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Abstract

It has been shown that dual encoders trained001
on one domain often fail to generalize to other002
domains for retrieval tasks. One widespread003
belief is that the bottleneck layer of a dual en-004
coder, where the final score is simply a dot-005
product between a query vector and a pas-006
sage vector, is too limited to make dual en-007
coders an effective retrieval model for out-of-008
domain generalization. In this paper, we chal-009
lenge this belief by scaling up the size of the010
dual encoder model while keeping the bottle-011
neck embedding size fixed. With multi-stage012
training, surprisingly, scaling up the model013
size brings significant improvement on a va-014
riety of retrieval tasks, especially for out-of-015
domain generalization. Experimental results016
show that our dual encoders, Generalizable017
T5-based dense Retrievers (GTR), outperform018
existing sparse and dense retrievers on the019
BEIR dataset (Thakur et al., 2021) signifi-020
cantly. Most surprisingly, our ablation study021
finds that GTR is very data efficient, as it only022
needs 10% of MS Marco supervised data to023
achieve the best out-of-domain performance.1024

1 Introduction025

Typical neural retrieval models follow a dual en-026

coder paradigm (Gillick et al., 2018; Yang et al.,027

2020; Karpukhin et al., 2020). In this setup, queries028

and documents are encoded separately into a shared029

fixed-dimensional embedding space where relevant030

queries and documents are represented in each031

other’s proximity. Then, approximated nearest032

neighbor search (Vanderkam et al., 2013; John-033

son et al., 2021) is applied to efficiently retrieve034

relevant documents given an encoded input query.035

While dual encoders are popular neural retriev-036

ers, the expressiveness of the model is limited by037

a bottleneck layer consisting of only a simple dot-038

product between query embeddings and passage039

embeddings. Lu et al. (2021); Khattab and Zaharia040

1We will release code and models upon publication.

Figure 1: Average Recall@100 and NDCG@100 on all
BEIR tasks (excl. MS Marco). Scaling up consistently
improves dual encoders’ out-of-domain performance.

(2020) have discussed that the dot-product (or co- 041

sine similarity) between the embeddings might not 042

be powerful enough to capture semantic relevance. 043

Thakur et al. (2021) studied whether the retriever 044

models can generalize to other domains and con- 045

clude that dual encoder models have “issues for 046

out-of-distribution data”, and showed that models 047

with more interactions between queries and docu- 048

ments have better generalization ability. 049

In this paper, we challenge this belief by scaling 050

up the dual encoder model size while keeping the 051

bottleneck embedding size fixed. Note that scal- 052

ing up a dual encoder is different from scaling up 053

pretrained language models such as BERT (Devlin 054

et al., 2019) and T5 (Raffel et al., 2020) because 055

of the presence of the bottleneck layer. While in- 056

creasing the model size can greatly increase model 057

capacity, for dual encoders with a fixed embedding 058

size, the interactions between queries and docu- 059

ments are still limited by a simple dot-product. 060

To test this hypothesis, we take advantage of the 061

existing T5 architecture and checkpoints, which 062

allows us to build encoders of up to 5 billion pa- 063

rameters while keeping the bottleneck embedding 064

dimension of 768 in all configurations, as illus- 065

trated in fig. 2. Following Ni et al. (2021), we build 066

dual encoders by taking the encoder part of T5. For 067
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Figure 2: Architecture of Generalizable T5-based dense Retrievers. The research question we ask is: can scaling
up dual encoder model size improve the retrieval performance while keeping the bottleneck layers fixed? Only the
encoder is taken from the pre-trained T5 models, and the two towers of the dual encoder share parameters.

effectively using the power of large models, we068

collect roughly two billion web question-answer069

pairs as generic pre-training data. By combining070

pre-training using generic training data and fine-071

tuning using MS Marco (Nguyen et al., 2016), we072

are able to train large-scale dual encoder retrieval073

models. We call the resulting models Generalizable074

T5-based dense Retrievers (GTR).075

We evaluate the zero-shot performance of GTR076

on the BEIR benchmark (Thakur et al., 2021),077

which consists of 18 information retrieval tasks078

across 9 domains. Scaling up leads to better gen-079

eralization despite the fixed bottleneck embedding080

dimension. Second, pre-training on community081

question-answer pairs and fine-tuning on human082

curated data are both important to fully utilize083

the power of the scaled up model. In addition,084

with scaling and pre-training, we found GTR to be085

highly data efficient in terms of human annotated086

queries, as it only needs to use 10% of MS Marco087

to match the overall out-of-domain performance.088

2 Background089

2.1 Dual Encoder and dense retrieval090

Classic retrieval models such as BM25 (Robert-091

son and Zaragoza, 2009) relies on lexical overlap:092

term frequency, inverse document frequency and093

document length. To allow semantic matching be-094

tween queries and documents, dense retrieval mod-095

els such as dual encoders (Yih et al., 2011; Gillick096

et al., 2019; Karpukhin et al., 2020) are introduced,097

where both queries and documents are embedded098

into low-dimensional dense representations.099

One critical challenge for dual encoder models100

is that the performance is possibly bounded by the101

dot-product similarity function. As such, there is102

growing interest in applying lightweight interaction103

layers to replace the single dot-product function. 104

Luan et al. (2020) proposes a multi-vector encod- 105

ing model, which represents each document as a 106

fixed-size set of multiple vectors, and calculate 107

the relevance scores as the maximum inner prod- 108

uct over this set. ColBERT (Khattab and Zaharia, 109

2020) proposes to learn embeddings for each token 110

and then use a “MaxSim” operation to select the 111

best candidate. While these models can achieve sig- 112

nificant improvement, dual encoder is still the most 113

popular one in practice due to its simpleness and 114

ability to scale. In this paper, we take a step back 115

and show that performance of single dot-product 116

based methods can be improved significantly. 117

2.2 BEIR generalization task 118

For evaluation in this paper we use BEIR, a het- 119

erogenous benchmark for zero-shot evaluation of 120

information retrieval models. The BEIR zero-short 121

evaluation suit contains 18 information retrieval 122

datasets2 across 9 domains, including Bio-Medical, 123

Finance, News, Twitter, Wikipedia, StackExchange, 124

Quora, Scientific, and Misc. The majority of the 125

datasets have binary relevancy labels indicating 126

whether a document is relevant to a given query 127

or not. A small part of the datasets have 3-level 128

or 5-level relevancy judgements. We refer readers 129

BEIR (Thakur et al., 2021) for more details. 130

3 Generalizable T5 Retriever 131

3.1 T5 dual encoder 132

We use the dual encoder framework to train dense 133

retrieval models and follow prior work (Xiong et al., 134

2020; Hofstätter et al., 2021) to initialize dual en- 135

coders from pre-trained language models. In this 136

2MS Marco is excluded from the zero-shot comparison as
many baseline model used it as training data.
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work, we found convenient to use the pre-trained137

T5 model family as our backbone encoder because138

the T5 model family provides off-the-shelf pre-139

trained models (e.g. T5, mT5, byT5) with a wide140

range of model capacity from millions to billions141

of parameters (Raffel et al., 2020; Xue et al., 2020,142

2021). The architectures of our models are illus-143

trated in fig. 2.144

Let paired examplesD = {(qi, p+i )} be the train-145

ing set, where qi is an input question and p+i is a146

related passage (e.g., a semantically relevant pas-147

sage to the question). Following Ni et al. (2021),148

we encode the question qi and passage p+i into em-149

beddings by feeding them to the T5 encoder and150

taking the mean pooling of the encoder as output.151

In all outr experiments, we fix the output embed-152

dings to be of size 768.153

We train the model using an in-batch sampled154

softmax loss (Henderson et al., 2017):155

L =
esim(qi,p

+
i )/τ∑

j∈B esim(qi,p
+
j )/τ

, (1)156

where the similarity scoring function sim is the157

cosine similarity between the embeddings of qi and158

p+i . B is a mini-batch of examples and τ is the159

softmax temperature.160

Additional negatives p−j can be given for input161

question q. The loss is computed by including them162

in the denominator:163

L =
esim(qi,p

+
i )/τ∑

j∈B esim(qi,p
+
j )/τ + esim(qi,p

−
j )/τ

. (2)164

We also apply a bi-directional in-batch sampled165

softmax loss (Yang et al., 2019), where we compute166

losses for both question to document matching and167

document to question matching.168

3.2 Multi-stage training169

As shown in fig. 3, we use a multi-stage dual en-170

coder training approach to achieve generalizable171

retrieval models.172

The training process includes a pre-training stage173

on a web-mined corpus and a fine-tuning stage on174

search datasets. The web-mined corpus provides a175

large amount of semi-structured data pairs (such as176

question-answer pairs and conversations), which177

can provide rich semantic relevance information. It178

is easy to collect but it is often not well annotated,179

if at all. The search datasets are often annotated by180

humans, and the queries and documents are also181

T5
Shared

 Pre-training

Fine-tuning

Web dataset
(Mined from web)

Search dataset
(Human annotated) 

T5
Question Passage

Figure 3: Multi-stage training for GTR models.

authored by humans. These datasets are of high 182

quality but costly to collect. 183

In this work, for dual encoder pre-training, we 184

initialize the dual encoders from the T5 models 185

and train on question-answer pairs collected from 186

the Web. Recently, Sentence-T5 (Ni et al., 2021) 187

explored different ways to extract strong text em- 188

beddings and achieved remarkable performance 189

on SentEval and Sentence Textual Similarity tasks. 190

We follow that setting to encode queries and pas- 191

sages via mean pooling from the T5 encoders and 192

focus on the dense retrieval tasks. 193

For fine-tuning, our aim is to adapt the model to 194

retrieval using a high quality search corpus so the 195

model can learn to better match generic queries to 196

documents. In this paper, we consider two datasets 197

for fine-tuning: MS Marco (Nguyen et al., 2016) 198

and Natural Questions (Kwiatkowski et al., 2019). 199

4 Experimental setup 200

4.1 Training Data 201

Community QA. To leverage the power of large 202

scale models, we collect input-response pairs and 203

question-answer pairs from online forums and QA 204

websites such as Reddit and StackOverflow. This 205

results in 2 billion question-answer pairs that we 206

use to pre-train the dual encoder. 207

MS Marco. The MS Marco dataset (Nguyen 208

et al., 2016) includes 532K query and document 209

pairs, as search data for fine-tuning. The dataset 210

is sampled from Bing search logs, which covers a 211

broad range of domains and concepts. 212

Natural Questions. In the fine-tuning stage, 213

we also consider the Natural Questions dataset 214

(Kwiatkowski et al., 2019) , which has been widely 215

used in related work (Karpukhin et al., 2020; Xiong 216
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GTR Models Base Large XL XXL

# of params 110M 335M 1.24B 4.8B

Table 1: Number of parameters in the GTR models.

et al., 2020). This dataset consists of 130k query217

and passage pairs which are also human-annotated.218

4.2 Configurations219

We implement GTR models in JAX3 and train them220

on Cloud TPU-V3. We consider different sizes of221

the T5 transformer (Vaswani et al., 2017) architec-222

ture including Base, Large, XL and XXL. Their223

number of parameters are listed in table 1. Note224

that we only use the encoder portion of the T5 mod-225

els and thus the number of parameters are less than226

half of the full model size. We use the off-the-shelf227

checkpoints as the initial parameters and use the228

same sentencepiece vocabulary model.4229

During pre-training and fine-tuning, we set the230

batch size to 2048 and use a softmax temperature231

τ of 0.01. We use Adafactor optimizer (Shazeer232

and Stern, 2018) and set the initial learning rate to233

1e-3 with a linear decay. We train the model for234

800K steps and 20K steps for the pre-training and235

fine-tuning stages, respectively.236

For fine-tuning, we use the hard negatives re-237

leased by RocketQA (Qu et al., 2021) when fine-238

tuning with MS Marco data and the hard negatives239

release by (Lu et al., 2021) for Natural Questions,240

which were proven to lead to better retriever perfor-241

mance. By default, we use the complete MS Marco242

dataset and the NQ dataset for fine-tuning.243

When evaluating on the BEIR benchmark, we244

use sequences of 64 tokens for the questions and245

512 for the documents in all datasets except Trec-246

News, Robust-04 and ArguAna. In particular, we247

set the document length to 768 for Trec-News and248

Robust-04 while setting the question length to 512249

for ArguAna, in accordance to the average query250

and document lengths in these datasets.251

4.3 Models for comparison252

We consider various baselines, including sparse253

retrieval models: BM25, DocT5Query, and dense254

retrieval models: DPR, ANCE, TAS-B, and GenQ255

(Thakur et al., 2021). In the following sections,256

we only report the NDCG@10 metric due to the257

3https://github.com/google/jax
4https://github.com/google-research/

text-to-text-transfer-transformer

Models Dim. size

ColBERT 128
DPR, ANCE, TAS-B, GenQ, GTR 768
BM25, DocT5Query -

Table 2: Dimension of different models. Most dual en-
coder models set the embedding dimension to 768.

space limitation. The result on Recall@100 are 258

consistent and included in the Appendix. 259

We conduct experiments on four different sizes 260

of our GTR models (GTR-Base, GTR-Large, GTR- 261

XL, and GTR-XXL). We also consider three differ- 262

ent settings for GTR to investigate the scaling up 263

effect for different training stages: 264

• GTR. This is the full GTR model that con- 265

ducts both pre-training and fine-tuning. 266

• GTR-FT. This is a fine-tune only version of 267

GTR, where the T5 dual encoders are fine- 268

tuned on the MS Marco dataset. 269

• GTR-PT. This is a pre-training only version 270

of GTR, where the T5 dual encoders are only 271

pre-trained on the CommunityQA dataset. 272

We evaluate our models on BEIR (Thakur et al., 273

2021) as discussed in section 2.2. We consider two 274

retrieval metrics: NDCG@10 and Recall@100 fol- 275

lowing BEIR. Due to space limitations, we report 276

the Recall@100 results in appendix A. 277

5 Evaluation Results 278

We present three groups of experiments to study the 279

a) in-domain performance on MS Marco, b) out-of- 280

domain generalization performance on BEIR, and 281

c) data efficiency. 282

5.1 Results on MS Marco 283

We first analyze in-domain performance based on 284

the evaluation results on MS Marco. As show in 285

table 3, with scaling up, the models achieve consis- 286

tent improvement on NDCG@10. We observe sim- 287

ilar improvements on other evaluation metrics in- 288

cluding MRR@10 and Recall@1000 and reported 289

the numbers in table 7 of appendix A. This shows 290

that increasing model capacity leads to better in- 291

domain performance. 292

5.2 Results on BEIR generalization tasks 293

The next set of experiments investigates the ef- 294

fect of increasing model capacity on out-of-domain 295

(OOD) performance. 296
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NDCG@10 / Model Lexical / Sparse Dense Ours

BM25 docT5query DPR ANCE TAS-B GenQ ColBERT GTR-Base GTR-Large GTR-XL GTR-XXL

MS Marco 0.228 0.338 0.177 0.388 0.408 0.408 0.401 0.420 0.430 0.439 0.442

Trec-Covid 0.656 0.713 0.332 0.654 0.481 0.619 0.677 0.539 0.557 0.584 0.501
BioASQ 0.465 0.431 0.127 0.306 0.383 0.398 0.474 0.271 0.320 0.317 0.324
NFCorpus 0.325 0.328 0.189 0.237 0.319 0.319 0.305 0.308 0.329 0.343 0.342
NQ 0.329 0.399 0.474 0.446 0.463 0.358 0.524 0.495 0.547 0.559 0.568
HotpotQA 0.603 0.58 0.391 0.456 0.584 0.534 0.593 0.535 0.579 0.591 0.599
FiQA-2018 0.236 0.291 0.112 0.295 0.300 0.308 0.317 0.349 0.424 0.444 0.467
Signal-1M 0.330 0.307 0.155 0.249 0.289 0.281 0.274 0.261 0.265 0.268 0.273
Trec-News 0.398 0.42 0.161 0.382 0.377 0.396 0.393 0.337 0.343 0.350 0.346
Robust04 0.408 0.437 0.252 0.392 0.427 0.362 0.391 0.437 0.470 0.479 0.506
ArguAna 0.315 0.349 0.175 0.415 0.429 0.493 0.233 0.511 0.525 0.531 0.540
Touché-2020 0.367 0.347 0.131 0.240 0.162 0.182 0.202 0.205 0.219 0.230 0.256
Quora 0.789 0.802 0.248 0.852 0.835 0.830 0.854 0.881 0.890 0.890 0.892
DBPedia-entity 0.313 0.331 0.263 0.281 0.384 0.328 0.392 0.347 0.391 0.396 0.408
SCIDOCS 0.158 0.162 0.077 0.122 0.149 0.143 0.145 0.149 0.158 0.159 0.161
Fever 0.753 0.714 0.562 0.669 0.700 0.669 0.771 0.660 0.712 0.717 0.740
Climate-Fever 0.213 0.201 0.148 0.198 0.228 0.175 0.184 0.241 0.262 0.270 0.267
SciFact 0.665 0.675 0.318 0.507 0.643 0.644 0.671 0.600 0.639 0.635 0.662
CQADupStack 0.299 0.325 0.153 0.296 0.314 0.347 0.350 0.357 0.384 0.388 0.399

Avg 0.413 0.429 0.234 0.389 0.414 0.410 0.429 0.416 0.444 0.452 0.457
Avg w/o MS Marco 0.423 0.434 0.237 0.389 0.415 0.410 0.431 0.416 0.445 0.453 0.458

Table 3: NDCG@10 on the BEIR benchmark. The best result on a given dataset is marked in bold GTR models
are pre-trained on CommunityQA dataset and the complete MS Marco dataset. GTR models achieve better NDCG
when increasing size from Base to XXL, outperforming the previous best sparse model DocT5Query and dense
retrieval model TAS-B.
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Figure 4: Comparison with BM25 on NDCG@10. The
GTR-Base model outperforms BM25 on 9 datasets and
the larger GTR models continue to improve on these 9
tasks. The GTR-XXL model catches up or surpasses
BM25 on the other 5 datasets and only under-performs
on 5 of the remaining tasks.

As shown in table 3, we observe a clear gain on297

out-of-domain performance in terms of NDCG@10298

when the model size increases. The GTR-Large299

model already outperforms the previous best dense300

retrieval model TAS-B as well as the best sparse301

model DocT5Query. Scaling up to GTR-XXL302

leads to another jump in retrieval performance.303

Similar improvements are found on Recall@100304

as shown in the Appendix’s table 8. On average,305

the scaling up process demonstrates an encourag- 306

ing ascending trend that eventually outperforms all 307

baseline methods on all evaluation metrics. This 308

confirms that scaling up is a valid path towards 309

generalizability. 310

Previously, dual encoders failed to match the 311

performance of BM25 for tasks that require better 312

lexical matching capabilities. Thus, we wanted to 313

investigate what kind of tasks can get improved 314

by scaling up the model size. Figure 4 presents a 315

detailed comparison of all sizes of GTR models 316

against the BM25 baseline. 317

For tasks like NQ where dual encoders have been 318

previously shown to be more effective than BM25, 319

increasing the model size continues to advance the 320

performance of dual encoders. This suggests scal- 321

ing up can further boost the head start of dense 322

models over sparse models on these datasets. 323

For tasks like BioASQ and NFCorpus, where 324

dual encoders previously struggled to match the 325

performance of BM25 for inherent reasons, we dis- 326

covered that scaling up consistently improves the 327

retrieval performance. In particular, for NFCor- 328

pus, our Base model under-performs BM25 but the 329

XL model outperforms BM25 by 5.5% (0.343 vs. 330

0.325). This exciting finding verifies our assump- 331

tion that scaling up can further exploit the powerful 332

semantic matching capabilities of the dual encoder 333

models and enable them to ultimately outperform 334

BM25. 335
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GTR-FT GTR

Ratio of data Large XL Large XL XXL

NDCG@10 on MS Marco

10% 0.402 0.397 0.428 0.426 0.379
100% 0.415 0.418 0.430 0.439 0.442

Zero-shot average NDCG@10 w/o MS Marco

10% 0.413 0.418 0.452 0.462 0.465
100% 0.412 0.433 0.445 0.453 0.458

Table 4: Comparisons of NDCG@10 for GTR mod-
els trained with different amount of fine-tuning data.
With only 10% of the MS Marco data, both GTR-FT
and GTR models (large to XXL) achieve worse in-
domain performance; meanwhile they obtain compara-
ble or even superior out-of-domain performance than
using the complete MS Marco data.

5.3 Data efficiency for large retrievers336

To better understand the data efficiency for large337

dual encoders, we trained models using different338

portions of the MS Marco dataset during fine-339

tuning. In particular, we sampled a subset of the340

training data by keeping only 10% of the training341

queries as well as their relevant (positive) passages342

and irrelevant (hard negative) passages.343

As shown in table 4, using 10% of training data344

reduces the in-domain performance of the GTR345

models on MS Marco. For the GTR-FT (fine-346

tuning only) models, using 10% of the data leads347

to a mixed result of out-of-domain performance.348

On the other hand, for full GTR models, using349

10% of the MS Marco dataset is sufficient for fine-350

tuning. In particular, the GTR-Large, XL and XXL351

models achieve comparable or even better OOD352

performance than fine-tuning on the complete MS353

Marco dataset. This might suggest that GTR mod-354

els have the benefit of data efficiency and could use355

less training data for domain adaptation.356

6 Ablation Study and Analysis357

In this section we present ablations and analysis358

to further understand the effects of scaling up, the359

impact of fine-tuning and pre-training, and the GTR360

model’s behavior.361

6.1 Effect of scaling up for different training362

stages363

The first ablation study aims to investigate how364

scaling up effects dual encoder pre-training and365

fine-tuning. Results are listed in table 5.366

For fine-tuning only models, scaling up benefits367

GTR-FT GTR-PT GTR

Fine-tuning 3 7 3

NDCG@10 on MS Marco

Base 0.400 0.258 0.420
Large 0.415 0.262 0.430
XL 0.418 0.259 0.439
XXL 0.422 0.252 0.442

Zero-shot average NDCG@10 w/o MS Marco

Base 0.387 0.295 0.416
Large 0.412 0.315 0.445
XL 0.433 0.315 0.453
XXL 0.430 0.332 0.458

Table 5: Comparisons (NDCG@10) of the models
trained with and without pre-training and fine-tuning.
Notably, the GTR-FT XL model already achieves an
average zero-shot NDCG@10 of 0.433, which outper-
forms the previous best dual encoder model TAS-B
(NDCG@10=0.415).

both in-domain and out-of-domain performance. 368

For pre-training only models, the improvement on 369

in-domain performance is not obvious; meanwhile 370

for out-of-domain tasks, scaling up also improves 371

the generalization. Finally with both pre-training 372

and fine-tuning, GTR models consistently improve 373

over GTR-FT models of all sizes. This shows the 374

power of combining scaling up and a generic pre- 375

training stage. 376

6.2 Importance of the fine-tuning dataset 377

In table 5, we compare GTR and GTR-PT on the 378

BEIR benchmark to understand the importance of 379

fine-tuning on MS Marco. The table shows that 380

there is a clear gap between GTR models before 381

and after fine-tuning. The result shows the neces- 382

sity of leveraging a high quality dataset (e.g. search 383

data) to fine-tune the dual encoders. 384

In table 6, we compare fine-tuning GTR on NQ 385

instead of MS Marco. Compared to MS Marco, 386

NQ only covers Wikipedia documents and is much 387

smaller in size, which allows us to investigate the 388

performance of GTR when fine-tuned on a less gen- 389

eralizable dataset. In addition, fine-tuning on NQ 390

can give us a fair comparison with DPR (Karpukhin 391

et al., 2020). 392

As shown in table 6, the GTR-base model fine- 393

tuned on NQ outperforms the original DPR model, 394

which uses a BERT-Base model as the encoder 395

backbone. This demonstrates the effectiveness of 396

our pre-training on the Web dataset as well as the 397

hard negatives introduced from Lu et al. (2021) 398

for NQ. Fine-tuning on NQ leads to inferior per- 399
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Model Fine-tuning dataset Zero-shot aver-
age NDCG@10

DPR NQ 0.237
GTR-Base NQ 0.360
GTR-Large NQ 0.379
GTR-XL NQ 0.407

GTR-Large MS Marco 0.445
GTR-XL MS Marco 0.453

Table 6: Comparisons of GTR models fine-tuned on
MS Marco and NQ. We report the zero-shot average
NDCG@10. Scaling up improves model performance
both on NQ and MS Marco.

formance compared to fine-tuning on MS Marco,400

which is consistent with prior work (Thakur et al.,401

2021). However, importantly, scaling up GTR size402

improves zero-shot performance on BEIR when403

fine-tuning on NQ. This shows that the benefit of404

scaling up holds for different fine-tuning datasets.405

Furthermore, when scaling from Large to XL, we406

observe a larger gain when fine-tuning with NQ407

than with MS Marco, indicating that scaling up408

helps more when using weaker fine-tuning data.409

6.3 Comparison of different dual encoder410

pre-training strategies411

In a concurrent work (Izacard et al., 2021), re-412

searchers proposed to conduct contrastive learning413

(CL) pre-training data from C4 and Wiki dataset414

in an unsupervised way. In particular, their pre-415

training data is constructed by randomly choosing416

two spans from a single document and conduct417

word deletion or replacement to each span. In418

contrast, GTR uses Web-mined QA data as the419

pretraining data.420

We compare the performance of our GTR mod-421

els to their models to gain insights into different pre-422

training data for dual encoders. As shown in fig. 5,423

on over half of the datasets, models with our pre-424

training approach under-perform CL-Pretrain with425

the base size; while as the model size increases,426

GTR-Large and -XXL models show significant427

gains over CL-Pretrain. The best GTR-XXL model428

achieves 0.49 for NDCG@10 on average while429

CL-Pretrain achieves 0.46. This demonstrates that430

scaling up can mitigate the disadvantage of the po-431

tentially inferior pre-training data. Note that our432

pre-training is additive to CL-Pretrain and we can433

leverage the pre-training on C4 and Wiki to further434

improve the results. We leave this exploration as435

future work.436
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Figure 5: Comparison with Izacard et al. (2021) on
NDCG@10. “CL” denotes Izacard et al. (2021) with
contrastive learning on C4 and Wiki while others de-
note our GTR models with different sizes. Note that
they only report results on 15 datasets of the BEIR
benchmark.

6.4 Document length vs model capacity 437

Previously, BEIR has shown that models trained 438

with cosine similarity prefer short documents while 439

those trained with dot-product prefer long docu- 440

ments (Thakur et al., 2021). We investigate whether 441

scaling up affect this observation. Specifically, we 442

compute the median lengths (in words) of the top- 443

10 retrieved documents for all queries. Results are 444

shown in fig. 6. 445

Though all GTR models are trained using co- 446

sine similarity, we found that scaling up the model 447

size has influence over the lengths of retrieved 448

documents. We observe an increasing trend of 449

document length for DB-Pedia, Fever, HotpotQA, 450

Signal-1M, Trec-News, and Web-Touche2020 with 451

scaling up. In particular, for Web-Touche2020, the 452

lengths of the retrieved documents grow drastically 453

as the models scale up: The largest GTR-XXL 454

retrieves documents that are on average twice as 455

long compared with the smallest GTR-Base. This 456

plays in our favor since Thakur et al. (2021) show 457

that the majority of relevant documents in Web- 458

Touche2020 are longer. 459

On the other hand, the only exception we ob- 460

serve is the Trec-Covid dataset, where GTR-XXL 461

model retrieves much shorter documents than those 462

retrieved by the smaller size counterparts. This may 463

explain the inferior performance of GTR-XXL on 464

Trec-Covid shown in table 3 and table 8. We leave 465

it as future work to explore the effects of using the 466

dot-product as similarity function for large dual 467

encoders. 468
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Figure 6: Median lengths (in words) of top-10 retrieved
documents for all queries.

7 Related Work469

Neural information retrieval. Document re-470

trieval is an important task in the NLP and in-471

formation retrieval (IR) communities. Tradition-472

ally, lexical based approaches trying to match the473

query and document based on term overlap, such474

as TF-IDF and BM25 (Robertson and Zaragoza,475

2009), have achieved great success in this task.476

Recently, neural based approaches, which go be-477

yond the simple term matching, are being quickly478

adopted by the community and achieve state-of-the-479

art performance on multiple retrieval tasks, such as480

passage retrieval (Karpukhin et al., 2020), question481

answering (Ahmad et al., 2019), conversational482

question answering (Qu et al., 2020) and bitext483

retrieval (Feng et al., 2020).484

Dual encoders for neural retrieval. Dual en-485

coders have demonstrated to be one type of neural486

retrievers that can achieve great performance com-487

pared to traditional sparse models such as BM25488

for a wide range of retrieval tasks (Karpukhin et al.,489

2020; Gillick et al., 2018). One key aspect to their490

success is the adoption of pre-trained language491

models, which enables the dual encoders to have492

backbone contextual embeddings to initialize from.493

Other techniques such as negative mining (Xiong494

et al., 2020; Lu et al., 2021; Sachan et al., 2021)495

and large training batch sizes (Qu et al., 2021) have496

also shown great effectiveness. However, few of497

the previous works have discussed the effect of the498

backbone model’s capacity.499

Zero-shot neural retrieval. Recent works have500

shown great improvement under the zero-shot set-501

ting for dual encoders by leveraging distillation 502

and synthetic data generation (Thakur et al., 2021; 503

Hofstätter et al., 2021; Ma et al., 2020). Both of 504

these techniques, and scaling up backbone mod- 505

els, are effective ways to close the gap between 506

dual encoders and the upper bound of the single- 507

product approaches with fixed-dimension embed- 508

dings. On the other hand, multi-vector approaches 509

introduce more interactions between dense embed- 510

dings, which could also benefit from scaling up the 511

backbone multi-vector encoders. We hope that our 512

observation about scaling up model sizes for single 513

dot-product based methods can be combined with 514

these techniques and further push the frontier of 515

neural retrieval models. 516

8 Inference latency 517

One caveat for scaling up model size is the incre- 518

ment in the latency overhead. We investigate the 519

inference speed in terms of microseconds (ms) for 520

all GTR models with batch size 1 and input length 521

128. We found the latency increases from 17 ms, 522

34 ms, 96 ms to 349 ms. The GTR-Base model has 523

close latency compared to TAS-B while the largest 524

GTR-XXL model has a similar latency to the re- 525

ranking models (Thakur et al., 2021). With the 526

recent work towards making large models efficient 527

with sparsification, distillation and prompt-tuning, 528

we hope the inference time for large dual encoders 529

can be significantly reduced in the future. 530

9 Conclusion 531

This paper presents the Generalizable T5 Retriever 532

(GTR), a scaled-up dual encoder model with a 533

fixed-size bottleneck layer. We show that scal- 534

ing up the model size brings significant improve- 535

ment on retrieval performance across the board on 536

the BEIR zero-shot retrieval benchmark, especially 537

for out-of-domain generalization. The GTR-XXL 538

model achieves state-of-the-art performance on 539

BEIR, outperforming many models that use earlier 540

interactions between queries and documents. This 541

sheds light on the research direction to keep improv- 542

ing the single vector representation model through 543

better backbone encoders. The findings here are 544

also complementary with other recent works that 545

improve the dual encoder training, including dis- 546

tilling from a ranker / scorer model, using a better 547

contrasting pre-training objective and scaling up 548

the encoders for multi-vector retrieval models. 549
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A More results717

A.1 Comparisons on MS Marco718

Table 7 shows the comparisons of GTR models and719

the baselines. Note that the best RocketQA model720

used additional augmented data other than MS721

Marco to improve the model performance while722

all others do not. Our best GTR-XXL models out-723

performs RocketQA on both MRR and recall.724

Model NDCG@10 MRR@10 Recall@1000

ANCE 0.388 0.330 0.959
TAS-Balanced 0.408 0.340 0.975
ColBERT 0.401 0.360 0.968
RocketQA / 0.370 0.979
GTR-Base 0.420 0.366 0.983
GTR-Large 0.430 0.379 0.991
GTR-XL 0.439 0.385 0.989
GTR-XXL 0.442 0.388 0.990

Table 7: Comparisons of different models on MS
Marco. Scaling up can improve GTR models’ in-
domain performance.

A.2 Recall on BEIR725

Table 8 presents the Recall@100 of GTR mod-726

els and the baselines. Similar to NDCG@10, we727

observe that scaling up dual encoders lead to sig-728

nificant gains on the BEIR benchmark in terms of729

recall.730
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Recall@10 / Model Lexical / Sparse Dense Ours

BM25 docT5query DPR ANCE TAS-B GenQ ColBERT GTR-Base GTR-Large GTR-XL GTR-XXL

MS Marco 0.658 0.819 0.552 0.852 0.884 0.884 0.865 0.898 0.908 0.911 0.916
Trec-Covid 0.498 0.541 0.212 0.457 0.387 0.456 0.464 0.411 0.434 0.457 0.407
BioASQ 0.714 0.646 0.256 0.463 0.579 0.627 0.645 0.441 0.490 0.483 0.483
NFCorpus 0.250 0.253 0.208 0.232 0.280 0.280 0.254 0.275 0.298 0.318 0.300
NQ 0.760 0.832 0.880 0.836 0.903 0.862 0.912 0.893 0.930 0.936 0.946
HotpotQA 0.740 0.709 0.591 0.578 0.728 0.673 0.748 0.676 0.725 0.739 0.752
FiQA-2018 0.539 0.598 0.342 0.581 0.593 0.618 0.603 0.670 0.742 0.755 0.780
Signal-1M 0.370 0.351 0.162 0.239 0.304 0.281 0.283 0.263 0.261 0.268 0.268
Trec-News 0.422 0.439 0.215 0.398 0.418 0.412 0.367 0.475 0.525 0.512 0.544
Robust04 0.375 0.357 0.211 0.274 0.331 0.298 0.31 0.324 0.365 0.364 0.372
ArguAna 0.942 0.972 0.751 0.937 0.942 0.978 0.914 0.974 0.978 0.980 0.983
Touché-2020 0.538 0.557 0.301 0.458 0.431 0.451 0.439 0.281 0.282 0.297 0.301
Quora 0.973 0.982 0.470 0.987 0.986 0.988 0.989 0.996 0.996 0.997 0.997
DBPedia-entity 0.398 0.365 0.349 0.319 0.499 0.431 0.461 0.418 0.480 0.480 0.494
SCIDOCS 0.356 0.360 0.219 0.269 0.335 0.332 0.344 0.340 0.358 0.358 0.366
Fever 0.931 0.916 0.840 0.900 0.937 0.928 0.934 0.923 0.941 0.944 0.947
Climate-Fever 0.436 0.427 0.390 0.445 0.534 0.450 0.444 0.522 0.552 0.569 0.556
SciFact 0.908 0.914 0.727 0.816 0.891 0.893 0.878 0.872 0.899 0.911 0.900
CQADupStack 0.606 0.638 0.403 0.579 0.622 0.654 0.624 0.681 0.714 0.729 0.740

Avg 0.601 0.615 0.425 0.559 0.610 0.605 0.604 0.596 0.625 0.632 0.634
Avg w/o MS Marco 0.598 0.603 0.418 0.543 0.594 0.590 0.590 0.580 0.609 0.616 0.619

Table 8: Recall@100 on the BEIR benchmark. The best result on a given dataset is marked in bold.
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