho & Ullman). In
126 lexical analysis, the lexer \mathcal{T} , usually modeled as a deterministic finite-state transducer (FST) (Aho
127 & Ullman; Koo et al.; Park et al.), transduces the text $w \in \Sigma^*$ into a terminal sequence $\mathcal{T}(w) \in \Gamma^*$,
128 where Γ is the set of terminals. In syntax analysis, the parser \mathcal{P} , usually modeled as a terminating de-
129 terministic push-down automaton (PDA) (Aho & Ullman), determines whether a terminal sequence
130 $x \in \Gamma^*$ is valid, here written as $x \in \mathcal{P}$. So we have

131
$$w \in L \iff \mathcal{T}(w) \in \mathcal{P}. \quad (2)$$

132

2.2 FINITE-STATE TRANSDUCER

134 The lexer \mathcal{T} is a *finite-state transducer* (FST). It reads in the input string $w \in \Sigma^*$ character by
135 character, and maintains a state $q \in Q$, where Q is the finite set of states. When reading in the input
136 character $c \in \Sigma$, the FST transits from state q to state q' and outputs a terminal sequence $t \in \Gamma^*$,
137 written as $q \xrightarrow[\mathcal{T}]{c:t} q'$. It may also transit without reading in any character, written as $q \xrightarrow[\mathcal{T}]{\varepsilon:t} q'$.
138139

2.3 PUSHDOWN AUTOMATA

141 The parser \mathcal{P} is a *pushdown automaton*. It reads in the input terminals one by one, and maintains a
142 stack $\alpha \in \Pi^+$, where Π is the stack alphabet. Its action is determined by the stack α and the current
143 input terminal $a \in \Gamma$. (1) If the stack top $\alpha_{[0]}$ belongs to the *final states* $F_{\mathcal{P}}$, the parser terminates and
144 *accepts* the input. (2) If the top 2 symbols $\alpha_{[1:2]}$ can perform an ε -transition, i.e., $\alpha_{[1:2]} \xrightarrow[\mathcal{P}]{\varepsilon} \beta \in \Pi^+$,
145 the parser pops $\alpha_{[1:2]}$ to push β onto the stack. (3) If the top 2 symbols $\alpha_{[1:2]}$ can perform a transition
146 for the input terminal a , i.e., $\alpha_{[1:2]} \xrightarrow[\mathcal{P}]{a} \beta$, the parser pops $\alpha_{[1:2]}$ to push β onto the stack, and then
147 reads in the terminal a . (4) Otherwise, the parser terminates and *rejects* the input.148 A parser stack α is *stable* if it is ready to read the next terminal or accepts the input, i.e., actions (1)
149 and (3) above. We write $\alpha \xrightarrow[\mathcal{P}]{w} \beta$ if \mathcal{P} processes the terminal sequence $w \in \Gamma^*$ and transits from
150 stack α to a *stable* stack β . The parser is *deterministic* if at any time the parser has only one possible
151 action. It is *terminating* if for any stack, it does not make an endless sequence of ε -transitions.
152153

2.4 RELATED WORK

154 There are several types of existing techniques to speed up grammar-constrained decoding: vocabu-
155 lary preprocessing, lexer preprocessing, and parser preprocessing.156

157 ¹To ease the presentation, the step of lexical analysis is omitted in previous sections. The term “parser” in
158 previous sections should be realized as the combination of the lexer and the parser defined here, and the term
159 “parser stack” should be realized as the concatenation of the lexer state and the parser state, which is a simple
160 state without internal structure, and a stack, respectively.

162 **Vocabulary preprocessing** (Poesia et al.; Beurer-Kellner et al.; Moskal et al.) exploits the fact that
 163 the vocabulary is built by BPE (Gage; Sennrich et al.), and for each token, its prefix is also a token
 164 in the vocabulary. If the prefix token is rejected, then the longer token must also be rejected. So we
 165 can check the vocabulary hierarchically, and only check the tokens whose prefixes are not rejected.

166 **Lexer preprocessing** (Beurer-Kellner et al.; Park et al.; Moskal et al.; Ugare et al.) maps each
 167 token to a terminal sequence during preprocessing, and then the parser is only called on the terminal
 168 sequences. This reduces the number of parser calls, as different tokens may share the same terminal
 169 sequence. The mask can be precomputed for each terminal sequence, combined at runtime to get
 170 the valid token mask. Syncode (Ugare et al.) further approximates the terminal sequences by only
 171 considering the first 2 terminals of each token, removing the need for dynamic parsing using the
 172 lookaheads of the LR(1) parser at the cost of allowing certain invalid tokens to be accepted.

173 **Parser preprocessing** (Dong et al.; Park et al.) classifies the vocabulary into three sets for each
 174 parser state: context-independent accepted, context-independent rejected, and context-dependent.
 175 This allows us to reduce the number of parser calls by only checking the context-dependent tokens.

176 These techniques can be combined to achieve better speedup (Beurer-Kellner et al.; Park et al.;
 177 Moskal et al.). However, as mentioned in Section 1, these techniques are limited in their speedup
 178 while maintaining correctness. There is no theoretical guarantee on how many parser calls will be
 179 made per decoding step, which can be linear to the vocabulary size in the worst case.

3 PSC: PARSER STACK CLASSIFICATION

184 The preprocessing of the lexer \mathcal{T} is described in Section 3.1, and the other parts of this section
 185 are dedicated to the preprocessing of the parser \mathcal{P} . Detailed algorithms and proofs are deferred to
 186 Appendix A.3. A quick lookup table for the symbols, notations, and the exact definitions can
 187 be found in Appendix A.2.

3.1 LEXICAL PREPROCESSING

190 Lexical preprocessing is not our focus in this paper, so we reuse the lexical preprocessing in Great-
 191 Gramma (Park et al.), and conclude it here as a prelude to PSC.

192 For token $v \in \mathcal{V}$, lexer state $q \in Q$, if lexing the token v from state q using the lexer \mathcal{T} generates
 193 the terminal sequence $x \in \Gamma^*$, and the lexer transits to state p , i.e. $q \xrightarrow[\mathcal{T}]{v:x}^* p$, we define the set of
 194 *realizable terminal sequences* $R_q(v)$ as $\{x\}T_p$, representing all possible terminal prefixes that can
 195 be generated from a string starting with v , where T_p is the finite set of all possible terminal prefixes
 196 from state p : $\mathcal{T}_p(\Sigma^*) = T_p(\Sigma^*)$. The set $R_q(v)$ can be precomputed for every $q \in Q, v \in \mathcal{V}$
 197 during preprocessing.

3.2 OVERVIEW OF SYNTACTIC PREPROCESSING

201 Given a valid prefix $x \in \Sigma^*$, we run the lexer \mathcal{T} from its initial state q_0 to produce a terminal
 202 sequence $z \in \Gamma^*$ and a new lexer state q : $q_0 \xrightarrow[\mathcal{T}]{x:z}^* q$. We then run the parser \mathcal{P} from its initial stack
 203 γ_0 to receive the terminal sequence z , and generates a new stack α : $\gamma_0 \xrightarrow[\mathcal{P}]{z}^* \alpha$.

206 We can now introduce the simplification of the condition in the GCD definition in Equations 1 and 2
 207 from previous work (Park et al.). For any token $v \in \mathcal{V}$, to determine whether v is valid, we can
 208 rewrite the condition in terms of realizable terminal sequences,

$$209 \exists y \in \Sigma^*, \mathcal{T}(xvy) \in \mathcal{P} \iff \exists w \in R_q(v), \exists \beta \in \Pi^+, \alpha \xrightarrow[\mathcal{P}]{w}^* \beta. \quad (3)$$

211 The simplification is based on the common assumption that, if the parser reads in a certain terminal
 212 sequence and enters a stable stack, then we do not need to worry about the rest of the input, and there
 213 always exists a terminal sequence produced by the lexer that can ensure the whole text is accepted.

214 For $w \in \Gamma^*$, we define $P_w(\alpha)$ for the calculation in the last step of Equation 3,

$$215 P_{w \in \Gamma^*}(\alpha \in \Pi^+) := \left\{ \beta \in \Pi^+ \mid \alpha \xrightarrow[\mathcal{P}]{w}^* \beta \right\}. \quad (4)$$

216 **How to efficiently calculate $P_w(\alpha)$ is the key difference between PSC and previous methods.**
 217 In existing work, the calculation of P_w is almost always dynamic: one has to calculate $P_w(\alpha)$
 218 for the current α and every possible $w \in R_q(\mathcal{V})$. While existing methods in Section 2.4 employ
 219 precomputation to optimize certain cases, they still fundamentally require worst-case $\mathcal{O}(|R_q(\mathcal{V})|)$
 220 time for dynamic parsing if correctness is not sacrificed.

221 In this work, PSC proposes a totally different approach, modeling P_w as a deterministic finite-state
 222 transducer (FST), which reads the stack sequence $\alpha \in \Pi^+$, and then outputs the sequence $\beta \in \Pi^+$
 223 if there is one, or rejects the input stack otherwise.
 224

225 This gives us several benefits. Because each P_w reads and outputs a sequence of stack symbols, they
 226 can be composed to create larger FSTs: $P_t \circ P_s = P_{st}$. Because the realizable terminal sequences are
 227 known during precomputation, the exact validity condition of each vocabulary is therefore known,
 228 their combinations can be precomputed, and we only need to go through the current stack once
 229 during runtime. All possible masks can also be precomputed, eliminating the mask generation
 230 overhead during decoding.
 231

232 The challenge here is whether and how each P_w can be constructed as a deterministic FST. This is
 233 not straightforward because of the presence of ε -transitions in the PDA \mathcal{P} . To address this, we first
 234 construct P_ε to handle all ε -transitions, and then construct P_w for any $w \in \Gamma^*$ based on P_ε .
 235

3.3 FST OF ε TRANSITIONS

236 In this section, we construct the FST P_ε . Its input should be a stack, and **the output is its stabilized**
 237 **version, by repeatedly executing all needed ε transitions on the stack.** The start state is ε , and
 238 the final state is a special state FINAL. The set of all states is the minimum closure of the transitions
 239 defined below, where each state represents the current known stack top. In Appendix A.3.1, we give
 240 a proof that this is a finite set, thus forming a finite-state transducer (FST).
 241

$$\begin{aligned} \forall X \in \Pi, \quad \alpha &\xrightarrow[X:\varepsilon]{P_\varepsilon} \alpha X, & \text{if } |\alpha| < 2 \text{ and } \alpha[0] \notin F_{\mathcal{P}}; \\ \alpha &\xrightarrow[\varepsilon:\alpha]{P_\varepsilon} \text{FINAL}, & \text{if } \alpha_{[1:2]} \xrightarrow[\mathcal{P}]{a} \beta, \exists a \in \Gamma \text{ or } \alpha[0] \in F_{\mathcal{P}}; \\ \alpha &\xrightarrow[\varepsilon:\varepsilon]{P_\varepsilon} \beta \alpha_{[2:]}, & \text{if } \alpha_{[1:2]} \xrightarrow[\mathcal{P}]{\varepsilon} \beta; \\ \forall X \in \Pi, \quad \text{FINAL} &\xrightarrow[X:X]{P_\varepsilon} \text{FINAL}. \end{aligned}$$

242 There are four types of transitions in P_ε . (1) If one cannot determine whether the stack is stable
 243 from the stack top α , it transits to a new state by reading the next stack symbol. (2) If the stack top α
 244 is stable, it transits to the FINAL state to output the final stable stack. (3) Otherwise, it simulates the
 245 transition of \mathcal{P} on the current stack top α , and transits to a new state representing the new stack top
 246 after executing the ε transition. (4) **In the FINAL state, it always outputs the input stack unchanged.**
 247

248 P_ε is an important building block in the construction of other P_w , $w \in \Gamma^+$. For any stack α , $P_\varepsilon(\alpha)$
 249 gives the stabilized version of α , so the FST composed after P_ε does not need to handle ε transitions,
 250 and we can compose P_ε after other FSTs to meet the stability requirement in the definition of P_w .
 251

3.4 FST FOR ANY TERMINAL SEQUENCE

252 After constructing P_ε , the construction of P_w for any terminal sequence $w \in \Gamma^+$ is fairly simple.
 253

254 We first construct an FST \tilde{P}_a for every $a \in \Gamma$ that **simulates a single transition labeled a** , i.e.
 255 outputting β for the input stack α if $\alpha \xrightarrow[\mathcal{P}]{a} \beta$. Note that the output stack is not required to be stable.
 256

257 The start state is ε , the final state is FINAL, and the transitions are defined as follows.
 258

$$\varepsilon \xrightarrow[X:\varepsilon]{\tilde{P}_a} X \xrightarrow[Y:\varepsilon]{\tilde{P}_a} XY \xrightarrow[\varepsilon:\beta]{\tilde{P}_a} \text{FINAL}, \forall XY \xrightarrow[\mathcal{P}]{a} \beta; \quad \text{FINAL} \xrightarrow[X:X]{\tilde{P}_a} \text{FINAL}, \forall X \in \Pi.$$

259 For any terminal sequence $w = w_1 \dots w_n \in \Gamma^+$, the FST P_w can be constructed as follows.
 260

$$P_w = P_\varepsilon \circ \tilde{P}_{w_1} \circ P_\varepsilon \circ \dots \circ P_\varepsilon \circ \tilde{P}_{w_n} \circ P_\varepsilon. \quad (5)$$

270 Intuitively, the input stack α , is first passed to P_ε to get a stable stack, and then passed to \tilde{P}_{w_1} to get
 271 the stack after reading w_1 , and then passed to P_ε to get the stabilized version, etc, until it is passed
 272 to \tilde{P}_{w_n} and stabilized with P_ε . [Relevant algorithms and proofs are given in Appendix A.3.2](#).
 273

274 When calculating the mask, we only care about whether $P_w(\alpha) \neq \emptyset$. Removing all the output labels
 275 from P_w gives us a finite-state automaton, hereafter named A_w .
 276

277 3.5 ONE-PASS FSA FOR MASK SELECTION

279 After constructing P_w for all realizable terminal sequences $w \in R(\mathcal{V})$, we can now consider sim-
 280 plifying the constraint calculation over the whole vocabulary \mathcal{V} . Recall Equation 1, combined with
 281 Equation 3 and A_w , we have the following equation,
 282

$$c(x \in \Sigma^*) = \{v \in \mathcal{V} \mid \exists w \in R_q(v), P_w(\alpha) \neq \emptyset\} = \{v \in \mathcal{V} \mid \exists w \in R_q(v), \alpha \in A_w\},$$

284 where q and α as defined in Section 3.2 are only dependent on x .
 285

286 In $c(x)$, we want to know whether any of the A_w accepts α , where $w \in R_q(v)$. This can be achieved
 287 by constructing the union of different A_w , i.e., $\bigcup_{w \in R_q(v)} A_w$.
 288

289 For different tokens $v \in \mathcal{V}$, we need to check whether α is accepted by $\bigcup_{w \in R_q(v)} A_w$. But to get
 290 the whole mask $c(x)$, we need to check for every $v \in \mathcal{V}$, which is inefficient. To address this issue,
 291 we can integrate the checking of v and q into the FSA. Introduce the notation B_a for an FSA that
 292 accepts only a once. For every $q \in Q$ and $v \in \mathcal{V}$, we can concatenate B_q before $\bigcup_{w \in R_q(v)} A_w$ to
 293 check whether the current state is q , and then concatenate B_v after $\bigcup_{w \in R_q(v)} A_w$ to check whether
 294 the candidate token is v .
 295

296 By unioning the results for all $v \in \mathcal{V}$ and $q \in Q$, we construct an FSA \mathcal{A} that accepts the sequence
 297 $q\alpha v$ only if v is a valid token for the lexer state q and stack α ,
 298

$$\mathcal{A} := \bigcup_{v \in \mathcal{V}} \bigcup_{q \in Q} \bigcup_{w \in R_q(v)} B_q A_w B_v, \quad c(x) = \{v \in \mathcal{V} \mid q\alpha v \in \mathcal{A}\}, \quad (6)$$

300 where \mathcal{A} should be determinized and minimized. This gives us the following theorem.
 301

302 **Theorem 1.** All (lexer state, parser stack) pairs that accept a given token form a regular language.
 303

304 In Equation 6, we can precompute all possible result of c , i.e. all possible vocabulary masks, by
 305 considering acceptable vocabulary set $\mathcal{A}_s := \{v \in \mathcal{V} \mid s \xrightarrow[\mathcal{A}]{} f^{\mathcal{A}}\}$ for every state s in \mathcal{A} where $f^{\mathcal{A}}$ is
 306 the final state of \mathcal{A} .
 307

308 We summarize the offline construction process of PSC in Algorithm 1, and the online execution
 309 process in Algorithm 2. In Algorithm 2, both the lexing step 2 and the parsing step 3 are standard
 310 in grammar-constrained decoding, and can be incrementally maintained. In Step 4, the FSA \mathcal{A} is
 311 run on the stack α and the lexer state q to get the state s , only requiring $\mathcal{O}(|\alpha|)$ time. Step 5 can be
 312 precomputed to be $\mathcal{O}(1)$ at runtime.
 313

314 **Algorithm 1** Offline construction in PSC

```

315 1: function OFFLINECONSTRUCTION( $\mathcal{T}, \mathcal{P}, \mathcal{V}$ )
316 2:    $P_\varepsilon \leftarrow \text{EPSILONFST}(\mathcal{P})$ 
317 3:   for all  $a \in \Gamma$  do
318 4:      $\tilde{P}_a \leftarrow \text{TERMINALFST}(\mathcal{P}, a)$ 
319 5:   for all  $w = w_1 \dots w_n \in R(\mathcal{V})$  do
320 6:      $P_w \leftarrow P_\varepsilon \circ \tilde{P}_{w_n} \circ P_\varepsilon \circ \dots \circ P_\varepsilon \circ \tilde{P}_{w_1} \circ P_\varepsilon$ 
321 7:      $A_w \leftarrow \text{REMOVEOUTPUT}(P_w)$ 
322 8:    $\mathcal{A} \leftarrow \bigcup_{v \in \mathcal{V}} \bigcup_{q \in Q} \bigcup_{w \in R_q(v)} B_q A_w B_v$ 
323 9:    $\mathcal{A} \leftarrow \text{MINIMIZE}(\mathcal{A})$ 
324 10:  return  $\mathcal{A}$ 

```

314 **Algorithm 2** Online execution of PSC

```

315 1: function ONLINEEXECUTION( $\mathcal{T}, \mathcal{P}, \mathcal{A}, x$ )
316 2:    $q_0^{\mathcal{T}} \xrightarrow[\mathcal{T}]{x:z}^* q$ 
317 3:    $\gamma_0 \xrightarrow[\mathcal{P}]{z}^* \alpha$ 
318 4:    $q_0^{\mathcal{A}} \xrightarrow[\mathcal{A}]{q\alpha}^* s$ 
319 5:   return  $\mathcal{A}_s$ 

```

324

4 EXPERIMENTS

325

4.1 EXPERIMENTAL SETUP

326 All grammar-constrained decoding methods essentially perform the same task: compute the valid
 327 token mask at each decoding step. **The valid token mask is theoretically the same for all methods, so we focus on comparing the efficiency of mask computation in our experiments.** The
 328 usefulness of grammar-constrained decoding is shown in previous work (Geng et al., b; Scholak
 329 et al.; Poesia et al.; Ugare et al.); **nevertheless, we replicate the downstream task performance of**
 330 **PSC (which is the same as other GCD methods) in Appendix A.6.**

331 We conduct two sets of experiments to evaluate each method:

- 332 • **Overhead of mask computation (without model inference).**
- 333 • **End-to-end throughput (with model inference).**

334 In all experiments, we use **teacher-forcing** during evaluation, i.e., we always use the oracle next
 335 token at each decoding step, **to ensure that all methods are evaluated under the same conditions**
 336 **and can be fairly compared.**

337 **Datasets** There is no standard benchmark for evaluating grammar-constrained decoding methods.
 338 We choose two representative tasks that require grammar-constrained decoding: code generation in
 339 Java, Go, and SQL, and JSON generation with specified JSON schemas. For each task, we construct
 340 the evaluation dataset as described in Appendix A.4, with 1000 samples for each programming
 341 language and 1000 schemas for schema-conformant JSON generation. There are a total of 1337
 342 positive samples and 2072 negative samples in the JSON dataset, and each schema has at least one
 343 positive sample and one negative sample.

344 **Baselines** We consider several recent state-of-the-art grammar-constrained decoding methods with
 345 open-source implementations as baselines, including XGrammar (Dong et al.), GreatGramma (Park
 346 et al.), Formatron (Sun et al.), and LLGuidance (Moskal et al.). Detailed descriptions of these
 347 baselines are included in Appendix A.5.

348 **Implementation** We implement PSC in roughly 1100 lines of Python. Similar to previous
 349 work (Ugare et al.; Park et al.), we use the Lark parser(lar) to construct the lexer and the LALR(1)
 350 parser from the grammar. As described in Section 3.1, we reuse the lexer construction in Great-
 351 Gramma (Park et al.), since this is not our focus in this paper.

352 **Execution environment** We conduct our experiments on a machine with 8 NVIDIA A100 GPUs
 353 (40 GB Memory), 2 Intel Xeon Gold 6348 CPUs (2.6GHz, 56 cores), and 512 GB RAM. To ensure
 354 fairness, we run all the experiments with a single GPU and a single CPU thread.

355

4.2 OVERHEAD OF MASK COMPUTATION

356 **Metrics** In this experiment, we measure the overhead of mask computation for each GCD method.
 357 We ignore the time taken to transfer the mask to the GPU and apply it to the logits, because this is
 358 the same for all methods². For each method, we measure:

- 359 • **Average overhead:** The time of computing the CPU mask tensor at each decoding step.
- 360 • **Sample pass rate:** The proportion of samples that are correctly processed by each method³.

361 **Models** We evaluate the overhead on three open-source LLM series with different vocabulary
 362 sizes: Llama 3 (Grattafiori et al.) (128k vocabulary size), Qwen 2.5 (Bai et al.) (151k vocabulary
 363 size), and Gemma 3 (Gemma Team et al.) (262k vocabulary size). We only use the tokenizers,
 364 because the overhead of mask computation is independent of other model components.

365 ²In PSC, one can preload all the mask tensors on the GPU memory before decoding begins, eliminating the
 366 transfer overhead. However, the transfer overhead is usually too small to justify the extra GPU memory usage.

367 ³If the oracle token is masked, the sample is counted as rejected by the method. A positive sample is counted
 368 as passed if it is not rejected, and a negative sample is counted as passed if it is rejected.

378
 379 Table 1: Average overhead (microseconds) of computing the mask per token in GCD tasks using
 380 different methods. The symbol **X** indicates the parser reports an error during mask calculation. Text
 381 in **bold** indicates the best performance, and text in underline indicates the second best performance.

382	383	Model	Method	Grammar				
				384	Java	385 Go	386 SQL	387 JSON
388	389	390	391 Llama 3 $ \mathcal{V} = 128256$	XGrammar	309514.2	281500.9	324663.6	26257.6
				Formatron	393540.4	X^a	303974.1	X^a
				GreatGramma	21402.8	<u>27220.9</u>	20954.5	8556.2
				LLGuidance	<u>1352.4</u>	X^b	<u>826.1</u>	<u>72.7</u>
				PSC (Ours)	2.4	2.5	2.6	2.3
392	393	394	395 Qwen2.5 $ \mathcal{V} = 151665$	XGrammar	302421.9	278333.4	299968.6	29470.0
				Formatron	378921.0	X^a	253311.9	X^a
				GreatGramma	24570.9	<u>27649.8</u>	24053.9	11038.4
				LLGuidance	<u>1408.2</u>	X^b	<u>865.2</u>	<u>72.1</u>
				PSC (Ours)	2.4	2.5	2.5	2.2
396	397	398	399 Gemma 3 $ \mathcal{V} = 262145$	XGrammar	649321.1	458952.0	416625.0	54164.4
				Formatron	696144.6	X^a	444810.0	X^a
				GreatGramma	43218.6	<u>48354.0</u>	40026.9	25717.3
				LLGuidance	<u>1802.6</u>	X^b	<u>1180.8</u>	<u>72.1</u>
				PSC (Ours)	2.3	2.5	2.4	2.3

^a Formatron stops responding on multiple samples, so we terminate the process.

^b LLGuidance reports `ParserTooComplex` error.

402
 403 **Overhead results** The average overhead is shown in Table 1. PSC significantly outperforms all the
 404 baselines across all grammars and models, being 310 to 700 times faster on complex programming
 405 language grammars compared to the best baseline, LLGuidance, and generally 30 times faster on
 406 the relatively simple JSON schema grammar.

407 The overhead of baselines is significantly larger on Gemma 3 than that on the other models⁴, because
 408 Gemma 3 has a much larger vocabulary size (262k) than the other two models (128k and 151k), and
 409 the time complexity of all methods except PSC is roughly linear to the vocabulary size. In contrast,
 410 the performance of PSC is stable across different grammars and models, because its time complexity
 411 is independent of the vocabulary size.

412
 413 **Sample pass rate results** The sample pass rates are shown in Table 2. PSC achieves a high pass
 414 rate across all grammars and models, very close to 100%. After analyzing the error cases, we find
 415 that they are all directly rejected by the GreatGramma lexer we adopt, but **no error is caused by PSC**
 416 **itself**. We notice the strangely low sample pass rate of Formatron on SQL, and find that Formatron
 417 refuses to accept the column alias in the query, resulting in frequent rejections.

4.3 END-TO-END THROUGHPUT

418
 419 **Settings** In this experiment, we run the actual model inference using the vLLM library (Kwon
 420 et al.), and measure the throughput, i.e., the number of tokens processed per second, of the entire
 421 decoding process, considering both the time taken by mask computation and model inference. We
 422 only consider the accepted samples of each method. We compare PSC with the fastest baseline
 423 LLGuidance in the previous section, and also include the throughput when not using any constraint
 424 decoding method as a reference, under various batch sizes of 1, 2, 4, ..., 256.

425
 426 **Models** We use the smallest models in the three model series to highlight the overhead of con-
 427 straint decoding. On these models, the model inference time is relatively small, making the over-
 428

429
 430 ⁴The performance of LLGuidance on JSON Schemas is roughly the same across different models, probably
 431 because the grammar is simple enough that the vocabulary size does not significantly affect the performance.

432
 433 Table 2: How many samples are correctly processed by each method. The symbol **X** indicates the
 434 parser reports an error during mask calculation. Text in **bold** indicates the best performance, and
 435 text in underline indicates the second best performance.

436	437	Model	Method	Grammar			
				Java	Go	SQL	JSON Schemas
438	439	440	XGrammar	99.7%	100.0%	99.7%	100.0%
			Formatron	99.4%	X	67.0%	X
			GreatGramma	100.0%	<u>99.9%</u>	97.1%	99.6%
			LLGuidance	100.0%	X	99.9%	<u>99.9%</u>
			PSC (Ours)	100.0%	<u>99.9%</u>	99.9%	99.6%
441	442	443	XGrammar	99.7%	100.0%	99.7%	100.0%
			Formatron	99.4%	X	67.0%	X
			GreatGramma	100.0%	<u>99.9%</u>	97.2%	99.6%
			LLGuidance	100.0%	X	99.9%	<u>99.9%</u>
			PSC (Ours)	100.0%	99.9%	99.9%	99.6%
444	445	446	XGrammar	99.7%	100.0%	99.7%	100.0%
			Formatron	99.4%	X	67.0%	X
			GreatGramma	100.0%	<u>99.9%</u>	97.2%	99.6%
			LLGuidance	100.0%	X	99.9%	<u>99.9%</u>
			PSC (Ours)	100.0%	99.9%	99.9%	99.6%
447	448	449	XGrammar	99.7%	100.0%	99.7%	100.0%
			Formatron	100.0%	X	67.3%	X
			GreatGramma	100.0%	<u>99.9%</u>	97.2%	99.6%
			LLGuidance	94.0%	X	99.9%	<u>99.9%</u>
			PSC (Ours)	100.0%	<u>99.9%</u>	99.9%	99.6%

453
 454 head of constraint decoding more pronounced. Specifically, we use Llama 3 1B, Qwen 2.5 0.5B,
 455 and Gemma 3 270M. We also include Qwen 2.5 7B to see the effect of model size on throughput.

455
 456 Figure 2: End-to-end throughput (tokens per second) on the **Java** dataset using different methods on
 457 different models with various batch sizes.

477
 478 Figure 3: End-to-end throughput (tokens per second) on the **schema-conformant JSON** dataset
 479 using different methods on different models with various batch sizes.

480
 481 **Results** The end-to-end throughput results on Java and schema-conformant JSON datasets are
 482 present in Figures 2 and 3, respectively. The results on the Go and SQL datasets are similar to those
 483 on the Java dataset, included in Appendix A.7.

484 On all datasets, PSC consistently outperforms LLGuidance across all models and batch sizes, and
 485 is very close to the performance of unconstrained decoding. The difference is more pronounced on
 486 the Java dataset, where the grammar is more complex, leading to higher overhead for LLGuidance.

486
487
488 Table 3: Preprocessing overhead of PSC on different grammars.
489
490
491
492
493
494
495
496
497
498
499

Metrics	Model	Grammar			
		Java	Go	SQL	JSON Schemas
Time (seconds)	Llama 3	466.9	1171.7	4662.7	28.3
	Qwen2.5	464.5	1166.8	4770.0	28.6
	Gemma 3	472.1	1362.2	1367.4	53.2
Memory (GiB)	Llama 3	40.8	87.7	255.3	3.04
	Qwen2.5	40.4	86.6	254.2	3.13
	Gemma 3	36.0	88.8	188.7	5.95
Disk Space (MiB)	Llama 3	13.27	28.16	58.95	0.54
	Qwen2.5	12.70	28.37	57.60	0.51
	Gemma 3	13.13	33.52	24.04	0.76

500
501 As the model size increases, the difference in throughput becomes smaller, because the model
502 inference time becomes more dominant. However, since smaller models are less capable, grammar-
503 constrained decoding is probably more useful for smaller models to ensure the syntactic correctness.
504

505 As the batch size increases, the difference in throughput becomes larger, because the average model
506 inference time per token decreases with larger batch sizes, indicating that the overhead introduced
507 by constraint decoding becomes more pronounced at larger batch sizes.

5 DISCUSSION

511 In this section, we discuss the preprocessing overhead of PSC, including the time, memory footprint
512 of preprocessing, and the disk usage of preprocessing results. We compress the preprocessing results
513 to disk with zstandard (Collet & Kucherawy, 2021) to avoid redundant preprocessing.

514 The preprocessing overhead is presented in Table 3. For JSON schemas, the average preprocessing
515 time is around half to one minute per schema, and the memory footprint is around 3 GiB for Llama 3
516 and Qwen2.5, and around 6 GiB for Gemma 3. The disk usage is around half to one megabyte after
517 compression. This is quite practically reasonable, allowing for quick adaptation to new schemas.

518 For the programming language grammars, the preprocessing time ranges from around 8 minutes for
519 Java to around 1.3 hours for SQL. The memory footprint ranges from around 40 GiB for Java to
520 around 250 GiB for SQL. The disk usage is generally tens of megabytes after compression.

522 While the preprocessing overhead for programming language grammars is higher than that for JSON
523 schemas, it is still acceptable as it only needs *once* per grammar and vocabulary pair, and the
524 grammars of programming languages are typically stable. The preprocessing results can be redistributed,
525 so users can be free from the preprocessing overhead. The memory footprint, although high, is still
526 feasible on modern machines with large memory capacity, and it can be done on cloud instances if
527 needed. Also, the memory usage can potentially be reduced by implementation optimization. See
528 Appendix A.8 for more discussion on the balance between preprocessing and runtime overhead.

529 Overall, the preprocessing overhead is generally manageable for practical applications.

6 CONCLUSION

533 In this paper, we present PSC, a novel approach for grammar-constrained decoding. By construct-
534 ing the exact requirements on the parser stack for each vocabulary token, PSC can determine the
535 valid tokens at each decoding step by a single pass through the parser stack. Our experimental
536 results demonstrate that PSC achieves significant speedup over existing methods, and the end-to-end
537 throughput of PSC approaches that of unconstrained decoding. This makes PSC a practical choice
538 for real-world applications that require grammar-constrained decoding. In future, we plan to ex-
539 plore other types of grammars and constraints that can be efficiently handled by PSC, as well as
other optimizations to further improve its efficiency and scalability.

540 7 REPRODUCIBILITY STATEMENT
541

542 We open-source the code to facilitate reproducibility of our results at <https://anonymous.4open.science/r/PSC-E43E>. It includes the implementation of PSC, the datasets used in
543 the experiments, the scripts to run the experiments and generate the results in the paper, **and the**
544 **preprocessing results built from the grammars used in our experiments**. The proofs of statements
545 in the main text are included as Appendix A.3. The details in dataset construction are included as
546 Appendix A.4.

547 REFERENCES
548

549 Lark - a parsing toolkit for Python. URL <https://github.com/lark-parser/lark>.
550

551 MaskBench. URL <https://github.com/guidance-ai/jsonschemabench/tree/main/maskbench>.
552

553 Alfred V. Aho and Jeffrey D. Ullman. *The Theory of Parsing, Translation, and Compiling*. Prentice-
554 Hall, Inc. ISBN 978-0-13-914556-8.
555

556 Anysphere Inc. Cursor - The AI Code Editor. URL <https://cursor.com/en>.
557

558 Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan,
559 Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Sujan Kumar Gonugondla, Hantian
560 Ding, Varun Kumar, Nathan Fulton, Arash Farahani, Siddhartha Jain, Robert Giaquinto, Haifeng
561 Qian, Murali Krishna Ramanathan, Ramesh Nallapati, Baishakhi Ray, Parminder Bhatia, Sudipta
562 Sengupta, Dan Roth, and Bing Xiang. Multi-lingual Evaluation of Code Generation Models. URL
563 <http://arxiv.org/abs/2210.14868>.
564

565 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
566 Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
567 Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
568 Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
569 Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
570 Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
571 Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen Technical Report. URL <http://arxiv.org/abs/2309.16609>.
572

573 Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Guiding LLMs the right way: Fast, non-
574 invasive constrained generation. In *Proceedings of the 41st International Conference on Machine*
575 *Learning*, ICML'24. JMLR.org.
576

577 Janusz A. Brzozowski. Derivatives of regular expressions. *J. ACM*, 11(4):481–494, October
578 1964. ISSN 0004-5411. doi: 10.1145/321239.321249. URL <https://doi.org/10.1145/321239.321249>.
579

580 Didier Caucal and Roland Monfort. On the transition graphs of automata and grammars. In Rolf H.
581 Möhring (ed.), *Graph-Theoretic Concepts in Computer Science*, pp. 311–337. Springer. ISBN
582 978-3-540-46310-8. doi: 10.1007/3-540-53832-1_51.
583

584 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
585 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
586 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
587 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
588 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
589 Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
590 Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
591 Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
592 Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
593 McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
Large Language Models Trained on Code. URL <http://arxiv.org/abs/2107.03374>.

594 Yann Collet and Murray Kucherawy. Zstandard Compression and the 'application/zstd' Media Type.
 595 RFC 8878, February 2021. URL <https://www.rfc-editor.org/info/rfc8878>.
 596

597 Yixin Dong, Charlie F. Ruan, Yaxing Cai, Ziyi Xu, Yilong Zhao, Ruihang Lai, and Tianqi Chen.
 598 XGrammar: Flexible and efficient structured generation engine for large language models. In
 599 *Eighth Conference on Machine Learning and Systems*. URL <https://openreview.net/forum?id=rjQfx0YgD1>.
 600

601 Jay Earley. An efficient context-free parsing algorithm. doi: 10.1145/362007.362035. URL
 602 <https://dl.acm.org/doi/10.1145/362007.362035>.
 603

604 Philip Gage. A new algorithm for data compression. 12(2):23–38. ISSN 0898-9788.
 605

606 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 607 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
 608 Mesnard, Geoffrey Cideron, Jean-bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Cas-
 609 bon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiao-
 610 hai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman,
 611 Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-
 612 Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi, Dan
 613 Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe Friesen,
 614 Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa Saade,
 615 Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András György,
 616 André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia Paterson,
 617 Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini, Charlie
 618 Chen, Charline Le Lan, Christopher A. Choquette-Choo, C. J. Carey, Cormac Brick, Daniel
 619 Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivaku-
 620 mar Sreepathihihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eu-
 621 gene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna
 622 Klimczak-Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian
 623 Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wi-
 624 eting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju-yeong Ji, Jyotinder Singh,
 625 Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine,
 626 Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael
 627 Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Ni-
 628 lay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Ruben-
 629 stein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya
 630 Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu,
 631 Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti
 632 Sheth, Siim Pöder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi
 633 Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry,
 634 Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein
 635 Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat
 636 Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas
 637 Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Bar-
 638 rral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam
 639 Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
 640 Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry Lepikhin, Sebastian Borgeaud, Olivier
 641 Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot.
 642 Gemma 3 Technical Report. URL <http://arxiv.org/abs/2503.19786>.
 643

644 Saibo Geng, Hudson Cooper, Michał Moskal, Samuel Jenkins, Julian Berman, Nathan Ranchin,
 645 Robert West, Eric Horvitz, and Harsha Nori. JSONSchemaBench: A Rigorous Benchmark of
 646 Structured Outputs for Language Models, a. URL <http://arxiv.org/abs/2501.10868>.
 647

648 Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. Grammar-Constrained Decoding
 649 for Structured NLP Tasks without Finetuning. In Houda Bouamor, Juan Pino, and Kalika Bali
 650 (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Process-
 651 ing*, pp. 10932–10952. Association for Computational Linguistics, b. doi: 10.18653/v1/2023.
 652 emnlp-main.674. URL <https://aclanthology.org/2023.emnlp-main.674/>.
 653

648 GitHub. GitHub Copilot · Your AI pair programmer. URL [https://github.com/](https://github.com/features/copilot)
 649 features/copilot.
 650

651 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ah-
 652 mad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, An-
 653 gela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravanku-
 654 mar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen
 655 Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte
 656 Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe
 657 Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allon-
 658 sius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choud-
 659 hary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin,
 660 Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Fran-
 661 cisco Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind
 662 Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
 663 Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
 664 Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason
 665 Park, Jay Mahadeokar, Jeet Shah, prefix=van der useprefix=false family=Linde, given=Jelmer,
 666 Jennifer Billok, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu,
 667 Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun,
 668 Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plaw-
 669 iak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuen-
 670 ley Chiu, Kunal Bhalla, Kushal Lakhota, Lauren Rantala-Yeary, prefix=van der useprefix=false
 671 family=Maaten, given=Laurens, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish
 672 Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, prefix=de useprefix=false family=Oliveira,
 673 given=Luke, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kar-
 674 das, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur,
 675 Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay
 676 Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi,
 677 Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava,
 678 Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ra-
 679 gavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
 680 Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
 681 Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa-
 682 hana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang
 683 Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang,
 684 Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin
 685 Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Geor-
 686 giou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj
 687 Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do,
 688 Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney
 689 Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng
 690 Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yi-
 691 wen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengx-
 692 ing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam
 693 Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex
 694 Boesenber, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam
 695 Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poul-
 696 ton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita
 697 Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
 698 Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
 699 Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
 700 don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
 701 Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu,
 Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel
 Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
 Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa
 Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik
 Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Fil-

702 ippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leon-tiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaoqian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The Llama 3 Herd of Models. URL <http://arxiv.org/abs/2407.21783>.

739 John E. Hopcroft and Jeffrey D. Ullman. *Introduction to Automata Theory, Languages, and Com-
740 putation*. Addison-Wesley Series in Computer Science and Information Processing. Addison-
741 Wesley. ISBN 978-0-201-02988-8.

742 Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Yacine Jernite, Margaret
743 Mitchell, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro Von
744 Werra, and prefix=de useprefix=false family=Vries, given=Harm. The Stack: 3 TB of permis-
745 sively licensed source code. ISSN 2835-8856. URL <https://openreview.net/forum?id=pxpbTdUEpD>.

747 Terry Koo, Frederick Liu, and Luheng He. Automata-based constraints for language model de-
748 coding. In *First Conference on Language Modeling*. URL [https://openreview.net/](https://openreview.net/forum?id=BDBdblmyzY)
749 forum?id=BDBdblmyzY.

751 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
752 Gonzalez, Hao Zhang, and Ion Stoica. Efficient Memory Management for Large Language Model
753 Serving with PagedAttention. In *Proceedings of the 29th Symposium on Operating Systems
754 Principles, SOSP '23*, pp. 611–626. Association for Computing Machinery. ISBN 979-8-4007-
0229-7. doi: 10.1145/3600006.3613165. URL <https://dl.acm.org/doi/10.1145/3600006.3613165>.

756 Michael Xieyang Liu, Frederick Liu, Alexander J Fiannaca, Terry Koo, Lucas Dixon, Michael Terry,
 757 and Carrie J Cai. "we need structured output": Towards user-centered constraints on large lan-
 758 guage model output. In *Extended Abstracts of the CHI Conference on Human Factors in Com-*
 759 *puting Systems*, pp. 1–9, 2024.

760 Michał Moskal, Harsha Nori, Hudson Cooper, and Loc Huynh. LLGuidance: Making Struc-
 761 tured Outputs Go Brrr. URL <https://guidance-ai.github.io/llguidance/llg-go-brrr>.

762

763 NousResearch. Json-mode-eval. URL <https://huggingface.co/datasets/NousResearch/json-mode-eval>.

764

765 OpenAI. Structured model outputs - openai api. URL <https://platform.openai.com>.

766

767 Kanghee Park, Timothy Zhou, and Loris D’Antoni. Flexible and efficient grammar-constrained
 768 decoding. In *Forty-Second International Conference on Machine Learning*. URL <https://openreview.net/forum?id=L6CYAzp01k>.

769

770 Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and Sumit
 771 Gulwani. Synchromesh: Reliable Code Generation from Pre-trained Language Models. URL
 772 <https://openreview.net/forum?id=KmtVD97J43e>.

773

774 Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 775 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 776 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 777 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 778 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 779 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 Technical Report. URL
 780 <http://arxiv.org/abs/2412.15115>.

781

782 Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. PICARD: Parsing Incrementally for
 783 Constrained Auto-Regressive Decoding from Language Models. In Marie-Francine Moens, Xu-
 784 anjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on*
785 Empirical Methods in Natural Language Processing, pp. 9895–9901. Association for Computa-
 786 tional Linguistics. doi: 10.18653/v1/2021.emnlp-main.779. URL <https://aclanthology.org/2021.emnlp-main.779>.

787

788 Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine Translation of Rare Words
 789 with Subword Units. In Katrin Erk and Noah A. Smith (eds.), *Proceedings of the 54th Annual*
790 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1715–
 791 1725. Association for Computational Linguistics. doi: 10.18653/v1/P16-1162. URL <https://aclanthology.org/P16-1162>.

792

793 Michael Sipser. *Introduction to the Theory of Computation*. Cengage Learning, third edition, inter-
 794 national edition edition. ISBN 978-1-133-18779-0 978-1-133-18781-3 978-0-357-67058-3.

795

796 Xintong Sun, Chi Wei, Minghao Tian, and Shiwen Ni. Earley-driven dynamic pruning for efficient
 797 structured decoding. In *Forty-Second International Conference on Machine Learning*. URL
 798 <https://openreview.net/forum?id=6hDNXCdTsE>.

799

800 Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. Syn-
 801 Code: LLM generation with grammar augmentation. ISSN 2835-8856. URL <https://openreview.net/forum?id=HiUZtgAPoH>.

802

803 vLLM Team. Structured Outputs - vLLM. URL https://docs.vllm.ai/en/stable/features/structured_outputs.html.

804

805 Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
 806 Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
 807 human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task.
 808 In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings of*
 809 *the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 3911–3921,
 Brussels, Belgium, October–November 2018. Association for Computational Linguistics. doi:
 10.18653/v1/D18-1425. URL <https://aclanthology.org/D18-1425>.

810 Ruiqi Zhong, Tao Yu, and Dan Klein. Semantic evaluation for text-to-SQL with distilled test suites.
811 In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Con-*
812 *ference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 396–411, Online,
813 November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.
814 29. URL <https://aclanthology.org/2020.emnlp-main.29/>.

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **A APPENDIX**865 **A.1 LLM USAGE**

866 We used DeepSeek and GitHub Copilot for code assistance, paper writing, and proofreading. How-
 867 ever, all the technical content, ideas, algorithms, and experimental results in this paper are our own
 868 work. We carefully reviewed and verified all the content generated by LLMs to ensure they are
 869 accurate and directly reflect our own ideas.

870 **A.2 FORMAL DEFINITIONS AND NOTATIONS**871 **Table 4: Symbols and their meaning.**

872 Symbol	873 Meaning
874 ε	875 empty string
876 ab	877 concatenation of strings a and b
878 AB	879 concatenation of languages A and B
880 A_ε	881 $A \cup \{\varepsilon\}$
882 A^*	883 Kleene star of language A
884 A^+	885 $A^* \setminus \{\varepsilon\}$
886 Σ	887 the character set (usually the Unicode) used by the language model
888 Γ	889 the terminal set of the grammar
889 \mathcal{V}	890 the vocabulary of the language model, a finite subset of Σ^+ such that every string over Σ can be tokenized as a string over \mathcal{V}
890 \mathcal{T}	891 the lexing FST, transduces string over Σ to terminal sequence over Γ
891 Q	892 the finite set of states of the lexing FST
892 \mathcal{P}	893 the parsing PDA, accepts terminal sequences in the language
893 Π	894 the stack alphabet of the PDA

895 We include a list of symbols and their meanings in Table 4 for reference.

896 **A.2.1 FINITE-STATE TRANSDUCER (FST)**

900 A *finite-state transducer* (FST) (Aho & Ullman) \mathcal{T} is defined by a finite set of states Q , the input
 901 alphabet Σ , the output alphabet Γ , the start state $q_0 \in Q$, the final states $F \subseteq Q$, and transitions
 902 $\delta : Q \times \Sigma_\varepsilon \rightarrow 2^{\Gamma^* \times Q}$. If $\delta(q, a) \ni (y, q')$, we write $q \xrightarrow[\mathcal{T}]{a:y} q'$. We write \rightarrow^* for consecutive
 903 transitions. For $q \in Q$, we write $q \xrightarrow[\mathcal{T}]{\varepsilon:\varepsilon}^* q$. For $q \xrightarrow[\mathcal{T}]{s:x}^* q'$ and $q' \xrightarrow[\mathcal{T}]{t:y} q''$, we write $q \xrightarrow[\mathcal{T}]{s:t:xy}^* q''$.

904 Informally, an FST is *deterministic*, if from any state, for any given string, there is exactly one
 905 possible outcome. \mathcal{T} is *deterministic* if, for all $q \in Q$, either $|\delta(q, a)| \leq 1, \forall a \in \Sigma$ and $\delta(q, \varepsilon) = \emptyset$,
 906 or $\delta(q, a) = \emptyset, \forall a \in \Sigma$ and $\delta(q, \varepsilon) = 1$.

907 For $w \in \Sigma^*, q \in Q$, we define $\mathcal{T}_q(w)$ as $\{v \in \Gamma^* \mid \exists q' \in F, q \xrightarrow[\mathcal{T}]{w:v}^* q'\}$, meaning the possible
 908 outcomes when we feed w into \mathcal{T} starting from the state q . When \mathcal{T} is deterministic and $v \in \mathcal{T}(w)$,
 909 we also write $\mathcal{T}(w) = v$. For $W \subseteq \Sigma^*$, we define $\mathcal{T}_q(W)$ as $\bigcup_{w \in W} \mathcal{T}_q(w)$. q defaults to q_0 when
 910 omitted.

911 We call a state $q \in Q$ *stable* if the FST does not need to take any immediate action on q , i.e.
 912 $\delta(q, \varepsilon) = \emptyset$. If $q \xrightarrow[\mathcal{T}]{s:t}^* q'$ and q' is stable, we also write $q \xrightarrow[\mathcal{T}]{s:t}^* q'$.

913 Given two FSTs \mathcal{S} and \mathcal{T} where the output alphabet of \mathcal{S} is the input alphabet \mathcal{T} , $\Gamma^{\mathcal{S}} = \Sigma^{\mathcal{T}}$, their
 914 *composition* is a new FST $\mathcal{S} \circ \mathcal{T}$ by feeding the output of \mathcal{S} into the input of \mathcal{T} .

918 A.2.2 FINITE-STATE AUTOMATON (FSA)
919920
921 A *finite-state automaton* (FSA) \mathcal{A} can be defined by removing all output labels from an FST. We
922 say \mathcal{A} *accepts* $w \in \Sigma^*$ from state q if $\mathcal{A}_q(w) \neq \emptyset$, and write $w \in \mathcal{A}_q$, and q defaults to q_0 when
923 omitted. Two FSAs are *equivalent* if they accept the same language.924 \mathcal{A} is *deterministic* if there is no ε transition in δ . Every nondeterministic FSA can be *determinized*
925 into an equivalent deterministic FSA (Hopcroft & Ullman), and every deterministic FSA can be
926 *minimized* into an equivalent deterministic FSA with the smallest number of states (Hopcroft &
927 Ullman).928 The *union* of two FSAs \mathcal{A} and \mathcal{B} is a new FSA $\mathcal{A} \cup \mathcal{B}$ that accepts any sequence that is accepted by
929 either \mathcal{A} or \mathcal{B} .930 The *concatenation* of two FSAs \mathcal{A} and \mathcal{B} is a new FSA $\mathcal{A}\mathcal{B}$ that accepts any sequence that can be
931 split into two parts $x = yz$, where \mathcal{A} accepts the first part y and \mathcal{B} accepts the second part z .
932933
934 A.2.3 PUSH-DOWN AUTOMATON (PDA)
935936
937 A *push-down automaton* (PDA) (Aho & Ullman; Hopcroft & Ullman; Caucal & Monfort) \mathcal{P} is
938 defined by the input alphabet Γ , the stack alphabet Π , the initial stack $\gamma_0 \in \Pi^2$, the final states
939 $F \subseteq \Pi$, and a finite set of transitions $\delta : \Pi^2 \times \Gamma_\varepsilon \rightarrow 2^{\Pi^+}$. Note that the definition here merges the
940 states and the stack symbols in the traditional definition of PDA, but they are equivalent if we treat
941 the stack top symbol as the state. If $\delta(\alpha, a) \ni \beta$, we write $\alpha \xrightarrow[\mathcal{P}]{a} \beta$. If $\alpha \xrightarrow[\mathcal{P}]{a} \beta$, for any $\gamma \in \Pi^*$, we
942 also write $\alpha\gamma \xrightarrow[\mathcal{P}]{a} \beta\gamma$. We write \rightarrow^* for consecutive transitions. For $\gamma \in \Pi^+$, we write $\gamma \xrightarrow[\mathcal{P}]{\varepsilon}^* \gamma$. If
943 $\alpha \xrightarrow[\mathcal{P}]{a} \beta$, $\beta \xrightarrow[\mathcal{P}]{w}^* \gamma$, we write $\alpha \xrightarrow[\mathcal{P}]{aw}^* \gamma$.
944945 Informally, a PDA is *deterministic*, if from any stack, for any given string, there is exactly one
946 possible outcome. \mathcal{P} is *deterministic* if, for any $\alpha \in \Pi^2$, either $|\delta(\alpha, a)| \leq 1$, $\forall a \in \Gamma$ and $\delta(\alpha, \varepsilon) =$
947 \emptyset , or $\delta(\alpha, a) = \emptyset, \forall a \in \Gamma$ and $|\delta(\alpha, \varepsilon)| = 1$.
948949 A deterministic PDA is *terminating*, if for any stack, it does not make an endless sequence of ε -
950 input transitions.⁵ Every deterministic PDA can be transformed into another equivalent deterministic
951 terminating PDA (Sipser; Hopcroft & Ullman).
952953 We call a state $\beta = \beta_1 \dots \beta_n \in \Pi^+$ *stable* if β_1 is a final state, i.e. $\beta_1 \in F$, or the PDA is waiting
954 to read one more symbol, i.e. $\exists a \in \Gamma, \delta(\beta_1\beta_2, a) \neq \emptyset$. If $\alpha \xrightarrow[\mathcal{P}]{w}^* \beta$ and β is stable, we also write
955 $\alpha \xrightarrow[\mathcal{P}]{w}^* \beta$. In practice, parser in a stable state is ready to consume the next input symbol, or has
956 reached an accepting stack.
957958 For $\alpha \in \Pi^+$, we define \mathcal{P}_α as $\left\{ w \in \Gamma^* \mid \exists X \in F, \exists \gamma \in \Pi^*, \alpha \xrightarrow[\mathcal{P}]{w}^* X\gamma \right\}$. α defaults to γ_0 when
959 omitted.
960961
962 A.3 ALGORITHMS AND PROOFS
963964 In this section, we provide the exact algorithms of FST construction and proofs of their correctness.
965966
967 ⁵The definition is slightly different in the cited references; nevertheless, their proof works on this definition.
968
969
970
971

972 A.3.1 FST OF ε TRANSITIONS
973974 **Algorithm 3** Construct FST P_ε
975

```

976 1: function EPSILONFST( $\mathcal{P}$ )
977 2:   for all  $X \in \Pi$  do
978 3:     FINAL  $\xrightarrow[X:X]{P_\varepsilon}$  FINAL
979 4:    $Q \leftarrow \{\varepsilon\}$ 
980 5:   while let  $\alpha \in \Pi^*, Q \leftarrow \text{POP}(Q)$  do
981 6:     if  $\alpha \in F_\mathcal{P}\Pi^*$  then
982 7:        $\alpha \xrightarrow[\mathcal{P}_\varepsilon]{\varepsilon:\alpha}$  FINAL
983 8:     else if  $|\alpha| < 2$  then
984 9:       for all  $X \in \Pi$  do
985 10:       $\alpha \xrightarrow[X:\varepsilon]{P_\varepsilon} \alpha X$ 
986 11:       $Q \leftarrow Q \cup \{\alpha X\}$ 
987 12:    else
988 13:      let  $\alpha_0\gamma = \alpha$ ,
989 14:      where  $\alpha_0 \in \Pi^2, \gamma \in \Pi^*$ 
990 15:      if  $\alpha_0 \xrightarrow[\mathcal{P}]{\varepsilon} \beta$  then
991 16:         $\alpha_0\gamma \xrightarrow[\mathcal{P}_\varepsilon]{\varepsilon:\varepsilon} \beta\gamma$ 
992 17:         $Q \leftarrow Q \cup \{\beta\gamma\}$ 
993 18:      else if  $\alpha_0 \xrightarrow[\mathcal{P}]{a} \beta$  then
994 19:         $\alpha \xrightarrow[\mathcal{P}_\varepsilon]{\varepsilon:\alpha}$  FINAL
995
996
997
998 return  $P_\varepsilon$ 
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

```

The algorithm for constructing the transitions of P_ε is presented in Algorithm 3. We have the following theorem regarding the correctness of Algorithm 3.

Theorem 2. *Algorithm 3 constructs a finite-state transducer P_ε as defined in Equation 4.*

Proof. First we show that the states of P_ε are finite, i.e. Algorithm 3 terminates. Consider the two steps in Algorithm 3 that add new states. Step 11 can only adds states in $\Pi \cup \Pi^2$, so step 11 is only executed a finite number of times. As for Step 16, because the parser \mathcal{P} is deterministic and terminating, by definition in Appendix A.2.3, for any stack configuration, there will not be an endless sequence of ε transitions, so Step 16 is also only executed a finite number of times.

The correctness of Algorithm 3 can be naturally deduced by its construction, because it simply simulates the behavior of the parser \mathcal{P} with the current stack top, and only outputs the stack when it is stable. \square

A.3.2 FST OF ANY TERMINAL SEQUENCE

1015 **Algorithm 4** Construct FST \tilde{P}_a for terminal $a \in \Gamma$
1016

```

1017 1: function TERMINALFST( $\mathcal{P}, a$ )
1018 2:   for all  $X \in \Pi$  do
1019 3:     FINAL  $\xrightarrow[X:X]{\tilde{P}_a}$  FINAL
1020 4:   for all  $XY \xrightarrow[\mathcal{P}]{a} \beta$  do
1021 5:      $\varepsilon \xrightarrow[\tilde{P}_a]{X:\varepsilon} X \xrightarrow[\tilde{P}_a]{Y:\varepsilon} XY \xrightarrow[\tilde{P}_a]{\varepsilon:\beta} \text{FINAL}$ 
1022 6:   return  $\tilde{P}_a$ 
1023
1024
1025

```

1026 The algorithm for constructing the transitions of \tilde{P}_a is presented in Algorithm 4. We have the
 1027 following theorem regarding the correctness of Algorithm 4 and Equation 5.
 1028

1029 **Theorem 3.** *The above construction of P_w meets the definition in Equation 4.*

1030
 1031 *Proof.* Formally, \tilde{P}_a can be defined as follows:
 1032

$$\tilde{P}_a(\alpha \in \Pi^+) := \left\{ \beta \in \Pi^+ \mid \alpha \xrightarrow[\mathcal{P}]{a} \beta \right\}. \quad (7)$$

1035 The construction of \tilde{P}_a in Algorithm 4 trivially simulates one a -labelled transition of the parser \mathcal{P}
 1036 on the current stack top, so it meets Equation 7.
 1037

1038 The process of the parser processing $w = w_1 \dots w_n$ can be decomposed into a sequence of un-
 1039 conditional ε -transitions, followed by w_i -labelled transitions, followed by another sequence of un-
 1040 conditional ε -transitions. Each w_i -labelled transition is simulated by the corresponding \tilde{P}_{w_i} , and the
 1041 unconditional ε -transitions are handled by P_ε . Therefore, the composition $P_w = P_\varepsilon \circ \tilde{P}_{w_1} \circ P_\varepsilon \circ$
 1042 $\dots \circ P_\varepsilon \circ \tilde{P}_{w_n} \circ P_\varepsilon$ correctly simulates the parser \mathcal{P} processing the terminal sequence w on the input
 1043 stack α , and produces the stabilized output stack β if it exists. \square
 1044

1045 A.3.3 PROOF OF THEOREM 1

1046
 1047 *Proof.* Because \mathcal{A} is constructed as a FSA, the language recognized by \mathcal{A} is regular. The language
 1048 of all valid (lexer state, parser stack) pairs for a given token $v \in \mathcal{V}$ can be obtained by reversing
 1049 the language recognized by \mathcal{A} , taking the Brzozowski derivative (Brzozowski, 1964) with respect
 1050 to v , and then reversing it back. Since the class of regular languages is closed under these opera-
 1051 tions (Hopcroft & Ullman), the resulting language is also regular. \square
 1052

1053 A.4 DATASET CONSTRUCTION DETAILS

1054 **Java, Go, and SQL** We obtain their Lark grammars from the previous work Syncode (Ugare-
 1055 et al.). Because the grammar format for XGrammar and Formatron is different from Lark, we man-
 1056 nually convert the Lark grammars to respective formats for each baseline. For each programming
 1057 language, we take the first 1000 samples from the Stack dataset (Kocetkov et al.) that can be suc-
 1058 cessfully parsed by the Lark parser to construct the evaluation dataset.
 1059

1060 **JSON Schemas** We use the benchmark dataset MaskBench (mas), an extension of JSON Schema
 1061 Bench (Geng et al., a) by adding schema conformant and non-conformant JSON instances to each
 1062 schema. We generate the Lark grammar from the JSON schemas using the script provided in
 1063 MaskBench, and only use the schemas in MaskBench where the Lark parser can successfully parse
 1064 all the conformant JSON instances and reject all the non-conformant JSON instances. We then
 1065 randomly sample 1000 schemas for evaluation.
 1066

1067 A.5 DESCRIPTION OF BASELINES IN EXPERIMENTS

1068 We describe the baselines used in our experiments in detail.
 1069

- 1070 • XGrammar (Dong et al.) uses a character-level non-deterministic PDA⁶. For each state,
 1071 it precomputes the context-independent accepted and rejected tokens, and only calls the
 1072 parser for the context-dependent tokens.
- 1073 • GreatGramma (Park et al.) uses a lexer and a parser. It converts each token into all possible
 1074 terminals sequences and reduces the number of parser calls by sharing the parser calls
 1075 among tokens with the same terminal sequence. After computing the accepted terminal
 1076 sequences, it maps them back to the original tokens. It also precomputes the context-
 1077 dependent and context-independent terminal sequences for each parser state.

1078
 1079 ⁶In the latest implementation that we use in the experiments, this has been changed to an Earley (Earley)
 parser.

1080

- Formatron (Sun et al.) uses an Earley parser. It dynamically identifies and eliminates invalid or redundant parser states during parsing, and uses a state cache to speed up the repetitive parsing process.

1081

- LLGuidance (Moskal et al.) uses a lexer and an Earley parser. It organizes the vocabulary into a trie, and skips the whole subtree if the prefix token is rejected. It also leverages the lexer on the vocabulary to pre-identify the terminal sequences.

1082

1083

1084

1085

1086

1087

1088

1089

A.6 DOWNSTREAM PERFORMANCE OF GRAMMAR-CONSTRAINED DECODING

1090 Our method PSC significantly speeds up the mask computation in grammar-constrained decoding. It calculates the same valid token masks as existing GCD methods, so its performance on downstream tasks should be similar to theirs, and we should observe similar downstream task performance improvements over unconstrained decoding. To verify this, we replicate the downstream task experiments from Syncode (Ugare et al.), comparing PSC with unconstrained decoding.

1091

1092

1093

1094

1095

A.6.1 JSON GENERATION

1096 We replicate the schema-conformant JSON generation task from Syncode (Ugare et al.).

1097

1098

1099

1100 **Dataset** We use the JSON-Mode-Eval (NousResearch) dataset, which contains 100 samples of natural language instructions, each paired with a JSON schema and the corresponding correct JSON output. During checking, we found the oracle answer of sample 39 simply copies the schema (which is valid JSON but clearly not the intended output), so we exclude this sample from evaluation. When we generate the grammar from the JSON schema, we found that our script (obtained from MaskBench (mas), as described in Appendix A.4) fails to generate a valid grammar for certain schemas. To address this, we replace the schemas of sample 19, 24, 27, 33, 45 and 72 with the equivalent schemas supported by our grammar generation script; the schemas of sample 1, 15, 22, 90 and 97 cannot be converted to equivalent schemas supported by our grammar generation script, so we only enforce the JSON grammar on these samples. The exact schemas used in our experiments are provided in the open-sourced code.

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111 **Settings** We compare three methods: unconstrained decoding (Standard), grammar-constrained decoding (with PSC) using only the JSON grammar (not specific to the schema) (GCD + JSON Grammar), and grammar-constrained decoding (with PSC) using the grammar generated from the JSON schema (GCD + JSON Schema). For the unconstrained decoding, we found that the generated JSON are often wrapped in code blocks (e.g. ````json ... ````), so we strip such code block markers before checking the validity of the generated JSON.

1112

1113

1114

1115

1116

1117

1118 **Models** We use the instruct-tuned versions of Llama 3.2 1B, Qwen2.5 0.5B and Gemma 3 270M models. The same base models are used in our main experiments, and we use their instruct-tuned versions because the prompts contain chat-style instructions.

1119

1120

1121

1122 **Metrics** The generated JSON is considered correct if and only if it can be converted to a JSON object that exactly matches the oracle answer. For each sample, we generate 1 JSON output with greedy decoding, and generate 50 outputs with sampling (temperature 1.0, no top- p or top- k filtering). We report the pass@ k metric (Chen et al.) for $k = 1, 3, 5, 10, 20, 50$. For pass@1, we use the greedy decoding result; for pass@ k where $k > 1$, we use the sampling results.

1123

1124

1125

1126

1127

1128 **Results** The results are presented in Table 5. For all the models tested, grammar-constrained decoding with PSC using the grammar generated from the JSON schema (GCD + JSON Schema) significantly outperforms unconstrained decoding (Standard) and grammar-constrained decoding using only the JSON grammar (GCD + JSON Grammar). This confirms that grammar-constrained decoding can effectively improve the performance of LLMs on schema-conformant JSON generation tasks, and PSC can achieve this improvement while significantly speeding up the existing GCD methods.

1129

1130

1131

1132

1133

1134
 1135 Table 5: The pass@ k scores (%) of different methods on generation of schema-conformant JSON
 1136 using grammar-constrained decoding and unconstrained decoding (Standard). For the grammar-
 1137 constrained decoding methods, we use PSC to compute the valid token masks. The GCD + JSON
 1138 Grammar method uses only the JSON grammar (not specific to the schema), while the GCD + JSON
 1139 Schema method uses the grammar generated from the JSON schema.

Model	Method	pass@ k					
		1	3	5	10	20	50
Llama 3.2 1B instruct-tuned	Standard	55.6	53.9	60.0	67.1	73.5	80.8
	GCD + JSON Grammar	56.6	55.9	61.9	68.1	73.7	80.8
	GCD + JSON Schema	68.7	70.9	74.2	78.0	81.4	84.8
Qwen2.5 0.5B instruct-tuned	Standard	64.7	66.3	69.7	73.1	75.9	80.8
	GCD + JSON Grammar	64.7	67.0	70.8	74.8	77.8	81.8
	GCD + JSON Schema	67.7	69.8	73.0	77.2	81.2	85.9
Gemma 3 270M instruct-tuned	Standard	28.3	31.3	33.5	36.1	38.9	44.4
	GCD + JSON Grammar	29.3	33.2	35.6	38.6	41.4	45.5
	GCD + JSON Schema	56.6	62.1	64.2	66.2	67.6	68.7

1153 A.6.2 TEXT-TO-SQL GENERATION

1154 We replicate the text-to-SQL generation task from Syncode (Ugare et al.).

1155 **Dataset** We use the Spider (Yu et al., 2018) dataset, which contains 1,034 text-to-SQL samples in
 1156 the development set, the same as used in Syncode (Ugare et al.).

1157 **Settings** We compare two methods: unconstrained decoding (Standard) and grammar-constrained
 1158 decoding (with PSC) using the SQL grammar (GCD).

1159 **Models** We use the same models as in the main experiments: Llama 3.2 1B, Qwen2.5 0.5B and
 1160 Gemma 3 270M. We carefully construct the same prompt as in Syncode (Ugare et al.). Since
 1161 the prompt does not contain chat-style instructions, we use the base versions of these models (not
 1162 instruct-tuned).

1163 **Metrics** We use the standard execution accuracy (Exec Acc) (Zhong et al., 2020) metric for eval-
 1164 uation, the same as used in Syncode (Ugare et al.). We use greedy decoding to generate 1 SQL query
 1165 for each sample, which is the default setting in Syncode (Ugare et al.).

1166 **Grammar** During the experiments, we found that the SQL grammar used in Syncode (Ugare
 1167 et al.) cannot parse the NOT operator in the boolean expressions, making some valid SQL queries
 1168 unparsable. We fixed this issue by adding the NOT operator to the grammar. The fixed grammar is
 1169 provided in the open-sourced code.

1170 **Results** The results are presented in Table 6. For all the models tested, grammar-constrained de-
 1171 coding with PSC using the SQL grammar significantly outperforms unconstrained decoding (Stan-
 1172 dard). This confirms that grammar-constrained decoding can effectively improve the performance of
 1173 LLMs on text-to-SQL generation tasks, and PSC can achieve this improvement while significantly
 1174 speeding up the existing GCD methods.

1175 A.6.3 CODE GENERATION

1176 We replicate the code generation task from Syncode (Ugare et al.).

1177 **Dataset** We use the Go subset of Multilingual HumanEval (Athiwaratkun et al.; Chen et al.)
 1178 dataset, which contains 160 samples.

1188
 1189 Table 6: The execution accuracy of different methods of text-to-SQL generation on the Spider
 1190 dataset using grammar-constrained decoding (GCD) and unconstrained decoding (Standard). For
 1191 the grammar-constrained decoding methods, we use PSC to compute the valid token masks.

Model	Method	Execution accuracy				
		Easy	Medium	Hard	Extra Hard	Overall
Llama 3.2 1B	Standard	35.9	25.3	14.9	6.6	23.1
	GCD	38.7	27.8	14.9	6.6	24.9
Qwen2.5 0.5B	Standard	31.0	24.0	13.2	6.6	21.1
	GCD	31.0	24.2	13.2	6.6	21.2
Gemma 3 270M	Standard	0.4	0.4	0.0	0.6	0.4
	GCD	1.6	1.3	0.6	1.8	1.4

1201
 1202 **Settings** We compare two methods: unconstrained decoding (Standard) and grammar-constrained
 1203 decoding (with PSC) using the Go grammar (GCD).

1204
 1205 **Models** We use the same models as in the main experiments: Llama 3.2 1B, Qwen2.5 0.5B and
 1206 Gemma 3 270M. We use the base versions of these models (not instruct-tuned), because this is a
 1207 code completion task, and the prompt does not contain chat-style instructions.

1208
 1209 **Metrics** We use the standard pass@ k metric (Chen et al.) for evaluation. For each sample, we
 1210 generate 1 code completion with greedy decoding, and generate 50 completions with sampling (tem-
 1211 perature 1.0, no top- p or top- k filtering). We report the pass@ k metric for $k = 1, 3, 5, 10, 20, 50$.
 1212 For pass@1, we use the greedy decoding result; for pass@ k where $k > 1$, we use the sampling
 1213 results.

1214
 1215 Table 7: The pass@ k scores (%) of different methods on Multilingual HumanEval Go dataset using
 1216 grammar-constrained decoding (GCD) and unconstrained decoding (Standard). For the grammar-
 1217 constrained decoding methods, we use PSC to compute the valid token masks.

Model	Method	pass@ k				
		1	3	5	10	20
Llama 3.2 1B	Standard	5.6	4.0	5.4	7.4	9.3
	GCD	5.6	4.7	6.3	8.6	10.6
Qwen2.5 0.5B	Standard	8.8	5.4	7.2	9.9	12.4
	GCD	8.8	6.0	7.9	10.5	13.2
Gemma 3 270M	Standard	0.6	0.8	1.0	1.3	1.8
	GCD	0.6	1.0	1.3	1.9	2.9

1228
 1229 **Results** The results are presented in Table 7. For all the models tested, grammar-constrained
 1230 decoding with PSC using the Go grammar significantly outperforms unconstrained decoding (Stan-
 1231 dard). This confirms that grammar-constrained decoding can effectively improve the performance of
 1232 LLMs on code generation tasks, and PSC can achieve this improvement while significantly speeding
 1233 up the existing GCD methods.

1234 A.7 EXTRA THROUGHPUT RESULTS

1235
 1236 Due to page limit, we only present the end-to-end throughput results on Java and schema-conformant
 1237 JSON in Section 4.3. The results on the Go and SQL datasets are similar and are included here in
 1238 Table 4 and Table 5, respectively.

1239 A.8 PREPROCESSING OVERHEAD DETAILS

1240
 1241 Whether the preprocessing overhead is acceptable depends on the specific application scenario.

Figure 4: End-to-end throughput (tokens per second) on the **Go** dataset using different methods on different models with various batch sizes.

Figure 5: End-to-end throughput (tokens per second) on the **SQL** dataset using different methods on different models with various batch sizes.

Preprocessing time The preprocessing time can be amortized over multiple decoding sessions since it only needs to be done once per grammar and vocabulary pair. We calculate the time users need to use PSC for decoding to make it more time-efficient than using LLGuidance, our fastest baseline in the experiments. We reuse the throughput results from Section 4.3. It should be noted that this includes the total decoding time for all sequences, not just on one sequence.

In other words, we calculate the minimum t_{runtime} such that,

$$t_{\text{runtime}} \cdot \text{throughput}_{\text{PSC}} \geq (t_{\text{preprocess}} + t_{\text{runtime}}) \cdot \text{throughput}_{\text{LLGuidance}},$$

where $t_{\text{preprocess}}$ is the preprocessing time of PSC on the grammar, and $\text{throughput}_{\text{PSC}}$ and $\text{throughput}_{\text{LLGuidance}}$ are the end-to-end throughput of PSC and LLGuidance, respectively. Rearranging the equation gives,

$$t_{\text{runtime}} \geq \frac{t_{\text{preprocess}} \cdot \text{throughput}_{\text{LLGuidance}}}{\text{throughput}_{\text{PSC}} - \text{throughput}_{\text{LLGuidance}}}.$$

The results are presented in Table 8. For Java and JSON schemas, the preprocessing time is generally small, and the balance point is within half to three minutes of decoding time. For SQL, the preprocessing time is higher, but the balance point is within fifty minutes of decoding time.

Thus, if the user plans to perform grammar-constrained decoding for a total time longer than the balance point, using PSC is more time-efficient than using LLGuidance. We believe that in many practical applications, users may perform grammar-constrained decoding for more than these balance points, making the preprocessing time acceptable.

Memory usage The memory usage during preprocessing is generally higher than that during decoding. However, since the preprocessing can be performed offline, it does not affect the online decoding efficiency or memory usage. The preprocessing can be performed on cloud instances with large memory capacity if needed. For example, for SQL grammar preprocessing which requires around 250 GiB of memory, cloud providers like AWS offer instances with 500 GiB of memory for on-demand usage, and the cost is around 2.5 USD per hour. Since the preprocessing only needs to be done once per grammar and vocabulary pair, the cost is generally acceptable for practical applications.

1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318

Table 8: The time (in seconds) the user needs to use PSC to amortize the preprocessing time compared to using LLGuidance. Only results on Java, SQL and JSON schemas are shown here, because LLGuidance fails on Go as shown in Table 1.

Model	Grammar		
	Java	SQL	JSON Schemas
Llama 3 1B	146.6	2826.2	25.1
Qwen2.5 0.5B	101.5	2760.7	20.1
Gemma 3 270M	67.2	508.5	40.0

1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349