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ABSTRACT

LLMs are widely used to generate structured output like source code or JSON.
Grammar-constrained decoding (GCD) can guarantee the syntactic validity of the
generated output, by masking out tokens that violate rules specified by a context-
free grammar. However, the online computational overhead of existing GCD
methods, with latency typically scaling linearly with vocabulary size, limits the
throughput of LLMs, especially for models with large vocabularies. To address
this issue, we propose PSC, a novel grammar-constrained decoding method. By
combining acceptance conditions of all vocabulary tokens into a single classifier
of the parser stack during preprocessing, PSC can compute the complete vocabu-
lary mask by checking the parser stack exactly once per decoding step, with time
complexity independent of the vocabulary size. Experiments show that PSC com-
putes masks up to 770× faster than baselines on complex programming language
grammars, and up to 30× faster for schema-conformant JSON; end-to-end LLM
throughput with PSC approaches that of unconstrained decoding.

1 INTRODUCTION

In recent years, the ability for Large Language Models (LLMs) to generate structured output has
been widely recognized and utilized (Qwen et al.; Grattafiori et al.; Gemma Team et al.). Source
code can be viewed as structured output that adheres to the syntax of programming languages, and
LLM-based coding assistants, such as GitHub Copilot (GitHub) and Cursor (Anysphere Inc.), have
been widely adopted by developers to assist in writing code to improve their productivity. When
LLMs are used as a tool, users often expect the generated output to conform to a specific format,
such as Markdown or JSON with custom schemas (Liu et al., 2024; vLLM Team; OpenAI). All of
these applications rely on the ability of LLMs to generate output that adheres to a specific syntax.

However, generating in a structured format is complex, as it requires not only understanding the
semantics of given input but also adhering to the specific grammars of target formats. Since language
models are essentially probabilistic models, there is no guarantee that the generated output will
always conform to the required grammar.

To address this issue, grammar-constrained decoding (GCD) (Geng et al., b; Scholak et al.; Poesia
et al.; Ugare et al.) is proposed to ensure that the generated output always conforms to the specified
context-free grammar. A GCD method works by incorporating a grammar checker into the decoding
process, as shown in Figure 1a. At each decoding step, the checker determines which tokens in
the vocabulary can be appended to the current prefix while not violating the grammar. The logits
generated by the language model are then masked to only allow the valid tokens, and the next token
is generated by sampling from the masked logits.

The overhead of GCD is determined by the newly introduced step of validity calculation. A naive
implementation, as shown in Figure 1b would require calling the parser for every token in the vocab-
ulary to check its validity, resulting in a time complexity of O(|V|) per decoding step, where |V| is
the vocabulary size. This can add significant overhead, especially for large vocabularies in modern
language models, e.g. 128k tokens in Llama-3 (Grattafiori et al.), 151k tokens in Qwen series (Bai
et al.), or 262k tokens in Gemma 3 (Gemma Team et al.). The overhead is particularly pronounced
for smaller models, where the time taken by model inference is relatively small.
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Predicted logits
LLM

Constrained logits

Next token

✓✗✗✓✓✓✗
Mask

Constraint

(a) Decoding step in grammar-constrained decoding (GCD).

Runtime ~	𝒪 𝒱

Vocabulary
Token1 ✓

…
Tokenn ✗

Mask… Parser
𝒱

(b) Naive GCD implementation.

Vocabulary
Token1 DFA1

… …
Tokenn DFAn

Parser stack

Mask
Preprocessing Runtime ~	𝒪 1

Combined DFA

(c) Our GCD method PSC.

Figure 1: An illustration of grammar-constrained decoding, showing (a) the overall working pro-
cess, (b) the naive implementation that directly simulates the PDA, and (c) our method PSC that
precomputes the DFA and the valid token masks.

To speed up GCD, various techniques have been proposed in the literature. We summarize these
techniques in Section 2. However, none of these techniques can fundamentally change the time
complexity, which is still O(|V|) in the worst case.

We propose a novel GCD method PSC that replaces the repetitive runtime parsing over the whole
vocabulary with a one-time classification of the current parser stack, as shown in Figure 1c. The
checking process of the parser can be seen as a function of both the token and the state of the parser,
which is usually a stack. For each token, our method PSC constructs a finite-state automaton (FSA)
that represents the exact requirements on the parser stack to accept that token, i.e., the FSA accepts
a parser stack if and only if that token is accepted by a parser with that stack. All these FSAs can
then be combined into a single FSA that classifies the parser stack into a finite number of classes,
each corresponding to a different vocabulary mask. During decoding, we only need to check the
parser stack exactly once per decoding step to get the vocabulary mask, which is ready to be applied
to the logits. This eliminates the need to call the parser for each token in the vocabulary, resulting in
a significant speedup.

We conduct extensive experiments on grammar-constrained decoding in Java, Go, SQL, and schema-
conformant JSON to evaluate the efficiency of our method. Compared to the current state-of-the-art
method LLGuidance, our method achieves up to 770 times speedup in mask computation on com-
plex programming language grammars, and up to 30 times speedup for schema-conformant JSON
generation. In the end-to-end decoding throughput experiments, the throughput of PSC approaches
that of unconstrained decoding, and is significantly higher than LLGuidance, especially on smaller
models and larger batch sizes.

In summary, our contributions are as follows:

• We propose a novel GCD method PSC that leverages finite-state automata to classify parser
states to use the precomputed vocabulary mask, significantly reducing the time overhead of
grammar-constrained decoding.

• We provide a theoretical analysis of PSC. We prove that the set of the parser stacks that
can accept a given token can be formally described as a regular language. This justifies
the correctness of our method and provides a theoretical foundation for future research on
grammar-constrained decoding.

• We demonstrate the efficiency of PSC through extensive experiments on grammar-
constrained decoding in Java, Go, Python, and schema-conformant JSON, achieving signif-
icant speedup in mask computation compared to existing techniques; end-to-end decoding
throughput with PSC approaches that of unconstrained decoding.
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2 BACKGROUND AND RELATED WORK

We introduce the task of grammar-constrained decoding in this section, and then review the re-
lated work. For the symbols, notations, and definitions used in this paper, please refer to Ap-
pendix A.2.

2.1 THE TASK: GRAMMAR-CONSTRAINED DECODING

Let Σ be the character set used by the language model, e.g. the Unicode. Given a prefix of tokens,
the task of a language model is to generate the next-token distribution over the vocabulary V ⊂ Σ+.
For a language L ⊆ Σ∗, the task of constrained decoding aims to generate a sample in L from the
language model. In each step, given prefix x ∈ Σ∗, it calculates the set of valid tokens in V , i.e.
tokens that, when concatenated after x, become a prefix of some strings in L.

c(x ∈ Σ∗) := {v ∈ V|∃y ∈ Σ∗, xvy ∈ L} . (1)

When the language L is defined by a context-free grammar, the task is called grammar-constrained
decoding (Ugare et al.; Koo et al.; Park et al.; Moskal et al.). Determining whether a string is syntac-
tically valid usually involves two phases: lexical analysis and syntax analysis1 (Aho & Ullman). In
lexical analysis, the lexer T , usually modeled as a deterministic finite-state transducer (FST) (Aho &
Ullman; Koo et al.; Park et al.), transduces the text w ∈ Σ∗ into a terminal sequence T (w) ∈ Γ∗. In
syntax analysis, the parser P , usually modeled as a terminating deterministic push-down automaton
(PDA) (Aho & Ullman), determines whether a terminal sequence x ∈ Γ∗ is valid, written as x ∈ P .
So we have

w ∈ L ⇐⇒ T (w) ∈ P. (2)

2.2 RELATED WORK

There are several existing techniques to speed up grammar-constrained decoding, which can be cate-
gorized into three groups: vocabulary preprocessing, lexer preprocessing, and parser preprocessing.

Vocabulary preprocessing (Poesia et al.; Beurer-Kellner et al.; Moskal et al.) exploits the fact that
the vocabulary is built by BPE (Gage; Sennrich et al.), and for each token, its prefix is also a token
in the vocabulary. If the prefix token is rejected, then the longer token must also be rejected. So we
can traverse the vocabulary in a tree-like manner, and only check the tokens whose prefixes are not
rejected.

Lexer preprocessing (Beurer-Kellner et al.; Park et al.; Moskal et al.) maps each token to a terminal
sequence during preprocessing, and then the parser is only called on the terminal sequences. This
reduces the number of parser calls, as different tokens may share the same terminal sequence.

Parser preprocessing (Dong et al.; Park et al.) classifies the vocabulary into three sets for each
parser state: context-independent accepted, context-independent rejected, and context-dependent.
This allows us to reduce the number of parser calls by only checking the context-dependent tokens.

These techniques can be combined to achieve better speedup (Beurer-Kellner et al.; Park et al.;
Moskal et al.).However, as mentioned in Section 1, these techniques are limited in their speedup.
There is no theoretical guarantee on how many parser calls will be made per decoding step,which
can be linear to the vocabulary size in the worst case.

3 PSC: PARSER STACK CLASSIFICATION

The preprocessing of the lexer T is described in Section 3.1, and the other parts of this section are
dedicated to the preprocessing of the parser P . All the proofs are deferred to Appendix A.3. For
the symbols, notations, and definitions used in this paper, please refer to Appendix A.2.

1To ease the presentation, the step of lexical analysis is omitted in previous sections. The term “parser” in
previous sections should be realized as the combination of the lexer and the parser defined here, and the term
“parser stack” should be realized as the concatenation of the lexer state and the parser state, which is a simple
state without internal structure, and a stack, respectively.
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3.1 LEXICAL PREPROCESSING

Lexical preprocessing is not our focus in this paper, so we reuse the lexical preprocessing in Great-
Gramma (Park et al.), and conclude it here as a prelude to PSC.

For token v ∈ V , lexer state q ∈ Q, if lexing the token v from state q using the lexer T generates
the terminal sequence x ∈ Γ∗, and the lexer transits to state p, i.e. q

v:x
==⇒
T

∗ p, we define the

realizable terminal sequences Rq(v) as {x}Tp, representing all possible terminal prefixes that can
be generated from a string starting with v, where Tp is the finite set of all possible terminal prefixes
from state p: Tp(Σ∗) = TpT (Σ∗). The set Rq(v) can be precomputed for every q ∈ Q, v ∈ V
during preprocessing.

3.2 OVERVIEW OF SYNTACTIC PREPROCESSING

Given a valid prefix x ∈ Σ∗, we run the lexer T from the initial state q0 to produce a terminal
sequence z ∈ Γ∗ and a new lexer state q: q0

x:z
==⇒
T

∗ q. We then run the parser P from the initial stack

γ0 to receive the terminal sequence z, and generates a new stack α: γ0
z
=⇒
P

∗ α.

We can now introduce the simplification of the condition in the GCD definition in Equations 1 and 2
from previous work (Park et al.). For any token v ∈ V , to determine whether v is valid, we can
rewrite the condition in terms of realizable terminal sequences,

∃y ∈ Σ∗, T (xvy) ∈ P ⇐⇒ ∃w ∈ Rq(v),∃β ∈ Π+, α
w
=⇒
P

∗ β. (3)

The simplification is based on the common assumption that, if the parser reads in a certain terminal
sequence and enters a stable stack, then we do not need to worry about the rest of the input, and there
always exists a terminal sequence produced by the lexer that can ensure the whole text is accepted.

For w ∈ Γ∗, we define Pw(α) for the calculation in the last step of Equation 3,

Pw∈Γ∗(α ∈ Π+) :=
{
β ∈ Π+

∣∣∣α w
=⇒
P

∗ β
}
. (4)

How to efficiently calculate Pw(α) is the key difference between PSC and previous methods.
In existing work, the calculation of Pw is almost always dynamic: one has to calculate Pw(α) for
the current α and every possible w ∈ Rq(V). While some methods employ precomputation to
optimize certain cases, they still fundamentally require O(|Rq(V)|tP) time for dynamic parsing,
where O(tP) is the time required to run the parser P .

On the other hand, it can be noticed that, whether Pw(α) ̸= ∅ is determined by the top symbols of
α. It is to say, if Pw(α) ̸= ∅, then ∀γ ∈ Π∗, Pw(αγ) ̸= ∅. Utilizing this property, PSC proposes
a totally different approach, modeling Pw as a deterministic FST, which reads the stack sequence
α ∈ Π+, and outputs the sequence β ∈ Π+ if there is one.

This gives us several benefits. Because each Pw reads and outputs a sequence of stack symbols, they
can be composed to create larger FSTs: Pt◦Ps = Pst. Because the realizable terminal sequences are
known during precomputation, the exact validity condition of each vocabulary is therefore known,
their combinations can be precomputed, and we only need to go through the current stack once
during runtime. All possible masks can also be precomputed, eliminating the mask generation
overhead during decoding.

3.3 FST OF ε TRANSITIONS

In this section, we focus on how to construct Pε. The input of Pε should be a stack, and the output
is the stabilized version of it by executing all needed ε transitions on the stack. The states of
Pε is a special state FINAL plus a subset of Π∗ which represent the current stack top, both the input
alphabet and output alphabet are Π, and the start state is ε, and the final states are {FINAL}.
There are three types of transitions in Pε. If the information of the current stack top is not enough
to determine whether the stack is stable, it transits to a new state by reading the next stack symbol.
If the stack top is stable, it transits to the FINAL state to output the final stable stack. Otherwise,
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it simulates the transition of P on the current stack top, and transits to a new state representing the
new stack top after executing the ε transition. The construction algorithm is simply searching all
needed stacks from ε, as shown in Algorithm 1.

Theorem 1. Algorithm 1 constructs a finite-state transducer Pε as defined in Definition 4.

Pε is an important building block in the construction of other Pw, w ∈ Γ+. For any stack α, Pε(α)
gives the stabilized version of α, so the FST composed after Pε does not need to handle ε transitions,
and we can compose Pε after other FSTs to meet the stability requirement in the definition of Pw.

Algorithm 1 Construct FST Pε

1: function EPSILONFST(P)
2: for all X ∈ Π do
3: FINAL

X:X−−−→
Pε

FINAL

4: Q← {ε}
5: while let α ∈ Π∗, Q← POP(Q) do
6: if α ∈ FPΠ

∗ then
7: α

ε:α−−→
Pε

FINAL

8: else if |α| < 2 then
9: for all X ∈ Π do

10: α
X:ε−−→
Pε

αX

11: Q← Q ∪ {αX}
12: else
13: let α0γ = α,

where α0 ∈ Π2, γ ∈ Π∗

14: if α0
ε−→
P

β then

15: α0γ
ε:ε−−→
Pε

βγ

16: Q← Q ∪ {βγ}
17: else if α0

a−→
P

β then

18: α
ε:α−−→
Pε

FINAL

19: return Pε

Algorithm 2 Construct FST P̃a for terminal a ∈ Γ

1: function TERMINALFST(P, a)
2: for all X ∈ Π do
3: FINAL

X:X−−−→
P̃a

FINAL

4: for all XY
a−→
P

β do

5: ε
X:ε−−→
P̃a

X
Y :ε−−→
P̃a

XY
ε:β−−→̃
Pa

FINAL

6: return P̃a

Algorithm 3 Offline constructon in PSC

1: function OFFLINECONSTRUCTION(T ,P,V)
2: Pε ← EPSILONFST(P)
3: for all a ∈ Γ do
4: P̃a ← TERMINALFST(P, a)
5: for all w = w1 . . . wn ∈ R(V) do
6: Pw ← Pε ◦ P̃wn

◦Pε ◦· · ·◦Pε ◦ P̃w1
◦Pε

7: Aw ← REMOVEOUTPUT(Pw)
8: A ←

⋃
v∈V

⋃
q∈Q

⋃
w∈Rq(v)

BqAwBv

9: A ← MINIMIZE(A)
10: return A

3.4 FST FOR ANY TERMINAL SEQUENCE

After constructing Pε, the construction of Pw for any terminal sequence w ∈ Γ+ is fairly simple.

We first construct an FST P̃a for every a ∈ Γ that simulates a single transition labeled a. Note that
in P̃a, we only force the stack to execute one transition labeled a, but the output stack is not required
to be stable. Its input is a stack α, and the output is the immediate result of executing a-labelled
transition α

a−→
P

β. The states are Π0 ∪ Π1 ∪ Π2 ∪ {FINAL}, the start state is ε, the final state is

FINAL, and the transitions are defined in Algorithm 2.

For any terminal sequence w = w1 . . . wn ∈ Γ+, the FST Pw can be constructed using Pε and
P̃w1 , . . . , P̃wn . For any stack α, we first pass it to Pε to get a stable stack, and then pass the result
into P̃w1 to get the stack after reading w1, and then the stack is passed to Pε to get the stabilized
version. The result is then passed into P̃w2

to make the stack read w2, and then passed to Pε to
stabilize. We repeat this process until we have read wn using P̃wn

and stabilize the stack with Pε.
Formally, for w = w1 . . . wn ∈ Γ+, we have Pw = Pε ◦ P̃w1

◦ Pε ◦ · · · ◦ Pε ◦ P̃wn
◦ Pε.

Theorem 2. The above construction of Pw meets the definition in Definition 4.

Since in c(x), we only care about whether Pw accepts α or not, the output of Pw can be ignored.
Removing all the output labels from Pw gives us a finite-state automaton, hereafter named Aw.
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3.5 ONE-PASS FSA FOR MASK SELECTION

After constructing Pw(α) for all realizable terminal sequences w ∈ R(V), we can now consider
simplifying the constraint calculation over the whole vocabulary V . Recall Definition 1, combined
with Simplification 3 and Aw, we have the following equation,

c(x ∈ Σ∗) = {v ∈ V|∃w ∈ Rq(v), Pw(α) ̸= ∅} = {v ∈ V|∃w ∈ Rq(v), α ∈ Aw} ,
where q and α as defined in Section 3.2 are only dependent on x.

In c(x), we want to know whether any of the Aw accepts α, where w ∈ Rq(v). This can be achieved
by constructing the union of different Aw, i.e.,

⋃
w∈Rq(v)

Aw.

For different tokens v ∈ V , we need to check whether α is accepted by
⋃

w∈Rq(v)
Aw. But to get

the whole mask c(x), we need to check for every v ∈ V , which is inefficient. To address this issue,
we can integrate the checking of v and q into the FSA. Introduce the notation Ba for an FSA that
accepts only a once. For every q ∈ Q and v ∈ V , we can concatenate Bq before

⋃
w∈Rq(v)

Aw to
check whether the current state is q, and then concatenate Bv after

⋃
w∈Rq(v)

Aw to check whether
the candidate token is v.

By unioning the results for all v ∈ V and q ∈ Q, we construct an FSA A that accepts the sequence
qαv only if v is a valid token for the lexer state q and stack α,

A :=
⋃
v∈V

⋃
q∈Q

⋃
w∈Rq(v)

BqAwBv, c(x) = {v ∈ V|qαv ∈ A} , (5)

where A should be determinized and minimized.
Theorem 3. All (lexer state, parser stack) pairs that accept a given token form a regular language.

In Equation 5, we can precompute all possible result of c, i.e. all possible vocabulary masks, by
considering acceptable vocabulary set As :=

{
v ∈ V

∣∣∣s v−→
A

fA
}

for every state s in A.

Algorithm 4 Online execution of PSC

1: function ONLINEEXECUTION(T ,P,A, x)
2: qT0

x:z
==⇒
T

∗ q

3: γ0
z
=⇒
P

∗ α

4: qA0
qα
==⇒
A

∗ s

5: return As

We summarize the offline construction process
of PSC in Algorithm 3, and the online execu-
tion process in Algorithm 4. In Algorithm 4,
both the lexing Step 2 and the parsing Step 3
are standard in grammar-constrained decoding,
and can be incrementally maintained. In Step 4,
the FSA A is run on the stack α and the lexer
state q to get the state s, only requiring O(|α|)
time. Step 5 can be precomputed to be O(1) at
runtime.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

All grammar-constrained decoding methods essentially perform the same task: compute the valid
token mask at each decoding step. The valid token mask is theoretically the same for all meth-
ods, so we focus on comparing the efficiency of mask computation in our experiments. The
usefulness of grammar-constrained decoding is shown in previous work (Geng et al., b; Scholak
et al.; Poesia et al.; Ugare et al.), so we do not repeat the experiments here.

We conduct two sets of experiments to evaluate each method:

• Overhead of mask computation (without model inference).
• End-to-end throughput (with model inference).

In all experiments, we use teacher-forcing during evaluation, i.e., we always use the oracle next
token at each decoding step, to ensure that all methods are evaluated under the same conditions
and can be fairly compared.

6
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Datasets There is no standard benchmark for evaluating grammar-constrained decoding methods.
We choose two representative tasks that require grammar-constrained decoding: code generation in
Java, Go, and SQL, and JSON generation with specified JSON schemas. For each task, we construct
the evaluation dataset as described in Appendix A.4, with 1000 samples for each programming
language and 1000 schemas for schema-conformant JSON generation. There are a total of 1337
positive samples and 2072 negative samples in the JSON dataset, and each schema has at least one
positive sample and one negative sample.

Baselines We consider several recent state-of-the-art grammar-constrained decoding methods with
open-source implementations as baselines, including XGrammar (Dong et al.), GreatGramma (Park
et al.), Formatron (Sun et al.), and LLGuidance (Moskal et al.). Detailed descriptions of these
baselines are included in Appendix A.5.

Implementation We implement PSC in roughly 1100 lines of Python. Similar to previous
work (Ugare et al.; Park et al.), we use the Lark parser(lar) to construct the lexer and the LALR(1)
parser from the grammar. As described in Section 3.1, we reuse the lexer construction in Great-
Gramma (Park et al.), since this is not our focus in this paper.

Execution environment We conduct our experiments on a machine with 8 NVIDIA A100 GPUs
(40 GB Memory), 2 Intel Xeon Gold 6348 CPUs (2.6GHz, 56 cores), and 512 GB RAM. To ensure
fairness, we run all the experiments with a single GPU and a single CPU thread.

4.2 OVERHEAD OF MASK COMPUTATION

Metrics In this experiment, we measure the overhead of mask computation for each GCD method.
We ignore the time taken to transfer the mask to the GPU and apply it to the logits, because this is
the same for all methods2. For each method, we measure:

• Average overhead: The time of computing the CPU mask tensor at each decoding step.
• Sample pass rate: The proportion of samples that are correctly processed by each method3.

Models We evaluate the overhead on three open-source LLM series with different vocabulary
sizes: Llama 3 (Grattafiori et al.) (128k vocabulary size), Qwen 2.5 (Bai et al.) (151k vocabulary
size), and Gemma 3 (Gemma Team et al.) (262k vocabulary size). We only use the tokenizers,
because the overhead of mask computation is independent of other model components.

Overhead results The average overhead is shown in Table 1. PSC significantly outperforms all the
baselines across all grammars and models, being 310 to 700 times faster on complex programming
language grammars compared to the best baseline, LLGuidance, and generally 30 times faster on
the relatively simple JSON schema grammar.

The overhead of baselines is significantly larger on Gemma 3 than that on the other models4, because
Gemma 3 has a much larger vocabulary size (262k) than the other two models (128k and 151k), and
the time complexity of all methods except PSC is roughly linear to the vocabulary size. In contrast,
the performance of PSC is stable across different grammars and models, because its time complexity
is independent of the vocabulary size.

Sample pass rate results The sample pass rates are shown in Table 2. PSC achieves a high pass
rate across all grammars and models, very close to 100%. After analyzing the error cases, we find
that they are all directly rejected by the GreatGramma lexer we adopt, but no error is caused by PSC
itself. We notice the strangely low sample pass rate of Formatron on SQL, and find that Formatron
refuses to accept the column alias in the query, resulting in frequent rejections.

2In PSC, one can preload all the mask tensors on the GPU memory before decoding begins, eliminating the
transfer overhead. However, the transfer overhead is usually too small to justify the extra GPU memory usage.

3If the oracle token is masked, the sample is counted as rejected by the method. A positive sample is counted
as passed if it is not rejected, and a negative sample is counted as passed if it is rejected.

4The performance of LLGuidance on JSON Schemas is roughly the same across different models, probably
because the grammar is simple enough that the vocabulary size does not significantly affect the performance.
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Table 1: Average overhead (microseconds) of computing the mask per token in GCD tasks using
different methods. The symbol X indicates the parser reports an error during mask calculation. Text
in bold indicates the best performance, and text in underline indicates the second best performance.

Model Method Grammar
Java Go SQL JSON Schemas

Llama 3
|V| = 128256

XGrammar 309514.2 281500.9 324663.6 26257.6
Formatron 393540.4 Xa 303974.1 Xa

GreatGramma 21402.8 27220.9 20954.5 8556.2
LLGuidance 1352.4 Xb 826.1 72.7
PSC (Ours) 2.4 2.5 2.6 2.3

Qwen2.5
|V| = 151665

XGrammar 302421.9 278333.4 299968.6 29470.0
Formatron 378921.0 Xa 253311.9 Xa

GreatGramma 24570.9 27649.8 24053.9 11038.4
LLGuidance 1408.2 Xb 865.2 72.1
PSC (Ours) 2.4 2.5 2.5 2.2

Gemma 3
|V| = 262145

XGrammar 649321.1 458952.0 416625.0 54164.4
Formatron 696144.6 Xa 444810.0 Xa

GreatGramma 43218.6 48354.0 40026.9 25717.3
LLGuidance 1802.6 Xb 1180.8 72.1
PSC (Ours) 2.3 2.5 2.4 2.3

a Formatron stops responding on multiple samples, so we terminate the process.
b LLGuidance reports ParserTooComplex error.

Table 2: How many samples are correctly processed by each method. The symbol X indicates the
parser reports an error during mask calculation. Text in bold indicates the best performance, and
text in underline indicates the second best performance.

Model Method Grammar
Java Go SQL JSON Schemas

Llama 3

XGrammar 99.7% 100.0% 99.7% 100.0%
Formatron 99.4% X 67.0% X
GreatGramma 100.0% 99.9% 97.1% 99.6%
LLGuidance 100.0% X 99.9% 99.9%
PSC (Ours) 100.0% 99.9% 99.9% 99.6%

Qwen2.5

XGrammar 99.7% 100.0% 99.7% 100.0%
Formatron 99.4% X 67.0% X
GreatGramma 100.0% 99.9% 97.2% 99.6%
LLGuidance 100.0% X 99.9% 99.9%
PSC (Ours) 100.0% 99.9% 99.9% 99.6%

Gemma 3

XGrammar 99.7% 100.0% 99.7% 100.0%
Formatron 100.0% X 67.3% X
GreatGramma 100.0% 99.9% 97.2% 99.6%
LLGuidance 94.0% X 99.9% 99.9%
PSC (Ours) 100.0% 99.9% 99.9% 99.6%

4.3 END-TO-END THROUGHPUT

Settings In this experiment, we run the actual model inference using the vLLM library (Kwon
et al.), and measure the throughput, i.e., the number of tokens processed per second, of the entire
decoding process, considering both the time taken by mask computation and model inference. We
only consider the accepted samples of each method. We compare PSC with the fastest baseline
LLGuidance in the previous section, and also include the throughput when not using any constraint
decoding method as a reference, under various batch sizes of 1, 2, 4, ..., 256.
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Models We use the smallest models in the three model series to highlight the overhead of con-
straint decoding. On these models, the model inference time is relatively small, making the over-
head of constraint decoding more pronounced. Specifically, we use Llama 3 1B, Qwen 2.5 0.5B,
and Gemma 3 270M. We also include Qwen 2.5 7B to see the effect of model size on throughput.
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Figure 2: End-to-end throughput (tokens per second) on the Java dataset using different methods on
different models with various batch sizes.
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Figure 3: End-to-end throughput (tokens per second) on the schema-conformant JSON dataset
using different methods on different models with various batch sizes.

Results The end-to-end throughput results on Java and schema-conformant JSON datasets are
present in Figures 2 and 3, respectively. The results on the Go and SQL datasets are similar to those
on the Java dataset, included in Appendix A.6.

On all datasets, PSC consistently outperforms LLGuidance across all models and batch sizes, and
is very close to the performance of unconstrained decoding. The difference is more pronounced on
the Java dataset, where the grammar is more complex, leading to higher overhead for LLGuidance.

As the model size increases, the difference in throughput becomes smaller, because the model in-
ference time becomes more dominant. However, since smaller models are less capable, grammar-
constrained decoding is probably more useful for smaller models to ensure the syntactic correctness.

As the batch size increases, the difference in throughput becomes larger, because the average model
inference time per token decreases with larger batch sizes, indicating that the overhead introduced
by constraint decoding becomes more pronounced at larger batch sizes.

5 DISCUSSION AND CONCLUSION

In this paper, we present PSC, a novel approach for grammar-constrained decoding. By construct-
ing the exact requirements on the parser stack for each vocabulary token, PSC can determine the
valid tokens at each decoding step by a single pass through the parser stack. Our experimental re-
sults demonstrate that PSC achieves significant speedup over existing methods, and the end-to-end
throughput of PSC approaches that of unconstrained decoding. This makes PSC a practical choice
for real-world applications that require grammar-constrained decoding.

One limitation of PSC is that it requires preprocessing.But this can be done offline and reused for
multiple decoding sessions with the same grammar and vocabulary, so the overhead of preprocess-
ing is generally acceptable for practical applications. In future, we plan to explore other types of
grammars and constraints that can be efficiently handled by PSC, as well as other optimizations to
further improve its efficiency and scalability.
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6 REPRODUCIBILITY STATEMENT

We open-source the code to facilitate reproducibility of our results at https://anonymous.
4open.science/r/PSC-E43E. It includes the implementation of PSC, the datasets used in the
experiments, and the scripts to run the experiments and generate the results in the paper. The proofs
of statements in the main text are included as Appendix A.3. The details in dataset construction are
included as Appendix A.4.
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A APPENDIX

A.1 LLM USAGE

We used DeepSeek and GitHub Copilot for code assistance, paper writing, and proofreading. How-
ever, all the technical content, ideas, algorithms, and experimental results in this paper are our own
work. We carefully reviewed and verified all the content generated by LLMs to ensure they are
accurate and directly reflect our own ideas.

A.2 FORMAL DEFINITIONS AND NOTATIONS

Table 3: Symbols and their meaning.

Symbol Meaning

ε empty string
ab concatenation of strings a and b
AB concatenation of languages A and B
Aε A ∪ {ε}
A∗ Kleene star of language A
A+ A∗ \ {ε}
Σ the character set (usually the Unicode) used by the language model
Γ the terminal set of the grammar

V the vocabulary of the language model, a finite subset of Σ+

such that every string over Σ can be tokenized as a string over V
T the lexing FST, transduces string over Σ to terminal sequence over Γ
Q the finite set of states of the lexing FST
P the parsing PDA, accepts terminal sequences in the language
Π the stack alphabet of the PDA

We include a list of symbols and their meanings in Table 3 for reference.

A.2.1 FINITE-STATE TRANSDUCER (FST)

A finite-state transducer (FST) (Aho & Ullman) T is defined by a finite set of states Q, the input
alphabet Σ, the output alphabet Γ, the start state q0 ∈ Q, the final states F ⊆ Q, and transitions
δ : Q × Σε → 2Γ

∗×Q. If δ(q, a) ∋ (y, q′), we write q
a:y−−→
T

q′. We write −→∗ for consecutive

transitions. For q ∈ Q, we write q
ε:ε−−→
T

∗ q. For q s:x−−→
T

∗ q′ and q′
t:y−−→
T

q′′, we write q
st:xy−−−→
T

∗ q′′.

Informally, an FST is deterministic, if from any state, for any given string, there is exactly one
possible outcome. T is deterministic if, for all q ∈ Q, either |δ(q, a)| ≤ 1,∀a ∈ Σ and δ(q, ε) = ∅,
or δ(q, a) = ∅,∀a ∈ Σ and δ(q, ε) = 1.

For w ∈ Σ∗, q ∈ Q, we define Tq(w) as
{
v ∈ Γ∗

∣∣∣∃q′ ∈ F, q
w:v−−→
T

∗ q′
}

, meaning the possible

outcomes when we feed w into T starting from the state q. When T is deterministic and v ∈ T (w),
we also write T (w) = v. For W ⊆ Σ∗, we define Tq(W ) as

⋃
w∈W Tq(w). q defaults to q0 when

omitted.

We call a state q ∈ Q stable if the FST does not need to take any immediate action on q, i.e.
δ(q, ε) = ∅. If q s:t−→

T
∗ q′ and q′ is stable, we also write q

s:t
==⇒
T

∗ q′.

Given two FSTs S and T where the output alphabet of S is the input alphabet T , ΓS = ΣT , their
composition is a new FST S ◦ T by feeding the output of S into the input of T .
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A.2.2 FINITE-STATE AUTOMATON (FSA)

A finite-state automaton (FSA) A can be defined by removing all output labels from an FST. We
say A accepts w ∈ Σ∗ from state q if Aq(w) ̸= ∅, and write w ∈ Aq , and q defaults to q0 when
omitted. Two FSAs are equivalent if they accept the same language.

A is deterministic if there is no ε transition in δ. Every nondeterministic FSA can be determinized
into an equivalent deterministic FSA (Hopcroft & Ullman), and every deterministic FSA can be
minimized into an equivalent deterministic FSA with the smallest number of states (Hopcroft &
Ullman).

The union of two FSAs A and B is a new FSA A ∪ B that accepts any sequence that is accepted by
either A or B.

The concatenation of two FSAs A and B is a new FSA AB that accepts any sequence that can be
split into two parts x = yz, where A accepts the first part y and B accepts the second part z.

A.2.3 PUSH-DOWN AUTOMATON (PDA)

A push-down automaton (PDA) (Aho & Ullman; Hopcroft & Ullman; Caucal & Monfort) P is
defined by the input alphabet Γ, the stack alphabet Π, the initial stack γ0 ∈ Π2, the final states
F ⊆ Π, and a finite set of transitions δ : Π2 × Γε → 2Π

+

. Note that the definition here merges the
states and the stack symbols in the traditional definition of PDA, but they are equivalent if we treat
the stack top symbol as the state. If δ(α, a) ∋ β, we write α

a−→
P

β. If α a−→
P

β, for any γ ∈ Π∗, we

also write αγ
a−→
P

βγ. We write −→∗ for consecutive transitions. For γ ∈ Π+, we write γ
ε−→
P

∗ γ. If

α
a−→
P

β, β w−→
P

∗ γ, we write α
aw−−→
P

∗ γ.

Informally, a PDA is deterministic, if from any stack, for any given string, there is exactly one
possible outcome. P is deterministic if, for any α ∈ Π2, either |δ(α, a)| ≤ 1,∀a ∈ Γ and δ(α, ε) =
∅, or δ(α, a) = ∅,∀a ∈ Γ and |δ(α, ε)| = 1.

A deterministic PDA is terminating, if for any stack, it does not make an endless sequence of ε-
input transitions.5 Every deterministic PDA can be transformed into another equivalent deterministic
terminating PDA (Sipser; Hopcroft & Ullman).

We call a state β = β1 . . . βn ∈ Π+ stable if β1 is a final state, i.e. β1 ∈ F , or the PDA is waiting
to read one more symbol, i.e. ∃a ∈ Γ, δ(β1β2, a) ̸= ∅. If α w−→

P
∗ β and β is stable, we also write

α
w
=⇒
P

∗ β. In practice, parser in a stable state is ready to consume the next input symbol, or has

reached an accepting stack.

For α ∈ Π+, we define Pα as
{
w ∈ Γ∗

∣∣∣∃X ∈ F,∃γ ∈ Π∗, α
w
=⇒
P

∗ Xγ
}

. α defaults to γ0 when

omitted.

A.3 PROOFS OF THEORETICAL RESULTS

In this section, we provide the proofs of the theoretical results stated in the main text.

A.3.1 PROOF OF THEOREM 1

Proof. First we show that the states of Pε are finite, i.e. Algorithm 1 terminates. Consider the
two steps in Algorithm 1 that add new states. Step 11 can only adds states in Π ∪ Π2, so step 11
is only executed a finite number of times. As for Step 16, because the parser P is deterministic
and terminating, by definition in Appendix A.2.3, for any stack configuration, there will not be an
endless sequence of ε transitions, so Step 16 is also only executed a finite number of times.

5The definition is slightly different in the cited references; nevertheless, their proof works on this definition.
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The correctness of Algorithm 1 can be naturally deduced by its construction, because it simply
simulates the behavior of the parser P with the current stack top, and only outputs the stack when it
is stable.

A.3.2 PROOF OF THEOREM 2

Proof. Formally, P̃a can be defined as follows:

P̃a(α ∈ Π+) :=
{
β ∈ Π+

∣∣∣α a−→
P

β
}
. (6)

The construction of P̃a in Algorithm 2 trivially simulates one a-labelled transition of the parser P
on the current stack top, so it meets Definition 6.

The process of the parser processing w = w1 . . . wn can be decomposed into a sequence of uncon-
ditional ε-transitions, followed by wi-labelled transitions, followed by another sequence of uncon-
ditional ε-transitions. Each wi-labelled transition is simulated by the corresponding P̃wi , and the
unconditional ε-transitions are handled by Pε. Therefore, the composition Pw = Pε ◦ P̃w1

◦ Pε ◦
· · · ◦Pε ◦ P̃wn

◦Pε correctly simulates the parser P processing the terminal sequence w on the input
stack α, and produces the stabilized output stack β if it exists.

A.3.3 PROOF OF THEOREM 3

Proof. BecauseA is constructed as a FSA, the language recognized byA is regular. The language of
all valid (lexer state, parser stack) pairs for a given token v ∈ V can be obtained by reversing the lan-
guage recognized byA, taking the Brzozowski derivative (Brzozowski, 1964) with respect to v, and
then reversing it back. Since the class of regular languages is closed under these operationsHopcroft
& Ullman, the resulting language is also regular.

A.4 DATASET CONSTRUCTION DETAILS

Java, Go, and SQL We obtain their Lark grammars from the previous work Syncode (Ugare
et al.). Because the grammar format for XGrammar and Formatron is different from Lark, we man-
ually convert the Lark grammars to respective formats for each baseline. For each programming
language, we take the first 1000 samples from the Stack dataset (Kocetkov et al.) that can be suc-
cessfully parsed by the Lark parser to construct the evaluation dataset.

JSON Schemas We use the benchmark dataset MaskBench (mas), an extension of JSON Schema
Bench (Geng et al., a) by adding schema conformant and non-conformant JSON instances to each
schema. We generate the Lark grammar from the JSON schemas using the script provided in
MaskBench, and only use the schemas in MaskBench where the Lark parser can successfully parse
all the conformant JSON instances and reject all the non-conformant JSON instances. We then
randomly sample 1000 schemas for evaluation.

A.5 DESCRIPTION OF BASELINES IN EXPERIMENTS

We describe the baselines used in our experiments in detail.

• XGrammar (Dong et al.) uses a character-level non-deterministic PDA6. For each state,
it precomputes the context-independent accepted and rejected tokens, and only calls the
parser for the context-dependent tokens.

• GreatGramma (Park et al.) uses a lexer and a parser. It converts each token into all possible
terminals sequences and reduces the number of parser calls by sharing the parser calls
among tokens with the same terminal sequence. After computing the accepted terminal
sequences, it maps them back to the original tokens. It also precomputes the context-
dependent and context-independent terminal sequences for each parser state.

6In the latest implementation that we use in the experiments, this has been changed to an Earley (Earley)
parser.
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• Formatron (Sun et al.) uses an Earley parser. It dynamically identifies and eliminates
invalid or redundant parser states during parsing, and uses a state cache to speed up the
repetitive parsing process.

• LLGuidance (Moskal et al.) uses a lexer and an Earley parser. It organizes the vocabulary
into a trie, and skips the whole subtree if the prefix token is rejected. It also leverages the
lexer on the vocabulary to pre-identify the terminal sequences.

A.6 EXTRA THROUGHPUT RESULTS
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Figure 4: End-to-end throughput (tokens per second) on the Go dataset using different methods on
different models with various batch sizes.

1 2 4 8 16 32 64 128 256
Batch size

300
600

1200
2400
4800
9600

19200
38400
76800

Th
ro

ug
hp

ut
 (t

ok
en

 / 
s)

Upper bound (uncostrained)
LLGuidance
PSCC

(a) Gemma 3 270M.

1 2 4 8 16 32 64 128 256
Batch size

300
600

1200
2400
4800
9600

19200
38400
76800

Th
ro

ug
hp

ut
 (t

ok
en

 / 
s)

Upper bound (uncostrained)
LLGuidance
PSCC

(b) Qwen 2.5 0.5B.

1 2 4 8 16 32 64 128 256
Batch size

300
600

1200
2400
4800
9600

19200
38400
76800

Th
ro

ug
hp

ut
 (t

ok
en

 / 
s)

Upper bound (uncostrained)
LLGuidance
PSCC

(c) Llama 3.2 1B.

1 2 4 8 16 32 64 128 256
Batch size

80
160
320
640

1280
2560
5120

10240
20480

Th
ro

ug
hp

ut
 (t

ok
en

 / 
s)

Upper bound (uncostrained)
LLGuidance
PSCC

(d) Qwen 2.5 7B.

Figure 5: End-to-end throughput (tokens per second) on the SQL dataset using different methods
on different models with various batch sizes.

Due to page limit, we only present the end-to-end throughput results on Java and schema-conformant
JSON in Section 4.3. The results on the Go and SQL datasets are similar and are included here in
Table 4 and Table 5, respectively.
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