
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PSC: EFFICIENT GRAMMAR-CONSTRAINED DECOD-
ING VIA PARSER STACK CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

LLMs are widely used to generate structured output like source code or JSON.
Grammar-constrained decoding (GCD) can guarantee the syntactic validity of the
generated output, by masking out tokens that violate rules specified by a context-
free grammar. However, the online computational overhead of existing GCD
methods, with latency typically scaling linearly with vocabulary size, limits the
throughput of LLMs, especially for models with large vocabularies. To address
this issue, we propose PSC, a novel grammar-constrained decoding method. By
combining acceptance conditions of all vocabulary tokens into a single classifier
of the parser stack during preprocessing, PSC can compute the complete vocabu-
lary mask by checking the parser stack exactly once per decoding step, with time
complexity independent of the vocabulary size. Experiments show that PSC com-
putes masks up to 770× faster than baselines on complex programming language
grammars, and up to 30× faster for schema-conformant JSON; end-to-end LLM
throughput with PSC approaches that of unconstrained decoding.

1 INTRODUCTION

In recent years, the ability for Large Language Models (LLMs) to generate structured output has
been widely recognized and utilized (Qwen et al.; Grattafiori et al.; Gemma Team et al.). Source
code can be viewed as structured output that adheres to the syntax of programming languages, and
LLM-based coding assistants, such as GitHub Copilot (GitHub) and Cursor (Anysphere Inc.), have
been widely adopted by developers to assist in writing code to improve their productivity. When
LLMs are used as a tool, users often expect the generated output to conform to a specific format,
such as Markdown or JSON with custom schemas (Liu et al., 2024; vLLM Team; OpenAI). All of
these applications rely on the ability of LLMs to generate output that adheres to a specific syntax.

However, generating in a structured format is complex, as it requires not only understanding the
semantics of given input but also adhering to the specific grammars of target formats. Since language
models are essentially probabilistic models, there is no guarantee that the generated output will
always conform to the required grammar.

To address this issue, grammar-constrained decoding (GCD) (Geng et al., b; Scholak et al.; Poesia
et al.; Ugare et al.) is proposed to ensure that the generated output always conforms to the specified
context-free grammar. A GCD method works by incorporating a grammar checker into the decoding
process, as shown in Figure 1a. At each decoding step, the checker determines which tokens in
the vocabulary can be appended to the current prefix while not violating the grammar. The logits
generated by the language model are then masked to only allow the valid tokens, and the next token
is generated by sampling from the masked logits.

The overhead of GCD is determined by the newly introduced step of validity calculation. A naive
implementation, as shown in Figure 1b would require calling the parser for every token in the vocab-
ulary to check its validity, resulting in a time complexity of O(|V|) per decoding step, where |V| is
the vocabulary size. This can add significant overhead, especially for large vocabularies in modern
language models, e.g. 128k tokens in Llama-3 (Grattafiori et al.), 151k tokens in Qwen series (Bai
et al.), or 262k tokens in Gemma 3 (Gemma Team et al.). The overhead is particularly pronounced
for smaller models, where the time taken by model inference is relatively small.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Predicted logits
LLM

Constrained logits

Next token

✓✗✗✓✓✓✗
Mask

Constraint

(a) Decoding step in grammar-constrained decoding (GCD).

Runtime ~	𝒪 𝒱

Vocabulary
Token1 ✓

…
Tokenn ✗

Mask… Parser
𝒱

(b) Naive GCD implementation.

Vocabulary
Token1 DFA1

… …
Tokenn DFAn

Parser stack

Mask
Preprocessing Runtime ~	𝒪 1

Combined DFA

(c) Our GCD method PSC.

Figure 1: An illustration of grammar-constrained decoding, showing (a) the overall working pro-
cess, (b) the naive implementation that directly simulates the PDA, and (c) our method PSC that
precomputes the DFA and the valid token masks.

To speed up GCD, various techniques have been proposed in the literature. We summarize these
techniques in Section 2. However, none of these techniques can fundamentally change the time
complexity, which is still O(|V|) in the worst case.

We propose a novel GCD method PSC that replaces the repetitive runtime parsing over the whole
vocabulary with a one-time classification of the current parser stack, as shown in Figure 1c. The
checking process of the parser can be seen as a function of both the token and the state of the parser,
which is usually a stack. For each token, our method PSC constructs a finite-state automaton (FSA)
that represents the exact requirements on the parser stack to accept that token, i.e., the FSA accepts
a parser stack if and only if that token is accepted by a parser with that stack. All these FSAs can
then be combined into a single FSA that classifies the parser stack into a finite number of classes,
each corresponding to a different vocabulary mask. During decoding, we only need to check the
parser stack exactly once per decoding step to get the vocabulary mask, which is ready to be applied
to the logits. This eliminates the need to call the parser for each token in the vocabulary, resulting in
a significant speedup.

We conduct extensive experiments on grammar-constrained decoding in Java, Go, SQL, and schema-
conformant JSON to evaluate the efficiency of our method. Compared to the current state-of-the-art
method LLGuidance, our method achieves up to 770 times speedup in mask computation on com-
plex programming language grammars, and up to 30 times speedup for schema-conformant JSON
generation. In the end-to-end decoding throughput experiments, the throughput of PSC approaches
that of unconstrained decoding, and is significantly higher than LLGuidance, especially on smaller
models and larger batch sizes.

In summary, our contributions are as follows:

• We propose a novel GCD method PSC that leverages finite-state automata to classify parser
states to use the precomputed vocabulary mask, significantly reducing the time overhead of
grammar-constrained decoding.

• We provide a theoretical analysis of PSC. We prove that the set of the parser stacks that
can accept a given token can be formally described as a regular language. This justifies
the correctness of our method and provides a theoretical foundation for future research on
grammar-constrained decoding.

• We demonstrate the efficiency of PSC through extensive experiments on grammar-
constrained decoding in Java, Go, Python, and schema-conformant JSON, achieving signif-
icant speedup in mask computation compared to existing techniques; end-to-end decoding
throughput with PSC approaches that of unconstrained decoding.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND AND RELATED WORK

We introduce the task of grammar-constrained decoding in this section, and then review the re-
lated work. For the symbols, notations, and definitions used in this paper, please refer to Ap-
pendix A.2.

2.1 THE TASK: GRAMMAR-CONSTRAINED DECODING

Let Σ be the character set used by the language model, e.g. the Unicode. Given a prefix of tokens,
the task of a language model is to generate the next-token distribution over the vocabulary V ⊂ Σ+.
For a language L ⊆ Σ∗, the task of constrained decoding aims to generate a sample in L from the
language model. In each step, given prefix x ∈ Σ∗, it calculates the set of valid tokens in V , i.e.
tokens that, when concatenated after x, become a prefix of some strings in L.

c(x ∈ Σ∗) := {v ∈ V|∃y ∈ Σ∗, xvy ∈ L} . (1)

When the language L is defined by a context-free grammar, the task is called grammar-constrained
decoding (Ugare et al.; Koo et al.; Park et al.; Moskal et al.). Determining whether a string is syntac-
tically valid usually involves two phases: lexical analysis and syntax analysis1 (Aho & Ullman). In
lexical analysis, the lexer T , usually modeled as a deterministic finite-state transducer (FST) (Aho &
Ullman; Koo et al.; Park et al.), transduces the text w ∈ Σ∗ into a terminal sequence T (w) ∈ Γ∗. In
syntax analysis, the parser P , usually modeled as a terminating deterministic push-down automaton
(PDA) (Aho & Ullman), determines whether a terminal sequence x ∈ Γ∗ is valid, written as x ∈ P .
So we have

w ∈ L ⇐⇒ T (w) ∈ P. (2)

2.2 RELATED WORK

There are several existing techniques to speed up grammar-constrained decoding, which can be cate-
gorized into three groups: vocabulary preprocessing, lexer preprocessing, and parser preprocessing.

Vocabulary preprocessing (Poesia et al.; Beurer-Kellner et al.; Moskal et al.) exploits the fact that
the vocabulary is built by BPE (Gage; Sennrich et al.), and for each token, its prefix is also a token
in the vocabulary. If the prefix token is rejected, then the longer token must also be rejected. So we
can traverse the vocabulary in a tree-like manner, and only check the tokens whose prefixes are not
rejected.

Lexer preprocessing (Beurer-Kellner et al.; Park et al.; Moskal et al.) maps each token to a terminal
sequence during preprocessing, and then the parser is only called on the terminal sequences. This
reduces the number of parser calls, as different tokens may share the same terminal sequence.

Parser preprocessing (Dong et al.; Park et al.) classifies the vocabulary into three sets for each
parser state: context-independent accepted, context-independent rejected, and context-dependent.
This allows us to reduce the number of parser calls by only checking the context-dependent tokens.

These techniques can be combined to achieve better speedup (Beurer-Kellner et al.; Park et al.;
Moskal et al.).However, as mentioned in Section 1, these techniques are limited in their speedup.
There is no theoretical guarantee on how many parser calls will be made per decoding step,which
can be linear to the vocabulary size in the worst case.

3 PSC: PARSER STACK CLASSIFICATION

The preprocessing of the lexer T is described in Section 3.1, and the other parts of this section are
dedicated to the preprocessing of the parser P . All the proofs are deferred to Appendix A.3. For
the symbols, notations, and definitions used in this paper, please refer to Appendix A.2.

1To ease the presentation, the step of lexical analysis is omitted in previous sections. The term “parser” in
previous sections should be realized as the combination of the lexer and the parser defined here, and the term
“parser stack” should be realized as the concatenation of the lexer state and the parser state, which is a simple
state without internal structure, and a stack, respectively.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 LEXICAL PREPROCESSING

Lexical preprocessing is not our focus in this paper, so we reuse the lexical preprocessing in Great-
Gramma (Park et al.), and conclude it here as a prelude to PSC.

For token v ∈ V , lexer state q ∈ Q, if lexing the token v from state q using the lexer T generates
the terminal sequence x ∈ Γ∗, and the lexer transits to state p, i.e. q

v:x
==⇒
T

∗ p, we define the

realizable terminal sequences Rq(v) as {x}Tp, representing all possible terminal prefixes that can
be generated from a string starting with v, where Tp is the finite set of all possible terminal prefixes
from state p: Tp(Σ∗) = TpT (Σ∗). The set Rq(v) can be precomputed for every q ∈ Q, v ∈ V
during preprocessing.

3.2 OVERVIEW OF SYNTACTIC PREPROCESSING

Given a valid prefix x ∈ Σ∗, we run the lexer T from the initial state q0 to produce a terminal
sequence z ∈ Γ∗ and a new lexer state q: q0

x:z
==⇒
T

∗ q. We then run the parser P from the initial stack

γ0 to receive the terminal sequence z, and generates a new stack α: γ0
z
=⇒
P

∗ α.

We can now introduce the simplification of the condition in the GCD definition in Equations 1 and 2
from previous work (Park et al.). For any token v ∈ V , to determine whether v is valid, we can
rewrite the condition in terms of realizable terminal sequences,

∃y ∈ Σ∗, T (xvy) ∈ P ⇐⇒ ∃w ∈ Rq(v),∃β ∈ Π+, α
w
=⇒
P

∗ β. (3)

The simplification is based on the common assumption that, if the parser reads in a certain terminal
sequence and enters a stable stack, then we do not need to worry about the rest of the input, and there
always exists a terminal sequence produced by the lexer that can ensure the whole text is accepted.

For w ∈ Γ∗, we define Pw(α) for the calculation in the last step of Equation 3,

Pw∈Γ∗(α ∈ Π+) :=
{
β ∈ Π+

∣∣∣α w
=⇒
P

∗ β
}
. (4)

How to efficiently calculate Pw(α) is the key difference between PSC and previous methods.
In existing work, the calculation of Pw is almost always dynamic: one has to calculate Pw(α) for
the current α and every possible w ∈ Rq(V). While some methods employ precomputation to
optimize certain cases, they still fundamentally require O(|Rq(V)|tP) time for dynamic parsing,
where O(tP) is the time required to run the parser P .

On the other hand, it can be noticed that, whether Pw(α) ̸= ∅ is determined by the top symbols of
α. It is to say, if Pw(α) ̸= ∅, then ∀γ ∈ Π∗, Pw(αγ) ̸= ∅. Utilizing this property, PSC proposes
a totally different approach, modeling Pw as a deterministic FST, which reads the stack sequence
α ∈ Π+, and outputs the sequence β ∈ Π+ if there is one.

This gives us several benefits. Because each Pw reads and outputs a sequence of stack symbols, they
can be composed to create larger FSTs: Pt◦Ps = Pst. Because the realizable terminal sequences are
known during precomputation, the exact validity condition of each vocabulary is therefore known,
their combinations can be precomputed, and we only need to go through the current stack once
during runtime. All possible masks can also be precomputed, eliminating the mask generation
overhead during decoding.

3.3 FST OF ε TRANSITIONS

In this section, we focus on how to construct Pε. The input of Pε should be a stack, and the output
is the stabilized version of it by executing all needed ε transitions on the stack. The states of
Pε is a special state FINAL plus a subset of Π∗ which represent the current stack top, both the input
alphabet and output alphabet are Π, and the start state is ε, and the final states are {FINAL}.
There are three types of transitions in Pε. If the information of the current stack top is not enough
to determine whether the stack is stable, it transits to a new state by reading the next stack symbol.
If the stack top is stable, it transits to the FINAL state to output the final stable stack. Otherwise,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

it simulates the transition of P on the current stack top, and transits to a new state representing the
new stack top after executing the ε transition. The construction algorithm is simply searching all
needed stacks from ε, as shown in Algorithm 1.

Theorem 1. Algorithm 1 constructs a finite-state transducer Pε as defined in Definition 4.

Pε is an important building block in the construction of other Pw, w ∈ Γ+. For any stack α, Pε(α)
gives the stabilized version of α, so the FST composed after Pε does not need to handle ε transitions,
and we can compose Pε after other FSTs to meet the stability requirement in the definition of Pw.

Algorithm 1 Construct FST Pε

1: function EPSILONFST(P)
2: for all X ∈ Π do
3: FINAL

X:X−−−→
Pε

FINAL

4: Q← {ε}
5: while let α ∈ Π∗, Q← POP(Q) do
6: if α ∈ FPΠ

∗ then
7: α

ε:α−−→
Pε

FINAL

8: else if |α| < 2 then
9: for all X ∈ Π do

10: α
X:ε−−→
Pε

αX

11: Q← Q ∪ {αX}
12: else
13: let α0γ = α,

where α0 ∈ Π2, γ ∈ Π∗

14: if α0
ε−→
P

β then

15: α0γ
ε:ε−−→
Pε

βγ

16: Q← Q ∪ {βγ}
17: else if α0

a−→
P

β then

18: α
ε:α−−→
Pε

FINAL

19: return Pε

Algorithm 2 Construct FST P̃a for terminal a ∈ Γ

1: function TERMINALFST(P, a)
2: for all X ∈ Π do
3: FINAL

X:X−−−→
P̃a

FINAL

4: for all XY
a−→
P

β do

5: ε
X:ε−−→
P̃a

X
Y :ε−−→
P̃a

XY
ε:β−−→̃
Pa

FINAL

6: return P̃a

Algorithm 3 Offline constructon in PSC

1: function OFFLINECONSTRUCTION(T ,P,V)
2: Pε ← EPSILONFST(P)
3: for all a ∈ Γ do
4: P̃a ← TERMINALFST(P, a)
5: for all w = w1 . . . wn ∈ R(V) do
6: Pw ← Pε ◦ P̃wn

◦Pε ◦· · ·◦Pε ◦ P̃w1
◦Pε

7: Aw ← REMOVEOUTPUT(Pw)
8: A ←

⋃
v∈V

⋃
q∈Q

⋃
w∈Rq(v)

BqAwBv

9: A ← MINIMIZE(A)
10: return A

3.4 FST FOR ANY TERMINAL SEQUENCE

After constructing Pε, the construction of Pw for any terminal sequence w ∈ Γ+ is fairly simple.

We first construct an FST P̃a for every a ∈ Γ that simulates a single transition labeled a. Note that
in P̃a, we only force the stack to execute one transition labeled a, but the output stack is not required
to be stable. Its input is a stack α, and the output is the immediate result of executing a-labelled
transition α

a−→
P

β. The states are Π0 ∪ Π1 ∪ Π2 ∪ {FINAL}, the start state is ε, the final state is

FINAL, and the transitions are defined in Algorithm 2.

For any terminal sequence w = w1 . . . wn ∈ Γ+, the FST Pw can be constructed using Pε and
P̃w1 , . . . , P̃wn . For any stack α, we first pass it to Pε to get a stable stack, and then pass the result
into P̃w1 to get the stack after reading w1, and then the stack is passed to Pε to get the stabilized
version. The result is then passed into P̃w2

to make the stack read w2, and then passed to Pε to
stabilize. We repeat this process until we have read wn using P̃wn

and stabilize the stack with Pε.
Formally, for w = w1 . . . wn ∈ Γ+, we have Pw = Pε ◦ P̃w1

◦ Pε ◦ · · · ◦ Pε ◦ P̃wn
◦ Pε.

Theorem 2. The above construction of Pw meets the definition in Definition 4.

Since in c(x), we only care about whether Pw accepts α or not, the output of Pw can be ignored.
Removing all the output labels from Pw gives us a finite-state automaton, hereafter named Aw.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.5 ONE-PASS FSA FOR MASK SELECTION

After constructing Pw(α) for all realizable terminal sequences w ∈ R(V), we can now consider
simplifying the constraint calculation over the whole vocabulary V . Recall Definition 1, combined
with Simplification 3 and Aw, we have the following equation,

c(x ∈ Σ∗) = {v ∈ V|∃w ∈ Rq(v), Pw(α) ̸= ∅} = {v ∈ V|∃w ∈ Rq(v), α ∈ Aw} ,
where q and α as defined in Section 3.2 are only dependent on x.

In c(x), we want to know whether any of the Aw accepts α, where w ∈ Rq(v). This can be achieved
by constructing the union of different Aw, i.e.,

⋃
w∈Rq(v)

Aw.

For different tokens v ∈ V , we need to check whether α is accepted by
⋃

w∈Rq(v)
Aw. But to get

the whole mask c(x), we need to check for every v ∈ V , which is inefficient. To address this issue,
we can integrate the checking of v and q into the FSA. Introduce the notation Ba for an FSA that
accepts only a once. For every q ∈ Q and v ∈ V , we can concatenate Bq before

⋃
w∈Rq(v)

Aw to
check whether the current state is q, and then concatenate Bv after

⋃
w∈Rq(v)

Aw to check whether
the candidate token is v.

By unioning the results for all v ∈ V and q ∈ Q, we construct an FSA A that accepts the sequence
qαv only if v is a valid token for the lexer state q and stack α,

A :=
⋃
v∈V

⋃
q∈Q

⋃
w∈Rq(v)

BqAwBv, c(x) = {v ∈ V|qαv ∈ A} , (5)

where A should be determinized and minimized.
Theorem 3. All (lexer state, parser stack) pairs that accept a given token form a regular language.

In Equation 5, we can precompute all possible result of c, i.e. all possible vocabulary masks, by
considering acceptable vocabulary set As :=

{
v ∈ V

∣∣∣s v−→
A

fA
}

for every state s in A.

Algorithm 4 Online execution of PSC

1: function ONLINEEXECUTION(T ,P,A, x)
2: qT0

x:z
==⇒
T

∗ q

3: γ0
z
=⇒
P

∗ α

4: qA0
qα
==⇒
A

∗ s

5: return As

We summarize the offline construction process
of PSC in Algorithm 3, and the online execu-
tion process in Algorithm 4. In Algorithm 4,
both the lexing Step 2 and the parsing Step 3
are standard in grammar-constrained decoding,
and can be incrementally maintained. In Step 4,
the FSA A is run on the stack α and the lexer
state q to get the state s, only requiring O(|α|)
time. Step 5 can be precomputed to be O(1) at
runtime.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

All grammar-constrained decoding methods essentially perform the same task: compute the valid
token mask at each decoding step. The valid token mask is theoretically the same for all meth-
ods, so we focus on comparing the efficiency of mask computation in our experiments. The
usefulness of grammar-constrained decoding is shown in previous work (Geng et al., b; Scholak
et al.; Poesia et al.; Ugare et al.), so we do not repeat the experiments here.

We conduct two sets of experiments to evaluate each method:

• Overhead of mask computation (without model inference).
• End-to-end throughput (with model inference).

In all experiments, we use teacher-forcing during evaluation, i.e., we always use the oracle next
token at each decoding step, to ensure that all methods are evaluated under the same conditions
and can be fairly compared.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Datasets There is no standard benchmark for evaluating grammar-constrained decoding methods.
We choose two representative tasks that require grammar-constrained decoding: code generation in
Java, Go, and SQL, and JSON generation with specified JSON schemas. For each task, we construct
the evaluation dataset as described in Appendix A.4, with 1000 samples for each programming
language and 1000 schemas for schema-conformant JSON generation. There are a total of 1337
positive samples and 2072 negative samples in the JSON dataset, and each schema has at least one
positive sample and one negative sample.

Baselines We consider several recent state-of-the-art grammar-constrained decoding methods with
open-source implementations as baselines, including XGrammar (Dong et al.), GreatGramma (Park
et al.), Formatron (Sun et al.), and LLGuidance (Moskal et al.). Detailed descriptions of these
baselines are included in Appendix A.5.

Implementation We implement PSC in roughly 1100 lines of Python. Similar to previous
work (Ugare et al.; Park et al.), we use the Lark parser(lar) to construct the lexer and the LALR(1)
parser from the grammar. As described in Section 3.1, we reuse the lexer construction in Great-
Gramma (Park et al.), since this is not our focus in this paper.

Execution environment We conduct our experiments on a machine with 8 NVIDIA A100 GPUs
(40 GB Memory), 2 Intel Xeon Gold 6348 CPUs (2.6GHz, 56 cores), and 512 GB RAM. To ensure
fairness, we run all the experiments with a single GPU and a single CPU thread.

4.2 OVERHEAD OF MASK COMPUTATION

Metrics In this experiment, we measure the overhead of mask computation for each GCD method.
We ignore the time taken to transfer the mask to the GPU and apply it to the logits, because this is
the same for all methods2. For each method, we measure:

• Average overhead: The time of computing the CPU mask tensor at each decoding step.
• Sample pass rate: The proportion of samples that are correctly processed by each method3.

Models We evaluate the overhead on three open-source LLM series with different vocabulary
sizes: Llama 3 (Grattafiori et al.) (128k vocabulary size), Qwen 2.5 (Bai et al.) (151k vocabulary
size), and Gemma 3 (Gemma Team et al.) (262k vocabulary size). We only use the tokenizers,
because the overhead of mask computation is independent of other model components.

Overhead results The average overhead is shown in Table 1. PSC significantly outperforms all the
baselines across all grammars and models, being 310 to 700 times faster on complex programming
language grammars compared to the best baseline, LLGuidance, and generally 30 times faster on
the relatively simple JSON schema grammar.

The overhead of baselines is significantly larger on Gemma 3 than that on the other models4, because
Gemma 3 has a much larger vocabulary size (262k) than the other two models (128k and 151k), and
the time complexity of all methods except PSC is roughly linear to the vocabulary size. In contrast,
the performance of PSC is stable across different grammars and models, because its time complexity
is independent of the vocabulary size.

Sample pass rate results The sample pass rates are shown in Table 2. PSC achieves a high pass
rate across all grammars and models, very close to 100%. After analyzing the error cases, we find
that they are all directly rejected by the GreatGramma lexer we adopt, but no error is caused by PSC
itself. We notice the strangely low sample pass rate of Formatron on SQL, and find that Formatron
refuses to accept the column alias in the query, resulting in frequent rejections.

2In PSC, one can preload all the mask tensors on the GPU memory before decoding begins, eliminating the
transfer overhead. However, the transfer overhead is usually too small to justify the extra GPU memory usage.

3If the oracle token is masked, the sample is counted as rejected by the method. A positive sample is counted
as passed if it is not rejected, and a negative sample is counted as passed if it is rejected.

4The performance of LLGuidance on JSON Schemas is roughly the same across different models, probably
because the grammar is simple enough that the vocabulary size does not significantly affect the performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Average overhead (microseconds) of computing the mask per token in GCD tasks using
different methods. The symbol X indicates the parser reports an error during mask calculation. Text
in bold indicates the best performance, and text in underline indicates the second best performance.

Model Method Grammar
Java Go SQL JSON Schemas

Llama 3
|V| = 128256

XGrammar 309514.2 281500.9 324663.6 26257.6
Formatron 393540.4 Xa 303974.1 Xa

GreatGramma 21402.8 27220.9 20954.5 8556.2
LLGuidance 1352.4 Xb 826.1 72.7
PSC (Ours) 2.4 2.5 2.6 2.3

Qwen2.5
|V| = 151665

XGrammar 302421.9 278333.4 299968.6 29470.0
Formatron 378921.0 Xa 253311.9 Xa

GreatGramma 24570.9 27649.8 24053.9 11038.4
LLGuidance 1408.2 Xb 865.2 72.1
PSC (Ours) 2.4 2.5 2.5 2.2

Gemma 3
|V| = 262145

XGrammar 649321.1 458952.0 416625.0 54164.4
Formatron 696144.6 Xa 444810.0 Xa

GreatGramma 43218.6 48354.0 40026.9 25717.3
LLGuidance 1802.6 Xb 1180.8 72.1
PSC (Ours) 2.3 2.5 2.4 2.3

a Formatron stops responding on multiple samples, so we terminate the process.
b LLGuidance reports ParserTooComplex error.

Table 2: How many samples are correctly processed by each method. The symbol X indicates the
parser reports an error during mask calculation. Text in bold indicates the best performance, and
text in underline indicates the second best performance.

Model Method Grammar
Java Go SQL JSON Schemas

Llama 3

XGrammar 99.7% 100.0% 99.7% 100.0%
Formatron 99.4% X 67.0% X
GreatGramma 100.0% 99.9% 97.1% 99.6%
LLGuidance 100.0% X 99.9% 99.9%
PSC (Ours) 100.0% 99.9% 99.9% 99.6%

Qwen2.5

XGrammar 99.7% 100.0% 99.7% 100.0%
Formatron 99.4% X 67.0% X
GreatGramma 100.0% 99.9% 97.2% 99.6%
LLGuidance 100.0% X 99.9% 99.9%
PSC (Ours) 100.0% 99.9% 99.9% 99.6%

Gemma 3

XGrammar 99.7% 100.0% 99.7% 100.0%
Formatron 100.0% X 67.3% X
GreatGramma 100.0% 99.9% 97.2% 99.6%
LLGuidance 94.0% X 99.9% 99.9%
PSC (Ours) 100.0% 99.9% 99.9% 99.6%

4.3 END-TO-END THROUGHPUT

Settings In this experiment, we run the actual model inference using the vLLM library (Kwon
et al.), and measure the throughput, i.e., the number of tokens processed per second, of the entire
decoding process, considering both the time taken by mask computation and model inference. We
only consider the accepted samples of each method. We compare PSC with the fastest baseline
LLGuidance in the previous section, and also include the throughput when not using any constraint
decoding method as a reference, under various batch sizes of 1, 2, 4, ..., 256.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Models We use the smallest models in the three model series to highlight the overhead of con-
straint decoding. On these models, the model inference time is relatively small, making the over-
head of constraint decoding more pronounced. Specifically, we use Llama 3 1B, Qwen 2.5 0.5B,
and Gemma 3 270M. We also include Qwen 2.5 7B to see the effect of model size on throughput.

1 2 4 8 16 32 64 128 256
Batch size

300
600

1200
2400
4800
9600

19200
38400
76800

Th
ro

ug
hp

ut
 (t

ok
en

 /
s)

Upper bound (uncostrained)
LLGuidance
PSCC

(a) Gemma 3 270M.

1 2 4 8 16 32 64 128 256
Batch size

300
600

1200
2400
4800
9600

19200
38400
76800

Th
ro

ug
hp

ut
 (t

ok
en

 /
s)

Upper bound (uncostrained)
LLGuidance
PSCC

(b) Qwen 2.5 0.5B.

1 2 4 8 16 32 64 128 256
Batch size

300
600

1200
2400
4800
9600

19200
38400
76800

Th
ro

ug
hp

ut
 (t

ok
en

 /
s)

Upper bound (uncostrained)
LLGuidance
PSCC

(c) Llama 3.2 1B.

1 2 4 8 16 32 64 128 256
Batch size

80
160
320
640

1280
2560
5120

10240
20480

Th
ro

ug
hp

ut
 (t

ok
en

 /
s)

Upper bound (uncostrained)
LLGuidance
PSCC

(d) Qwen 2.5 7B.

Figure 2: End-to-end throughput (tokens per second) on the Java dataset using different methods on
different models with various batch sizes.

1 2 4 8 16 32 64 128 256
Batch size

400
800

1600
3200
6400

12800
25600
51200

102400

Th
ro

ug
hp

ut
 (t

ok
en

 /
s)

Upper bound (uncostrained)
LLGuidance
PSCC

(a) Gemma 3 270M.

1 2 4 8 16 32 64 128 256
Batch size

400
800

1600
3200
6400

12800
25600
51200

102400

Th
ro

ug
hp

ut
 (t

ok
en

 /
s)

Upper bound (uncostrained)
LLGuidance
PSCC

(b) Qwen 2.5 0.5B.

1 2 4 8 16 32 64 128 256
Batch size

300
600

1200
2400
4800
9600

19200
38400
76800

Th
ro

ug
hp

ut
 (t

ok
en

 /
s)

Upper bound (uncostrained)
LLGuidance
PSCC

(c) Llama 3.2 1B.

1 2 4 8 16 32 64 128 256
Batch size

80
160
320
640

1280
2560
5120

10240
20480

Th
ro

ug
hp

ut
 (t

ok
en

 /
s)

Upper bound (uncostrained)
LLGuidance
PSCC

(d) Qwen 2.5 7B.

Figure 3: End-to-end throughput (tokens per second) on the schema-conformant JSON dataset
using different methods on different models with various batch sizes.

Results The end-to-end throughput results on Java and schema-conformant JSON datasets are
present in Figures 2 and 3, respectively. The results on the Go and SQL datasets are similar to those
on the Java dataset, included in Appendix A.6.

On all datasets, PSC consistently outperforms LLGuidance across all models and batch sizes, and
is very close to the performance of unconstrained decoding. The difference is more pronounced on
the Java dataset, where the grammar is more complex, leading to higher overhead for LLGuidance.

As the model size increases, the difference in throughput becomes smaller, because the model in-
ference time becomes more dominant. However, since smaller models are less capable, grammar-
constrained decoding is probably more useful for smaller models to ensure the syntactic correctness.

As the batch size increases, the difference in throughput becomes larger, because the average model
inference time per token decreases with larger batch sizes, indicating that the overhead introduced
by constraint decoding becomes more pronounced at larger batch sizes.

5 DISCUSSION AND CONCLUSION

In this paper, we present PSC, a novel approach for grammar-constrained decoding. By construct-
ing the exact requirements on the parser stack for each vocabulary token, PSC can determine the
valid tokens at each decoding step by a single pass through the parser stack. Our experimental re-
sults demonstrate that PSC achieves significant speedup over existing methods, and the end-to-end
throughput of PSC approaches that of unconstrained decoding. This makes PSC a practical choice
for real-world applications that require grammar-constrained decoding.

One limitation of PSC is that it requires preprocessing.But this can be done offline and reused for
multiple decoding sessions with the same grammar and vocabulary, so the overhead of preprocess-
ing is generally acceptable for practical applications. In future, we plan to explore other types of
grammars and constraints that can be efficiently handled by PSC, as well as other optimizations to
further improve its efficiency and scalability.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

We open-source the code to facilitate reproducibility of our results at https://anonymous.
4open.science/r/PSC-E43E. It includes the implementation of PSC, the datasets used in the
experiments, and the scripts to run the experiments and generate the results in the paper. The proofs
of statements in the main text are included as Appendix A.3. The details in dataset construction are
included as Appendix A.4.

REFERENCES

Lark - a parsing toolkit for Python. URL https://github.com/lark-parser/lark.

MaskBench. URL https://github.com/guidance-ai/jsonschemabench/tree/
main/maskbench.

Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation, and Compiling. Prentice-
Hall, Inc. ISBN 978-0-13-914556-8.

Anysphere Inc. Cursor - The AI Code Editor. URL https://cursor.com/en.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen Technical Report. URL http:
//arxiv.org/abs/2309.16609.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Guiding LLMs the right way: Fast, non-
invasive constrained generation. In Proceedings of the 41st International Conference on Machine
Learning, ICML’24. JMLR.org.

Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, October
1964. ISSN 0004-5411. doi: 10.1145/321239.321249. URL https://doi.org/10.1145/
321239.321249.

Didier Caucal and Roland Monfort. On the transition graphs of automata and grammars. In Rolf H.
Möhring (ed.), Graph-Theoretic Concepts in Computer Science, pp. 311–337. Springer. ISBN
978-3-540-46310-8. doi: 10.1007/3-540-53832-1 51.

Yixin Dong, Charlie F. Ruan, Yaxing Cai, Ziyi Xu, Yilong Zhao, Ruihang Lai, and Tianqi Chen.
XGrammar: Flexible and efficient structured generation engine for large language models. In
Eighth Conference on Machine Learning and Systems. URL https://openreview.net/
forum?id=rjQfX0YgDl.

Jay Earley. An efficient context-free parsing algorithm. doi: 10.1145/362007.362035. URL
https://dl.acm.org/doi/10.1145/362007.362035.

Philip Gage. A new algorithm for data compression. 12(2):23–38. ISSN 0898-9788.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
Mesnard, Geoffrey Cideron, Jean-bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Cas-
bon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiao-
hai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman,
Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-
Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi, Dan
Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe Friesen,
Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa Saade,
Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András György,
André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia Paterson,

10

https://anonymous.4open.science/r/PSC-E43E
https://anonymous.4open.science/r/PSC-E43E
https://github.com/lark-parser/lark
https://github.com/guidance-ai/jsonschemabench/tree/main/maskbench
https://github.com/guidance-ai/jsonschemabench/tree/main/maskbench
https://cursor.com/en
http://arxiv.org/abs/2309.16609
http://arxiv.org/abs/2309.16609
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/321239.321249
https://openreview.net/forum?id=rjQfX0YgDl
https://openreview.net/forum?id=rjQfX0YgDl
https://dl.acm.org/doi/10.1145/362007.362035

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini, Charlie
Chen, Charline Le Lan, Christopher A. Choquette-Choo, C. J. Carey, Cormac Brick, Daniel
Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivaku-
mar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eu-
gene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna
Klimczak-Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian
Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wi-
eting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju-yeong Ji, Jyotinder Singh,
Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine,
Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael
Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Ni-
lay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Ruben-
stein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya
Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu,
Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti
Sheth, Siim Põder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi
Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry,
Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein
Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat
Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas
Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Bar-
ral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam
Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier
Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot.
Gemma 3 Technical Report. URL http://arxiv.org/abs/2503.19786.

Saibo Geng, Hudson Cooper, Michał Moskal, Samuel Jenkins, Julian Berman, Nathan Ranchin,
Robert West, Eric Horvitz, and Harsha Nori. JSONSchemaBench: A Rigorous Benchmark of
Structured Outputs for Language Models, a. URL http://arxiv.org/abs/2501.10868.

Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. Grammar-Constrained Decoding
for Structured NLP Tasks without Finetuning. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Process-
ing, pp. 10932–10952. Association for Computational Linguistics, b. doi: 10.18653/v1/2023.
emnlp-main.674. URL https://aclanthology.org/2023.emnlp-main.674/.

GitHub. GitHub Copilot · Your AI pair programmer. URL https://github.com/
features/copilot.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ah-
mad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, An-
gela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravanku-
mar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen
Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte
Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe
Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allon-
sius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choud-
hary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin,
Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Fran-
cisco Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind
Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason
Park, Jay Mahadeokar, Jeet Shah, prefix=van der useprefix=false family=Linde, given=Jelmer,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu,
Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun,
Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plaw-
iak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuen-
ley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, prefix=van der useprefix=false

11

http://arxiv.org/abs/2503.19786
http://arxiv.org/abs/2501.10868
https://aclanthology.org/2023.emnlp-main.674/
https://github.com/features/copilot
https://github.com/features/copilot

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

family=Maaten, given=Laurens, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish
Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, prefix=de useprefix=false family=Oliveira,
given=Luke, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kar-
das, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur,
Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay
Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi,
Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava,
Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ra-
gavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa-
hana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang
Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang,
Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin
Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Geor-
giou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj
Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do,
Vish Vogeti, Vı́tor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney
Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng
Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yi-
wen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengx-
ing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam
Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex
Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam
Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poul-
ton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu,
Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel
Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Di-
ana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa
Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik
Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Fil-
ippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Med-
ina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou,
Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren,
Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leon-
tiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam,
Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy
Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill,
Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou
U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraragha-
van, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang,
Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo,
Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt,
Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini San-
thanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas
Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz,
Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji,
Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchan-
dani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Ma-
hajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,
Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,
Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun
Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victo-
ria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,
Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,
Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv
Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The
Llama 3 Herd of Models. URL http://arxiv.org/abs/2407.21783.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley Series in Computer Science and Information Processing. Addison-
Wesley. ISBN 978-0-201-02988-8.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Yacine Jernite, Margaret
Mitchell, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro Von
Werra, and prefix=de useprefix=false family=Vries, given=Harm. The Stack: 3 TB of permis-
sively licensed source code. ISSN 2835-8856. URL https://openreview.net/forum?
id=pxpbTdUEpD.

Terry Koo, Frederick Liu, and Luheng He. Automata-based constraints for language model de-
coding. In First Conference on Language Modeling. URL https://openreview.net/
forum?id=BDBdblmyzY.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient Memory Management for Large Language Model
Serving with PagedAttention. In Proceedings of the 29th Symposium on Operating Systems
Principles, SOSP ’23, pp. 611–626. Association for Computing Machinery. ISBN 979-8-4007-
0229-7. doi: 10.1145/3600006.3613165. URL https://dl.acm.org/doi/10.1145/
3600006.3613165.

Michael Xieyang Liu, Frederick Liu, Alexander J Fiannaca, Terry Koo, Lucas Dixon, Michael Terry,
and Carrie J Cai. ” we need structured output”: Towards user-centered constraints on large lan-
guage model output. In Extended Abstracts of the CHI Conference on Human Factors in Com-
puting Systems, pp. 1–9, 2024.

Michał Moskal, Harsha Nori, Hudson Cooper, and Loc Huynh. LLGuidance: Making Struc-
tured Outputs Go Brrr. URL https://guidance-ai.github.io/llguidance/
llg-go-brrr.

OpenAI. Structured model outputs - openai api. URL https://platform.openai.com.

Kanghee Park, Timothy Zhou, and Loris D’Antoni. Flexible and efficient grammar-constrained
decoding. In Forty-Second International Conference on Machine Learning. URL https://
openreview.net/forum?id=L6CYAzpO1k.

Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and Sumit
Gulwani. Synchromesh: Reliable Code Generation from Pre-trained Language Models. URL
https://openreview.net/forum?id=KmtVD97J43e.

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,

13

http://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=pxpbTdUEpD
https://openreview.net/forum?id=pxpbTdUEpD
https://openreview.net/forum?id=BDBdblmyzY
https://openreview.net/forum?id=BDBdblmyzY
https://dl.acm.org/doi/10.1145/3600006.3613165
https://dl.acm.org/doi/10.1145/3600006.3613165
https://guidance-ai.github.io/llguidance/llg-go-brrr
https://guidance-ai.github.io/llguidance/llg-go-brrr
https://platform.openai.com
https://openreview.net/forum?id=L6CYAzpO1k
https://openreview.net/forum?id=L6CYAzpO1k
https://openreview.net/forum?id=KmtVD97J43e

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 Technical Report. URL
http://arxiv.org/abs/2412.15115.

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. PICARD: Parsing Incrementally for
Constrained Auto-Regressive Decoding from Language Models. In Marie-Francine Moens, Xu-
anjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pp. 9895–9901. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2021.emnlp-main.779. URL https://aclanthology.
org/2021.emnlp-main.779/.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine Translation of Rare Words
with Subword Units. In Katrin Erk and Noah A. Smith (eds.), Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1715–
1725. Association for Computational Linguistics. doi: 10.18653/v1/P16-1162. URL https:
//aclanthology.org/P16-1162/.

Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, third edition, inter-
national edition edition. ISBN 978-1-133-18779-0 978-1-133-18781-3 978-0-357-67058-3.

Xintong Sun, Chi Wei, Minghao Tian, and Shiwen Ni. Earley-driven dynamic pruning for efficient
structured decoding. In Forty-Second International Conference on Machine Learning. URL
https://openreview.net/forum?id=6hDNXCdTsE.

Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. Syn-
Code: LLM generation with grammar augmentation. ISSN 2835-8856. URL https://
openreview.net/forum?id=HiUZtgAPoH.

vLLM Team. Structured Outputs - vLLM. URL https://docs.vllm.ai/en/stable/
features/structured_outputs.html.

14

http://arxiv.org/abs/2412.15115
https://aclanthology.org/2021.emnlp-main.779/
https://aclanthology.org/2021.emnlp-main.779/
https://aclanthology.org/P16-1162/
https://aclanthology.org/P16-1162/
https://openreview.net/forum?id=6hDNXCdTsE
https://openreview.net/forum?id=HiUZtgAPoH
https://openreview.net/forum?id=HiUZtgAPoH
https://docs.vllm.ai/en/stable/features/structured_outputs.html
https://docs.vllm.ai/en/stable/features/structured_outputs.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LLM USAGE

We used DeepSeek and GitHub Copilot for code assistance, paper writing, and proofreading. How-
ever, all the technical content, ideas, algorithms, and experimental results in this paper are our own
work. We carefully reviewed and verified all the content generated by LLMs to ensure they are
accurate and directly reflect our own ideas.

A.2 FORMAL DEFINITIONS AND NOTATIONS

Table 3: Symbols and their meaning.

Symbol Meaning

ε empty string
ab concatenation of strings a and b
AB concatenation of languages A and B
Aε A ∪ {ε}
A∗ Kleene star of language A
A+ A∗ \ {ε}
Σ the character set (usually the Unicode) used by the language model
Γ the terminal set of the grammar

V the vocabulary of the language model, a finite subset of Σ+

such that every string over Σ can be tokenized as a string over V
T the lexing FST, transduces string over Σ to terminal sequence over Γ
Q the finite set of states of the lexing FST
P the parsing PDA, accepts terminal sequences in the language
Π the stack alphabet of the PDA

We include a list of symbols and their meanings in Table 3 for reference.

A.2.1 FINITE-STATE TRANSDUCER (FST)

A finite-state transducer (FST) (Aho & Ullman) T is defined by a finite set of states Q, the input
alphabet Σ, the output alphabet Γ, the start state q0 ∈ Q, the final states F ⊆ Q, and transitions
δ : Q × Σε → 2Γ

∗×Q. If δ(q, a) ∋ (y, q′), we write q
a:y−−→
T

q′. We write −→∗ for consecutive

transitions. For q ∈ Q, we write q
ε:ε−−→
T

∗ q. For q s:x−−→
T

∗ q′ and q′
t:y−−→
T

q′′, we write q
st:xy−−−→
T

∗ q′′.

Informally, an FST is deterministic, if from any state, for any given string, there is exactly one
possible outcome. T is deterministic if, for all q ∈ Q, either |δ(q, a)| ≤ 1,∀a ∈ Σ and δ(q, ε) = ∅,
or δ(q, a) = ∅,∀a ∈ Σ and δ(q, ε) = 1.

For w ∈ Σ∗, q ∈ Q, we define Tq(w) as
{
v ∈ Γ∗

∣∣∣∃q′ ∈ F, q
w:v−−→
T

∗ q′
}

, meaning the possible

outcomes when we feed w into T starting from the state q. When T is deterministic and v ∈ T (w),
we also write T (w) = v. For W ⊆ Σ∗, we define Tq(W) as

⋃
w∈W Tq(w). q defaults to q0 when

omitted.

We call a state q ∈ Q stable if the FST does not need to take any immediate action on q, i.e.
δ(q, ε) = ∅. If q s:t−→

T
∗ q′ and q′ is stable, we also write q

s:t
==⇒
T

∗ q′.

Given two FSTs S and T where the output alphabet of S is the input alphabet T , ΓS = ΣT , their
composition is a new FST S ◦ T by feeding the output of S into the input of T .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2.2 FINITE-STATE AUTOMATON (FSA)

A finite-state automaton (FSA) A can be defined by removing all output labels from an FST. We
say A accepts w ∈ Σ∗ from state q if Aq(w) ̸= ∅, and write w ∈ Aq , and q defaults to q0 when
omitted. Two FSAs are equivalent if they accept the same language.

A is deterministic if there is no ε transition in δ. Every nondeterministic FSA can be determinized
into an equivalent deterministic FSA (Hopcroft & Ullman), and every deterministic FSA can be
minimized into an equivalent deterministic FSA with the smallest number of states (Hopcroft &
Ullman).

The union of two FSAs A and B is a new FSA A ∪ B that accepts any sequence that is accepted by
either A or B.

The concatenation of two FSAs A and B is a new FSA AB that accepts any sequence that can be
split into two parts x = yz, where A accepts the first part y and B accepts the second part z.

A.2.3 PUSH-DOWN AUTOMATON (PDA)

A push-down automaton (PDA) (Aho & Ullman; Hopcroft & Ullman; Caucal & Monfort) P is
defined by the input alphabet Γ, the stack alphabet Π, the initial stack γ0 ∈ Π2, the final states
F ⊆ Π, and a finite set of transitions δ : Π2 × Γε → 2Π

+

. Note that the definition here merges the
states and the stack symbols in the traditional definition of PDA, but they are equivalent if we treat
the stack top symbol as the state. If δ(α, a) ∋ β, we write α

a−→
P

β. If α a−→
P

β, for any γ ∈ Π∗, we

also write αγ
a−→
P

βγ. We write −→∗ for consecutive transitions. For γ ∈ Π+, we write γ
ε−→
P

∗ γ. If

α
a−→
P

β, β w−→
P

∗ γ, we write α
aw−−→
P

∗ γ.

Informally, a PDA is deterministic, if from any stack, for any given string, there is exactly one
possible outcome. P is deterministic if, for any α ∈ Π2, either |δ(α, a)| ≤ 1,∀a ∈ Γ and δ(α, ε) =
∅, or δ(α, a) = ∅,∀a ∈ Γ and |δ(α, ε)| = 1.

A deterministic PDA is terminating, if for any stack, it does not make an endless sequence of ε-
input transitions.5 Every deterministic PDA can be transformed into another equivalent deterministic
terminating PDA (Sipser; Hopcroft & Ullman).

We call a state β = β1 . . . βn ∈ Π+ stable if β1 is a final state, i.e. β1 ∈ F , or the PDA is waiting
to read one more symbol, i.e. ∃a ∈ Γ, δ(β1β2, a) ̸= ∅. If α w−→

P
∗ β and β is stable, we also write

α
w
=⇒
P

∗ β. In practice, parser in a stable state is ready to consume the next input symbol, or has

reached an accepting stack.

For α ∈ Π+, we define Pα as
{
w ∈ Γ∗

∣∣∣∃X ∈ F,∃γ ∈ Π∗, α
w
=⇒
P

∗ Xγ
}

. α defaults to γ0 when

omitted.

A.3 PROOFS OF THEORETICAL RESULTS

In this section, we provide the proofs of the theoretical results stated in the main text.

A.3.1 PROOF OF THEOREM 1

Proof. First we show that the states of Pε are finite, i.e. Algorithm 1 terminates. Consider the
two steps in Algorithm 1 that add new states. Step 11 can only adds states in Π ∪ Π2, so step 11
is only executed a finite number of times. As for Step 16, because the parser P is deterministic
and terminating, by definition in Appendix A.2.3, for any stack configuration, there will not be an
endless sequence of ε transitions, so Step 16 is also only executed a finite number of times.

5The definition is slightly different in the cited references; nevertheless, their proof works on this definition.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The correctness of Algorithm 1 can be naturally deduced by its construction, because it simply
simulates the behavior of the parser P with the current stack top, and only outputs the stack when it
is stable.

A.3.2 PROOF OF THEOREM 2

Proof. Formally, P̃a can be defined as follows:

P̃a(α ∈ Π+) :=
{
β ∈ Π+

∣∣∣α a−→
P

β
}
. (6)

The construction of P̃a in Algorithm 2 trivially simulates one a-labelled transition of the parser P
on the current stack top, so it meets Definition 6.

The process of the parser processing w = w1 . . . wn can be decomposed into a sequence of uncon-
ditional ε-transitions, followed by wi-labelled transitions, followed by another sequence of uncon-
ditional ε-transitions. Each wi-labelled transition is simulated by the corresponding P̃wi , and the
unconditional ε-transitions are handled by Pε. Therefore, the composition Pw = Pε ◦ P̃w1

◦ Pε ◦
· · · ◦Pε ◦ P̃wn

◦Pε correctly simulates the parser P processing the terminal sequence w on the input
stack α, and produces the stabilized output stack β if it exists.

A.3.3 PROOF OF THEOREM 3

Proof. BecauseA is constructed as a FSA, the language recognized byA is regular. The language of
all valid (lexer state, parser stack) pairs for a given token v ∈ V can be obtained by reversing the lan-
guage recognized byA, taking the Brzozowski derivative (Brzozowski, 1964) with respect to v, and
then reversing it back. Since the class of regular languages is closed under these operationsHopcroft
& Ullman, the resulting language is also regular.

A.4 DATASET CONSTRUCTION DETAILS

Java, Go, and SQL We obtain their Lark grammars from the previous work Syncode (Ugare
et al.). Because the grammar format for XGrammar and Formatron is different from Lark, we man-
ually convert the Lark grammars to respective formats for each baseline. For each programming
language, we take the first 1000 samples from the Stack dataset (Kocetkov et al.) that can be suc-
cessfully parsed by the Lark parser to construct the evaluation dataset.

JSON Schemas We use the benchmark dataset MaskBench (mas), an extension of JSON Schema
Bench (Geng et al., a) by adding schema conformant and non-conformant JSON instances to each
schema. We generate the Lark grammar from the JSON schemas using the script provided in
MaskBench, and only use the schemas in MaskBench where the Lark parser can successfully parse
all the conformant JSON instances and reject all the non-conformant JSON instances. We then
randomly sample 1000 schemas for evaluation.

A.5 DESCRIPTION OF BASELINES IN EXPERIMENTS

We describe the baselines used in our experiments in detail.

• XGrammar (Dong et al.) uses a character-level non-deterministic PDA6. For each state,
it precomputes the context-independent accepted and rejected tokens, and only calls the
parser for the context-dependent tokens.

• GreatGramma (Park et al.) uses a lexer and a parser. It converts each token into all possible
terminals sequences and reduces the number of parser calls by sharing the parser calls
among tokens with the same terminal sequence. After computing the accepted terminal
sequences, it maps them back to the original tokens. It also precomputes the context-
dependent and context-independent terminal sequences for each parser state.

6In the latest implementation that we use in the experiments, this has been changed to an Earley (Earley)
parser.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• Formatron (Sun et al.) uses an Earley parser. It dynamically identifies and eliminates
invalid or redundant parser states during parsing, and uses a state cache to speed up the
repetitive parsing process.

• LLGuidance (Moskal et al.) uses a lexer and an Earley parser. It organizes the vocabulary
into a trie, and skips the whole subtree if the prefix token is rejected. It also leverages the
lexer on the vocabulary to pre-identify the terminal sequences.

A.6 EXTRA THROUGHPUT RESULTS

1 2 4 8 16 32 64 128 256
Batch size

400
800

1600
3200
6400

12800
25600
51200

102400

Th
ro

ug
hp

ut
 (t

ok
en

 /
s)

Upper bound (uncostrained)
PSCC

(a) Gemma 3 270M.

1 2 4 8 16 32 64 128 256
Batch size

400
800

1600
3200
6400

12800
25600
51200

102400

Th
ro

ug
hp

ut
 (t

ok
en

 /
s)

Upper bound (uncostrained)
PSCC

(b) Qwen 2.5 0.5B.

1 2 4 8 16 32 64 128 256
Batch size

300
600

1200
2400
4800
9600

19200
38400
76800

Th
ro

ug
hp

ut
 (t

ok
en

 /
s)

Upper bound (uncostrained)
PSCC

(c) Llama 3.2 1B.

1 2 4 8 16 32 64 128 256
Batch size

80
160
320
640

1280
2560
5120

10240
20480

Th
ro

ug
hp

ut
 (t

ok
en

 /
s)

Upper bound (uncostrained)
PSCC

(d) Qwen 2.5 7B.

Figure 4: End-to-end throughput (tokens per second) on the Go dataset using different methods on
different models with various batch sizes.

1 2 4 8 16 32 64 128 256
Batch size

300
600

1200
2400
4800
9600

19200
38400
76800

Th
ro

ug
hp

ut
 (t

ok
en

 /
s)

Upper bound (uncostrained)
LLGuidance
PSCC

(a) Gemma 3 270M.

1 2 4 8 16 32 64 128 256
Batch size

300
600

1200
2400
4800
9600

19200
38400
76800

Th
ro

ug
hp

ut
 (t

ok
en

 /
s)

Upper bound (uncostrained)
LLGuidance
PSCC

(b) Qwen 2.5 0.5B.

1 2 4 8 16 32 64 128 256
Batch size

300
600

1200
2400
4800
9600

19200
38400
76800

Th
ro

ug
hp

ut
 (t

ok
en

 /
s)

Upper bound (uncostrained)
LLGuidance
PSCC

(c) Llama 3.2 1B.

1 2 4 8 16 32 64 128 256
Batch size

80
160
320
640

1280
2560
5120

10240
20480

Th
ro

ug
hp

ut
 (t

ok
en

 /
s)

Upper bound (uncostrained)
LLGuidance
PSCC

(d) Qwen 2.5 7B.

Figure 5: End-to-end throughput (tokens per second) on the SQL dataset using different methods
on different models with various batch sizes.

Due to page limit, we only present the end-to-end throughput results on Java and schema-conformant
JSON in Section 4.3. The results on the Go and SQL datasets are similar and are included here in
Table 4 and Table 5, respectively.

18

	Introduction
	Background and related work
	The task: grammar-constrained decoding
	Related work

	PSC: Parser Stack Classification
	Lexical preprocessing
	Overview of syntactic preprocessing
	FST of transitions
	FST for any terminal sequence
	One-pass FSA for mask selection

	Experiments
	Experimental Setup
	Overhead of mask computation
	End-to-end Throughput

	Discussion and Conclusion
	Reproducibility Statement
	Appendix
	LLM Usage
	Formal definitions and notations
	Finite-state transducer (FST)
	Finite-state automaton (FSA)
	Push-down automaton (PDA)

	Proofs of theoretical results
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Dataset construction details
	Description of baselines in experiments
	Extra Throughput Results

