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ABSTRACT

LLMs are widely used to generate structured output like source code or JSON.
Grammar-constrained decoding (GCD) can guarantee the syntactic validity of the
generated output, by masking out tokens that violate rules specified by a context-
free grammar. However, the online computational overhead of existing GCD
methods, with latency typically scaling linearly with vocabulary size, limits the
throughput of LLMs, especially for models with large vocabularies. To address
this issue, we propose PSC, a novel grammar-constrained decoding method. By
combining acceptance conditions of all vocabulary tokens into a single classifier
of the parser stack during preprocessing, PSC can compute the complete vocabu-
lary mask by checking the parser stack exactly once per decoding step, with time
complexity independent of the vocabulary size. Experiments show that PSC com-
putes masks up to 770× faster than baselines on complex programming language
grammars, and up to 30× faster for schema-conformant JSON; end-to-end LLM
throughput with PSC approaches that of unconstrained decoding.

1 INTRODUCTION

In recent years, the ability for Large Language Models (LLMs) to generate structured output has
been widely recognized and utilized (Qwen et al.; Grattafiori et al.; Gemma Team et al.). Source
code can be viewed as structured output that adheres to the syntax of programming languages, and
LLM-based coding assistants, such as GitHub Copilot (GitHub) and Cursor (Anysphere Inc.), have
been widely adopted by developers to assist in writing code to improve their productivity. When
LLMs are used as a tool, users often expect the generated output to conform to a specific format,
such as Markdown or JSON with custom schemas (Liu et al., 2024; vLLM Team; OpenAI). All of
these applications rely on the ability of LLMs to generate output that adheres to a specific syntax.

However, generating in a structured format is complex, as it requires not only understanding the
semantics of given input but also adhering to the specific grammars of target formats. Since language
models are essentially probabilistic models, there is no guarantee that the generated output will
always conform to the required grammar.

To address this issue, grammar-constrained decoding (GCD) (Geng et al., b; Scholak et al.; Poesia
et al.; Ugare et al.) is proposed to ensure that the generated output always conforms to the specified
context-free grammar. A GCD method works by incorporating a grammar checker into the decoding
process, as shown in Figure 1a. At each decoding step, the checker determines which tokens in
the vocabulary can be appended to the current prefix while not violating the grammar. The logits
generated by the language model are then masked to only allow the valid tokens, and the next token
is generated by sampling from the masked logits.

The overhead of GCD is determined by the newly introduced step of validity calculation. A naive
implementation, as shown in Figure 1b would require calling the parser for every token in the vocab-
ulary to check its validity, resulting in a time complexity of O(|V|) per decoding step, where |V| is
the vocabulary size. This can add significant overhead, especially for large vocabularies in modern
language models, e.g. 128k tokens in Llama-3 (Grattafiori et al.), 151k tokens in Qwen series (Bai
et al.), or 262k tokens in Gemma 3 (Gemma Team et al.). The overhead is particularly pronounced
for smaller models, where the time taken by model inference is relatively small.
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Predicted logits
LLM

Constrained logits

Next token

✓✗✗✓✓✓✗
Mask

Constraint

(a) Decoding step in grammar-constrained decoding (GCD).

Runtime ~	𝒪 𝒱

Vocabulary
Token1 ✓

…
Tokenn ✗

Mask… Parser
𝒱

(b) Naive GCD implementation.

Vocabulary
Token1 DFA1

… …
Tokenn DFAn

Parser stack

Mask
Preprocessing Runtime ~	𝒪 1

Combined DFA

(c) Our GCD method PSC.

Figure 1: An illustration of grammar-constrained decoding, showing (a) the overall working pro-
cess, (b) the naive implementation that directly simulates the PDA, and (c) our method PSC that
precomputes the DFA and the valid token masks.

To speed up GCD, various techniques have been proposed in the literature, summarized in Sec-
tion 2.4. However, none of them can fundamentally change the O(|V|) worst-case time complexity
while maintaining correctness.

We propose a novel GCD method PSC that replaces the repetitive runtime parsing over the whole
vocabulary with a one-time classification of the current parser stack, as shown in Figure 1c. The
checking process of the parser can be seen as a function of both the token and the state of the parser,
which is usually a stack. For each token, our method PSC constructs a finite-state automaton (FSA)
that represents the exact requirements on the parser stack to accept that token, i.e., the FSA accepts
a parser stack if and only if that token is accepted by a parser with that stack. All these FSAs can
then be combined into a single FSA that classifies the parser stack into a finite number of classes,
each corresponding to a different vocabulary mask. During decoding, we only need to check the
parser stack exactly once per decoding step to get the vocabulary mask, which is ready to be applied
to the logits. This eliminates the need to call the parser for each token in the vocabulary, resulting in
a significant speedup.

We conduct extensive experiments on grammar-constrained decoding in Java, Go, SQL, and schema-
conformant JSON to evaluate the efficiency of our method. Compared to the current state-of-the-art
method LLGuidance, our method achieves up to 770 times speedup in mask computation on com-
plex programming language grammars, and up to 30 times speedup for schema-conformant JSON
generation. In the end-to-end decoding throughput experiments, the throughput of PSC approaches
that of unconstrained decoding, and is significantly higher than LLGuidance, especially on smaller
models and larger batch sizes.

In summary, our contributions are as follows:

• We propose a novel GCD method PSC that leverages finite-state automata to classify parser
states to use the precomputed vocabulary mask, significantly reducing the time overhead of
grammar-constrained decoding.

• We provide a theoretical analysis of PSC. We prove that the set of the parser stacks that
can accept a given token can be formally described as a regular language. This justifies
the correctness of our method and provides a theoretical foundation for future research on
grammar-constrained decoding.

• We demonstrate the efficiency of PSC through extensive experiments on grammar-
constrained decoding in Java, Go, Python, and schema-conformant JSON, achieving signif-
icant speedup in mask computation compared to existing techniques; end-to-end decoding
throughput with PSC approaches that of unconstrained decoding.
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2 BACKGROUND AND RELATED WORK

We introduce the task of grammar-constrained decoding in this section, give some brief and informal
definitions of the concepts used in the paper, and then review the related work. A quick lookup table
for the symbols, notations, and the exact definitions can be found in Appendix A.2.

2.1 THE TASK: GRAMMAR-CONSTRAINED DECODING

Let Σ be the character set used by the language model, e.g. the Unicode. Given a prefix of tokens,
the task of a language model is to generate the next-token distribution over the vocabulary V ⊂ Σ+.
For a language L ⊆ Σ∗, the task of constrained decoding aims to generate a sample in L from the
language model. In each step, given prefix x ∈ Σ∗, it calculates the set of valid tokens in V , i.e.
tokens that, when concatenated after x, become a prefix of some strings in L.

c(x ∈ Σ∗) := {v ∈ V|∃y ∈ Σ∗, xvy ∈ L} . (1)

When the language L is defined by a context-free grammar, the task is called grammar-constrained
decoding (Ugare et al.; Koo et al.; Park et al.; Moskal et al.). Determining whether a string is syntac-
tically valid usually involves two phases: lexical analysis and syntax analysis1 (Aho & Ullman). In
lexical analysis, the lexer T , usually modeled as a deterministic finite-state transducer (FST) (Aho
& Ullman; Koo et al.; Park et al.), transduces the text w ∈ Σ∗ into a terminal sequence T (w) ∈ Γ∗,
where Γ is the set of terminals. In syntax analysis, the parserP , usually modeled as a terminating de-
terministic push-down automaton (PDA) (Aho & Ullman), determines whether a terminal sequence
x ∈ Γ∗ is valid, here written as x ∈ P . So we have

w ∈ L ⇐⇒ T (w) ∈ P. (2)

2.2 FINITE-STATE TRANSDUCER

The lexer T is a finite-state transducer (FST). It reads in the input string w ∈ Σ∗ character by
character, and maintains a state q ∈ Q, where Q is the finite set of states. When reading in the input
character c ∈ Σ, the FST transits from state q to state q′ and outputs a terminal sequence t ∈ Γ∗,
written as q c:t−→

T
q′. It may also transit without reading in any character, written as q ε:t−→

T
q′.

2.3 PUSHDOWN AUTOMATA

The parser P is a pushdown automaton. It reads in the input terminals one by one, and maintains a
stack α ∈ Π+, where Π is the stack alphabet. Its action is determined by the stack α and the current
input terminal a ∈ Γ. (1) If the stack top α[0] belongs to the final states FP , the parser terminates and
accepts the input. (2) If the top 2 symbols α[:2] can perform an ε-transition, i.e., α[:2]

ε−→
P

β ∈ Π+,

the parser pops α[:2] to push β onto the stack. (3) If the top 2 symbols α[:2] can perform a transition
for the input terminal a, i.e., α[:2]

a−→
P

β, the parser pops α[:2] to push β onto the stack, and then

reads in the terminal a. (4) Otherwise, the parser terminates and rejects the input.

A parser stack α is stable if it is ready to read the next terminal or accepts the input, i.e., actions (1)
and (3) above. We write α

w
=⇒
P

∗ β if P processes the terminal sequence w ∈ Γ∗ and transits from

stack α to a stable stack β. The parser is deterministic if at any time the parser has only one possible
action. It is terminating if for any stack, it does not make an endless sequence of ε-transitions.

2.4 RELATED WORK

There are several types of existing techniques to speed up grammar-constrained decoding: vocabu-
lary preprocessing, lexer preprocessing, and parser preprocessing.

1To ease the presentation, the step of lexical analysis is omitted in previous sections. The term “parser” in
previous sections should be realized as the combination of the lexer and the parser defined here, and the term
“parser stack” should be realized as the concatenation of the lexer state and the parser state, which is a simple
state without internal structure, and a stack, respectively.
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Vocabulary preprocessing (Poesia et al.; Beurer-Kellner et al.; Moskal et al.) exploits the fact that
the vocabulary is built by BPE (Gage; Sennrich et al.), and for each token, its prefix is also a token
in the vocabulary. If the prefix token is rejected, then the longer token must also be rejected. So we
can check the vocabulary hierarchically, and only check the tokens whose prefixes are not rejected.

Lexer preprocessing (Beurer-Kellner et al.; Park et al.; Moskal et al.; Ugare et al.) maps each
token to a terminal sequence during preprocessing, and then the parser is only called on the terminal
sequences. This reduces the number of parser calls, as different tokens may share the same terminal
sequence. The mask can be precomputed for each terminal sequence, combined at runtime to get
the valid token mask. Syncode (Ugare et al.) further approximates the terminal sequences by only
considering the first 2 terminals of each token, removing the need for dynamic parsing using the
lookaheads of the LR(1) parser at the cost of allowing certain invalid tokens to be accepted.

Parser preprocessing (Dong et al.; Park et al.) classifies the vocabulary into three sets for each
parser state: context-independent accepted, context-independent rejected, and context-dependent.
This allows us to reduce the number of parser calls by only checking the context-dependent tokens.

These techniques can be combined to achieve better speedup (Beurer-Kellner et al.; Park et al.;
Moskal et al.). However, as mentioned in Section 1, these techniques are limited in their speedup
while maintaining correctness. There is no theoretical guarantee on how many parser calls will be
made per decoding step, which can be linear to the vocabulary size in the worst case.

3 PSC: PARSER STACK CLASSIFICATION

The preprocessing of the lexer T is described in Section 3.1, and the other parts of this section
are dedicated to the preprocessing of the parser P . Detailed algorithms and proofs are deferred to
Appendix A.3. A quick lookup table for the symbols, notations, and the exact definitions can
be found in Appendix A.2.

3.1 LEXICAL PREPROCESSING

Lexical preprocessing is not our focus in this paper, so we reuse the lexical preprocessing in Great-
Gramma (Park et al.), and conclude it here as a prelude to PSC.

For token v ∈ V , lexer state q ∈ Q, if lexing the token v from state q using the lexer T generates
the terminal sequence x ∈ Γ∗, and the lexer transits to state p, i.e. q v:x

==⇒
T

∗ p, we define the set of

realizable terminal sequences Rq(v) as {x}Tp, representing all possible terminal prefixes that can
be generated from a string starting with v, where Tp is the finite set of all possible terminal prefixes
from state p: Tp(Σ∗) = TpT (Σ∗). The set Rq(v) can be precomputed for every q ∈ Q, v ∈ V
during preprocessing.

3.2 OVERVIEW OF SYNTACTIC PREPROCESSING

Given a valid prefix x ∈ Σ∗, we run the lexer T from its initial state q0 to produce a terminal
sequence z ∈ Γ∗ and a new lexer state q: q0

x:z
==⇒
T

∗ q. We then run the parser P from its initial stack

γ0 to receive the terminal sequence z, and generates a new stack α: γ0
z
=⇒
P

∗ α.

We can now introduce the simplification of the condition in the GCD definition in Equations 1 and 2
from previous work (Park et al.). For any token v ∈ V , to determine whether v is valid, we can
rewrite the condition in terms of realizable terminal sequences,

∃y ∈ Σ∗, T (xvy) ∈ P ⇐⇒ ∃w ∈ Rq(v), ∃β ∈ Π+, α
w
=⇒
P

∗ β. (3)

The simplification is based on the common assumption that, if the parser reads in a certain terminal
sequence and enters a stable stack, then we do not need to worry about the rest of the input, and there
always exists a terminal sequence produced by the lexer that can ensure the whole text is accepted.

For w ∈ Γ∗, we define Pw(α) for the calculation in the last step of Equation 3,

Pw∈Γ∗(α ∈ Π+) :=
{
β ∈ Π+

∣∣∣α w
=⇒
P

∗ β
}
. (4)
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How to efficiently calculate Pw(α) is the key difference between PSC and previous methods.
In existing work, the calculation of Pw is almost always dynamic: one has to calculate Pw(α)
for the current α and every possible w ∈ Rq(V). While existing methods in Section 2.4 employ
precomputation to optimize certain cases, they still fundamentally require worst-case O(|Rq(V)|)
time for dynamic parsing if correctness is not sacrificed.

In this work, PSC proposes a totally different approach, modeling Pw as a deterministic finite-state
transducer (FST), which reads the stack sequence α ∈ Π+, and then outputs the sequence β ∈ Π+

if there is one, or rejects the input stack otherwise.

This gives us several benefits. Because each Pw reads and outputs a sequence of stack symbols, they
can be composed to create larger FSTs: Pt◦Ps = Pst. Because the realizable terminal sequences are
known during precomputation, the exact validity condition of each vocabulary is therefore known,
their combinations can be precomputed, and we only need to go through the current stack once
during runtime. All possible masks can also be precomputed, eliminating the mask generation
overhead during decoding.

The challenge here is whether and how each Pw can be constructed as a deterministic FST. This is
not straightforward because of the presence of ε-transitions in the PDA P . To address this, we first
construct Pε to handle all ε-transitions, and then construct Pw for any w ∈ Γ∗ based on Pε.

3.3 FST OF ε TRANSITIONS

In this section, we construct the FST Pε. Its input should be a stack, and the output is its stabilized
version, by repeatedly executing all needed ε transitions on the stack. The start state is ε, and
the final state is a special state FINAL. The set of all states is the minimum closure of the transitions
defined below, where each state represents the current known stack top. In Appendix A.3.1, we give
a proof that this is a finite set, thus forming a finite-state transducer (FST).

∀X ∈ Π, α
X:ε−−→
Pε

αX, if |α| < 2 and α[0] /∈ FP ;

α
ε:α−−→
Pε

FINAL, if α[:2]
a−→
P

β,∃a ∈ Γ or α[0] ∈ FP ;

α
ε:ε−−→
Pε

βα[2:], if α[:2]
ε−→
P

β;

∀X ∈ Π, FINAL
X:X−−−→
Pε

FINAL.

There are four types of transitions in Pε. (1) If one cannot determine whether the stack is stable
from the stack top α, it transits to a new state by reading the next stack symbol. (2) If the stack top α
is stable, it transits to the FINAL state to output the final stable stack. (3) Otherwise, it simulates the
transition of P on the current stack top α, and transits to a new state representing the new stack top
after executing the ε transition. (4) In the FINAL state, it always outputs the input stack unchanged.

Pε is an important building block in the construction of other Pw, w ∈ Γ+. For any stack α, Pε(α)
gives the stabilized version of α, so the FST composed after Pε does not need to handle ε transitions,
and we can compose Pε after other FSTs to meet the stability requirement in the definition of Pw.

3.4 FST FOR ANY TERMINAL SEQUENCE

After constructing Pε, the construction of Pw for any terminal sequence w ∈ Γ+ is fairly simple.

We first construct an FST P̃a for every a ∈ Γ that simulates a single transition labeled a, i.e.
outputting β for the input stack α if α a−→

P
β. Note that the output stack is not required to be stable.

The start state is ε, the final state is FINAL, and the transitions are defined as follows.

ε
X:ε−−→
P̃a

X
Y :ε−−→
P̃a

XY
ε:β−−→̃
Pa

FINAL, ∀XY
a−→
P

β; FINAL
X:X−−−→
P̃a

FINAL, ∀X ∈ Π.

For any terminal sequence w = w1 . . . wn ∈ Γ+, the FST Pw can be constructed as follows.

Pw = Pε ◦ P̃w1 ◦ Pε ◦ · · · ◦ Pε ◦ P̃wn ◦ Pε. (5)

5
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Intuitively, the input stack α, is first passed to Pε to get a stable stack, and then passed to P̃w1
to get

the stack after reading w1, and then passed to Pε to get the stabilized version, etc, until it is passed
to P̃wn

and stabilized with Pε. Relevant algorithms and proofs are given in Appendix A.3.2.

When calculating the mask, we only care about whether Pw(α) ̸= ∅. Removing all the output labels
from Pw gives us a finite-state automaton, hereafter named Aw.

3.5 ONE-PASS FSA FOR MASK SELECTION

After constructing Pw for all realizable terminal sequences w ∈ R(V), we can now consider sim-
plifying the constraint calculation over the whole vocabulary V . Recall Equation 1, combined with
Equation 3 and Aw, we have the following equation,

c(x ∈ Σ∗) = {v ∈ V|∃w ∈ Rq(v), Pw(α) ̸= ∅} = {v ∈ V|∃w ∈ Rq(v), α ∈ Aw} ,

where q and α as defined in Section 3.2 are only dependent on x.

In c(x), we want to know whether any of the Aw accepts α, where w ∈ Rq(v). This can be achieved
by constructing the union of different Aw, i.e.,

⋃
w∈Rq(v)

Aw.

For different tokens v ∈ V , we need to check whether α is accepted by
⋃

w∈Rq(v)
Aw. But to get

the whole mask c(x), we need to check for every v ∈ V , which is inefficient. To address this issue,
we can integrate the checking of v and q into the FSA. Introduce the notation Ba for an FSA that
accepts only a once. For every q ∈ Q and v ∈ V , we can concatenate Bq before

⋃
w∈Rq(v)

Aw to
check whether the current state is q, and then concatenate Bv after

⋃
w∈Rq(v)

Aw to check whether
the candidate token is v.

By unioning the results for all v ∈ V and q ∈ Q, we construct an FSA A that accepts the sequence
qαv only if v is a valid token for the lexer state q and stack α,

A :=
⋃
v∈V

⋃
q∈Q

⋃
w∈Rq(v)

BqAwBv, c(x) = {v ∈ V|qαv ∈ A} , (6)

where A should be determinized and minimized. This gives us the following theorem.

Theorem 1. All (lexer state, parser stack) pairs that accept a given token form a regular language.

In Equation 6, we can precompute all possible result of c, i.e. all possible vocabulary masks, by
considering acceptable vocabulary set As :=

{
v ∈ V

∣∣∣s v−→
A

fA
}

for every state s in A where fA is

the final state of A.

We summarize the offline construction process of PSC in Algorithm 1, and the online execution
process in Algorithm 2. In Algorithm 2, both the lexing step 2 and the parsing step 3 are standard
in grammar-constrained decoding, and can be incrementally maintained. In Step 4, the FSA A is
run on the stack α and the lexer state q to get the state s, only requiring O(|α|) time. Step 5 can be
precomputed to be O(1) at runtime.

Algorithm 1 Offline constructon in PSC

1: function OFFLINECONSTRUCTION(T ,P,V)
2: Pε ← EPSILONFST(P)
3: for all a ∈ Γ do
4: P̃a ← TERMINALFST(P, a)
5: for all w = w1 . . . wn ∈ R(V) do
6: Pw ← Pε◦P̃wn◦Pε◦· · ·◦Pε◦P̃w1◦Pε

7: Aw ← REMOVEOUTPUT(Pw)
8: A ←

⋃
v∈V

⋃
q∈Q

⋃
w∈Rq(v)

BqAwBv

9: A ← MINIMIZE(A)
10: return A

Algorithm 2 Online execution of PSC

1: function ONLINEEXECUTION(T ,P,A, x)
2: qT0

x:z
==⇒
T

∗ q

3: γ0
z
=⇒
P

∗ α

4: qA0
qα
==⇒
A

∗ s

5: return As

6
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

All grammar-constrained decoding methods essentially perform the same task: compute the valid
token mask at each decoding step. The valid token mask is theoretically the same for all meth-
ods, so we focus on comparing the efficiency of mask computation in our experiments. The
usefulness of grammar-constrained decoding is shown in previous work (Geng et al., b; Scholak
et al.; Poesia et al.; Ugare et al.); nevertheless, we replicate the downstream task performance of
PSC (which is the same as other GCD methods) in Appendix A.6.

We conduct two sets of experiments to evaluate each method:

• Overhead of mask computation (without model inference).
• End-to-end throughput (with model inference).

In all experiments, we use teacher-forcing during evaluation, i.e., we always use the oracle next
token at each decoding step, to ensure that all methods are evaluated under the same conditions
and can be fairly compared.

Datasets There is no standard benchmark for evaluating grammar-constrained decoding methods.
We choose two representative tasks that require grammar-constrained decoding: code generation in
Java, Go, and SQL, and JSON generation with specified JSON schemas. For each task, we construct
the evaluation dataset as described in Appendix A.4, with 1000 samples for each programming
language and 1000 schemas for schema-conformant JSON generation. There are a total of 1337
positive samples and 2072 negative samples in the JSON dataset, and each schema has at least one
positive sample and one negative sample.

Baselines We consider several recent state-of-the-art grammar-constrained decoding methods with
open-source implementations as baselines, including XGrammar (Dong et al.), GreatGramma (Park
et al.), Formatron (Sun et al.), and LLGuidance (Moskal et al.). Detailed descriptions of these
baselines are included in Appendix A.5.

Implementation We implement PSC in roughly 1100 lines of Python. Similar to previous
work (Ugare et al.; Park et al.), we use the Lark parser(lar) to construct the lexer and the LALR(1)
parser from the grammar. As described in Section 3.1, we reuse the lexer construction in Great-
Gramma (Park et al.), since this is not our focus in this paper.

Execution environment We conduct our experiments on a machine with 8 NVIDIA A100 GPUs
(40 GB Memory), 2 Intel Xeon Gold 6348 CPUs (2.6GHz, 56 cores), and 512 GB RAM. To ensure
fairness, we run all the experiments with a single GPU and a single CPU thread.

4.2 OVERHEAD OF MASK COMPUTATION

Metrics In this experiment, we measure the overhead of mask computation for each GCD method.
We ignore the time taken to transfer the mask to the GPU and apply it to the logits, because this is
the same for all methods2. For each method, we measure:

• Average overhead: The time of computing the CPU mask tensor at each decoding step.
• Sample pass rate: The proportion of samples that are correctly processed by each method3.

Models We evaluate the overhead on three open-source LLM series with different vocabulary
sizes: Llama 3 (Grattafiori et al.) (128k vocabulary size), Qwen 2.5 (Bai et al.) (151k vocabulary
size), and Gemma 3 (Gemma Team et al.) (262k vocabulary size). We only use the tokenizers,
because the overhead of mask computation is independent of other model components.

2In PSC, one can preload all the mask tensors on the GPU memory before decoding begins, eliminating the
transfer overhead. However, the transfer overhead is usually too small to justify the extra GPU memory usage.

3If the oracle token is masked, the sample is counted as rejected by the method. A positive sample is counted
as passed if it is not rejected, and a negative sample is counted as passed if it is rejected.
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Table 1: Average overhead (microseconds) of computing the mask per token in GCD tasks using
different methods. The symbol X indicates the parser reports an error during mask calculation. Text
in bold indicates the best performance, and text in underline indicates the second best performance.

Model Method Grammar
Java Go SQL JSON Schemas

Llama 3
|V| = 128256

XGrammar 309514.2 281500.9 324663.6 26257.6
Formatron 393540.4 Xa 303974.1 Xa

GreatGramma 21402.8 27220.9 20954.5 8556.2
LLGuidance 1352.4 Xb 826.1 72.7
PSC (Ours) 2.4 2.5 2.6 2.3

Qwen2.5
|V| = 151665

XGrammar 302421.9 278333.4 299968.6 29470.0
Formatron 378921.0 Xa 253311.9 Xa

GreatGramma 24570.9 27649.8 24053.9 11038.4
LLGuidance 1408.2 Xb 865.2 72.1
PSC (Ours) 2.4 2.5 2.5 2.2

Gemma 3
|V| = 262145

XGrammar 649321.1 458952.0 416625.0 54164.4
Formatron 696144.6 Xa 444810.0 Xa

GreatGramma 43218.6 48354.0 40026.9 25717.3
LLGuidance 1802.6 Xb 1180.8 72.1
PSC (Ours) 2.3 2.5 2.4 2.3

a Formatron stops responding on multiple samples, so we terminate the process.
b LLGuidance reports ParserTooComplex error.

Overhead results The average overhead is shown in Table 1. PSC significantly outperforms all the
baselines across all grammars and models, being 310 to 700 times faster on complex programming
language grammars compared to the best baseline, LLGuidance, and generally 30 times faster on
the relatively simple JSON schema grammar.

The overhead of baselines is significantly larger on Gemma 3 than that on the other models4, because
Gemma 3 has a much larger vocabulary size (262k) than the other two models (128k and 151k), and
the time complexity of all methods except PSC is roughly linear to the vocabulary size. In contrast,
the performance of PSC is stable across different grammars and models, because its time complexity
is independent of the vocabulary size.

Sample pass rate results The sample pass rates are shown in Table 2. PSC achieves a high pass
rate across all grammars and models, very close to 100%. After analyzing the error cases, we find
that they are all directly rejected by the GreatGramma lexer we adopt, but no error is caused by PSC
itself. We notice the strangely low sample pass rate of Formatron on SQL, and find that Formatron
refuses to accept the column alias in the query, resulting in frequent rejections.

4.3 END-TO-END THROUGHPUT

Settings In this experiment, we run the actual model inference using the vLLM library (Kwon
et al.), and measure the throughput, i.e., the number of tokens processed per second, of the entire
decoding process, considering both the time taken by mask computation and model inference. We
only consider the accepted samples of each method. We compare PSC with the fastest baseline
LLGuidance in the previous section, and also include the throughput when not using any constraint
decoding method as a reference, under various batch sizes of 1, 2, 4, ..., 256.

Models We use the smallest models in the three model series to highlight the overhead of con-
straint decoding. On these models, the model inference time is relatively small, making the over-

4The performance of LLGuidance on JSON Schemas is roughly the same across different models, probably
because the grammar is simple enough that the vocabulary size does not significantly affect the performance.
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Table 2: How many samples are correctly processed by each method. The symbol X indicates the
parser reports an error during mask calculation. Text in bold indicates the best performance, and
text in underline indicates the second best performance.

Model Method Grammar
Java Go SQL JSON Schemas

Llama 3

XGrammar 99.7% 100.0% 99.7% 100.0%
Formatron 99.4% X 67.0% X
GreatGramma 100.0% 99.9% 97.1% 99.6%
LLGuidance 100.0% X 99.9% 99.9%
PSC (Ours) 100.0% 99.9% 99.9% 99.6%

Qwen2.5

XGrammar 99.7% 100.0% 99.7% 100.0%
Formatron 99.4% X 67.0% X
GreatGramma 100.0% 99.9% 97.2% 99.6%
LLGuidance 100.0% X 99.9% 99.9%
PSC (Ours) 100.0% 99.9% 99.9% 99.6%

Gemma 3

XGrammar 99.7% 100.0% 99.7% 100.0%
Formatron 100.0% X 67.3% X
GreatGramma 100.0% 99.9% 97.2% 99.6%
LLGuidance 94.0% X 99.9% 99.9%
PSC (Ours) 100.0% 99.9% 99.9% 99.6%

head of constraint decoding more pronounced. Specifically, we use Llama 3 1B, Qwen 2.5 0.5B,
and Gemma 3 270M. We also include Qwen 2.5 7B to see the effect of model size on throughput.
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Figure 2: End-to-end throughput (tokens per second) on the Java dataset using different methods on
different models with various batch sizes.
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Figure 3: End-to-end throughput (tokens per second) on the schema-conformant JSON dataset
using different methods on different models with various batch sizes.

Results The end-to-end throughput results on Java and schema-conformant JSON datasets are
present in Figures 2 and 3, respectively. The results on the Go and SQL datasets are similar to those
on the Java dataset, included in Appendix A.7.

On all datasets, PSC consistently outperforms LLGuidance across all models and batch sizes, and
is very close to the performance of unconstrained decoding. The difference is more pronounced on
the Java dataset, where the grammar is more complex, leading to higher overhead for LLGuidance.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 3: Preprocessing overhead of PSC on different grammars.

Metrics Model Grammar
Java Go SQL JSON Schemas

Time
(seconds)

Llama 3 466.9 1171.7 4662.7 28.3
Qwen2.5 464.5 1166.8 4770.0 28.6
Gemma 3 472.1 1362.2 1367.4 53.2

Memory
(GiB)

Llama 3 40.8 87.7 255.3 3.04
Qwen2.5 40.4 86.6 254.2 3.13
Gemma 3 36.0 88.8 188.7 5.95

Disk Space
(MiB)

Llama 3 13.27 28.16 58.95 0.54
Qwen2.5 12.70 28.37 57.60 0.51
Gemma 3 13.13 33.52 24.04 0.76

As the model size increases, the difference in throughput becomes smaller, because the model in-
ference time becomes more dominant. However, since smaller models are less capable, grammar-
constrained decoding is probably more useful for smaller models to ensure the syntactic correctness.

As the batch size increases, the difference in throughput becomes larger, because the average model
inference time per token decreases with larger batch sizes, indicating that the overhead introduced
by constraint decoding becomes more pronounced at larger batch sizes.

5 DISCUSSION

In this section, we discuss the preprocessing overhead of PSC, including the time, memory footprint
of preprocessing, and the disk usage of preprocessing results. We compress the preprocessing results
to disk with zstandard (Collet & Kucherawy, 2021) to avoid redundant preprocessing.

The preprocessing overhead is presented in Table 3. For JSON schemas, the average preprocessing
time is around half to one minute per schema, and the memory footprint is around 3 GiB for Llama 3
and Qwen2.5, and around 6 GiB for Gemma 3. The disk usage is around half to one megabyte after
compression. This is quite practically reasonable, allowing for quick adaptation to new schemas.

For the programming language grammars, the preprocessing time ranges from around 8 minutes for
Java to around 1.3 hours for SQL. The memory footprint ranges from around 40 GiB for Java to
around 250 GiB for SQL. The disk usage is generally tens of megabytes after compression.

While the preprocessing overhead for programming language grammars is higher than that for JSON
schemas, it is still acceptable as it only needs once per grammar and vocabulary pair, and the gram-
mars of programming languages are typically stable. The preprocessing results can be redistributed,
so users can be free from the preprocessing overhead. The memory footprint, although high, is still
feasible on modern machines with large memory capacity, and it can be done on cloud instances if
needed. Also, the memory usage can potentially be reduced by implementation optimization. See
Appendix A.8 for more discussion on the balance between preprocessing and runtime overhead.

Overall, the preprocessing overhead is generally manageable for practical applications.

6 CONCLUSION

In this paper, we present PSC, a novel approach for grammar-constrained decoding. By construct-
ing the exact requirements on the parser stack for each vocabulary token, PSC can determine the
valid tokens at each decoding step by a single pass through the parser stack. Our experimental re-
sults demonstrate that PSC achieves significant speedup over existing methods, and the end-to-end
throughput of PSC approaches that of unconstrained decoding. This makes PSC a practical choice
for real-world applications that require grammar-constrained decoding. In future, we plan to ex-
plore other types of grammars and constraints that can be efficiently handled by PSC, as well as
other optimizations to further improve its efficiency and scalability.
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7 REPRODUCIBILITY STATEMENT

We open-source the code to facilitate reproducibility of our results at https://anonymous.
4open.science/r/PSC-E43E. It includes the implementation of PSC, the datasets used in
the experiments, the scripts to run the experiments and generate the results in the paper, and the
preprocessing results built from the grammars used in our experiments. The proofs of statements
in the main text are included as Appendix A.3. The details in dataset construction are included as
Appendix A.4.
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Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava,
Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ra-
gavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa-
hana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang
Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang,
Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin
Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Geor-
giou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj
Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do,
Vish Vogeti, Vı́tor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney
Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng
Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yi-
wen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengx-
ing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam
Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex
Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam
Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poul-
ton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu,
Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel
Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Di-
ana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa
Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik
Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Fil-

13

https://github.com/features/copilot
https://github.com/features/copilot


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

ippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Med-
ina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou,
Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren,
Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leon-
tiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam,
Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy
Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill,
Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou
U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraragha-
van, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang,
Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo,
Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt,
Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini San-
thanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas
Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz,
Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji,
Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchan-
dani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin
Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Ma-
hajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,
Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,
Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun
Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victo-
ria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,
Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,
Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv
Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The
Llama 3 Herd of Models. URL http://arxiv.org/abs/2407.21783.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley Series in Computer Science and Information Processing. Addison-
Wesley. ISBN 978-0-201-02988-8.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Yacine Jernite, Margaret
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A APPENDIX

A.1 LLM USAGE

We used DeepSeek and GitHub Copilot for code assistance, paper writing, and proofreading. How-
ever, all the technical content, ideas, algorithms, and experimental results in this paper are our own
work. We carefully reviewed and verified all the content generated by LLMs to ensure they are
accurate and directly reflect our own ideas.

A.2 FORMAL DEFINITIONS AND NOTATIONS

Table 4: Symbols and their meaning.

Symbol Meaning

ε empty string
ab concatenation of strings a and b
AB concatenation of languages A and B
Aε A ∪ {ε}
A∗ Kleene star of language A
A+ A∗ \ {ε}
Σ the character set (usually the Unicode) used by the language model
Γ the terminal set of the grammar

V the vocabulary of the language model, a finite subset of Σ+

such that every string over Σ can be tokenized as a string over V
T the lexing FST, transduces string over Σ to terminal sequence over Γ
Q the finite set of states of the lexing FST
P the parsing PDA, accepts terminal sequences in the language
Π the stack alphabet of the PDA

We include a list of symbols and their meanings in Table 4 for reference.

A.2.1 FINITE-STATE TRANSDUCER (FST)

A finite-state transducer (FST) (Aho & Ullman) T is defined by a finite set of states Q, the input
alphabet Σ, the output alphabet Γ, the start state q0 ∈ Q, the final states F ⊆ Q, and transitions
δ : Q × Σε → 2Γ

∗×Q. If δ(q, a) ∋ (y, q′), we write q
a:y−−→
T

q′. We write −→∗ for consecutive

transitions. For q ∈ Q, we write q
ε:ε−−→
T

∗ q. For q s:x−−→
T

∗ q′ and q′
t:y−−→
T

q′′, we write q
st:xy−−−→
T

∗ q′′.

Informally, an FST is deterministic, if from any state, for any given string, there is exactly one
possible outcome. T is deterministic if, for all q ∈ Q, either |δ(q, a)| ≤ 1,∀a ∈ Σ and δ(q, ε) = ∅,
or δ(q, a) = ∅, ∀a ∈ Σ and δ(q, ε) = 1.

For w ∈ Σ∗, q ∈ Q, we define Tq(w) as
{
v ∈ Γ∗

∣∣∣∃q′ ∈ F, q
w:v−−→
T

∗ q′
}

, meaning the possible

outcomes when we feed w into T starting from the state q. When T is deterministic and v ∈ T (w),
we also write T (w) = v. For W ⊆ Σ∗, we define Tq(W ) as

⋃
w∈W Tq(w). q defaults to q0 when

omitted.

We call a state q ∈ Q stable if the FST does not need to take any immediate action on q, i.e.
δ(q, ε) = ∅. If q s:t−→

T
∗ q′ and q′ is stable, we also write q

s:t
==⇒
T

∗ q′.

Given two FSTs S and T where the output alphabet of S is the input alphabet T , ΓS = ΣT , their
composition is a new FST S ◦ T by feeding the output of S into the input of T .
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A.2.2 FINITE-STATE AUTOMATON (FSA)

A finite-state automaton (FSA) A can be defined by removing all output labels from an FST. We
say A accepts w ∈ Σ∗ from state q if Aq(w) ̸= ∅, and write w ∈ Aq , and q defaults to q0 when
omitted. Two FSAs are equivalent if they accept the same language.

A is deterministic if there is no ε transition in δ. Every nondeterministic FSA can be determinized
into an equivalent deterministic FSA (Hopcroft & Ullman), and every deterministic FSA can be
minimized into an equivalent deterministic FSA with the smallest number of states (Hopcroft &
Ullman).

The union of two FSAs A and B is a new FSA A ∪ B that accepts any sequence that is accepted by
either A or B.

The concatenation of two FSAs A and B is a new FSA AB that accepts any sequence that can be
split into two parts x = yz, where A accepts the first part y and B accepts the second part z.

A.2.3 PUSH-DOWN AUTOMATON (PDA)

A push-down automaton (PDA) (Aho & Ullman; Hopcroft & Ullman; Caucal & Monfort) P is
defined by the input alphabet Γ, the stack alphabet Π, the initial stack γ0 ∈ Π2, the final states
F ⊆ Π, and a finite set of transitions δ : Π2 × Γε → 2Π

+

. Note that the definition here merges the
states and the stack symbols in the traditional definition of PDA, but they are equivalent if we treat
the stack top symbol as the state. If δ(α, a) ∋ β, we write α

a−→
P

β. If α a−→
P

β, for any γ ∈ Π∗, we

also write αγ
a−→
P

βγ. We write −→∗ for consecutive transitions. For γ ∈ Π+, we write γ
ε−→
P

∗ γ. If

α
a−→
P

β, β w−→
P

∗ γ, we write α
aw−−→
P

∗ γ.

Informally, a PDA is deterministic, if from any stack, for any given string, there is exactly one
possible outcome. P is deterministic if, for any α ∈ Π2, either |δ(α, a)| ≤ 1, ∀a ∈ Γ and δ(α, ε) =
∅, or δ(α, a) = ∅,∀a ∈ Γ and |δ(α, ε)| = 1.

A deterministic PDA is terminating, if for any stack, it does not make an endless sequence of ε-
input transitions.5 Every deterministic PDA can be transformed into another equivalent deterministic
terminating PDA (Sipser; Hopcroft & Ullman).

We call a state β = β1 . . . βn ∈ Π+ stable if β1 is a final state, i.e. β1 ∈ F , or the PDA is waiting
to read one more symbol, i.e. ∃a ∈ Γ, δ(β1β2, a) ̸= ∅. If α w−→

P
∗ β and β is stable, we also write

α
w
=⇒
P

∗ β. In practice, parser in a stable state is ready to consume the next input symbol, or has

reached an accepting stack.

For α ∈ Π+, we define Pα as
{
w ∈ Γ∗

∣∣∣∃X ∈ F,∃γ ∈ Π∗, α
w
=⇒
P

∗ Xγ
}

. α defaults to γ0 when

omitted.

A.3 ALGORITHMS AND PROOFS

In this section, we provide the exact algorithms of FST construction and proofs of their correctness.

5The definition is slightly different in the cited references; nevertheless, their proof works on this definition.
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A.3.1 FST OF ε TRANSITIONS

Algorithm 3 Construct FST Pε

1: function EPSILONFST(P)
2: for all X ∈ Π do
3: FINAL

X:X−−−→
Pε

FINAL

4: Q← {ε}
5: while let α ∈ Π∗, Q← POP(Q) do
6: if α ∈ FPΠ

∗ then
7: α

ε:α−−→
Pε

FINAL

8: else if |α| < 2 then
9: for all X ∈ Π do

10: α
X:ε−−→
Pε

αX

11: Q← Q ∪ {αX}
12: else
13: let α0γ = α,

where α0 ∈ Π2, γ ∈ Π∗

14: if α0
ε−→
P

β then

15: α0γ
ε:ε−−→
Pε

βγ

16: Q← Q ∪ {βγ}
17: else if α0

a−→
P

β then

18: α
ε:α−−→
Pε

FINAL

19: return Pε

The algorithm for constructing the transitions of Pε is presented in Algorithm 3. We have the
following theorem regarding the correctness of Algorithm 3.
Theorem 2. Algorithm 3 constructs a finite-state transducer Pε as defined in Equation 4.

Proof. First we show that the states of Pε are finite, i.e. Algorithm 3 terminates. Consider the
two steps in Algorithm 3 that add new states. Step 11 can only adds states in Π ∪ Π2, so step 11
is only executed a finite number of times. As for Step 16, because the parser P is deterministic
and terminating, by definition in Appendix A.2.3, for any stack configuration, there will not be an
endless sequence of ε transitions, so Step 16 is also only executed a finite number of times.

The correctness of Algorithm 3 can be naturally deduced by its construction, because it simply
simulates the behavior of the parser P with the current stack top, and only outputs the stack when it
is stable.

A.3.2 FST OF ANY TERMINAL SEQUENCE

Algorithm 4 Construct FST P̃a for terminal a ∈ Γ

1: function TERMINALFST(P, a)
2: for all X ∈ Π do
3: FINAL

X:X−−−→
P̃a

FINAL

4: for all XY
a−→
P

β do

5: ε
X:ε−−→
P̃a

X
Y :ε−−→
P̃a

XY
ε:β−−→̃
Pa

FINAL

6: return P̃a
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The algorithm for constructing the transitions of P̃a is presented in Algorithm 4. We have the
following theorem regarding the correctness of Algorithm 4 and Equation 5.

Theorem 3. The above construction of Pw meets the definition in Equation 4.

Proof. Formally, P̃a can be defined as follows:

P̃a(α ∈ Π+) :=
{
β ∈ Π+

∣∣∣α a−→
P

β
}
. (7)

The construction of P̃a in Algorithm 4 trivially simulates one a-labelled transition of the parser P
on the current stack top, so it meets Equation 7.

The process of the parser processing w = w1 . . . wn can be decomposed into a sequence of uncon-
ditional ε-transitions, followed by wi-labelled transitions, followed by another sequence of uncon-
ditional ε-transitions. Each wi-labelled transition is simulated by the corresponding P̃wi , and the
unconditional ε-transitions are handled by Pε. Therefore, the composition Pw = Pε ◦ P̃w1

◦ Pε ◦
· · · ◦Pε ◦ P̃wn

◦Pε correctly simulates the parser P processing the terminal sequence w on the input
stack α, and produces the stabilized output stack β if it exists.

A.3.3 PROOF OF THEOREM 1

Proof. Because A is constructed as a FSA, the language recognized by A is regular. The language
of all valid (lexer state, parser stack) pairs for a given token v ∈ V can be obtained by reversing
the language recognized by A, taking the Brzozowski derivative (Brzozowski, 1964) with respect
to v, and then reversing it back. Since the class of regular languages is closed under these opera-
tions (Hopcroft & Ullman), the resulting language is also regular.

A.4 DATASET CONSTRUCTION DETAILS

Java, Go, and SQL We obtain their Lark grammars from the previous work Syncode (Ugare
et al.). Because the grammar format for XGrammar and Formatron is different from Lark, we man-
ually convert the Lark grammars to respective formats for each baseline. For each programming
language, we take the first 1000 samples from the Stack dataset (Kocetkov et al.) that can be suc-
cessfully parsed by the Lark parser to construct the evaluation dataset.

JSON Schemas We use the benchmark dataset MaskBench (mas), an extension of JSON Schema
Bench (Geng et al., a) by adding schema conformant and non-conformant JSON instances to each
schema. We generate the Lark grammar from the JSON schemas using the script provided in
MaskBench, and only use the schemas in MaskBench where the Lark parser can successfully parse
all the conformant JSON instances and reject all the non-conformant JSON instances. We then
randomly sample 1000 schemas for evaluation.

A.5 DESCRIPTION OF BASELINES IN EXPERIMENTS

We describe the baselines used in our experiments in detail.

• XGrammar (Dong et al.) uses a character-level non-deterministic PDA6. For each state,
it precomputes the context-independent accepted and rejected tokens, and only calls the
parser for the context-dependent tokens.

• GreatGramma (Park et al.) uses a lexer and a parser. It converts each token into all possible
terminals sequences and reduces the number of parser calls by sharing the parser calls
among tokens with the same terminal sequence. After computing the accepted terminal
sequences, it maps them back to the original tokens. It also precomputes the context-
dependent and context-independent terminal sequences for each parser state.

6In the latest implementation that we use in the experiments, this has been changed to an Earley (Earley)
parser.
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• Formatron (Sun et al.) uses an Earley parser. It dynamically identifies and eliminates
invalid or redundant parser states during parsing, and uses a state cache to speed up the
repetitive parsing process.

• LLGuidance (Moskal et al.) uses a lexer and an Earley parser. It organizes the vocabulary
into a trie, and skips the whole subtree if the prefix token is rejected. It also leverages the
lexer on the vocabulary to pre-identify the terminal sequences.

A.6 DOWNSTREAM PERFORMANCE OF GRAMMAR-CONSTRAINED DECODING

Our method PSC significantly speeds up the mask computation in grammar-constrained decoding.
It calculates the same valid token masks as existing GCD methods, so its performance on down-
stream tasks should be similar to theirs, and we should observe similar downstream task perfor-
mance improvements over unconstrained decoding. To verify this, we replicate the downstream task
experiments from Syncode (Ugare et al.), comparing PSC with unconstrained decoding.

A.6.1 JSON GENERATION

We replicate the schema-conformant JSON generation task from Syncode (Ugare et al.).

Dataset We use the JSON-Mode-Eval (NousResearch) dataset, which contains 100 samples of
natural language instructions, each paired with a JSON schema and the corresponding correct JSON
output. During checking, we found the oracle answer of sample 39 simply copies the schema (which
is valid JSON but clearly not the intended output), so we exclude this sample from evaluation.
When we generate the grammar from the JSON schema, we found that our script (obtained from
MaskBench (mas), as described in Appendix A.4) fails to generate a valid grammar for certain
schemas. To address this, we replace the schemas of sample 19, 24, 27, 33, 45 and 72 with the
equivalent schemas supported by our grammar generation script; the schemas of sample 1, 15, 22,
90 and 97 cannot be converted to equivalent schemas supported by our grammar generation script, so
we only enforce the JSON grammar on these samples. The exact schemas used in our experiments
are provided in the open-sourced code.

Settings We compare three methods: unconstrained decoding (Standard), grammar-constrained
decoding (with PSC) using only the JSON grammar (not specific to the schema) (GCD + JSON
Grammar), and grammar-constrained decoding (with PSC) using the grammar generated from the
JSON schema (GCD + JSON Schema). For the unconstrained decoding, we found that the generated
JSON are often wrapped in code blocks (e.g. ‘‘‘json ... ‘‘‘), so we strip such code block
markers before checking the validity of the generated JSON.

Models We use the instruct-tuned versions of Llama 3.2 1B, Qwen2.5 0.5B and Gemma 3 270M
models. The same base models are used in our main experiments, and we use their instruct-tuned
versions because the prompts contain chat-style instructions.

Metrics The generated JSON is considered correct if and only if it can be converted to a JSON
object that exactly matches the oracle answer. For each sample, we generate 1 JSON output with
greedy decoding, and generate 50 outputs with sampling (temperature 1.0, no top-p or top-k filter-
ing). We report the pass@k metric (Chen et al.) for k = 1, 3, 5, 10, 20, 50. For pass@1, we use the
greedy decoding result; for pass@k where k > 1, we use the sampling results.

Results The results are presented in Table 5. For all the models tested, grammar-constrained de-
coding with PSC using the grammar generated from the JSON schema (GCD + JSON Schema)
significantly outperforms unconstrained decoding (Standard) and grammar-constrained decoding
using only the JSON grammar (GCD + JSON Grammar). This confirms that grammar-constrained
decoding can effectively improve the performance of LLMs on schema-conformant JSON genera-
tion tasks, and PSC can achieve this improvement while significantly speeding up the existing GCD
methods.
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Table 5: The pass@k scores (%) of different methods on generation of schema-conformant JSON
using grammar-constrained decoding and unconstrained decoding (Standard). For the grammar-
constrained decoding methods, we use PSC to compute the valid token masks. The GCD + JSON
Grammar method uses only the JSON grammar (not specific to the schema), while the GCD + JSON
Schema method uses the grammar generated from the JSON schema.

Model Method pass@k
1 3 5 10 20 50

Llama 3.2 1B
instruct-tuned

Standard 55.6 53.9 60.0 67.1 73.5 80.8
GCD + JSON Grammar 56.6 55.9 61.9 68.1 73.7 80.8
GCD + JSON Schema 68.7 70.9 74.2 78.0 81.4 84.8

Qwen2.5 0.5B
instruct-tuned

Standard 64.7 66.3 69.7 73.1 75.9 80.8
GCD + JSON Grammar 64.7 67.0 70.8 74.8 77.8 81.8
GCD + JSON Schema 67.7 69.8 73.0 77.2 81.2 85.9

Gemma 3 270M
instruct-tuned

Standard 28.3 31.3 33.5 36.1 38.9 44.4
GCD + JSON Grammar 29.3 33.2 35.6 38.6 41.4 45.5
GCD + JSON Schema 56.6 62.1 64.2 66.2 67.6 68.7

A.6.2 TEXT-TO-SQL GENERATION

We replicate the text-to-SQL generation task from Syncode (Ugare et al.).

Dataset We use the Spider (Yu et al., 2018) dataset, which contains 1,034 text-to-SQL samples in
the development set, the same as used in Syncode (Ugare et al.).

Settings We compare two methods: unconstrained decoding (Standard) and grammar-constrained
decoding (with PSC) using the SQL grammar (GCD).

Models We use the same models as in the main experiments: Llama 3.2 1B, Qwen2.5 0.5B and
Gemma 3 270M. We carefully construct the same prompt as in Syncode (Ugare et al.). Since
the prompt does not contain chat-style instructions, we use the base versions of these models (not
instruct-tuned).

Metrics We use the standard execution accuracy (Exec Acc) (Zhong et al., 2020) metric for evalu-
ation, the same as used in Syncode (Ugare et al.). We use greedy decoding to generate 1 SQL query
for each sample, which is the default setting in Syncode (Ugare et al.).

Grammar During the experiments, we found that the SQL grammar used in Syncode (Ugare
et al.) cannot parse the NOT operator in the boolean expressions, making some valid SQL queries
unparsable. We fixed this issue by adding the NOT operator to the grammar. The fixed grammar is
provided in the open-sourced code.

Results The results are presented in Table 6. For all the models tested, grammar-constrained de-
coding with PSC using the SQL grammar significantly outperforms unconstrained decoding (Stan-
dard). This confirms that grammar-constrained decoding can effectively improve the performance of
LLMs on text-to-SQL generation tasks, and PSC can achieve this improvement while significantly
speeding up the existing GCD methods.

A.6.3 CODE GENERATION

We replicate the code generation task from Syncode (Ugare et al.).

Dataset We use the Go subset of Multilingual HumanEval (Athiwaratkun et al.; Chen et al.)
dataset, which contains 160 samples.
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Table 6: The execution accuracy of different methods of text-to-SQL generation on the Spider
dataset using grammar-constrained decoding (GCD) and unconstrained decoding (Standard). For
the grammar-constrained decoding methods, we use PSC to compute the valid token masks.

Model Method Execution accuracy
Easy Medium Hard Extra Hard Overall

Llama 3.2 1B Standard 35.9 25.3 14.9 6.6 23.1
GCD 38.7 27.8 14.9 6.6 24.9

Qwen2.5 0.5B Standard 31.0 24.0 13.2 6.6 21.1
GCD 31.0 24.2 13.2 6.6 21.2

Gemma 3 270M Standard 0.4 0.4 0.0 0.6 0.4
GCD 1.6 1.3 0.6 1.8 1.4

Settings We compare two methods: unconstrained decoding (Standard) and grammar-constrained
decoding (with PSC) using the Go grammar (GCD).

Models We use the same models as in the main experiments: Llama 3.2 1B, Qwen2.5 0.5B and
Gemma 3 270M. We use the base versions of these models (not instruct-tuned), because this is a
code completion task, and the prompt does not contain chat-style instructions.

Metrics We use the standard pass@k metric (Chen et al.) for evaluation. For each sample, we
generate 1 code completion with greedy decoding, and generate 50 completions with sampling (tem-
perature 1.0, no top-p or top-k filtering). We report the pass@k metric for k = 1, 3, 5, 10, 20, 50.
For pass@1, we use the greedy decoding result; for pass@k where k > 1, we use the sampling
results.

Table 7: The pass@k scores (%) of different methods on Multilingual HumanEval Go dataset using
grammar-constrained decoding (GCD) and unconstrained decoding (Standard). For the grammar-
constrained decoding methods, we use PSC to compute the valid token masks.

Model Method pass@k
1 3 5 10 20 50

Llama 3.2 1B Standard 5.6 4.0 5.4 7.4 9.3 11.9
GCD 5.6 4.7 6.3 8.6 10.6 13.1

Qwen2.5 0.5B Standard 8.8 5.4 7.2 9.9 12.4 15.6
GCD 8.8 6.0 7.9 10.5 13.2 16.3

Gemma 3 270M Standard 0.6 0.8 1.0 1.3 1.8 2.5
GCD 0.6 1.0 1.3 1.9 2.9 5.0

Results The results are presented in Table 7. For all the models tested, grammar-constrained
decoding with PSC using the Go grammar significantly outperforms unconstrained decoding (Stan-
dard). This confirms that grammar-constrained decoding can effectively improve the performance of
LLMs on code generation tasks, and PSC can achieve this improvement while significantly speeding
up the existing GCD methods.

A.7 EXTRA THROUGHPUT RESULTS

Due to page limit, we only present the end-to-end throughput results on Java and schema-conformant
JSON in Section 4.3. The results on the Go and SQL datasets are similar and are included here in
Table 4 and Table 5, respectively.

A.8 PREPROCESSING OVERHEAD DETAILS

Whether the preprocessing overhead is acceptable depends on the specific application scenario.
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Figure 4: End-to-end throughput (tokens per second) on the Go dataset using different methods on
different models with various batch sizes.
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Figure 5: End-to-end throughput (tokens per second) on the SQL dataset using different methods
on different models with various batch sizes.

Preprocessing time The preprocessing time can be amortized over multiple decoding sessions
since it only needs to be done once per grammar and vocabulary pair. We calculate the time users
need to use PSC for decoding to make it more time-efficient than using LLGuidance, our fastest
baseline in the experiments. We reuse the throughput results from Section 4.3. It should be noted
that this includes the total decoding time for all sequences, not just on one sequence.

In other words, we calculate the minimum truntime such that,

truntime · throughputPSC ≥ (tpreprocess + truntime) · throughputLLGuidance,

where tpreprocess is the preprocessing time of PSC on the grammar, and throughputPSC and
throughputLLGuidance are the end-to-end throughput of PSC and LLGuidance, respectively. Rear-
ranging the equation gives,

truntime ≥
tpreprocess · throughputLLGuidance

throughputPSC − throughputLLGuidance
.

The results are presented in Table 8. For Java and JSON schemas, the preprocessing time is gen-
erally small, and the balance point is within half to three minutes of decoding time. For SQL, the
preprocessing time is higher, but the balance point is within fifty minutes of decoding time.

Thus, if the user plans to perform grammar-constrained decoding for a total time longer than the
balance point, using PSC is more time-efficient than using LLGuidance. We believe that in many
practical applications, users may perform grammar-constrained decoding for more than these bal-
ance points, making the preprocessing time acceptable.

Memory usage The memory usage during preprocessing is generally higher than that during de-
coding. However, since the preprocessing can be performed offline, it does not affect the online
decoding efficiency or memory usage. The preprocessing can be performed on cloud instances with
large memory capacity if needed. For example, for SQL grammar preprocessing which requires
around 250 GiB of memory, cloud providers like AWS offer instances with 500 GiB of memory
for on-demand usage, and the cost is around 2.5 USD per hour. Since the preprocessing only needs
to be done once per grammar and vocabulary pair, the cost is generally acceptable for practical
applications.
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Table 8: The time (in seconds) the user needs to use PSC to amortize the preprocessing time com-
pared to using LLGuidance. Only results on Java, SQL and JSON schemas are shown here, because
LLGuidance fails on Go as shown in Table 1.

Model Grammar
Java SQL JSON Schemas

Llama 3 1B 146.6 2826.2 25.1
Qwen2.5 0.5B 101.5 2760.7 20.1

Gemma 3 270M 67.2 508.5 40.0
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