

000 001 002 003 004 005 A UNIFIED PERSPECTIVE ON FINE-TUNING AND SAM- 006 PLING WITH DIFFUSION AND FLOW MODELS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023

ABSTRACT

011 We study the problem of training diffusion and flow generative models to sam-
012 ple from target distributions defined by an exponential tilting of the base den-
013 sity. This tasks subsumes sampling from unnormalized densities and reward fine-
014 tuning a pre-trained model, and can be approached from a stochastic optimal con-
015 trol (SOC) perspective and from a thermodynamics perspective. The SOC for-
016 mulation has been tackled using adjoint-based methods (Adjoint Matching and
017 Sampling), and score matching methods, while the thermodynamics formulation
018 has given rise to algorithms such as CMCD and NETS. Our contributions include
019 bounding the lean adjoint ODE underlying Adjoint Matching and Sampling, de-
020 riving bias-variance decompositions that allow a principled comparison between
021 adjoint-based and score-matching methods, adapting thermodynamic formula-
022 tions to the exponential tilting setting, and text-to-image fine-tuning experiments.
023

024 1 INTRODUCTION 025

026 Recent advances in generative modeling have demonstrated the effectiveness of diffusion and flow
027 matching models for learning complex data distributions (Song et al., 2021; Ho et al., 2020; Lipman
028 et al., 2022; Albergo et al., 2023; Liu et al., 2023). In many applications, however, it is desirable
029 to tailor the generative process to favor certain qualities—either by sampling from an unnormalized
030 target distribution or by fine-tuning a pre-trained model with a reward function (Uehara et al., 2024;
031 Domingo-Enrich et al., 2025; Zhang & Chen, 2022; Holdijk et al., 2023). A natural way to address
032 these challenges is via *exponential tilting*, wherein a base density is modified to a target one by
033 reweighting with an exponential factor. This formulation not only unifies reward fine-tuning and
034 sampling from unnormalized distributions but also naturally lends itself to analysis using tools from
035 stochastic optimal control (SOC), partial differential equation (PDE) analysis, stochastic processes
036 and thermodynamics.

037 Motivated by the broad applications, such as text-to-image generation (Domingo-Enrich et al., 2025)
038 and protein design (Wang et al., 2025), a growing body of work has explored methods for fine-tuning
039 diffusion and flow models. Although the underlying problem structure aligns well with SOC, par-
040 ticularly when casting as controlling an SDE with a reward function, the key challenge is the bias
041 introduced by lifting the base process with an additional control. Uehara et al. (2024) proposed a
042 two-step strategy with an additional control to draw samples from the biased initial distribution. Ad-
043 joint matching (Domingo-Enrich et al., 2025) systematically analyzed this problem and introduced
044 memoryless noise schedules to solve this issue. More recently, reinforcement learning (RL)-based
045 approaches have also been introduced, e.g. GRPO (Liu et al., 2025b).

046 In a parallel literature, training diffusion and flow models to sample from unnormalized densities has
047 also been largely studied. Early work (Zhang & Chen, 2022; Vargas et al., 2023; Berner et al., 2022)
048 can be viewed as solving an SOC problem where the reward function is related to the unnormal-
049 ized density. Another branch of work (Phillips et al., 2024; Akhound-Sadegh et al., 2024) leveraged
050 the target score identity, which relates the score to the unnormalized target density and learns an
051 SDE to draw samples. The idea of adjoint matching has also been applied to this problem, together
052 with reciprocal projection for efficient off-policy training (Havens et al., 2025; Liu et al., 2025a).
053 More recently, Vargas et al. (2024) and Albergo & Vanden-Eijnden (2025) introduced a thermody-
054 namic formulation of this problem, extending the classical annealed importance sampling (AIS) and
055 Jarzynski equality perspective using path-space variational inference and PDE formulations.

In this paper, we provide a unifying framework that formulates training diffusion and flow models to sample from an exponentially tilted target distribution, which covers reward-based fine-tuning of a pretrained model, as well as sampling from unnormalized densities. Our main contributions are as follows: (i) we bound the norm of the lean adjoint ODE for Adjoint Matching and Sampling (AM/AS), supporting the empirical performance of the algorithms; (ii) we derive bias-variance decompositions for adjoint-based and score matching algorithms to compare the algorithms on equal footing, under which AM/AS and Novel Score Matching (NSM, Phillips et al. (2024)) perform favorably; (iii) we adapt the thermodynamic framework of Vargas et al. (2024) and Albergo & Vanden-Eijnden (2025) to the exponential tilting problem which yields analogs of the Controlled Monte Carlo Diffusions (CMCD) and Non-Equilibrium Transport Sampler (NETS) loss functions, as well as novel variants of the celebrated Crooks fluctuation theorem and Jarzynski equality. Finally, we perform reward-based fine-tuning experiments on Stable Diffusion 1.5 and 3 using Adjoint Matching, refining the techniques of Domingo-Enrich et al. (2025).

2 BACKGROUND

2.1 FLOW MATCHING, DDIM AND FÖLLMER PROCESSES

Flow Matching or Stochastic Interpolants Given a real-valued differentiable function $(\alpha_t)_{t \in [0,1]}$ such that $\alpha_0 = 0$, $\alpha_1 = 1$, and a real-valued differentiable function $(\beta_t)_{t \in [0,1]}$ such that $\beta_1 = 0$, the reference flow or stochastic interpolant \bar{X} is defined as

$$\bar{X}_t = \alpha_t Y + \beta_t \varepsilon, \quad (1)$$

where $\varepsilon \sim p_0 = \mathcal{N}(0, \mathbf{I})$, $Y \sim p_{\text{data}}$. If we let

$$\kappa_t = \frac{\dot{\alpha}_t}{\alpha_t}, \quad \eta_t = \beta_t \left(\frac{\dot{\alpha}_t}{\alpha_t} \beta_t - \dot{\beta}_t \right), \quad (2)$$

the Flow Matching reference SDE, whose solution has the same time marginals as the reference flow up to a time flip, is

$$d\tilde{X}_t = -\kappa_{1-t} \tilde{X}_t dt + \sqrt{2\eta_{1-t}} dB_t, \quad \tilde{X}_0 \sim p_{\text{data}}. \quad (3)$$

That is, for all $t \in [0, 1]$, \tilde{X}_t and \bar{X}_{1-t} have the same distribution. And the optimal generative SDE reads

$$dX_t = \left(\kappa_t X_t + \left(\frac{\sigma(t)^2}{2} + \eta_t \right) \mathfrak{s}_t(X_t) \right) dt + \sigma(t) dB_t, \quad X_0 \sim \mathcal{N}(0, \beta_0^2 \mathbf{I}), \quad (4)$$

where \mathfrak{s}_t is the score function of the reference process: $\mathfrak{s}_t(x) = \nabla \log p_t(x)$, and the noise schedule σ is arbitrary. For any σ , the marginals X_t also have the same distribution as the reference flow marginals \bar{X}_t . Setting $\sigma(t) = \sqrt{2\eta_t}$ yields the memoryless process, which is the time reversal of the process in (3):

$$dX_t = \left(\kappa_t X_t + 2\eta_t \mathfrak{s}_t(X_t) \right) dt + \sqrt{2\eta_t} dB_t, \quad X_0 \sim \mathcal{N}(0, \beta_0^2 \mathbf{I}). \quad (5)$$

Remark 2.1. Although the drift terms in (4) and (5) are written in terms of the score to facilitate the analysis, in Flow Matching the vector field that is learned is $v_t(x) = \kappa_t X_t + \eta_t \mathfrak{s}_t(x)$, and in DDIM it is often the denoiser $\epsilon_t(x) = -\beta_t \mathfrak{s}_t(x)$. These vector fields encode the same information, and the drifts can be written in terms of any of them.

Subcases of Flow Matching The following processes are particular instances of flow matching:

(i) **Föllmer process:** Given an increasing function $\bar{\alpha}_t$ such that $\bar{\alpha}_0 = 0$ and $\bar{\alpha}_1 = 1$, and a constant $\sigma_0^2 > 0$, the interpolant \bar{X} and the coefficients $\alpha_t, \beta_t, \kappa_t$ and η_t read

$$\begin{aligned} \bar{X}_t &= \bar{\alpha}_t Y + \sqrt{\bar{\alpha}_t(1 - \bar{\alpha}_t)} \sigma_0 \varepsilon \implies \alpha_t = \bar{\alpha}_t, \quad \beta_t = \sqrt{\bar{\alpha}_t(1 - \bar{\alpha}_t)} \sigma_0, \\ \dot{\alpha}_t &= \dot{\bar{\alpha}}_t, \quad \dot{\beta}_t = \frac{(1 - 2\bar{\alpha}_t)\dot{\bar{\alpha}}_t}{2\sqrt{\bar{\alpha}_t(1 - \bar{\alpha}_t)}} \sigma_0^2, \implies \kappa_t = \frac{\dot{\bar{\alpha}}_t}{\bar{\alpha}_t}, \quad \eta_t = \frac{\dot{\bar{\alpha}}_t \sigma_0^2}{2}. \end{aligned} \quad (6)$$

(ii) **DDIM/DDPM:** Given an increasing function $\bar{\alpha}_t$ such that $\bar{\alpha}_0 = 0$ and $\bar{\alpha}_1 = 1$, and a constant $\sigma_0^2 > 0$, the interpolants and coefficients $\alpha_t, \beta_t, \kappa_t$ and η_t read

$$\begin{aligned} \bar{X}_t &= \sqrt{\bar{\alpha}_t} Y + \sqrt{1 - \bar{\alpha}_t} \sigma_0 \varepsilon \implies \alpha_t = \sqrt{\bar{\alpha}_t}, \quad \beta_t = \sqrt{1 - \bar{\alpha}_t} \sigma_0, \\ \dot{\alpha}_t &= \frac{\dot{\bar{\alpha}}_t}{2\sqrt{\bar{\alpha}_t}}, \quad \dot{\beta}_t = -\frac{\dot{\bar{\alpha}}_t}{2\sqrt{1 - \bar{\alpha}_t}} \sigma_0, \implies \kappa_t = \frac{\dot{\bar{\alpha}}_t}{2\bar{\alpha}_t}, \quad \eta_t = \frac{\dot{\bar{\alpha}}_t \sigma_0^2}{2\bar{\alpha}_t}. \end{aligned} \quad (7)$$

108 (iii) *Rectified Flow (OT Flow Matching):* Given an increasing function $\bar{\alpha}_t$ such that $\bar{\alpha}_0 = 0$ and
 109 $\bar{\alpha}_1 = 1$, and a constant $\sigma_0^2 > 0$, the interpolant \bar{X} and the coefficients $\alpha_t, \beta_t, \kappa_t$ and η_t read
 110

$$\begin{aligned} \bar{X}_t &= \bar{\alpha}_t Y + (1 - \bar{\alpha}_t) \sigma_0 \varepsilon \implies \alpha_t = \bar{\alpha}_t, \quad \beta_t = (1 - \bar{\alpha}_t) \sigma_0. \\ \dot{\alpha}_t &= \dot{\bar{\alpha}}_t, \quad \dot{\beta}_t = -\dot{\bar{\alpha}}_t, \implies \kappa_t = \frac{\dot{\bar{\alpha}}_t}{\bar{\alpha}_t}, \quad \eta_t = \frac{(1 - \bar{\alpha}_t) \dot{\bar{\alpha}}_t \sigma_0^2}{\bar{\alpha}_t}. \end{aligned} \quad (8)$$

114 2.2 EXPONENTIAL TILTING AND ITS CONTROL AND THERMODYNAMIC FORMULATIONS
 115

116 **The exponential tilting problem** Given a Flow Matching model that generates a distribution p^{base}
 117 over \mathbb{R}^d and a function $r : \mathbb{R}^d \rightarrow \mathbb{R}$, consider the task of modifying the model such that the generated
 118 distribution is the following tilted distribution:

$$p^*(x) \propto p^{\text{base}}(x) \exp(r(x)). \quad (9)$$

121 Two main settings are covered by the exponential tilting framework:

122 (i) *Reward fine-tuning:* p^{base} is the distribution generated by a pre-trained diffusion or flow
 123 matching model, and r is a reward model that takes high values for high quality samples.
 124 (ii) *Sampling from unnormalized distributions:* The goal is to sample from the unnormalized
 125 distribution proportional to $p^*(x) = \exp(-E(x))$, where E is the energy function. p^{base} is a
 126 Gaussian $\mathcal{N}(0, \sigma_1^2 \mathbf{I})$, and the reward r is chosen to be $r(x) = -E(x) + \frac{\|x\|^2}{2\sigma_1^2}$.

128 While the Föllmer process is typically used for sampling (e.g. Havens et al. (2025)), and DDIM and
 129 OT Flow Matching are commonly used for generative modeling, the choice of process is independent
 130 of the application.

131 **The stochastic optimal control formulation** Domingo-Enrich et al. (2025) proves that the ex-
 132 ponential tilting problem can be reformulated as the following stochastic optimal control (SOC)
 133 problem:¹

$$\min_{u \in \mathcal{U}} \mathbb{E} \left[\frac{1}{2} \int_0^1 \|u(X_t^u, t)\|^2 dt + g(X_1^u) \right], \quad (10)$$

$$\text{s.t. } dX_t^u = (b_\sigma(X_t^u, t) + \sigma(t)u(X_t^u, t)) dt + \sigma(t)dB_t, \quad X_0^u \sim p_0 = \mathcal{N}(0, \beta_0^2 \mathbf{I}), \quad (11)$$

$$\text{where } b_\sigma(x, t) = \kappa_t x + \left(\frac{\sigma(t)^2}{2} + \eta_t \right) \mathfrak{s}_t(x), \quad (12)$$

140 as long as the uncontrolled process $X = X^0$ satisfies the memoryless property, meaning that X_0
 141 and X_1 are statistically independent. (Domingo-Enrich et al., 2025, Prop. 1) shows that a generative
 142 process is memoryless if and only if the noise schedule is chosen as $\sigma(t)^2 = 2\eta_t + \chi(t)$, with
 143 $\chi : [0, 1] \rightarrow \mathbb{R}$ such that for all $t \in (0, 1]$, $\lim_{t' \rightarrow 0^+} \alpha_{t'} \exp \left(- \int_{t'}^t \frac{\chi(s)}{2\beta_s^2} ds \right) = 0$. In particular, they
 144 refer to $\sigma(t) = \sqrt{2\eta_t}$ as the memoryless noise schedule, as it is the only one such that the resulting
 145 fine-tuned model can be used to perform inference with an arbitrary noise schedule (Domingo-
 146 Enrich et al., 2025, Thm. 1).

147 **The thermodynamics formulation** Methods like CMCD (Vargas et al., 2024) and NETS (Al-
 148 bergo & Vanden-Eijnden, 2025) were developed in a setting where one has access to a time-
 149 dependent energy function $(U_t)_{t \in [0, 1]}$, instead of a flow matching vector field that generates p^{base}
 150 and a time-dependent reward function $(r_t)_{t \in [0, 1]}$. That is, their goal is to learn a vector field
 151 that yields a process with marginals $p_t^*(x) \propto \exp(-U_t(x))$. This is different but related to the
 152 task of learning a vector field that yields a process with marginals $p_t^*(x) \propto p_t^{\text{base}}(x) \exp(r_t(x))$,
 153 which solves the exponential tilting problem (9) if $(r_t)_{t \in [0, 1]}$ is chosen such that $r_1 = r$ and
 154 $p_0^* \propto \mathcal{N}(0, \beta_0^2) \exp(r_0)$ is easy to sample from. More specifically, we consider processes X^v of
 155 the form

$$dX_t^v = (b_\sigma^r(X_t^v, t) + v(X_t^v, t)) dt + \sigma(t)dB_t, \quad \begin{cases} X_0^v \sim p_0^* \propto \mathcal{N}(0, \beta_0^2 \mathbf{I}) \exp(r_0), \\ b_\sigma^r(x, t) := \kappa_t x + \left(\frac{\sigma(t)^2}{2} + \eta_t \right) (\mathfrak{s}_t(x) + \nabla r_t(x)). \end{cases} \quad (13)$$

161 ¹In (12), \mathfrak{s}_t is the score function corresponding to p^{base} . In practice, b_σ is computed using the learned FM
 vector field or denoiser (Rem. 2.1).

162 and our goal is to learn a v^* such that the marginal distribution of $X_t^{v^*}$ is $p_t^*(x) \propto$
 163 $p_t^{\text{base}}(x) \exp(r_t(x))$. Unlike in the SOC formulation, in the thermodynamics formulation the noise
 164 schedule $\sigma(t)$ can be picked arbitrarily.
 165

166 3 STOCHASTIC OPTIMAL CONTROL ALGORITHMS AND ANALYSIS

168 3.1 ADJOINT-BASED METHODS

170 **Adjoint Matching** Adjoint Matching (AM) is a SOC deep learning loss introduced by Domingo-
 171 Enrich et al. (2025). For the exponential tilting problem with scalar σ , it takes the following form:

$$172 \quad \mathcal{L}_{\text{Adj-Match}}(u; X^{\bar{u}}) := \frac{1}{2} \int_0^1 \|u(X_t^{\bar{u}}, t) + \sigma(t)\tilde{a}(t; X^{\bar{u}})\|^2 dt, \quad \bar{u} = \text{stopgrad}(u), \quad (14)$$

$$174 \quad \text{where } \frac{d}{dt}\tilde{a}(t; X^{\bar{u}}) = -\nabla_x b_\sigma(X_t^{\bar{u}}, t)^\top \tilde{a}(t; X^{\bar{u}}), \quad (15)$$

$$175 \quad \tilde{a}(1; X^{\bar{u}}) = -\nabla_x r(X_1^{\bar{u}}). \quad (16)$$

177 Domingo-Enrich et al. (2025) refer to the ODE (15)-(16) as the lean adjoint ODE. They show that
 178 if u is a critical point of the expected loss $\mathcal{L}_{\text{Adj-Match}}(u) := \mathbb{E}[\mathcal{L}_{\text{Adj-Match}}(u; X^{\bar{u}})]$ that is, if
 179 $\frac{\delta}{\delta u} \mathcal{L}_{\text{Adj-Match}}(u) \equiv 0$, then u is the optimal control u^* .

180 **Adjoint Sampling** Adjoint Sampling was introduced by Havens et al. (2025) as a procedure based
 181 on Adjoint Matching to sample from unnormalized densities, with improved efficiency. When p^{base}
 182 is a Gaussian $\mathcal{N}(0, \sigma_1^2 \mathbf{I})$, we have that $\bar{X}_t \sim \mathcal{N}(0, (\alpha_t^2 \sigma_1^2 + \beta_t^2) \mathbf{I})$, which means that $b(x, t)$ defined in
 183 (12) is a linear function of x : $b_\sigma(x, t) = (\kappa_t - \frac{\sigma(t)^2 + 2\eta_t}{2(\alpha_t^2 \sigma_1^2 + \beta_t^2)})x := \chi_t x$. Hence, the adjoint ODE (15)

184 needs not be solved as it admits a closed form solution: $\tilde{a}(t; X^{\bar{u}}) = -\exp\left(\int_t^1 \chi_s ds\right) \nabla_x r(X_1^{\bar{u}})$.
 185 To obtain a further speed-up, in Adjoint Sampling the loss is not evaluated at intermediate points of
 186 the trajectory $X^{\bar{u}}$, but rather at points $\bar{X}_t^{\bar{u}} = \alpha_t \bar{X}_1^{\bar{u}} + \beta_t \varepsilon$ obtained by noising the final iterate $X_1^{\bar{u}}$:

$$188 \quad \mathcal{L}_{\text{Adj-Sampi}}(u) := \mathbb{E}_{\bar{X}_t^{\bar{u}} = \alpha_t \bar{X}_1^{\bar{u}} + \beta_t \varepsilon} \left[\frac{1}{2} \int_0^1 \|u(\bar{X}_t^{\bar{u}}, t) - \exp\left(\int_t^1 \chi_s ds\right) \sigma(t) \nabla_x r(X_1^{\bar{u}})\|^2 dt \right] \quad (17)$$

190 Each rollout $X_1^{\bar{u}}$ can be noised multiple times, which yields an algorithm which is much more
 191 efficient than AM, even though it is more restrictive because it only works for sampling.

192 The behavior of Adjoint Matching and Sampling depends heavily on the norm of the solution to the
 193 lean adjoint ODE. In the following proposition we bound the norm of $\tilde{a}(t; X^{\bar{u}})$ under convexity
 194 assumptions on p^{base} .

195 **Proposition 3.1** (Norm of the lean adjoint state). *Let $\tilde{a}(t, X^u)$ be the solution of the lean adjoint
 196 ODE (15)-(16) with memoryless schedule $\sigma(t) = \sqrt{2\eta_t}$. Assume there exists $\sigma_1^2 > 0$ such that the
 197 density p^{base} is $\frac{1}{\sigma_1^2}$ -strongly log-concave, i.e. $-\nabla^2 \log p^{\text{base}}(x) \succeq \frac{1}{\sigma_1^2} \mathbf{I}$. Let $\chi_t := \kappa_t - \frac{2\eta_t}{\beta_t^2 + \alpha_t^2 \sigma_1^2}$.
 198 For all $t \in [0, 1]$, we have that*

$$200 \quad \|\tilde{a}(t, X^u)\| \leq \exp\left(\int_t^1 \chi_s ds\right) \|\nabla_x r(X_1^u)\|. \quad (18)$$

201 In particular, (i) for the Föllmer schedule, $\exp\left(\int_t^1 \chi_s ds\right) = \frac{\sigma_1^2}{(1-\bar{\alpha}_t)\sigma_0^2 + \bar{\alpha}_t \sigma_1^2}$, (i) for DDPM/DDIM,
 202 $\exp\left(\int_t^1 \chi_s ds\right) = \frac{\sigma_1^2 \sqrt{\bar{\alpha}_t}}{(1-\bar{\alpha}_t)\sigma_0^2 + \bar{\alpha}_t \sigma_1^2}$, and (i) for DDPM/DDIM, $\exp\left(\int_t^1 \chi_s ds\right) = \frac{\bar{\alpha}_t}{(1-\bar{\alpha}_t)^2 + \bar{\alpha}_t^2}$.
 203 Moreover, when $p^{\text{base}} = \mathcal{N}(0, \sigma_1^2 \mathbf{I})$ as in Adjoint Sampling, equation (18) holds with equality.

204 The proof of Prop. 3.1 in App. B.1 relies on bounding the spectrum of $\text{Sym}(\nabla b_\sigma)$, which is connected
 205 to the spectrum of $\nabla^2 \log p^{\text{base}}$. While strong convexity of p^{base} is a strong condition in
 206 the fine-tuning case, since spectra are local properties, as long as the trajectory $X^{\bar{u}}$ spends most of
 207 the time $t \in [0, 1]$ in regions where p_t^{base} is locally strongly log-concave (basins of p_t^{base}), the norm
 208 $\|\tilde{a}(t, X^{\bar{u}})\|$ will decay accordingly. This explains the norm decay and consequent good performance
 209 of the algorithm in realistic settings (Sec. 5).

213 3.2 SCORE MATCHING METHODS

215 In what follows, we include a review of existing score-based generative modeling methods (see
 216 derivations in App. B.2). These methods are designed to learn arbitrary distributions p_{data} ; and all

216 require having access to samples from p_{data} as well as the noiseless score $\nabla \log p_{\text{data}}$, except for
 217 Conditional Score Matching, which only relies on samples from p_{data} . These loss functions follow
 218 from these three identities involving the score function of the distribution of \bar{X}_t (see Thm. A.1):
 219

$$220 \text{Conditional score identity: } \nabla \log p_t(x) = -\frac{\int_{\mathbb{R}^d} (x - \alpha_t y) \mathcal{N}(x; \alpha_t y, \beta_t^2 \mathbf{I}) p_{\text{data}}(y) dy}{\beta_t^2 \int_{\mathbb{R}^d} \mathcal{N}(x; \alpha_t y, \beta_t^2 \mathbf{I}) p_{\text{data}}(y) dy}, \quad (\text{CSI})$$

$$222 \text{Target score identity: } \nabla \log p_t(x) = \frac{\int_{\mathbb{R}^d} \nabla \log p_{\text{data}}(y) \mathcal{N}(x; \alpha_t y, \beta_t^2 \mathbf{I}) p_{\text{data}}(y) dy}{\alpha_t \int_{\mathbb{R}^d} \mathcal{N}(x; \alpha_t y, \beta_t^2 \mathbf{I}) p_{\text{data}}(y) dy}. \quad (\text{TSI})$$

$$224 \text{Novel score identity: } \nabla \log p_t(x) = \frac{\int_{\mathbb{R}^d} (\alpha_t \nabla \log p_{\text{data}}(y) - (x - \alpha_t y)) \mathcal{N}(x; \alpha_t y, \beta_t^2 \mathbf{I}) p_{\text{data}}(y) dy}{(\alpha_t^2 + \beta_t^2) \int_{\mathbb{R}^d} \mathcal{N}(x; \alpha_t y, \beta_t^2 \mathbf{I}) p_{\text{data}}(y) dy} \quad (\text{NSI})$$

226 Observe that (NSI) follows from summing $\alpha_t^2 / (\alpha_t^2 + \beta_t^2)$ times (TSI) and $\beta_t^2 / (\alpha_t^2 + \beta_t^2)$ times (CSI).
 227

228 **Target Score Matching** The Target Score Matching loss was proposed by (Bortoli et al., 2024),
 229 and is a consequence of the target score identity (TSI), and the fact that when p_{data} is the tilted
 230 distribution (9), its score is $\nabla \log p_{\text{data}} = \nabla \log p^{\text{base}} + \nabla r(x)$. The loss function reads
 231

$$231 \mathcal{L}_{\text{TSM}}(\hat{s}) = \mathbb{E}_{\substack{Y \sim p_{\text{data}}, \\ \bar{X}_t = \alpha_t Y + \beta_t \varepsilon}} \left[\int_0^1 \|\hat{s}(\bar{X}_t, t) - \frac{1}{\alpha_t} (\nabla \log p^{\text{base}}(Y) + \nabla r(Y))\|^2 w(\bar{X}_t, t) dt \right], \quad (19)$$

233 where $w : \mathbb{R}^d \times [0, 1] \rightarrow (0, +\infty)$ is an arbitrary weight function.
 234

235 **Conditional Score Matching** The well-known Conditional Score Matching loss was used by the
 236 foundational works on diffusion models (Ho et al., 2020; Song & Ermon, 2019), and can be derived
 237 from the conditional score identity (CSI) analogously to the Target Score Matching loss. In our
 238 notation, the loss reads
 239

$$240 \mathcal{L}_{\text{CSM}}(\hat{s}) = \mathbb{E}_{\substack{Y \sim p_{\text{data}}, \\ \bar{X}_t = \alpha_t Y + \beta_t \varepsilon}} \left[\int_0^1 \|\hat{s}(\bar{X}_t, t) - \frac{\bar{X}_t + \alpha_t Y}{\beta_t^2}\|^2 w(\bar{X}_t, t) dt \right], \quad (20)$$

242 where w is an arbitrary weight function as in equation (91).
 243

244 **Novel Score Matching** The novel score matching loss was introduced by Phillips et al. (2024),
 245 and can be derived from the novel score identity (NSI) analogously to the Target Score Matching
 246 loss. The loss function reads:
 247

$$248 \mathcal{L}_{\text{NSM}}(\hat{s}) = \mathbb{E}_{\substack{Y \sim p_{\text{data}}, \\ \bar{X}_t = \alpha_t Y + \beta_t \varepsilon}} \left[\int_0^1 \|\hat{s}(\bar{X}_t, t) - \frac{\alpha_t (\nabla \log p^{\text{base}}(Y) + \nabla r(Y)) - (\bar{X}_t - \alpha_t Y)}{\alpha_t^2 + \beta_t^2}\|^2 w(\bar{X}_t, t) dt \right]. \quad (21)$$

250 **Iterated Denoising Energy Matching** A fourth loss function which assumes access to the density
 251 p_{data} and thus can only be used for sampling is the iDEM loss (Akhound-Sadegh et al., 2024),
 252 defined as
 253

$$254 \mathcal{L}_{\text{iDEM}}(\hat{s}) = \mathbb{E}_{\substack{Y \sim p_{\text{data}}, \\ \bar{X}_t = \alpha_t Y + \beta_t \varepsilon, \\ (\varepsilon_i)_{i=1}^n \sim \mathcal{N}(0, \mathbf{I})}} \left[\int_0^1 \|\hat{s}(\bar{X}_t, t) - \frac{1}{\alpha_t} \sum_{i=1}^n \nabla \log p_{\text{data}}\left(\frac{\bar{X}_t - \beta_t \varepsilon_i}{\alpha_t}\right) p_{\text{data}}\left(\frac{\bar{X}_t - \beta_t \varepsilon_i}{\alpha_t}\right)\|^2 dt \right]. \quad (22)$$

257 It can be viewed as a biased approximation of the quantity
 258

$$259 \mathbb{E}_{Y \sim p_{\text{data}}, \bar{X}_t = \alpha_t Y + \beta_t \varepsilon} \left[\int_0^1 \|\hat{s}(\bar{X}_t, t) - \mathbb{E}\left[\frac{1}{\alpha_t} (\nabla \log p^{\text{base}}(Y) + \nabla r(Y)) \mid \bar{X}_t\right]\|^2 dt \right], \quad (23)$$

260 which is equal to the bias term of the Target Score Matching loss (19) (see (25)).
 261

262 **Solving the exponential tilting problem with score-based methods** Naturally, the score-based
 263 methods presented above can also be used to sample from the tilted distribution $p_{\text{data}}(x) \propto
 264 p^{\text{base}}(x) \exp(r(x))$ provided that we have samples from this distribution, which may be obtained
 265 e.g. using SMC methods (Phillips et al., 2024). In practice, the score-based methods that make
 266 explicit use of the score $\nabla \log p_{\text{data}} = \nabla \log p^{\text{base}}(x) + \nabla r(x)$ can be used even when we initially
 267 are only able to sample from p^{base} , as it is expected that if we keep on sampling using the learned
 268 model, the generated distribution will converge to the tilted distribution. In fact, some methods
 269 such as iDEM are introduced to work on-policy in this fashion. However, there are no theoretical
 270 guarantees that the on-policy versions of these algorithms converge to the tilted distribution.

270 3.3 ALGORITHM COMPARISON THROUGH BIAS-VARIANCE DECOMPOSITIONS
271

272 In this section, we show that all the loss functions presented in Sec. 3 can be written as the sum
273 of a KL divergence term between a learned process and an optimal process (the *bias* term), and a
274 positive term that has no contribution to the expected gradient (the *variance* term). To compare all
275 algorithms on an equal footing, we write the learned fine-tuned generative SDE with memoryless
276 schedule $\sigma(t) = \sqrt{2\eta_t}$, i.e. $dX_t = v_{\text{ft}}(X_t, t) dt + \sqrt{2\eta_t} dB_t$, with $X_0 \sim \mathcal{N}(0, \sigma_0^2 \mathbf{I})$. We set the
277 importance weights of each loss function such that it takes the form:

$$278 \quad 279 \quad \mathcal{L}(v_{\text{ft}}) = \mathbb{E} \left[\frac{1}{2} \int_0^1 \|v_{\text{ft}}(X_t, t) - \xi(t, X)\|^2 \frac{1}{2\eta_t} dt \right], \quad (24)$$

280 where the process X and the vector field ξ depend on the specific algorithm (see Prop. 3.2 and
281 Prop. 3.3). Observe that this general loss can be further rewritten as

$$283 \quad 284 \quad \mathcal{L}(v_{\text{ft}}) = \underbrace{\mathbb{E} \left[\int_0^1 \|v_{\text{ft}}(X_t, t) - \mathbb{E}[\xi(t, X)|X_t]\|^2 \frac{1}{2\eta_t} dt \right]}_{\text{Bias}} + \underbrace{\mathbb{E} \left[\int_0^1 \|\xi(t, X) - \mathbb{E}[\xi(t, X)|X_t]\|^2 \frac{1}{2\eta_t} dt \right]}_{\text{Variance}}. \quad (25)$$

287 In certain instances, the bias term as the (forward or reverse) KL divergence between the path mea-
288 sures of the optimal and learned processes, through the Girsanov theorem. The variance term does
289 not contribute to the expected gradient, but it adds noise to the empirical gradient; it is desirable to
290 minimize its contribution.

291 **Proposition 3.2** (Bias-variance decomposition for Adjoint Matching and Sampling). *The Adjoint
292 Matching and Sampling loss functions in (14) and (17) fit the general form (24) by setting $X =
293 X^u, \bar{X}^u$ resp., and identifying $v(x, t)/\sqrt{2\eta_t} = u(x, t), \xi(t, X)/\sqrt{2\eta_t} = \sqrt{2\eta_t} \tilde{a}(t, X)$. Assume that
294 the density p^{base} is $\frac{1}{\sigma_1^2}$ -strongly log-concave, i.e. $-\nabla^2 \log p^{\text{base}}(x) \succeq \frac{1}{\sigma_1^2} \mathbf{I}$. Then,*

- 295 (i) *The variance term in (25) admits the upper-bound $\frac{\sigma_1^2}{2} \mathbb{E}_{Y \sim p^{\text{base}}} [\|\nabla_x r(Y)\|^2]$ for three sub-
296 cases of Flow Matching considered in Sec. 2.1.*
- 297 (ii) *If $p^{\text{base}} = \mathcal{N}(0, \sigma_1^2 \mathbf{I})$ as in AS, the variance term is $\frac{\sigma_1^2}{2} \text{Tr}(\text{Cov}_{Y \sim \mathcal{N}(0, \sigma_1^2 \mathbf{I})}[\nabla_x r(Y)])$.*
- 298 (iii) *If we consider the AM loss function in which the expectation is with respect to the optimal
300 process (4), then the bias term is equal to the KL divergence $\text{KL}(\mathbb{P}^* \parallel \mathbb{P}^u)$ between the optimal
301 measure and the measure of X^u .*

303 As we remark in Sec. 3.1, the strong convexity assumption on p^{base} is strong for the fine-tuning
304 case, but a similar behavior is expected to hold in general. Note the AM loss function with optimal
305 process expectation can be implemented via a Girsanov factor, and was first studied by (Domingo-
306 Enrich et al., 2024, App. C.4) under the name SOCM-Adjoint method. Next, we prove a similar
307 result for score matching methods.

308 **Proposition 3.3** (Bias-variance decomposition for score matching methods). *The Target, Condi-
309 tional and Novel Score Matching loss functions in (19), (20) and (21) fit the general form (24)
310 by setting $X = \bar{X}$ (the reference flow) and weight function $w(x, t) = \eta_t$, identifying $\hat{s}(x, t) =
311 \frac{v_{\text{ft}}(x, t) - \kappa_t x}{2\eta_t}$, and $\xi(t, X) = \kappa_t \bar{X}_t + \frac{2\eta_t}{\alpha_t} (\nabla \log p_{\text{base}}(Y) + \nabla r(Y))$, $\xi(t, X) = \kappa_t \bar{X}_t - \frac{2\eta_t(\bar{X}_t - \alpha_t Y)}{\beta_t^2}$,
312 and $\xi(t, X) = \kappa_t \bar{X}_t + \frac{2\eta_t(\alpha_t(\nabla \log p_{\text{base}}(Y) + \nabla r(Y)) - (\bar{X}_t - \alpha_t Y))}{\alpha_t^2 + \beta_t^2}$, respectively. Moreover,*

- 313 (i) *For TSM and CSM, the variance term in (25) is infinite for the three subcases of Flow Match-
314 ing considered in Sec. 2.1.*
- 315 (ii) *For NSM, the variance term admits the bounds shown in Tab. 1 (the bounds have a removable
316 discontinuity at $\sigma_0 = 1$).*
- 317 (iii) *For TSM, CSM and NSM, the bias term is equal to the KL divergence $\text{KL}(\mathbb{P}^* \parallel \mathbb{P}^{\hat{s}})$ between
318 the optimal measure and the measure of $X^{\hat{s}}$, the process induced by \hat{s} .*

322 The reason that the variance term is infinite for TSM is that its integrand blows up at $t = 0$, and
323 for CSM it blows up both at $t = 0$ and $t = 1$. Surprisingly, NSM manages to avoid all blow-ups.
324 The infinite variance terms for TSM and CSM means that these methods cannot be run with weight

324 $w(x, t) = \eta_t$, i.e. by optimizing the expected loss function $\text{KL}(\mathbb{P}^* \parallel \mathbb{P}^{\hat{s}})$, as the noise would be in-
325 finite (up to numerical aspects). Of course, that does not preclude using different weight functions,
326 but those other weight functions will likely not yield a loss function with a probabilistic interpre-
327 tation in terms of path measures like $w(x, t) = \eta_t$ does. Lastly, iDEM has a similar behavior to TSM,
328 by the connection that we point out in (23).

Method	Föllmer	DDIM/DDPM	Rectified Flow
AM/AS	$\frac{\sigma_0^2}{2} \mathbb{E}[\ \nabla_x r(Y)\ ^2]$	$\frac{\sigma_0^2}{2} \mathbb{E}[\ \nabla_x r(Y)\ ^2]$	$\frac{\sigma_0^2}{2} \mathbb{E}[\ \nabla_x r(Y)\ ^2]$
TSM	$+\infty$	$+\infty$	$+\infty$
CSM	$+\infty$	$+\infty$	$+\infty$
NSM	$\left(\frac{\sigma_0^2}{2(1-\sigma_0^2)} + \frac{\sigma_0^4}{2(1-\sigma_0^2)^2} \log(\sigma_0^2) \right)$ $\times \mathbb{E}[\ \nabla \log p^{\text{base}}(Y) + \nabla r(Y) + Y\ ^2]$	$-\frac{\sigma_0^2}{2(1-\sigma_0^2)} \log(\sigma_0^2)$ $\times \mathbb{E}[\ \nabla \log p^{\text{base}}(Y) + \nabla r(Y) + Y\ ^2]$	$\frac{\sigma_0^2(\pi-2)}{4}$ $\times \mathbb{E}[\ \nabla \log p^{\text{base}}(Y) + \nabla r(Y) + Y\ ^2]$
iDEM	$+\infty$	$+\infty$	$+\infty$

Table 1: Comparison of the variance term bounds for each method.

4 THERMODYNAMICS-BASED ALGORITHMS AND ANALYSIS

In this section, we adapt the methods from (Vargas et al., 2024) and (Albergo & Vanden-Eijnden, 2025) to solve the thermodynamics formulation of the exponential tilting problem as described in Sec. 2.2. Relying on similar tools, we also prove novel versions of the escorted Crooks fluctuation theorem and the Jarzynski equality tailored to the exponential tilting dynamics.

For an arbitrary vector field v , let X^v be the solution of the SDE (13), and let \tilde{X}^v be the solution of

$$d\tilde{X}_t^v = (\tilde{b}_\sigma(\tilde{X}_t^v, t) + v(\tilde{X}_t^v, t)) dt + \sigma(t) \overleftarrow{dW}_t, \quad \begin{cases} \tilde{X}_0^v \sim p_1^* \propto p_1^{\text{base}} \exp(r_1), \\ \tilde{b}_\sigma(x, t) := \kappa_t x + \left(\eta_t - \frac{\sigma(t)^2}{2} \right) (\mathfrak{s}_t(x) + \nabla r_t(x)). \end{cases} \quad (26)$$

where \overleftarrow{dW}_t denotes the backward Itô differential, i.e. \tilde{X}_t^v is the continuous-time limit of the backward Euler-Maruyama update $y_{\ell-1} = y_\ell + \Delta t \gamma_{\ell \Delta t}^-(y_\ell) + \sqrt{\Delta t} \sigma(\ell \Delta t) \xi_\ell$, $\xi_\ell \sim \mathcal{N}(0, I)$. Let $\tilde{\mathbb{P}}^v$ and $\tilde{\mathbb{P}}^{v^*}$ be the path measures of X^v and \tilde{X}^v . If $v = v^*$ is such that $X^{v^*} \sim p_t^*(x) \propto p_t^{\text{base}}(x) \exp(r_t(x))$, Nelson's relation (Prop. A.2) implies that $\tilde{\mathbb{P}}^{v^*} = \tilde{\mathbb{P}}^v$. By the reverse implication of Nelson's relation, the reciprocal statement also holds: if $\tilde{\mathbb{P}}^v = \tilde{\mathbb{P}}^{v^*}$, then $X^v \sim p_t^*(x) \propto p_t^{\text{base}}(x) \exp(r_t(x))$ and thus $v = v^*$. Hence, any divergence D on path measures gives rise to a loss function $\mathcal{L}_D(v) = D(\tilde{\mathbb{P}}^v \parallel \tilde{\mathbb{P}}^{v^*})$ whose only minimizer is $v = v^*$. The following proposition shows the loss functions resulting from the KL divergence and the log-variance divergence. Its proof, which involves computing $\log \frac{d\tilde{\mathbb{P}}^v}{d\tilde{\mathbb{P}}^{v^*}}(X^v)$, can be found in (C.1).

Proposition 4.1 (CMCD loss function for exponential tilting). *The CMCD loss functions for the exponential tilting problem based on the KL divergence the log-variance divergence read, respectively:*

$$\begin{aligned} \mathcal{L}_{\text{KL-CMCD}}(v) &= \mathbb{E} \left[\log \frac{d\tilde{\mathbb{P}}^v}{d\tilde{\mathbb{P}}^{v^*}}(X^v) \right] \\ &= \mathbb{E} \left[- \int_0^1 \sigma(t)^{-1} \langle v(X_t^v, t) + \left(\eta_t - \frac{\sigma(t)^2}{2} \right) \nabla r_t(X_t^v), \overleftarrow{dW}_t \rangle - r(X_1^v) \right. \\ &\quad \left. + \int_0^1 \left(-\langle v(X_t^v, t), \mathfrak{s}_t(X_t^v) \rangle + \left(\frac{\sigma(t)^2}{2} - \eta_t \right) \langle \nabla r_t(X_t^v), \mathfrak{s}_t(X_t^v) \rangle + \frac{\sigma(t)^2}{2} \|\nabla r_t(X_t^v)\|^2 \right) dt \right], \\ \mathcal{L}_{\text{Var-CMCD}}(v) &= \text{Var} \left[\log \frac{d\tilde{\mathbb{P}}^v}{d\tilde{\mathbb{P}}^{v^*}}(X^v) \right] = \text{Var} \left[r_0(Y_0^v) - r_1(Y_1^v) \right. \\ &\quad \left. + \int_0^1 \left[-\langle v(Y_t^v, t), \mathfrak{s}_t(Y_t^v) \rangle + \left(\frac{\sigma(t)^2}{2} - \eta_t \right) \langle \nabla r_t(Y_t^v), \mathfrak{s}_t(Y_t^v) \rangle + \frac{\sigma(t)^2}{2} \|\nabla r_t(Y_t^v)\|^2 \right] dt \right. \\ &\quad \left. + \int_0^1 \left[\sigma(t)^{-1} \left(\langle v(Y_t^v, t) + \eta_t \nabla r_t(Y_t^v), \overrightarrow{dW}_t \rangle - \langle v(Y_t^v, t) + \eta_t \nabla r_t(Y_t^v), \overleftarrow{dW}_t \rangle \right) \right. \right. \\ &\quad \left. \left. + \frac{\sigma(t)}{2} \left(\langle \nabla r_t(Y_t^v), \overrightarrow{dW}_t \rangle + \langle \nabla r_t(Y_t^v), \overleftarrow{dW}_t \rangle \right) \right] \right]. \end{aligned} \quad (27)$$

The Crooks fluctuation theorem (Crooks, 1999) is a fundamental result in non-equilibrium thermodynamics that expresses the Radon-Nikodym derivative between a pair of forward and backward path measures in terms of a difference of free energies (or logarithm of normalizing constants) and a work functional. The following result, proven in App. C.2, provides an analogous expression for the path measures of X^v and \bar{X}^v .

Proposition 4.2 (Controlled Crooks fluctuation theorem for exponential tilting). *For an arbitrary process in the support of $\vec{\mathbb{P}}^v$ and/or $\tilde{\mathbb{P}}^v$, the Radon-Nikodym derivative (RND) between $\vec{\mathbb{P}}^v$ and $\tilde{\mathbb{P}}^v$ at reads*

$$\begin{aligned} \frac{d\tilde{\mathbb{P}}^v}{d\vec{\mathbb{P}}^v}(Y) = & \exp \left(-\log \mathbb{E}_{\mathcal{N}(0, \beta_0^2 I)}[\exp(r_0)] + \log \mathbb{E}_{p^{\text{base}}}[\exp(r_1)] \right. \\ & - \int_0^1 \left(\langle \kappa_t Y_t + 2\eta_t \mathfrak{s}_t(Y_t), \nabla r_t(Y_t) \rangle + \langle v(Y_t, t), \mathfrak{s}_t(Y_t) + \nabla r_t(Y_t) \rangle + \partial_t r_t(Y_t) \right. \\ & \left. \left. + \eta_t \|\nabla r_t(Y_t)\|^2 + \eta_t \Delta r_t(Y_t) + \nabla \cdot v(Y_t, t) \right) dt \right). \end{aligned} \quad (28)$$

Drawing analogy to the standard controlled Crooks fluctuation theorem (Vargas et al., 2024; Zhong et al., 2024), we can treat $-\log \mathbb{E}_{\mathcal{N}(0, \beta_0^2 I)}[\exp(r_0)] + \log \mathbb{E}_{p^{\text{base}}}[\exp(r_1)]$ as a free energy difference and the remaining terms as a generalized work functional. Taking the expectation with respect to $Y \in \vec{\mathbb{P}}^v$ of the multiplicative inverse of both sides of (28) yields an analog of the escorted Jarzynski equality, first proposed by Vaikuntanathan & Jarzynski (2008).

Proposition 4.3 (Escorted Jarzynski equality for exponential tilting). *The free energy difference admits the expression*

$$\begin{aligned} \log \left(\frac{\mathbb{E}_{p^{\text{base}}}[\exp(r_1)]}{\mathbb{E}_{\mathcal{N}(0, \beta_0^2 I)}[\exp(r_0)]} \right) = & \log \mathbb{E}_{\vec{\mathbb{P}}^v} \left[\exp \left(\int_0^1 \left(\langle \kappa_t Y_t + 2\eta_t \mathfrak{s}_t(Y_t), \nabla r_t(Y_t) \rangle + \langle v(Y_t, t), \mathfrak{s}_t(Y_t) + \right. \right. \right. \\ & \left. \left. \nabla r_t(Y_t) \rangle + \partial_t r_t(Y_t) + \eta_t \|\nabla r_t(Y_t)\|^2 + \eta_t \Delta r_t(Y_t) + \nabla \cdot v(Y_t, t) \right) dt \right]. \end{aligned} \quad (29)$$

Taking an expectation of the squared log-RND (28) and applying Jensen's inequality yields an analog of the NETS loss, first introduced by Albergo & Vanden-Eijnden (2025) in the standard thermodynamic setting. The proof is in App. C.3.

Proposition 4.4 (NETS loss function for exponential tilting). *Given an arbitrary process Y , the PINN (physics informed neural network) NETS loss for exponential tilting reads*

$$\begin{aligned} \mathcal{L}_{\text{NETS}}(v, F) = & \mathbb{E} \left[\int_0^1 \left(\langle \kappa_t Y_t + 2\eta_t \mathfrak{s}_t(Y_t), \nabla r_t(Y_t) \rangle + \langle v(Y_t, t), \mathfrak{s}_t(Y_t) + \nabla r_t(Y_t) \rangle \right. \right. \\ & \left. \left. + \partial_t r_t(Y_t) + \eta_t \|\nabla r_t(Y_t)\|^2 + \eta_t \Delta r_t(Y_t) + \nabla \cdot v(Y_t, t) - \partial_t F_t \right)^2 dt \right], \end{aligned} \quad (30)$$

and it satisfies that $\mathcal{L}_{\text{NETS}}(v, F) \leq \mathbb{E} \left[\left(\log \frac{d\tilde{\mathbb{P}}^v}{d\vec{\mathbb{P}}^v}(Y) \right)^2 \right]$.

5 EXPERIMENTS

While the scope of our paper is general, as we cover fine-tuning and sampling, and many different algorithms, in this section we focus on the performance of Adjoint Matching for fine-tuning Stable Diffusion 1.5 and Stable Diffusion 3 with ImageReward (Xu et al., 2023) as the reward model. We fine-tune using the 10000 prompts considered by Xu et al. (2023) and report metrics computed on their 100-prompt validation dataset (generating 10 images per prompt).

In Fig. 1 we plot the trade-offs Astolfi et al. (2024) between DreamSim variance (Fu et al. (2023), a metric that measures per-prompt diversity) and ImageReward, CLIPScore (Hessel et al., 2021) and HPSv2 (Wu et al., 2023). Our results follow the same trend as those of Domingo-Enrich et al. (2025), which carried out similar experiments on a proprietary base model. We perform inference with $\eta = 0$ (no noise) and $\eta = 1$ (memoryless, $\sigma(t) = \sqrt{2\eta_t}$), and with two schedules: the default DDIM schedule and the schedule used during fine-tuning. Remarkably, $\eta = 0$ performs better w.r.t ImageReward and HPS, and $\eta = 1$ is better at CLIPScore.

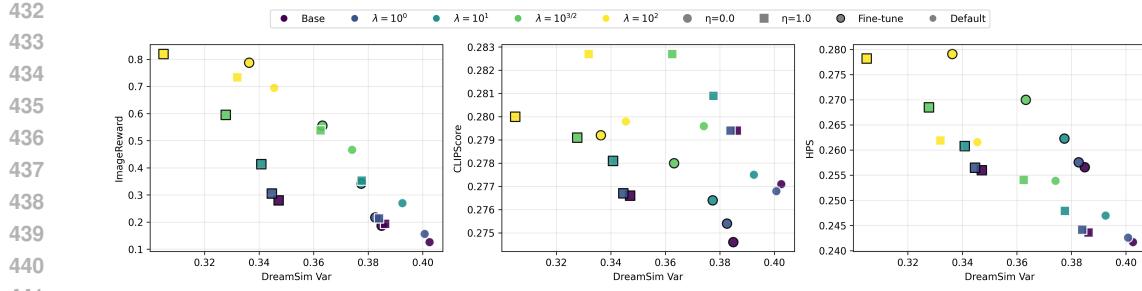
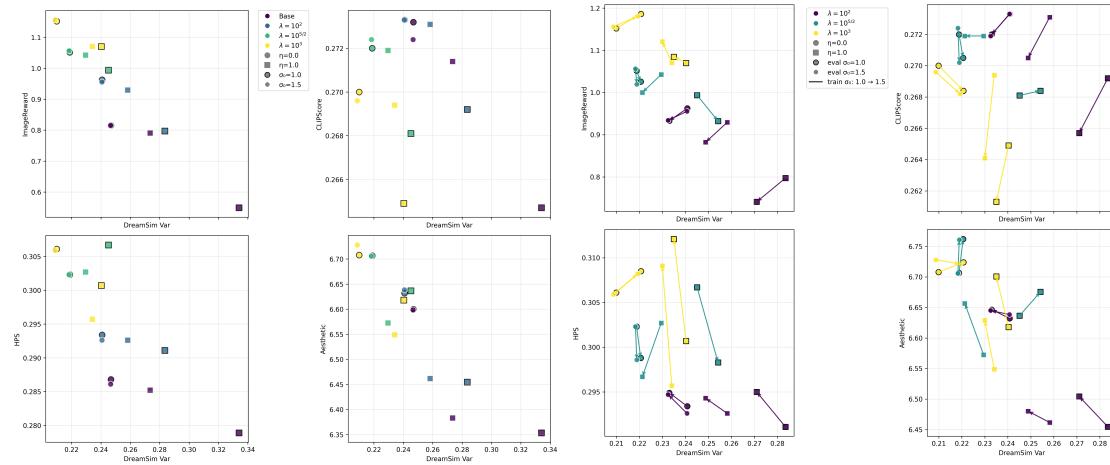


Figure 1: Quality metrics for Stable Diffusion 1.5 fine-tuned with Adjoint Matching.



(a) Results for the base model and models fine-tuned at $\sigma_0^2 \in \{1, 1.5\}$ and $\eta \in \{0, 1\}$ and $\lambda \in \{10^2, 10^{5/2}, 10^3\}$. (b) Results for models fine-tuned at $\sigma_0^2 \in \{1, 1.5\}$ and inference at $\lambda \in \{10^2, 10^{5/2}, 10^3\}$, and different inference parameters. Points linked only differ in training σ_0^2 .

Figure 2: Quality metrics for Stable Diffusion 3 fine-tuned with Adjoint Matching.

In Fig. 2(left) we plot the same trade-offs for Stable Diffusion 3, and include Aesthetic Score (LAION, 2024) as well. Arguably, $\eta = 1$ outperforms $\eta = 0$ in this case, as most points on the Pareto front use the former. In Fig. 2(right) we ablate the choice of the initial variance σ_0^2 ; as we show in App. D.1, we can simulate a generative SDE with a rescaled noise schedule σ by reusing the pretrained vector field, which was learned at σ_0^2 . In the figure, points linked by an arrow correspond to settings which only differ by the training σ_0^2 , the tail being for $\sigma_0^2 = 1$ and the head being for $\sigma_0^2 = 1.5$. We perform inference at both $\sigma_0^2 = 1$ and 1.5. The results are inconclusive, which is consistent with Prop. 3.2, that states that the (bound on the) variance term for Adjoint Matching is independent of σ_0 .

6 DISCUSSION

We introduced new developments that help us understand algorithms for fine-tuning and sampling with diffusion and flow models. We performed experiments to validate some of our findings. A direction of future work is to develop methods that leverage both the SOC and thermodynamics perspectives.

Limitations. We only include experiments on fine-tuning text-to-image diffusion models. We will leave experiments on other tasks such as protein design and molecule generation for future work. We also only include experiments on SOC and score matching-based approaches and leave experiments on the proposed thermodynamic-inspired approaches as future work. Our framework is not comprehensive as it does not include recent reward fine-tuning and sampling algorithms such as Liu et al. (2025b); Zhang et al. (2024); Akhound-Sadegh et al. (2025).

486 REFERENCES
487

488 Tara Akhoud-Sadegh, Jarrid Rector-Brooks, Avishek Joey Bose, Sarthak Mittal, Pablo Lemos,
489 Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, et al.
490 Iterated denoising energy matching for sampling from boltzmann densities. In *Proceedings of the
491 41st International Conference on Machine Learning*, pp. 760–786, 2024.

492 Tara Akhoud-Sadegh, Jungyoon Lee, Avishek Joey Bose, Valentin De Bortoli, Arnaud Doucet,
493 Michael M. Bronstein, Dominique Beaini, Siamak Ravanbakhsh, Kirill Neklyudov, and Alexan-
494 der Tong. Progressive inference-time annealing of diffusion models for sampling from boltzmann
495 densities, 2025.

496 Michael S. Albergo and Eric Vanden-Eijnden. Nets: A non-equilibrium transport sampler. *arXiv
497 preprint arXiv:2410.02711*, 2025.

498 Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
499 framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.

500 Brian D.O. Anderson. Reverse-time diffusion equation models. *Stochastic Processes and their
501 Applications*, 12(3):313–326, 1982.

502 Pietro Astolfi, Marlene Careil, Melissa Hall, Oscar Mañas, Matthew Muckley, Jakob Verbeek, Adri-
503 ana Romero Soriano, and Michal Drozdzał. Consistency-diversity-realism pareto fronts of condi-
504 tional image generative models. *arXiv preprint arXiv:2406.10429*, 2024.

505 Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on diffusion-based
506 generative modeling. *arXiv preprint arXiv:2211.01364*, 2022.

507 Valentin De Bortoli, Michael Hutchinson, Peter Wirnsberger, and Arnaud Doucet. Target score
508 matching, 2024.

509 Gavin E. Crooks. Entropy production fluctuation theorem and the nonequilibrium work relation for
510 free energy differences. *Phys. Rev. E*, 60:2721–2726, Sep 1999.

511 Carles Domingo-Enrich, Jiequn Han, Brandon Amos, Joan Bruna, and Ricky T. Q. Chen. Stochas-
512 tic optimal control matching. In *The Thirty-eighth Annual Conference on Neural Information
513 Processing Systems*, 2024.

514 Carles Domingo-Enrich, Michal Drozdzał, Brian Karrer, and Ricky T. Q. Chen. Adjoint matching:
515 Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control. In
516 *The Thirteenth International Conference on Learning Representations*, 2025.

517 Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel, and
518 Phillip Isola. Dreamsim: Learning new dimensions of human visual similarity using synthetic
519 data. *arXiv preprint arXiv:2306.09344*, 2023.

520 Aaron Havens, Benjamin Kurt Miller, Bing Yan, Carles Domingo-Enrich, Anuroop Sriram, Brandon
521 Wood, Daniel Levine, Bin Hu, Brandon Amos, Brian Karrer, Xiang Fu, Guan-Horng Liu, and
522 Ricky T. Q. Chen. Adjoint sampling: Highly scalable diffusion samplers via adjoint matching.
523 *arXiv preprint arXiv:2504.11713*, 2025.

524 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
525 reference-free evaluation metric for image captioning. *arXiv preprint arXiv:2104.08718*, 2021.

526 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances
527 in Neural Information Processing Systems*, volume 33. Curran Associates, Inc., 2020.

528 Lars Holdijk, Yuanqi Du, Ferry Hooft, Priyank Jaini, Berend Ensing, and Max Welling. Stochastic
529 optimal control for collective variable free sampling of molecular transition paths. *Advances in
530 Neural Information Processing Systems*, 36:79540–79556, 2023.

531 LAION. Laion aesthetic score predictor. <https://laion.ai/blog/laion-aesthetics/>, 2024. Accessed: 2024-09-27.

540 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 541 for generative modeling, 2022.

542

543 Guan-Horng Liu, Jaemoo Choi, Yongxin Chen, Benjamin Kurt Miller, and Ricky T. Q. Chen. Ad-
 544 joint schrödinger bridge sampler. *arXiv preprint arXiv:2506.22565*, 2025a.

545 Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan,
 546 Di Zhang, and Wanli Ouyang. Flow-grpo: Training flow matching models via online rl. *arXiv*
 547 *preprint arXiv:2505.05470*, 2025b.

548 Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
 549 with rectified flow. In *The Eleventh International Conference on Learning Representations*, 2023.

550

551 Edward Nelson. Dynamical theories of brownian motion. 1967.

552

553 Angus Phillips, Hai-Dang Dau, Michael John Hutchinson, Valentin De Bortoli, George Deligian-
 554 nidis, and Arnaud Doucet. Particle denoising diffusion sampler. In *International Conference on*
555 Machine Learning, pp. 40688–40724. PMLR, 2024.

556 Neta Shaul, Juan Perez, Ricky T. Q. Chen, Ali Thabet, Albert Pumarola, and Yaron Lipman. Be-
 557 spoke solvers for generative flow models. In *The Twelfth International Conference on Learning*
558 Representations, 2024.

559 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 560 *arXiv preprint arXiv:1907.05600*, 2019.

561 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 562 Poole. Score-based generative modeling through stochastic differential equations. In *Interna-
 563 tional Conference on Learning Representations (ICLR 2021)*, 2021.

564

565 Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee
 566 Diamant, Alex M Tseng, Tommaso Biancalani, and Sergey Levine. Fine-tuning of continuous-
 567 time diffusion models as entropy-regularized control. *arXiv preprint arXiv:2402.15194*, 2024.

568 Suriyanarayanan Vaikuntanathan and Christopher Jarzynski. Escorted free energy simulations: Im-
 569 proving convergence by reducing dissipation. *Physical Review Letters*, 100(19):190601, 2008.

570 Francisco Vargas, Will Sussman Grathwohl, and Arnaud Doucet. Denoising diffusion samplers. In
 571 *The Eleventh International Conference on Learning Representations*, 2023.

572

573 Francisco Vargas, Shreyas Padhy, Denis Blessing, and Nikolas Nüsken. Transport meets variational
 574 inference: Controlled monte carlo diffusions. In *The Twelfth International Conference on Learn-
 575 ing Representations*, 2024.

576 Chenyu Wang, Masatoshi Uehara, Yichun He, Amy Wang, Avantika Lal, Tommi Jaakkola, Sergey
 577 Levine, Aviv Regev, Tommaso Biancalani, et al. Fine-tuning discrete diffusion models via re-
 578 ward optimization with applications to dna and protein design. In *The Thirteenth International*
579 Conference on Learning Representations, 2025.

580 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 581 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
 582 image synthesis. *arXiv preprint arXiv:2306.09341*, 2023.

583

584 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 585 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
 586 In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.

587 Dinghuai Zhang, Yizhe Zhang, Jiatao Gu, Ruixiang Zhang, Josh Susskind, Navdeep Jaitly, and
 588 Shuangfei Zhai. Improving gflownets for text-to-image diffusion alignment. *arXiv preprint*
 589 *arXiv:2406.00633*, 2024.

590 Qinsheng Zhang and Yongxin Chen. Path integral sampler: A stochastic control approach for sam-
 591 pling. In *International Conference on Learning Representations*, 2022.

592

593 Adrienne Zhong, Ben Kuznets-Speck, and Michael R DeWeese. Time-asymmetric fluctuation theo-
 rem and efficient free-energy estimation. *Physical Review E*, 110(3):034121, 2024.

Contents

594	A Useful theoretical results	12
595		
596	B Proofs for the SOC-based methods	16
597		
598	B.1 Proof of Prop. 3.1: Bound on the norm of the lean adjoint state	16
599	B.2 Derivation of the Target, Conditional and Novel Score Matching loss functions	17
600	B.3 Proof of Prop. 3.2: bias-variance decomposition for Adjoint Matching and Sampling	18
601	B.4 Proof of Prop. 3.3: bias-variance decomposition for score matching algorithms	19
602		
603	C Proofs for the thermodynamics-based methods	21
604		
605	C.1 Proof of Prop. 4.1: CMCD for exponential tilting	21
606	C.2 Proof of Prop. 4.2: Crooks fluctuation theorem for exponential tilting	23
607	C.3 Proof of Prop. 4.4: NETS for exponential tilting	24
608	D Additional experiments	25
609	D.1 Derivation of the generative SDE with different initial variance σ_0^2	25
610	D.2 Additional plots	26
611		
612	A USEFUL THEORETICAL RESULTS	
613		
614	Lemma A.1 (Conditional and target score identities, Bortoli et al. (2024)). <i>Let p_t be the density of the marginal \bar{X}_t of the reference flow defined in equation (1). For any $\alpha > 0$, define the map T_α as $x \mapsto T_\alpha(x) = \alpha x$, and let $(T_\alpha)_\# p$ be the pushforward of the distribution p by T_α, whose density is $(T_{\alpha_t})_\# p_{\text{data}}(x) = p_{\text{data}}(x/\alpha_t) \frac{1}{\alpha_t}$. We write the density of the Gaussian $\mathcal{N}(\alpha_t y, \beta_t^2 \mathbf{I})$ as $\mathcal{N}(x; \alpha_t y, \beta_t^2 \mathbf{I}) = \exp(-\frac{\ x - \alpha_t y\ ^2}{2\beta_t^2})/(2\pi\beta_t^2)^{d/2}$. Then,</i>	
615		
616		
617		
618		
619		
620	$p_t(x) = \int_{\mathbb{R}^d} \mathcal{N}(x; \alpha_t y, \beta_t^2 \mathbf{I}) p_{\text{data}}(y) dy = [(T_{\alpha_t})_\# p_{\text{data}} * \mathcal{N}(0, \beta_t^2 \mathbf{I})](x), \quad (31)$	
621		
622	and we obtain the following identities:	
623		
624	Conditional score identity: $\nabla \log p_t(x) = -\frac{\int_{\mathbb{R}^d} (x - \alpha_t y) \mathcal{N}(x; \alpha_t y, \beta_t^2 \mathbf{I}) p_{\text{data}}(y) dy}{\beta_t^2 \int_{\mathbb{R}^d} \mathcal{N}(x; \alpha_t y, \beta_t^2 \mathbf{I}) p_{\text{data}}(y) dy}, \quad (\text{CSI})$	
625		
626	Target score identity: $\nabla \log p_t(x) = \frac{\int_{\mathbb{R}^d} \nabla \log p_{\text{data}}(y) \mathcal{N}(x; \alpha_t y, \beta_t^2 \mathbf{I}) p_{\text{data}}(y) dy}{\alpha_t \int_{\mathbb{R}^d} \mathcal{N}(x; \alpha_t y, \beta_t^2 \mathbf{I}) p_{\text{data}}(y) dy}, \quad (\text{TSI})$	
627		
628	Novel score identity: $\nabla \log p_t(x) = \frac{\int_{\mathbb{R}^d} (\alpha_t \nabla \log p_{\text{data}}(y) - (x - \alpha_t y)) \mathcal{N}(x; \alpha_t y, \beta_t^2 \mathbf{I}) p_{\text{data}}(y) dy}{(\alpha_t^2 + \beta_t^2) \int_{\mathbb{R}^d} \mathcal{N}(x; \alpha_t y, \beta_t^2 \mathbf{I}) p_{\text{data}}(y) dy}. \quad (\text{NSI})$	
629		
630		
631	<i>Proof.</i> While this result is not new (see Bortoli et al. (2024) and references within), we provide a proof here because of its relevance. Observe that $Z_t = X_t - \alpha_t Y = \beta_t \varepsilon \sim \mathcal{N}(0, \beta_t^2 \mathbf{I})$. The following formula holds for the density of the noised fine-tuned distribution:	
632		
633		
634	$p_t(x) = \int_{\mathbb{R}^d} \frac{\exp(-\frac{\ x - \alpha_t y\ ^2}{2\beta_t^2})}{(2\pi\beta_t^2)^{d/2}} p_{\text{data}}(y) dy = \int_{\mathbb{R}^d} \frac{\exp(-\frac{\ \tilde{y}\ ^2}{2\beta_t^2})}{(2\pi\beta_t^2)^{d/2}} p_{\text{data}}(\tilde{y}/\alpha_t) \frac{1}{\alpha_t} d\tilde{y} \quad (32)$	
635		
636		
637		
638	$= \int_{\mathbb{R}^d} \frac{\exp(-\frac{\ \tilde{y}\ ^2}{2\beta_t^2})}{(2\pi\beta_t^2)^{d/2}} (T_\alpha)_\# p_{\text{data}}(\tilde{y}) d\tilde{y} = [(T_{\alpha_t})_\# p_{\text{data}} * \mathcal{N}(0, \beta_t^2 \mathbf{I})](x),$	
639		
640	where we applied the change of variables $\tilde{y} = T_{\alpha_t} y = \alpha_t y$, and that the density of the pushforward $(T_{\alpha_t})_\# p_{\text{data}}(x)$ is $p_{\text{data}}(x/\alpha_t) \frac{1}{\alpha_t}$.	
641		
642	Equation (CSI) follows simply from $\nabla \log p_t(x) = \frac{\nabla p_t(x)}{p_t(x)}$ and from taking the gradient with respect	
643	to x under the integration sign. We prove (TSI) next. If we let $x - \alpha_t y = z$, we have that $y = \frac{x-z}{\alpha_t}$,	
644	which implies that $ \frac{dy}{dz} = \frac{1}{\alpha_t}$. Thus, we can write	
645		
646	$p_t(x) = \int_{\mathbb{R}^d} \frac{\exp(-\frac{\ z\ ^2}{2\beta_t^2})}{(2\pi\beta_t^2)^{d/2}} p_{\text{data}}(\frac{x-z}{\alpha_t}) \frac{1}{\alpha_t} dz. \quad (33)$	
647		

648 And

$$649 \quad \nabla p_t(x) = \int_{\mathbb{R}^d} \frac{\exp\left(-\frac{\|z\|^2}{2\beta_t^2}\right)}{(2\pi\beta_t^2)^{d/2}} \nabla_x \left(p_{\text{data}}\left(\frac{x-z}{\alpha_t}\right)\right) \frac{1}{\alpha_t} dz \quad (34)$$

$$650 \quad = \int_{\mathbb{R}^d} \frac{\exp\left(-\frac{\|z\|^2}{2\beta_t^2}\right)}{(2\pi\beta_t^2)^{d/2}} \nabla_x \log p_{\text{data}}\left(\frac{x-z}{\alpha_t}\right) p_{\text{data}}\left(\frac{x-z}{\alpha_t}\right) \frac{1}{\alpha_t} dz \quad (35)$$

$$651 \quad = \int_{\mathbb{R}^d} \frac{\exp\left(-\frac{\|z\|^2}{2\beta_t^2}\right)}{(2\pi\beta_t^2)^{d/2}} \nabla \log p_{\text{data}}\left(\frac{x-z}{\alpha_t}\right) p_{\text{data}}\left(\frac{x-z}{\alpha_t}\right) \frac{1}{\alpha_t^2} dz \quad (36)$$

$$652 \quad = \int_{\mathbb{R}^d} \frac{\exp\left(-\frac{\|x-\alpha_t y\|^2}{2\beta_t^2}\right)}{(2\pi\beta_t^2)^{d/2}} \nabla \log p_{\text{data}}(y) p_{\text{data}}(y) \frac{1}{\alpha_t} dy. \quad (37)$$

653 Using that $\nabla \log p_t(x) = \frac{\nabla p_t(x)}{p_t(x)}$ concludes the proof of (TSI). To prove (NSI), we sum $\frac{\alpha_t^2}{\alpha_t^2 + \beta_t^2}$ times
654 the (TSI) identity and $\frac{\beta_t^2}{\alpha_t^2 + \beta_t^2}$ times the (CSI) identity, and obtain:

$$655 \quad \nabla \log p_t(x) = \frac{\int_{\mathbb{R}^d} \frac{1}{\alpha_t^2 + \beta_t^2} \left(\alpha_t \nabla \log p_{\text{data}}(y) - (x - \alpha_t y)\right) \mathcal{N}(x; \alpha_t y, \beta_t^2 I) p_{\text{data}}(y) dy}{\int_{\mathbb{R}^d} \mathcal{N}(x; \alpha_t y, \beta_t^2 I) p_{\text{data}}(y) dy}. \quad (38)$$

656 \square

657 **Theorem A.2** (Convolution with a Gaussian Preserves Strong Log-Concavity). *Let $f : \mathbb{R}^d \rightarrow (0, \infty)$ be a density of the form $f(x) = e^{-\varphi(x)}$, where $\varphi \in C^2(\mathbb{R}^d)$ satisfies $\nabla^2 \varphi(x) \succeq \gamma I$ for all
658 $x \in \mathbb{R}^d$, i.e. f is γ -strongly log-concave. Let $g(x) = (2\pi\sigma^2)^{-d/2} \exp\left(-\frac{\|x\|^2}{2\sigma^2}\right)$ be the density of
659 $\mathcal{N}(0, \sigma^2 I)$. Define*

$$660 \quad h = f * g.$$

661 Then h is $\frac{\gamma}{1 + \gamma\sigma^2}$ -strongly log-concave, i.e.

$$662 \quad \nabla^2[-\log h(x)] \succeq \frac{\gamma}{1 + \gamma\sigma^2} I \quad \forall x \in \mathbb{R}^d. \quad (39)$$

663 *Proof.* Set $\psi(z) = \frac{\|z\|^2}{2\sigma^2}$, $F(y; x) = \varphi(y) + \psi(x - y)$. Then $h(x) = \int_{\mathbb{R}^d} e^{-F(y; x)} dy$. A standard
664 “log-sum-exp” Hessian identity yields

$$665 \quad \nabla^2[-\log h(x)] = \mathbb{E}[\nabla_x^2 F(Y; x)] - \text{Var}[\nabla_x F(Y; x)], \quad (40)$$

666 where Y is drawn from the density proportional to $e^{-F(y; x)}$. We handle the two terms separately.

667 1. *Second-derivative term.*

$$668 \quad \nabla_x^2 F(y; x) = \nabla^2 \psi(x - y) = \frac{1}{\sigma^2} I, \quad (41)$$

669 so $\mathbb{E}[\nabla_x^2 F] = \frac{1}{\sigma^2} I$.

670 2. *Variance term.*

$$671 \quad \nabla_x F(y; x) = \nabla \psi(x - y) = \frac{x - y}{\sigma^2}, \quad (42)$$

672 hence $\text{Var}[\nabla_x F] = \frac{1}{\sigma^4} \text{Cov}(Y)$.

673 Since $F(\cdot; x)$ is $(\gamma + 1/\sigma^2)$ -strongly convex in y , the Brascamp–Lieb inequality gives

$$674 \quad \text{Cov}(Y) \preceq \frac{1}{\gamma + 1/\sigma^2} I = \frac{\sigma^2}{1 + \gamma\sigma^2} I. \quad (43)$$

675 Therefore,

$$676 \quad \text{Var}[\nabla_x F] \preceq \frac{1}{\sigma^4} \cdot \frac{\sigma^2}{1 + \gamma\sigma^2} I = \frac{1}{\sigma^2(1 + \gamma\sigma^2)} I. \quad (44)$$

677 Combining,

$$678 \quad \nabla^2[-\log h(x)] \succeq \frac{1}{\sigma^2} I - \frac{1}{\sigma^2(1 + \gamma\sigma^2)} I = \frac{\gamma}{1 + \gamma\sigma^2} I. \quad (45)$$

679 Thus h is $\frac{\gamma}{1 + \gamma\sigma^2}$ -strongly log-concave. \square

702 **Corollary A.3.** Let p_t be the density of the marginal \bar{X}_t of the reference flow defined in equation (1).
703 Suppose that the density p_{data} is in $C^2(\mathbb{R}^d)$ and is γ -strongly log-concave, i.e. $-\nabla^2 \log p_{\text{data}}(x) \succeq$
704 γI for all $x \in \mathbb{R}^d$. Then, for all $t \in [0, 1]$, the density p_t is also in $C^2(\mathbb{R}^d)$ and $\frac{\gamma}{\alpha_t^2 + \gamma\beta_t^2}$ -strongly
705 log-concave.
706

707 *Proof.* By equation (31) from Lemma A.1, we have that
708

$$p_t(x) = [(T_{\alpha_t})\#p_{\text{data}} * \mathcal{N}(0, \beta_t^2 I)](x), \quad (46)$$

710 Observe that

$$\begin{aligned} \nabla \log[(T_{\alpha_t})\#p_{\text{data}}(x)] &= \frac{\nabla_x (T_{\alpha_t})\#p_{\text{data}}(x)}{(T_{\alpha_t})\#p_{\text{data}}(x)} = \frac{\nabla_x (p_{\text{data}}(x/\alpha_t) \frac{1}{\alpha_t})}{p_{\text{data}}(x/\alpha_t) \frac{1}{\alpha_t}} = \frac{\nabla p_{\text{data}}(x/\alpha_t) \frac{1}{\alpha_t^2}}{p_{\text{data}}(x/\alpha_t) \frac{1}{\alpha_t}} = \frac{\nabla \log p_{\text{data}}(x/\alpha_t)}{\alpha_t}, \\ \implies -\nabla^2 \log[(T_{\alpha_t})\#p_{\text{data}}(x)] &= -\frac{\nabla^2 \log p_{\text{data}}(x/\alpha_t)}{\alpha_t^2} \succeq \frac{\gamma}{\alpha_t^2} I, \end{aligned} \quad (47)$$

716 where we used the γ -strong log-concavity of p_{data} . This shows that $(T_{\alpha_t})\#p_{\text{data}}$ is $\frac{\gamma}{\alpha_t^2}$ -strongly
717 concave. Thus, a direct application of Theorem A.2 with $f = p_{\text{data}}$, $g = \mathcal{N}(0, \beta_t^2 I)$ implies that the
718 strong log-concavity constant of p_t is
719

$$\frac{\gamma}{1 + \gamma\sigma^2} = \frac{\frac{\gamma}{\alpha_t^2}}{1 + \frac{\gamma\beta_t^2}{\alpha_t^2}} = \frac{\gamma}{\alpha_t^2 + \gamma\beta_t^2}. \quad (48)$$

723 \square

724 **Theorem A.4** (Adaptation of Theorem 2.3 of Shaul et al. (2024)). Let (α_t, β_t) and $(\tilde{\alpha}_r, \tilde{\beta}_r)$ be
725 two pairs of flow matching coefficients, i.e., differentiable functions $\alpha_t, \tilde{\alpha}_r : [0, 1] \rightarrow [0, 1]$, and
726 $\alpha_t, \tilde{\alpha}_r : [0, 1] \rightarrow [0, +\infty)$ satisfying:

$$\begin{aligned} \alpha_0 = \tilde{\alpha}_0 = 0 = \beta_1 = \tilde{\beta}_1, \quad \alpha_1 = \tilde{\alpha}_1 = 1, \\ \text{and } \text{SNR}(t) := \frac{\alpha_t}{\beta_t}, \quad \widetilde{\text{SNR}}(t) := \frac{\tilde{\alpha}_t}{\tilde{\beta}_t} \text{ are strictly increasing on } [0, 1]. \end{aligned} \quad (49)$$

731 Define the scale-time transformation from r to $t(r)$ via matching signal-to-noise ratios:

$$\frac{\tilde{\alpha}_r}{\tilde{\beta}_r} = \frac{\alpha_{t(r)}}{\beta_{t(r)}}, \quad (50)$$

734 and define the scale function

$$s_r := \frac{\tilde{\beta}_r}{\beta_{t(r)}} = \frac{\tilde{\alpha}_r}{\alpha_{t(r)}}. \quad (51)$$

737 Then, if p_t is the marginal of $\bar{X}_t := \alpha_t Y + \beta_t \varepsilon$ and \tilde{p}_t is the marginal of $\tilde{X}_t := \tilde{\alpha}_t Y + \tilde{\beta}_t \varepsilon$, for all
738 $r \in [0, 1]$,

$$\nabla \log \tilde{p}_r(x) = \frac{1}{s_r} \nabla \log p_{t(r)}(x/s_r). \quad (52)$$

742 *Proof.* First, we prove that $t(r)$ is well-defined. Observe that by assumption, SNR and $\widetilde{\text{SNR}}$ are
743 bijective functions between $[0, 1] \rightarrow [0, +\infty)$, and that we can construct $t(r) := \text{SNR}^{-1}(\widetilde{\text{SNR}}(r))$.
744

745 Using the conditional score identity, we obtain that

$$\nabla \log p_t(x) = -\frac{\int_{\mathbb{R}^d} \frac{x - \alpha_t y}{\beta_t^2} \mathcal{N}(x; \alpha_t y, \beta_t^2 I) p_{\text{data}}(y) dy}{\int_{\mathbb{R}^d} \mathcal{N}(x; \alpha_t y, \beta_t^2 I) p_{\text{data}}(y) dy}, \quad \nabla \log \tilde{p}_t(x) = -\frac{\int_{\mathbb{R}^d} \frac{x - \tilde{\alpha}_t y}{\tilde{\beta}_t^2} \mathcal{N}(x; \tilde{\alpha}_t y, \tilde{\beta}_t^2 I) p_{\text{data}}(y) dy}{\int_{\mathbb{R}^d} \mathcal{N}(x; \tilde{\alpha}_t y, \tilde{\beta}_t^2 I) p_{\text{data}}(y) dy}, \quad (53)$$

749 and observe that

$$\frac{\|x - \tilde{\alpha}_r y\|^2}{2\tilde{\beta}_r^2} = \frac{\|x - s_r \alpha_{t(r)} y\|^2}{2s_r^2 \beta_{t(r)}^2} = \frac{\|x/s_r - \alpha_{t(r)} y\|^2}{2\beta_{t(r)}^2}, \quad \frac{x - \tilde{\alpha}_r y}{\tilde{\beta}_r^2} = \frac{x - s_r \alpha_{t(r)} y}{s_r^2 \beta_{t(r)}^2} = \frac{x/s_r - \alpha_{t(r)} y}{s_r \beta_{t(r)}^2} \quad (54)$$

753 which means that

$$\mathcal{N}(x; \tilde{\alpha}_r y, \tilde{\beta}_r^2 I) = \frac{\exp\left(-\frac{\|x - \tilde{\alpha}_r y\|^2}{2\tilde{\beta}_r^2}\right)}{(2\pi\tilde{\beta}_r^2)^{d/2}} = \frac{\exp\left(-\frac{\|x/s_r - \alpha_{t(r)} y\|^2}{2\beta_{t(r)}^2}\right)}{(2\pi s_r^2 \beta_{t(r)}^2)^{d/2}} = \frac{1}{s_r^d} \mathcal{N}(x/s_r; \tilde{\alpha}_{t(r)} y, \tilde{\beta}_{t(r)}^2 I), \quad (55)$$

756 and

$$\begin{aligned}
 758 \quad \nabla \log \tilde{p}_r(x) &= -\frac{\int_{\mathbb{R}^d} \frac{x - \tilde{\alpha}_r y}{\tilde{\beta}_r^2} \mathcal{N}(x; \tilde{\alpha}_r y, \tilde{\beta}_r^2 \mathbf{I}) p_{\text{data}}(y) dy}{\int_{\mathbb{R}^d} \mathcal{N}(x; \tilde{\alpha}_r y, \tilde{\beta}_r^2 \mathbf{I}) p_{\text{data}}(y) dy} \\
 759 \\
 760 \quad &= -\frac{\int_{\mathbb{R}^d} \frac{x/s_r - \alpha_{t(r)} y}{s_r \tilde{\beta}_{t(r)}^2} \mathcal{N}(x/s_r; \tilde{\alpha}_{t(r)} y, \tilde{\beta}_{t(r)}^2 \mathbf{I}) p_{\text{data}}(y) dy}{\int_{\mathbb{R}^d} \mathcal{N}(x/s_r; \tilde{\alpha}_{t(r)} y, \tilde{\beta}_{t(r)}^2 \mathbf{I}) p_{\text{data}}(y) dy} = \frac{1}{s_r} \nabla \log p_{t(r)}(x/s_r).
 \end{aligned} \tag{56}$$

762 \square

764 **Corollary A.5.** Consider Rectified Flow with two values $\sigma_0, \tilde{\sigma}_0$. That is, we take the pairs (α_t, β_t)
 765 and $(\tilde{\alpha}_t, \tilde{\beta}_t)$ in Theorem A.4 such that:

$$767 \quad \alpha_t = \tilde{\alpha}_t = \bar{\alpha}_t, \quad \beta_t = (1 - \bar{\alpha}_t) \sigma_0, \quad \tilde{\beta}_t = (1 - \bar{\alpha}_t) \tilde{\sigma}_0. \tag{57}$$

768 Let $\bar{\alpha}^{-1} : [0, 1] \rightarrow [0, 1]$ be the inverse of the function $\bar{\alpha}(t) := \bar{\alpha}_t$. Then, we have that

$$770 \quad t(r) = \bar{\alpha}^{-1}\left(\frac{\sigma_0 \bar{\alpha}_r}{\tilde{\sigma}_0(1 - \bar{\alpha}_r) + \sigma_0 \bar{\alpha}_r}\right), \quad s_r = \frac{\tilde{\sigma}_0(1 - \bar{\alpha}_r) + \sigma_0 \bar{\alpha}_r}{\sigma_0}. \tag{58}$$

772 and by Theorem A.4, if p_t is the marginal of $\bar{X}_t := \alpha_t Y + \beta_t \varepsilon$ and \tilde{p}_t is the marginal of $\tilde{X}_t := \tilde{\alpha}_t Y + \tilde{\beta}_t \varepsilon$,

$$775 \quad \nabla \log \tilde{p}_r(x) = \frac{1}{s_r} \nabla \log p_{t(r)}(x/s_r). \tag{59}$$

777 *Proof.* Observe that with these choices,

$$778 \quad \text{SNR}(t) := \frac{\alpha_t}{\beta_t} = \frac{\bar{\alpha}_t}{(1 - \bar{\alpha}_t)\sigma_0}, \quad \widetilde{\text{SNR}}(t) := \frac{\bar{\alpha}_t}{(1 - \bar{\alpha}_t)\tilde{\sigma}_0}. \tag{60}$$

780 We invert SNR:

$$781 \quad y = \frac{\bar{\alpha}_t}{(1 - \bar{\alpha}_t)\sigma_0} \implies \sigma_0 y - \bar{\alpha}_t \sigma_0 y = \bar{\alpha}_t \implies \bar{\alpha}(t) := \bar{\alpha}_t = \frac{\sigma_0 y}{1 + \sigma_0 y} \implies \text{SNR}^{-1} = \bar{\alpha}^{-1}\left(\frac{\sigma_0 y}{1 + \sigma_0 y}\right). \tag{61}$$

784 Thus,

$$786 \quad t(r) = \text{SNR}^{-1}(\widetilde{\text{SNR}}(r)) = \bar{\alpha}^{-1}\left(\frac{\sigma_0 \frac{\bar{\alpha}_r}{(1 - \bar{\alpha}_r)\tilde{\sigma}_0}}{1 + \sigma_0 \frac{\bar{\alpha}_r}{(1 - \bar{\alpha}_r)\tilde{\sigma}_0}}\right) = \bar{\alpha}^{-1}\left(\frac{\sigma_0 \bar{\alpha}_r}{\tilde{\sigma}_0(1 - \bar{\alpha}_r) + \sigma_0 \bar{\alpha}_r}\right), \tag{62}$$

788 and

$$789 \quad s_r = \frac{\bar{\alpha}_r}{\alpha_{t(r)}} = \frac{\bar{\alpha}_r}{\bar{\alpha}_{t(r)}} = \frac{\bar{\alpha}_r}{\frac{\sigma_0 \bar{\alpha}_r}{\tilde{\sigma}_0(1 - \bar{\alpha}_r) + \sigma_0 \bar{\alpha}_r}} = \frac{\tilde{\sigma}_0(1 - \bar{\alpha}_r) + \sigma_0 \bar{\alpha}_r}{\sigma_0}. \tag{63}$$

792 Applying Theorem A.4 yields the final result. \square

793 **Proposition A.1** (Forward–backward Radon–Nikodym derivatives, Prop. 2.2 of Vargas et al.
 794 (2024)). Consider the SDEs

$$795 \quad dY_t = \gamma_t^+(Y_t) dt + \sigma(t) \overrightarrow{dW}_t, \quad Y_0 \sim \Gamma_0 \implies (Y_t)_{0 \leq t \leq T} \sim \overrightarrow{\mathbb{P}}^{\Gamma_0, \gamma_t^+}, \tag{64}$$

$$797 \quad dY_t = \gamma^-(Y_t) dt + \sigma(t) \overleftarrow{dW}_t, \quad Y_T \sim \Gamma_T \implies (Y_t)_{0 \leq t \leq T} \sim \overleftarrow{\mathbb{P}}^{\Gamma_T, \gamma^-}, \tag{65}$$

$$799 \quad dY_t = a_t(Y_t) dt + \sigma(t) \overrightarrow{dW}_t, \quad Y_0 \sim \mu \implies (Y_t)_{0 \leq t \leq T} \sim \overrightarrow{\mathbb{P}}^{\mu, a}, \tag{66}$$

$$801 \quad dY_t = b_t(Y_t) dt + \sigma(t) \overleftarrow{dW}_t, \quad Y_T \sim \nu \implies (Y_t)_{0 \leq t \leq T} \sim \overleftarrow{\mathbb{P}}^{\nu, b}. \tag{67}$$

802 Here, (64) and (66) are forward Itô SDEs, and (65) and (67) are backward Itô SDEs, i.e. (64) and
 803 (65) are the continuous-time limits of

$$805 \quad y_{\ell+1} = y_{\ell} + \Delta t \gamma_{\ell \Delta t}^+(y_{\ell}) + \sqrt{\Delta t} \sigma(\ell \Delta t) \xi_{\ell}, \quad \xi_{\ell} \sim \mathcal{N}(0, I), \quad y_0 \sim \Gamma_0, \tag{68}$$

$$806 \quad y_{\ell-1} = y_{\ell} + \Delta t \gamma_{\ell \Delta t}^-(y_{\ell}) + \sqrt{\Delta t} \sigma(\ell \Delta t) \xi_{\ell}, \quad \xi_{\ell} \sim \mathcal{N}(0, I), \quad y_T \sim \Gamma_T.$$

808 Suppose that

$$809 \quad \overrightarrow{\mathbb{P}}^{\Gamma_0, \gamma^+} = \overleftarrow{\mathbb{P}}^{\Gamma_T, \gamma^-}, \tag{69}$$

810 and that it is absolutely continuous with respect to both $\overrightarrow{\mathbb{P}}^{\mu,a}$ and $\overleftarrow{\mathbb{P}}^{\nu,b}$. Then, $\overrightarrow{\mathbb{P}}^{\mu,a}$ -almost surely,
 811 the corresponding Radon–Nikodym derivative can be expressed as
 812

$$813 \log \frac{d\overrightarrow{\mathbb{P}}^{\mu,a}}{d\overleftarrow{\mathbb{P}}^{\nu,b}}(Y) = \log \frac{d\mu}{d\Gamma_0}(Y_0) - \log \frac{d\nu}{d\Gamma_T}(Y_T) \quad (70)$$

$$814 + \int_0^T \sigma(t)^{-2} \langle (a_t - \gamma_t^+)(Y_t), \overrightarrow{dY_t} - \frac{1}{2}(a_t + \gamma_t^+)(Y_t) dt \rangle \quad (71)$$

$$816 - \int_0^T \sigma(t)^{-2} \langle (b_t - \gamma_t^-)(Y_t), \overleftarrow{dY_t} - \frac{1}{2}(b_t + \gamma_t^-)(Y_t) dt \rangle. \quad (72)$$

818 **Proposition A.2** (Nelson’s relation, Nelson (1967); Anderson (1982)). *Let $\overrightarrow{\mathbb{P}}^{\mu,a}$ and $\overleftarrow{\mathbb{P}}^{\nu,b}$ be the
 819 path measures defined in Prop. A.1. For μ and a of sufficient regularity, denote the time–marginals
 820 of the corresponding path measure by*

$$821 \overrightarrow{\mathbb{P}}_t^{\mu,a} =: \rho_t^{\mu,a}.$$

823 Then we have

$$824 \overrightarrow{\mathbb{P}}^{\mu,a} = \overleftarrow{\mathbb{P}}^{\nu,b} \quad \text{if and only if} \quad \nu = \overrightarrow{\mathbb{P}}_T^{\mu,a} \quad \text{and} \quad b_t = a_t - \sigma^2 \nabla \ln \rho_t^{\mu,a}, \quad \forall t \in (0, T].$$

B PROOFS FOR THE SOC-BASED METHODS

B.1 PROOF OF PROP. 3.1: BOUND ON THE NORM OF THE LEAN ADJOINT STATE

830 Given a matrix $M \in \mathbb{R}^{d \times d}$ and a point $x \in \mathbb{R}^d$, the Rayleigh quotient is defined as $R(M, x) = \frac{\langle x, Mx \rangle}{\langle x, x \rangle}$. The norm of the lean adjoint state $\tilde{a}(t, X^u)$ satisfies the following ODE:

$$833 \frac{d}{dt} \|\tilde{a}(t, X^u)\|^2 = 2\langle \tilde{a}(t, X^u), \frac{d}{dt} \tilde{a}(t, X^u) \rangle = -2\langle \tilde{a}(t, X^u), \nabla_x b(X_t, t)^\top \tilde{a}(t, X^u) \rangle \quad (73)$$

$$835 = -2R(\nabla_x b(X_t, t)^\top, \tilde{a}(t, X^u)) \|\tilde{a}(t, X^u)\|^2. \quad (74)$$

836 When we integrate this ODE backwards in time from 1 to $t \in [0, 1]$, we obtain that

$$838 \|\tilde{a}(t, X^u)\|^2 = \exp \left(2 \int_t^1 R(\nabla_x b(X_s, s)^\top, \tilde{a}(s, X^u)) ds \right) \|\nabla_x r(X_1^u)\|^2. \quad (75)$$

839 Since $\tilde{a}(t, X^u)$ appears in the the regression target vector field of the Adjoint Matching loss, it
 840 is desirable that the norm $\|\tilde{a}(t, X^u)\|$ is small. A way to obtain bounds on $\|\tilde{a}(t, X^u)\|$ is un-
 841 der the condition that $\text{Sym}(\nabla_x b(X_t, t)) \preceq \chi_t \mathbf{I}$ for some constant $\chi_t \in \mathbb{R}$, as in this case, since
 842 $R(\nabla_x b(X_t, t)^\top, \tilde{a}(t, X^u)) = R(\text{Sym}(\nabla_x b(X_t, t)), \tilde{a}(t, X^u)) \leq \chi_t$, we get that

$$843 \|\tilde{a}(t, X^u)\|^2 \leq \exp \left(2 \int_t^1 \chi_s ds \right) \|\nabla_x r(X_1^u)\|^2. \quad (76)$$

845 Observe that $\nabla b(x, t) = \kappa_t \mathbf{I} + \left(\frac{\sigma(t)^2}{2} + \eta_t \right) \nabla \mathfrak{s}_t(x)$, and for the memoryless noise schedule $\sigma(t) = \sqrt{2\eta_t}$,

$$848 \nabla b(x, t) = \kappa_t \mathbf{I} + 2\eta_t \nabla \mathfrak{s}_t(x). \quad (77)$$

849 Since $\eta_t > 0$, in order to obtain a bound of the form $\text{Sym}(\nabla_x b(X_t, t)) \preceq \chi_t \mathbf{I}$, we need a similar
 850 bound on $\text{Sym}(\nabla_x \mathfrak{s}_t(X_t))$. Next, we show that such bounds are easy to obtain in the case in which
 851 the data distribution p_{data} is Gaussian or strongly log-concave. The former case, under which we can
 852 obtain an analytic expression of the score, is particularly relevant because it is the setting considered
 853 in Adjoint Sampling (Havens et al., 2025).

855 **The gradient ∇b for Gaussian data distributions** Now, if assume that $p_{\text{data}} = \mathcal{N}(0, \sigma_1^2 \mathbf{I})$, as is
 856 the case in the sampling setting, we can compute \mathfrak{s}_t explicitly through equation (31) of Lemma A.1.
 857 By equation (31), we obtain that

$$858 p_t(x) = \int_{\mathbb{R}^d} \frac{\exp \left(-\frac{\|x - \alpha_t y\|^2}{2\beta_t^2} \right)}{(2\pi\beta_t^2)^{d/2}} \frac{\exp \left(-\frac{\|y\|^2}{2\sigma_1^2} \right)}{(2\pi\sigma_1^2)^{d/2}} dy = \frac{\exp \left(-\frac{\|x\|^2}{2(\beta_t^2 + \alpha_t^2 \sigma_1^2)} \right)}{\left(2\pi(\beta_t^2 + \alpha_t^2 \sigma_1^2) \right)^{d/2}}, \quad (78)$$

861 which implies $\mathfrak{s}_t(x) = \nabla \log p_t(x) = -\frac{x}{\beta_t^2 + \alpha_t^2 \sigma_1^2}$, and this means that

$$863 \nabla b(x, t) = \kappa_t \mathbf{I} + 2\eta_t \nabla \mathfrak{s}_t(x) = \left(\kappa_t - \frac{2\eta_t}{\beta_t^2 + \alpha_t^2 \sigma_1^2} \right) \mathbf{I} = \left(\frac{\dot{\alpha}_t}{\alpha_t} - \frac{2\beta_t \left(\frac{\dot{\alpha}_t}{\alpha_t} \beta_t - \dot{\beta}_t \right)}{\beta_t^2 + \alpha_t^2 \sigma_1^2} \right) \mathbf{I} =: \chi_t \mathbf{I}, \quad (79)$$

864

(i) Föllmer process:

$$\begin{aligned}
 \nabla b(x, t) &= \left(\kappa_t - \frac{2\eta_t}{\beta_t^2 + \alpha_t^2 \sigma_1^2} \right) \mathbf{I} = \left(\frac{\dot{\alpha}_t}{\alpha_t} - \frac{\dot{\alpha}_t \sigma_0^2}{\alpha_t (1 - \bar{\alpha}_t) \sigma_0^2 + \bar{\alpha}_t \sigma_1^2} \right) \mathbf{I} = \frac{\dot{\alpha}_t}{\alpha_t} \left(1 - \frac{1}{1 - \bar{\alpha}_t + \bar{\alpha}_t \sigma_1^2 / \sigma_0^2} \right) \mathbf{I} =: \chi_t \mathbf{I}, \\
 \implies \int_t^1 \chi_s \, ds &= \int_t^1 \frac{\dot{\alpha}_s}{2\bar{\alpha}_s} \left(1 - \frac{2}{1 - \bar{\alpha}_s + \bar{\alpha}_s \sigma_1^2 / \sigma_0^2} \right) \, ds = \log \left(\frac{\sigma_1^2}{(1 - \bar{\alpha}_s) \sigma_0^2 + \bar{\alpha}_s \sigma_1^2} \right), \\
 \implies \|\tilde{a}(t, X^u)\| &= \frac{\sigma_1^2}{(1 - \bar{\alpha}_s) \sigma_0^2 + \bar{\alpha}_s \sigma_1^2} \|\nabla_x r(X_1^u)\|.
 \end{aligned} \tag{80}$$

871

If we set $\sigma_0^2 = \sigma_1^2$, we obtain $\nabla b(x, t) = 0$ and $\int_t^1 \chi_s \, ds = 0$.

872

(ii) DDIM/DDPM:

$$\begin{aligned}
 \nabla b(x, t) &= \left(\kappa_t - \frac{2\eta_t}{\beta_t^2 + \alpha_t^2 \sigma_1^2} \right) \mathbf{I} = \left(\frac{\dot{\alpha}_t}{2\bar{\alpha}_t} - \frac{\dot{\alpha}_t \sigma_0^2}{(1 - \bar{\alpha}_t) \sigma_0^2 + \bar{\alpha}_t \sigma_1^2} \right) \mathbf{I} = \frac{\dot{\alpha}_t}{2\bar{\alpha}_t} \left(1 - \frac{2}{1 - \bar{\alpha}_t + \bar{\alpha}_t \sigma_1^2 / \sigma_0^2} \right) \mathbf{I} =: \chi_t \mathbf{I}, \\
 \implies \int_t^1 \chi_s \, ds &= \int_t^1 \frac{\dot{\alpha}_s}{2\bar{\alpha}_s} \left(1 - \frac{2}{1 - \bar{\alpha}_s + \bar{\alpha}_s \sigma_1^2 / \sigma_0^2} \right) \, ds = \log \left(\frac{\sigma_1^2 \sqrt{\bar{\alpha}_s}}{(1 - \bar{\alpha}_s) \sigma_0^2 + \bar{\alpha}_s \sigma_1^2} \right), \\
 \implies \|\tilde{a}(t, X^u)\| &= \frac{\sigma_1^2 \sqrt{\bar{\alpha}_s}}{(1 - \bar{\alpha}_s) \sigma_0^2 + \bar{\alpha}_s \sigma_1^2} \|\nabla_x r(X_1^u)\|.
 \end{aligned} \tag{81}$$

880

881

If we set $\sigma_0^2 = \sigma_1^2$, we obtain $\nabla b(x, t) = -\frac{\dot{\alpha}_t}{2\bar{\alpha}_t} \mathbf{I}$, and $\int_t^1 \chi_s \, ds = \frac{1}{2} \log(\bar{\alpha}_t)$, and $\|\tilde{a}(t, X^u)\| = \sqrt{\bar{\alpha}_s} \|\nabla_x r(X_1^u)\|$.

883

(iii) Rectified Flow:

$$\nabla b(x, t) = \left(\kappa_t - \frac{2\eta_t}{\beta_t^2 + \alpha_t^2 \sigma_1^2} \right) \mathbf{I} = \left(\frac{\dot{\alpha}_t}{\alpha_t} - \frac{2 \frac{(1 - \bar{\alpha}_t) \dot{\alpha}_t \sigma_0^2}{\bar{\alpha}_t}}{(1 - \bar{\alpha}_t)^2 \sigma_0^2 + \bar{\alpha}_t^2 \sigma_1^2} \right) \mathbf{I} = \frac{\dot{\alpha}_t}{\alpha_t} \left(1 - \frac{2(1 - \bar{\alpha}_t)}{(1 - \bar{\alpha}_t)^2 + \bar{\alpha}_t^2 \sigma_1^2 / \sigma_0^2} \right) \mathbf{I}, \tag{82}$$

888

$$\implies \int_t^1 \chi_s \, ds = \int_t^1 \frac{\dot{\alpha}_s}{\bar{\alpha}_s} \left(1 - \frac{2(1 - \bar{\alpha}_s)}{(1 - \bar{\alpha}_s)^2 + \bar{\alpha}_s^2 \sigma_1^2 / \sigma_0^2} \right) \, ds = \log \left(\frac{\sigma_1^2 \bar{\alpha}_s}{(1 - \bar{\alpha}_s)^2 \sigma_0^2 + \bar{\alpha}_s^2 \sigma_1^2} \right), \tag{83}$$

890

$$\implies \|\tilde{a}(t, X^u)\| = \frac{\sigma_1^2 \bar{\alpha}_s}{(1 - \bar{\alpha}_s)^2 \sigma_0^2 + \bar{\alpha}_s^2 \sigma_1^2} \|\nabla_x r(X_1^u)\|. \tag{84}$$

891

The maximizer of $\alpha \mapsto \log \left(\frac{\sigma_1^2 \bar{\alpha}_s}{(1 - \bar{\alpha}_s)^2 \sigma_0^2 + \bar{\alpha}_s^2 \sigma_1^2} \right)$ is $\alpha^* = \frac{\sigma_0}{\sqrt{\sigma_0^2 + \sigma_1^2}}$, and the maximum value is $\frac{1 + \sqrt{1 + \sigma_1^2 / \sigma_0^2}}{2}$. If we set $\sigma_0^2 = \sigma_1^2$, we obtain

$$\nabla b(x, t) = \frac{\dot{\alpha}_t}{\bar{\alpha}_t} \left(1 - \frac{2(1 - \bar{\alpha}_t)}{(1 - \bar{\alpha}_t)^2 + \bar{\alpha}_t^2} \right) \mathbf{I} = \frac{\dot{\alpha}_t}{\bar{\alpha}_t} \frac{1 - 2\bar{\alpha}_t + 2\bar{\alpha}_t^2 - 2(1 - \bar{\alpha}_t)}{1 - 2\bar{\alpha}_t + 2\bar{\alpha}_t^2} \mathbf{I} = -\frac{(1 - 2\bar{\alpha}_t) \dot{\alpha}_t}{(1 - 2\bar{\alpha}_t + 2\bar{\alpha}_t^2) \bar{\alpha}_t} \mathbf{I}, \tag{85}$$

897

$$\implies \int_t^1 \chi_s \, ds = \log \left(\frac{\bar{\alpha}_s}{(1 - \bar{\alpha}_s)^2 + \bar{\alpha}_s^2} \right) \implies \|\tilde{a}(t, X^u)\| = \frac{\bar{\alpha}_s}{(1 - \bar{\alpha}_s)^2 + \bar{\alpha}_s^2} \|\nabla_x r(X_1^u)\|. \tag{86}$$

898

899

900

The gradient ∇b for $\frac{1}{\sigma_1^2}$ -strongly convex data distributions

Corollary A.3 proves that when p_{data} is $\frac{1}{\sigma_1^2}$ -strongly log-concave, then p_t is also in $C^2(\mathbb{R}^d)$ and $\frac{1}{\beta_t^2 + \alpha_t^2 \sigma_1^2}$ -strongly log-concave. Equivalently, for all $x \in \mathbb{R}^d$, $t \in [0, 1]$,

904

905

$$-\nabla \mathfrak{s}_t(x) = -\nabla^2 \log p_t(x) \succeq \frac{\mathbf{I}}{\beta_t^2 + \alpha_t^2 \sigma_1^2}, \tag{87}$$

906

which means that

907

908

$$\nabla b(x, t) = \kappa_t \mathbf{I} + 2\eta_t \nabla \mathfrak{s}_t(x) \preceq \left(\kappa_t - \frac{2\eta_t}{\beta_t^2 + \alpha_t^2 \sigma_1^2} \right) \mathbf{I} = \left(\frac{\dot{\alpha}_t}{\alpha_t} - \frac{2\beta_t \left(\frac{\dot{\alpha}_t}{\alpha_t} \beta_t - \dot{\beta}_t \right)}{\beta_t^2 + \alpha_t^2 \sigma_1^2} \right) \mathbf{I}. \tag{88}$$

909

Observe that this upper-bound matches the right-hand side of (79). Hence, we obtain immediately that for the three subcases, all the equalities involving $\nabla b(x, t)$ and $\int_t^1 \chi_s \, ds$ become inequalities.

910

B.2 DERIVATION OF THE TARGET, CONDITIONAL AND NOVEL SCORE MATCHING LOSS FUNCTIONS

911

By the target score identity from Lemma A.1, the density p_t of the marginal \bar{X}_t of the reference flow in equation (1) satisfies:

912

913

914

915

916

917

$$\nabla \log p_t(x) = \frac{1}{\alpha_t} \frac{\int_{\mathbb{R}^d} \mathcal{N}(x; \alpha_t y, \beta_t^2 \mathbf{I}) \nabla \log p_{\text{data}}(Y) p_{\text{data}}(y) \, dy}{\int_{\mathbb{R}^d} \mathcal{N}(x; \alpha_t y, \beta_t^2 \mathbf{I}) p_{\text{data}}(y) \, dy} = \frac{1}{\alpha_t} \mathbb{E}[\nabla \log p_{\text{data}}(Y) \mid \bar{X}_t = x] \tag{89}$$

918 We use a well-known argument: for any \mathbb{R}^d -valued neural network \hat{s} ,

$$\begin{aligned}
 & \mathbb{E}_{Y \sim p_{\text{data}}, \bar{X}_t = \alpha_t Y + \beta_t \varepsilon} \left[\int_0^1 \|\hat{s}(\bar{X}_t, t) - \nabla \log p_t(\bar{X}_t)\|^2 dt \right] \\
 &= \mathbb{E}_{Y \sim p_{\text{data}}, \bar{X}_t = \alpha_t Y + \beta_t \varepsilon} \left[\int_0^1 \|\hat{s}(\bar{X}_t, t)\|^2 dt - 2 \int_0^1 \langle \hat{s}(\bar{X}_t, t), \nabla \log p_t(\bar{X}_t) \rangle dt \right] + \text{const.} \\
 &= \mathbb{E}_{Y \sim p_{\text{data}}, \bar{X}_t = \alpha_t Y + \beta_t \varepsilon} \left[\int_0^1 \|\hat{s}(\bar{X}_t, t)\|^2 dt - \frac{2}{\alpha_t} \int_0^1 \langle \hat{s}(\bar{X}_t, t), \mathbb{E}[\nabla \log p_{\text{data}}(Y) | \bar{X}_t] \rangle dt \right] + \text{const.} \\
 &= \mathbb{E}_{Y \sim p_{\text{data}}, \bar{X}_t = \alpha_t Y + \beta_t \varepsilon} \left[\int_0^1 \|\hat{s}(\bar{X}_t, t)\|^2 dt - \frac{2}{\alpha_t} \int_0^1 \langle \hat{s}(\bar{X}_t, t), \nabla \log p^{\text{base}}(Y) + \nabla r(Y) \rangle dt \right] + \text{const.} \\
 &= \mathbb{E}_{Y \sim p_{\text{data}}, \bar{X}_t = \alpha_t Y + \beta_t \varepsilon} \left[\int_0^1 \|\hat{s}(\bar{X}_t, t) - \frac{1}{\alpha_t} (\nabla \log p^{\text{base}}(Y) + \nabla r(Y))\|^2 dt \right] + \text{const.}
 \end{aligned} \tag{90}$$

928 where the third equality holds by (89). Hence,

$$\mathcal{L}_{\text{TSM}}(\hat{s}) = \mathbb{E}[\mathcal{L}_{\text{TSM}}(\hat{s}, \bar{X})] = \mathbb{E}_{Y \sim p_{\text{data}}, \bar{X}_t = \alpha_t Y + \beta_t \varepsilon} \left[\int_0^1 \|\hat{s}(\bar{X}_t, t) - \frac{1}{\alpha_t} (\nabla \log p^{\text{base}}(Y) + \nabla r(Y))\|^2 dt \right]. \tag{91}$$

932 Analogously to (89), the conditional score identity (CSI) and the novel score identity (NSI) yield

$$\nabla \log p_t(x) = -\frac{\int_{\mathbb{R}^d} (x - \alpha_t y) \mathcal{N}(x; \alpha_t y, \beta_t^2 \mathbf{I}) p_{\text{data}}(y) dy}{\beta_t^2 \int_{\mathbb{R}^d} \mathcal{N}(x; \alpha_t y, \beta_t^2 \mathbf{I}) p_{\text{data}}(y) dy} = -\frac{1}{\beta_t^2} \mathbb{E}[x - \alpha_t Y | \bar{X}_t = x], \tag{92}$$

$$\nabla \log p_t(x) = \frac{\int_{\mathbb{R}^d} (\alpha_t \nabla \log p_{\text{data}}(y) - (x - \alpha_t y)) \mathcal{N}(x; \alpha_t y, \beta_t^2 \mathbf{I}) p_{\text{data}}(y) dy}{(\alpha_t^2 + \beta_t^2) \int_{\mathbb{R}^d} \mathcal{N}(x; \alpha_t y, \beta_t^2 \mathbf{I}) p_{\text{data}}(y) dy} \tag{93}$$

$$= \frac{1}{\alpha_t^2 + \beta_t^2} \mathbb{E}[\alpha_t \nabla \log p_{\text{data}}(Y) - (x - \alpha_t Y) | \bar{X}_t = x], \tag{94}$$

934 The expressions for the Conditional Score Matching loss \mathcal{L}_{CSM} and the Novel Score Matching loss
935 \mathcal{L}_{NSM} follow from an argument analogous to equation (90), the only differences being that in the
936 second equality we use equations (92) and (94) instead.

B.3 PROOF OF PROP. 3.2: BIAS-VARIANCE DECOMPOSITION FOR ADJOINT MATCHING AND SAMPLING

946 For Adjoint Matching and Sampling, observe that $u(x, t) = \frac{1}{\sqrt{2\eta_t}} (v_{\text{ft}}(x, t) - v_{\text{base}}(x, t))$. Hence,

$$\begin{aligned}
 & \mathbb{E}[\mathcal{L}_{\text{Adj-Match}}(u; X^{\bar{u}})] \\
 &= \mathbb{E}\left[\frac{1}{2} \int_0^1 \|u(X_t^{\bar{u}}, t) + \sigma(t)^\top \tilde{a}(t; X^{\bar{u}})\|^2 dt\right] \\
 &= \mathbb{E}\left[\frac{1}{2} \int_0^1 \left\| \frac{1}{\sqrt{2\eta_t}} (v_{\text{ft}}(X_t^{\bar{u}}, t) - v_{\text{base}}(X_t^{\bar{u}}, t)) + \sqrt{2\eta_t} \tilde{a}(t; X^{\bar{u}}) \right\|^2 dt\right] \\
 &\stackrel{(i)}{=} \mathbb{E}\left[\frac{1}{2} \int_0^1 \|v_{\text{ft}}(X_t^{\bar{u}}, t) - v_{\text{base}}(X_t^{\bar{u}}, t) + 2\eta_t \tilde{a}(t; X^{\bar{u}})\|^2 \frac{1}{2\eta_t} dt\right] \\
 &= \mathbb{E}\left[\frac{1}{2} \int_0^1 \|v_{\text{ft}}(X_t^{\bar{u}}, t) - \mathbb{E}[v_{\text{base}}(X_t^{\bar{u}}, t) - 2\eta_t \tilde{a}(t; X^{\bar{u}}) | X_t^{\bar{u}}]\|^2 \frac{1}{2\eta_t} dt\right] \\
 &\quad + \mathbb{E}\left[\frac{1}{2} \int_0^1 \left\| \mathbb{E}[v_{\text{base}}(X_t^{\bar{u}}, t) - 2\eta_t \tilde{a}(t; X^{\bar{u}}) | X_t^{\bar{u}}] - (v_{\text{base}}(X_t^{\bar{u}}, t) - 2\eta_t \tilde{a}(t; X^{\bar{u}})) \right\|^2 \frac{1}{2\eta_t} dt\right]
 \end{aligned} \tag{95}$$

958 Observe that equality (i) yields an expression on the same form as equation (24), with $\xi(t, X^{\bar{u}}) =$
959 $v_{\text{base}}(X_t^{\bar{u}}, t) + 2\eta_t \tilde{a}(t; X^{\bar{u}})$. The second term in the right-hand side of (95) (the variance term) can
960 be simplified to

$$\begin{aligned}
 & \mathbb{E}\left[\frac{1}{2} \int_0^1 \left\| \mathbb{E}[2\eta_t \tilde{a}(t; X^{\bar{u}}) | X_t^{\bar{u}}] - 2\eta_t \tilde{a}(t; X^{\bar{u}}) \right\|^2 \frac{1}{2\eta_t} dt\right] = \mathbb{E}\left[\int_0^1 \eta_t \left\| \mathbb{E}[\tilde{a}(t; X^{\bar{u}}) | X_t^{\bar{u}}] - \tilde{a}(t; X^{\bar{u}}) \right\|^2 dt\right] \\
 &\leq \mathbb{E}\left[\int_0^1 \eta_t \|\tilde{a}(t; X^{\bar{u}})\|^2 dt\right] \leq \int_0^1 \eta_t \exp\left(2 \int_t^1 \chi_s ds\right) dt \times \mathbb{E}\left[\|\nabla_x r(X_1^u)\|^2\right].
 \end{aligned} \tag{96}$$

966 For the particular case in which p_{data} is Gaussian, we can similarly obtain an equality:

$$\mathbb{E}\left[\int_0^1 \left\| \mathbb{E}[2\eta_t \tilde{a}(t; X^{\bar{u}}) | X_t^{\bar{u}}] - 2\eta_t \tilde{a}(t; X^{\bar{u}}) \right\|^2 \frac{1}{2\eta_t} dt\right] \tag{97}$$

$$= \mathbb{E}\left[\int_0^1 \eta_t \exp\left(2 \int_t^1 \chi_s ds\right) (\|\nabla_x r(X_1^u)\|^2 - \mathbb{E}[\|\nabla_x r(X_1^u)\|^2 | X_t^u]) dt\right], \tag{98}$$

971 where the last equality holds by equation (76). Next, we compute $\int_0^1 \eta_t \exp\left(2 \int_t^1 \chi_s ds\right) dt$ in the
972 three subcases:

972

(i) Föllmer process:

973

974

975

976

977

(ii) DDIM/DDPM:

978

979

980

981

(iii) Rectified Flow:

982

983

984

985

$$\begin{aligned} \int_0^1 \eta_t \exp \left(2 \int_t^1 \chi_s \mathrm{d} s\right) \mathrm{d} t &= \int_0^1 \left(\frac{\sigma_1^2}{(1-\bar{\alpha}_t) \sigma_0^2+\bar{\alpha}_t \sigma_1^2}\right)^2 \frac{\dot{\alpha}_t \sigma_0^2}{2} \mathrm{d} t=\int_0^1\left(\frac{\sigma_1^2}{(1-t) \sigma_0^2+t \sigma_1^2}\right)^2 \frac{\sigma_0^2}{2} \mathrm{d} t=\frac{\sigma_1^2}{2} . \end{aligned} \quad (99)$$

B.4 PROOF OF PROP. 3.3: BIAS-VARIANCE DECOMPOSITION FOR SCORE MATCHING ALGORITHMS

989

Target Score Matching Next, we write the Target Score Matching and Novel Score Matching losses in the general form (24). Plugging $\sigma(t)=\sqrt{2 \eta_t}$, we can write

990

991

992

993

$$v_{\mathrm{ft}}(x, t)=\kappa_t x+2 \eta_t \hat{s}(x, t) \Longrightarrow \hat{s}(x, t)=\frac{v_{\mathrm{ft}}(x, t)-\kappa_t x}{2 \eta_t} . \quad (102)$$

Thus, for Target Score Matching we have that

994

995

996

997

998

999

1000

1001

1002

1003

$$\begin{aligned} & \mathbb{E}_{Y \sim p_{\text {data }}, \bar{X}_t=\alpha_t Y+\beta_t \varepsilon}\left[\frac{1}{2} \int_0^1\|\hat{s}(\bar{X}_t, t)-\frac{1}{\alpha_t}(\nabla \log p_{\text {base }}(Y)+\nabla r(Y))\|^2(2 \eta_t) \mathrm{d} t\right] \\ &=\mathbb{E}_{Y \sim p_{\text {data }}, \bar{X}_t=\alpha_t Y+\beta_t \varepsilon}\left[\frac{1}{2} \int_0^1\left\|\frac{v_{\mathrm{ft}}(\bar{X}_t, t)-\kappa_t \bar{X}_t}{2 \eta_t}-\frac{1}{\alpha_t}(\nabla \log p_{\text {base }}(Y)+\nabla r(Y))\right\|^2(2 \eta_t) \mathrm{d} t\right] \\ &=\mathbb{E}_{Y \sim p_{\text {data }}, \bar{X}_t=\alpha_t Y+\beta_t \varepsilon}\left[\frac{1}{2} \int_0^1\left\|v_{\mathrm{ft}}(\bar{X}_t, t)-\kappa_t \bar{X}_t-\frac{2 \eta_t}{\alpha_t}(\nabla \log p_{\text {base }}(Y)+\nabla r(Y))\right\|^2 \frac{1}{2 \eta_t} \mathrm{d} t\right] \\ &=\mathbb{E}_{Y \sim p_{\text {data }}, \bar{X}_t=\alpha_t Y+\beta_t \varepsilon}\left[\frac{1}{2} \int_0^1\left\|v_{\mathrm{ft}}(\bar{X}_t, t)-\mathbb{E}\left[\kappa_t \bar{X}_t+\frac{2 \eta_t}{\alpha_t}(\nabla \log p_{\text {base }}(Y)+\nabla r(Y)) \mid \bar{X}_t\right]\right\|^2 \frac{1}{2 \eta_t} \mathrm{d} t\right] \\ &+\mathbb{E}_{Y \sim p_{\text {data }}, \bar{X}_t=\alpha_t Y+\beta_t \varepsilon}\left[\frac{1}{2} \int_0^1\left\|\mathbb{E}\left[\kappa_t \bar{X}_t+\frac{2 \eta_t}{\alpha_t}(\nabla \log p_{\text {base }}(Y)+\nabla r(Y)) \mid \bar{X}_t\right]\right.\right. \\ & \quad\left.\left.-\left(\kappa_t \bar{X}_t+\frac{2 \eta_t}{\alpha_t}(\nabla \log p_{\text {base }}(Y)+\nabla r(Y))\right)\right\|^2 \frac{1}{2 \eta_t} \mathrm{d} t\right] \end{aligned} \quad (103)$$

1004

The second term in the right-hand side of (103) (the variance term) can be simplified to

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

$$\begin{aligned} & \mathbb{E}_{Y \sim p_{\text {data }}, \bar{X}_t=\alpha_t Y+\beta_t \varepsilon}\left[\frac{1}{2} \int_0^1\left\|\mathbb{E}\left[\frac{2 \eta_t}{\alpha_t}(\nabla \log p_{\text {base }}(Y)+\nabla r(Y)) \mid \bar{X}_t\right]\right.\right. \\ & \quad\left.\left.-\frac{2 \eta_t}{\alpha_t}(\nabla \log p_{\text {base }}(Y)+\nabla r(Y))\right\|^2 \frac{1}{2 \eta_t} \mathrm{d} t\right] \\ &=\mathbb{E}_{Y \sim p_{\text {data }}, \bar{X}_t=\alpha_t Y+\beta_t \varepsilon}\left[\frac{1}{2} \int_0^1 \frac{2 \eta_t}{\alpha_t^2}\left\|\mathbb{E}\left[\nabla \log p_{\text {base }}(Y)+\nabla r(Y) \mid \bar{X}_t\right]\right.\right. \\ & \quad\left.\left.-(\nabla \log p_{\text {base }}(Y)+\nabla r(Y))\right\|^2 \mathrm{d} t\right] \\ & \leq \int_0^1 \frac{\eta_t}{\alpha_t^2} \mathrm{d} t \times \mathbb{E}_{Y \sim p_{\text {data }}}\left[\|\nabla \log p_{\text {base }}(Y)+\nabla r(Y)\|^2\right] . \end{aligned} \quad (104)$$

Observe that $\frac{\eta_t}{\alpha_t^2}=\frac{\beta_t\left(\frac{\dot{\alpha}_t}{\alpha_t} \beta_t-\dot{\beta}_t\right)}{\alpha_t^2}$. And in particular, for the three subcases:

1016

(i) Föllmer process:

1017

1018

1019

1020

1021

1022

1023

1024

1025

$$\frac{\eta_t}{\alpha_t^2}=\frac{\dot{\alpha}_t \sigma_0^2}{2 \bar{\alpha}_t^2} \Longrightarrow \int_0^1 \frac{\eta_t}{\alpha_t^2} \mathrm{d} t=\int_0^1 \frac{\dot{\alpha}_t \sigma_0^2}{2 \bar{\alpha}_t^2} \mathrm{d} t=\int_0^1 \frac{\sigma_0^2}{2 t^2} \mathrm{d} t=+\infty . \quad (105)$$

(ii) DDIM/DDPM:

$$\frac{\eta_t}{\alpha_t^2}=\frac{\frac{\dot{\alpha}_t \sigma_0^2}{2 \bar{\alpha}_t}}{\dot{\alpha}_t}=\frac{\dot{\alpha}_t \sigma_0^2}{2 \bar{\alpha}_t^2} \Longrightarrow \int_0^1 \frac{\eta_t}{\alpha_t^2} \mathrm{d} t=\int_0^1 \frac{\dot{\alpha}_t \sigma_0^2}{2 \bar{\alpha}_t^2} \mathrm{d} t=+\infty \quad (106)$$

(iii) Rectified Flow:

$$\frac{\eta_t}{\alpha_t^2}=\frac{\frac{(1-\bar{\alpha}_t) \dot{\alpha}_t \sigma_0^2}{\bar{\alpha}_t}}{\bar{\alpha}_t^2}=\frac{(1-\bar{\alpha}_t) \dot{\alpha}_t \sigma_0^2}{\bar{\alpha}_t^3} \Longrightarrow \int_0^1 \frac{\eta_t}{\alpha_t^2} \mathrm{d} t=\int_0^1 \frac{(1-\bar{\alpha}_t) \dot{\alpha}_t \sigma_0^2}{\bar{\alpha}_t^3} \mathrm{d} t=\int_0^1 \frac{(1-t) \dot{\sigma}_0^2}{t^3} \mathrm{d} t=+\infty \quad (107)$$

1026 **Conditional Score Matching** And for Conditional Score Matching, we have that
1027

$$\begin{aligned}
1028 & \mathbb{E}_{Y \sim p_{\text{data}}, \bar{X}_t = \alpha_t Y + \beta_t \varepsilon} \left[\frac{1}{2} \int_0^1 \left\| \hat{s}(\bar{X}_t, t) + \frac{\bar{X}_t - \alpha_t Y}{\beta_t^2} \right\|^2 (2\eta_t) dt \right] \\
1029 & = \mathbb{E}_{Y \sim p_{\text{data}}, \bar{X}_t = \alpha_t Y + \beta_t \varepsilon} \left[\int_0^1 \left\| \frac{v_{\text{ft}}(\bar{X}_t, t) - \kappa_t \bar{X}_t}{2\eta_t} + \frac{\bar{X}_t - \alpha_t Y}{\beta_t^2} \right\|^2 (2\eta_t) dt \right] \\
1030 & = \mathbb{E}_{Y \sim p_{\text{data}}, \bar{X}_t = \alpha_t Y + \beta_t \varepsilon} \left[\frac{1}{2} \int_0^1 \left\| v_{\text{ft}}(\bar{X}_t, t) - \kappa_t \bar{X}_t + \frac{2\eta_t(\bar{X}_t - \alpha_t Y)}{\beta_t^2} \right\|^2 \frac{1}{2\eta_t} dt \right] \\
1031 & = \mathbb{E}_{Y \sim p_{\text{data}}, \bar{X}_t = \alpha_t Y + \beta_t \varepsilon} \left[\frac{1}{2} \int_0^1 \left\| v_{\text{ft}}(\bar{X}_t, t) - \mathbb{E} \left[\kappa_t \bar{X}_t + \frac{2\eta_t(\bar{X}_t - \alpha_t Y)}{\beta_t^2} \mid \bar{X}_t \right] \right\|^2 \frac{1}{2\eta_t} dt \right] \\
1032 & + \mathbb{E}_{Y \sim p_{\text{data}}, \bar{X}_t = \alpha_t Y + \beta_t \varepsilon} \left[\frac{1}{2} \int_0^1 \left\| \mathbb{E} \left[\kappa_t \bar{X}_t + \frac{2\eta_t(\bar{X}_t - \alpha_t Y)}{\beta_t^2} \mid \bar{X}_t \right] - \left(\kappa_t \bar{X}_t + \frac{2\eta_t(\bar{X}_t - \alpha_t Y)}{\beta_t^2} \right) \right\|^2 \frac{1}{2\eta_t} dt \right]. \tag{108}
\end{aligned}$$

1037 The second term in the right-hand side of (108) (the variance term) can be simplified to
1038

$$\mathbb{E}_{Y \sim p_{\text{data}}, \bar{X}_t = \alpha_t Y + \beta_t \varepsilon} \left[\frac{1}{2} \int_0^1 \left\| \mathbb{E} \left[\frac{2\eta_t(\bar{X}_t - \alpha_t Y)}{\beta_t^2} \mid \bar{X}_t \right] - \frac{2\eta_t(\bar{X}_t - \alpha_t Y)}{\beta_t^2} \right\|^2 \frac{1}{2\eta_t} dt \right] \tag{109}$$

$$\begin{aligned}
1041 & = \mathbb{E}_{Y \sim p_{\text{data}}, \bar{X}_t = \alpha_t Y + \beta_t \varepsilon} \left[\int_0^1 \frac{\eta_t}{\beta_t^4} \left\| \mathbb{E} \left[\nabla \log p_{\text{base}}(Y) + \nabla r(Y) \mid \bar{X}_t \right] - \left(\nabla \log p_{\text{base}}(Y) + \nabla r(Y) \right) \right\|^2 dt \right] \\
1042 & \leq \int_0^1 \frac{\eta_t}{\beta_t^4} dt \times \mathbb{E}_{Y \sim p_{\text{data}}} \left[\left\| \nabla \log p_{\text{base}}(Y) + \nabla r(Y) \right\|^2 \right]. \tag{110}
\end{aligned}$$

$$\begin{aligned}
1044 & \leq \int_0^1 \frac{\eta_t}{\beta_t^4} dt \times \mathbb{E}_{Y \sim p_{\text{data}}} \left[\left\| \nabla \log p_{\text{base}}(Y) + \nabla r(Y) \right\|^2 \right]. \tag{111}
\end{aligned}$$

1046 Observe that $\frac{\eta_t}{\beta_t^4} = \frac{\beta_t \left(\frac{\alpha_t}{\alpha_t} \beta_t - \dot{\beta}_t \right)}{\beta_t^4} = \frac{\frac{\alpha_t}{\alpha_t} - \dot{\beta}_t}{\beta_t^2}$. And in particular, for the three subcases:
1047

1048 (i) Föllmer process:

$$\begin{aligned}
1050 & \frac{\eta_t}{\alpha_t^2} = \frac{\dot{\alpha}_t \sigma_0^2}{2\bar{\alpha}_t^2(1-\bar{\alpha}_t)^2 \sigma_0^4} = \frac{\dot{\alpha}_t}{2\bar{\alpha}_t^2(1-\bar{\alpha}_t)^2 \sigma_0^2} \\
1051 & \implies \int_0^1 \frac{\eta_t}{\alpha_t^2} dt = \int_0^1 \frac{\dot{\alpha}_t}{2\bar{\alpha}_t^2(1-\bar{\alpha}_t)^2 \sigma_0^2} dt = \int_0^1 \frac{1}{2\sigma_0^2 t^2 (1-t)^2} dt = +\infty. \tag{112}
\end{aligned}$$

1054 (ii) DDIM/DDPM:

$$\begin{aligned}
1056 & \frac{\eta_t}{\beta_t^4} = \frac{\frac{\dot{\alpha}_t \sigma_0^2}{2\bar{\alpha}_t}}{(1-\bar{\alpha}_t)^2 \sigma_0^4} = \frac{\dot{\alpha}_t}{2\bar{\alpha}_t (1-\bar{\alpha}_t)^2 \sigma_0^2} \\
1057 & \implies \int_0^1 \frac{\eta_t}{\beta_t^4} dt = \int_0^1 \frac{\dot{\alpha}_t}{2\bar{\alpha}_t (1-\bar{\alpha}_t)^2 \sigma_0^2} dt = \int_0^1 \frac{1}{2t(1-t)^2 \sigma_0^2} dt = +\infty. \tag{113}
\end{aligned}$$

1060 (iii) Rectified Flow:

$$\begin{aligned}
1062 & \frac{\eta_t}{\beta_t^4} = \frac{\frac{(1-\bar{\alpha}_t)\dot{\alpha}_t \sigma_0^2}{\bar{\alpha}_t}}{(1-\bar{\alpha}_t)^4} = \frac{(1-\bar{\alpha}_t)\dot{\alpha}_t \sigma_0^2}{\bar{\alpha}_t (1-\bar{\alpha}_t)^4} = \frac{\dot{\alpha}_t \sigma_0^2}{\bar{\alpha}_t (1-\bar{\alpha}_t)^3} \\
1063 & \implies \int_0^1 \frac{\eta_t}{\beta_t^4} dt = \int_0^1 \frac{\dot{\alpha}_t \sigma_0^2}{\bar{\alpha}_t (1-\bar{\alpha}_t)^3} dt = \int_0^1 \frac{\sigma_0^2}{t(1-t)^3} dt = +\infty. \tag{114}
\end{aligned}$$

1066 **Novel Score Matching** And for Novel Score Matching, we have that
1067

$$\begin{aligned}
1068 & \mathbb{E}_{Y \sim p_{\text{data}}, \bar{X}_t = \alpha_t Y + \beta_t \varepsilon} \left[\frac{1}{2} \int_0^1 \left\| \hat{s}(\bar{X}_t, t) - \frac{\alpha_t(\nabla \log p_{\text{base}}(Y) + \nabla r(Y)) - (\bar{X}_t - \alpha_t Y)}{\alpha_t^2 + \beta_t^2} \right\|^2 (2\eta_t) dt \right] \\
1069 & = \mathbb{E}_{Y \sim p_{\text{data}}, \bar{X}_t = \alpha_t Y + \beta_t \varepsilon} \left[\frac{1}{2} \int_0^1 \left\| \frac{v_{\text{ft}}(\bar{X}_t, t) - \kappa_t \bar{X}_t}{2\eta_t} - \frac{\alpha_t(\nabla \log p_{\text{base}}(Y) + \nabla r(Y)) - (\bar{X}_t - \alpha_t Y)}{\alpha_t^2 + \beta_t^2} \right\|^2 (2\eta_t) dt \right] \\
1070 & = \mathbb{E}_{Y \sim p_{\text{data}}, \bar{X}_t = \alpha_t Y + \beta_t \varepsilon} \left[\frac{1}{2} \int_0^1 \left\| v_{\text{ft}}(\bar{X}_t, t) - \kappa_t \bar{X}_t - \frac{2\eta_t(\alpha_t(\nabla \log p_{\text{base}}(Y) + \nabla r(Y)) - (\bar{X}_t - \alpha_t Y))}{\alpha_t^2 + \beta_t^2} \right\|^2 \frac{1}{2\eta_t} dt \right] \\
1071 & = \mathbb{E}_{Y \sim p_{\text{data}}, \bar{X}_t = \alpha_t Y + \beta_t \varepsilon} \left[\frac{1}{2} \int_0^1 \left\| v_{\text{ft}}(\bar{X}_t, t) - \mathbb{E} \left[\kappa_t \bar{X}_t + \frac{2\eta_t(\alpha_t(\nabla \log p_{\text{base}}(Y) + \nabla r(Y)) - (\bar{X}_t - \alpha_t Y))}{\alpha_t^2 + \beta_t^2} \mid \bar{X}_t \right] \right\|^2 \frac{1}{2\eta_t} dt \right] \\
1072 & + \mathbb{E}_{Y \sim p_{\text{data}}, \bar{X}_t = \alpha_t Y + \beta_t \varepsilon} \left[\frac{1}{2} \int_0^1 \left\| \mathbb{E} \left[\kappa_t \bar{X}_t + \frac{2\eta_t(\alpha_t(\nabla \log p_{\text{base}}(Y) + \nabla r(Y)) - (\bar{X}_t - \alpha_t Y))}{\alpha_t^2 + \beta_t^2} \mid \bar{X}_t \right] - \left(\kappa_t \bar{X}_t + \frac{2\eta_t(\alpha_t(\nabla \log p_{\text{base}}(Y) + \nabla r(Y)) - (\bar{X}_t - \alpha_t Y))}{\alpha_t^2 + \beta_t^2} \right) \right\|^2 \frac{1}{2\eta_t} dt \right]. \tag{115}
\end{aligned}$$

1080 The second term in the right-hand side of (115) (the variance term) can be simplified to
1081

$$\begin{aligned}
& \mathbb{E}_{Y \sim p_{\text{data}}, \bar{X}_t = \alpha_t Y + \beta_t \varepsilon} \left[\frac{1}{2} \int_0^1 \left\| \mathbb{E} \left[\frac{2\eta_t (\alpha_t (\nabla \log p_{\text{base}}(Y) + \nabla r(Y)) + \alpha_t Y)}{\alpha_t^2 + \beta_t^2} \mid \bar{X}_t \right] \right. \right. \\
& \quad \left. \left. - \left(\frac{2\eta_t (\alpha_t (\nabla \log p_{\text{base}}(Y) + \nabla r(Y)) + \alpha_t Y)}{\alpha_t^2 + \beta_t^2} \right) \right\|^2 \frac{1}{2\eta_t} dt \right] \\
& = \mathbb{E}_{Y \sim p_{\text{data}}, \bar{X}_t = \alpha_t Y + \beta_t \varepsilon} \left[\int_0^1 \frac{\eta_t \alpha_t^2}{\alpha_t^2 + \beta_t^2} \left\| \mathbb{E} [\nabla \log p_{\text{base}}(Y) + \nabla r(Y) + Y \mid \bar{X}_t] \right. \right. \\
& \quad \left. \left. - (\nabla \log p_{\text{base}}(Y) + \nabla r(Y) + Y) \right\|^2 dt \right] \\
& \leq \int_0^1 \frac{\eta_t \alpha_t^2}{\alpha_t^2 + \beta_t^2} dt \times \mathbb{E}_{Y \sim p_{\text{data}}} [\| \nabla \log p_{\text{base}}(Y) + \nabla r(Y) + Y \|^2].
\end{aligned} \tag{116}$$

1091
1092 And in particular, for the three subcases:
1093

(i) Föllmer process:

$$\begin{aligned}
& \frac{\eta_t \alpha_t^2}{\alpha_t^2 + \beta_t^2} = \frac{\dot{\alpha}_t \sigma_0^2}{2} \frac{\bar{\alpha}_t^2}{\bar{\alpha}_t^2 + \bar{\alpha}_t (1 - \bar{\alpha}_t) \sigma_0^2} = \frac{\dot{\alpha}_t \sigma_0^2 \bar{\alpha}_t}{2(\bar{\alpha}_t + (1 - \bar{\alpha}_t) \sigma_0^2)} = \frac{\dot{\alpha}_t \sigma_0^2 \bar{\alpha}_t}{2(\sigma_0^2 + (1 - \sigma_0^2) \bar{\alpha}_t)} \\
& \implies \int_0^1 \frac{\eta_t \alpha_t^2}{\alpha_t^2 + \beta_t^2} dt = \int_0^1 \frac{\dot{\alpha}_t \sigma_0^2 \bar{\alpha}_t}{2(\sigma_0^2 + (1 - \sigma_0^2) \bar{\alpha}_t)} dt = \int_0^1 \frac{\sigma_0^2 t}{2(\sigma_0^2 + (1 - \sigma_0^2) t)} dt \\
& = \begin{cases} \frac{\sigma_0^2}{2(1 - \sigma_0^2)} + \frac{\sigma_0^4}{2(1 - \sigma_0^2)^2} \log(\sigma_0^2) & \text{if } \sigma_0 \neq 1, \\ \frac{1}{4} & \text{if } \sigma_0 = 1. \end{cases}
\end{aligned} \tag{117}$$

(ii) DDIM/DDPM:

$$\frac{\eta_t \alpha_t^2}{\alpha_t^2 + \beta_t^2} = \frac{\frac{\dot{\alpha}_t \sigma_0^2}{2\bar{\alpha}_t} \bar{\alpha}_t}{\bar{\alpha}_t + (1 - \bar{\alpha}_t) \sigma_0^2} = \frac{\dot{\alpha}_t \sigma_0^2}{2(\bar{\alpha}_t + (1 - \bar{\alpha}_t) \sigma_0^2)} \tag{118}$$

$$\implies \int_0^1 \frac{\eta_t \alpha_t^2}{\alpha_t^2 + \beta_t^2} dt = \int_0^1 \frac{\dot{\alpha}_t \sigma_0^2}{2(\bar{\alpha}_t + (1 - \bar{\alpha}_t) \sigma_0^2)} dt = \int_0^1 \frac{\sigma_0^2}{2(t + (1 - t) \sigma_0^2)} dt = \begin{cases} -\frac{\sigma_0^2}{2(1 - \sigma_0^2)} \log(\sigma_0^2) & \text{if } \sigma_0 \neq 1, \\ \frac{1}{2} & \text{if } \sigma_0 = 1. \end{cases} \tag{119}$$

(iii) Rectified Flow:

$$\frac{\eta_t \alpha_t^2}{\alpha_t^2 + \beta_t^2} = \frac{\frac{(1 - \bar{\alpha}_t) \dot{\alpha}_t \sigma_0^2}{\bar{\alpha}_t} \bar{\alpha}_t^2}{\bar{\alpha}_t^2 + \beta_t^2} = \frac{(1 - \bar{\alpha}_t) \dot{\alpha}_t \bar{\alpha}_t \sigma_0^2}{\bar{\alpha}_t^2 + \beta_t^2} \tag{120}$$

$$\implies \int_0^1 \frac{\eta_t \alpha_t^2}{\alpha_t^2 + \beta_t^2} dt = \int_0^1 \frac{(1 - \bar{\alpha}_t) \dot{\alpha}_t \bar{\alpha}_t \sigma_0^2}{\bar{\alpha}_t^2 + \beta_t^2} dt = \int_0^1 \frac{(1 - t) t \sigma_0^2}{t^2 + (1 - t)^2} dt = \frac{\sigma_0^2 (\pi - 2)}{4} \tag{121}$$

C PROOFS FOR THE THERMODYNAMICS-BASED METHODS

C.1 PROOF OF PROP. 4.1: CMCD FOR EXPONENTIAL TILTING

1121 We apply Prop. A.1 with $T = 1$, and the choices $\Gamma_0 = \mathcal{N}(0, \beta_0^2 \mathbf{I})$, $\Gamma_1 = p^{\text{base}}$, $\mu \propto$
1122 $\mathcal{N}(0, \beta_0^2 \mathbf{I}) \exp(r_0)$, $\nu \propto p^{\text{base}} \exp(r_1)$, and
1123

$$\gamma_t^+(x) = b_\sigma(x, t) = \kappa_t x + \left(\frac{\sigma(t)^2}{2} + \eta_t \right) \mathfrak{s}_t(x), \tag{122}$$

$$\gamma_t^-(x) = b_\sigma(x, t) - \sigma(t)^2 \mathfrak{s}_t(x) = \kappa_t x + \left(-\frac{\sigma(t)^2}{2} + \eta_t \right) \mathfrak{s}_t(x), \tag{123}$$

$$\begin{aligned}
a_t(x) &= \kappa_t x + \left(\frac{\sigma(t)^2}{2} + \eta_t \right) (\mathfrak{s}_t(x) + \nabla r_t(x)) + v(x, t) \\
&= \gamma_t^+(x) + \left(\frac{\sigma(t)^2}{2} + \eta_t \right) \nabla r_t(x) + v(x, t),
\end{aligned} \tag{124}$$

$$\begin{aligned}
b_t(x) &= a_t(x) - \sigma(t)^2 (\mathfrak{s}_t(x) + \nabla r_t(x)) \\
&= \kappa_t x + \left(-\frac{\sigma(t)^2}{2} + \eta_t \right) (\mathfrak{s}_t(x) + \nabla r_t(x)) + v(x, t) \\
&= \gamma_t^-(x) + \left(-\frac{\sigma(t)^2}{2} + \eta_t \right) \nabla r_t(x) + v(x, t),
\end{aligned} \tag{125}$$

Observe that when Y solves $d\overrightarrow{Y}_t = a_t(Y_t) dt + \sigma(t) d\overrightarrow{W}_t$, it also solves $d\overleftarrow{Y}_t = a_t(Y_t) dt + \sigma(t) d\overleftarrow{W}_t$ because σ does not depend on the position. When Y solves these SDEs, Prop. A.1 implies that

$$\begin{aligned}
\log \frac{d\mathbb{P}^{\mu,a}}{d\mathbb{P}^{\nu,b}}(Y) &= r_0(Y_0) - \log \mathbb{E}_{\mathcal{N}(0, \beta_0^2 I)}[\exp(r_0)] - (r_1(Y_1) - \log \mathbb{E}_{p_{\text{base}}}[\exp(r_1)]) \\
&\quad + \int_0^1 \sigma(t)^{-2} \left\langle \left(\frac{\sigma(t)^2}{2} + \eta_t \right) \nabla r_t(Y_t) + v(Y_t, t), \right. \\
&\quad \quad \quad \left. a_t(Y_t) dt + \sigma(t) \overrightarrow{dW_t} - \frac{1}{2} (a_t + \gamma_t^+)(Y_t) dt \right\rangle \\
&\quad - \int_0^1 \sigma(t)^{-2} \left\langle \left(-\frac{\sigma(t)^2}{2} + \eta_t \right) \nabla r_t(Y_t) + v(Y_t, t), \right. \\
&\quad \quad \quad \left. a_t(Y_t) dt + \sigma(t) \overleftarrow{dW_t} - \frac{1}{2} (b_t + \gamma_t^-)(Y_t) dt \right\rangle \\
&= r_0(Y_0) - \log \mathbb{E}_{\mathcal{N}(0, \beta_0^2 I)}[\exp(r_0)] - (r_1(Y_1) - \log \mathbb{E}_{p_{\text{base}}}[\exp(r_1)]) \quad (126) \\
&\quad + \int_0^1 \sigma(t)^{-2} \left\langle \left(\frac{\sigma(t)^2}{2} + \eta_t \right) \nabla r_t(Y_t) + v(Y_t, t), \right. \\
&\quad \quad \quad \left. \frac{1}{2} \left(\left(\frac{\sigma(t)^2}{2} + \eta_t \right) \nabla r_t(Y_t) + v(Y_t, t) \right) dt + \sigma(t) \overrightarrow{dW_t} \right\rangle \\
&\quad - \int_0^1 \sigma(t)^{-2} \left\langle \left(-\frac{\sigma(t)^2}{2} + \eta_t \right) \nabla r_t(Y_t) + v(Y_t, t), \right. \\
&\quad \quad \quad \left. \frac{1}{2} \left(\left(-\frac{\sigma(t)^2}{2} + \eta_t \right) \nabla r_t(Y_t) + v(Y_t, t) \right) dt + \sigma(t) \overleftarrow{dW_t} \right. \\
&\quad \quad \quad \left. + \sigma(t)^2 (\mathfrak{s}_t(Y_t) + \nabla r_t(Y_t)) dt \right\rangle,
\end{aligned}$$

where the last equality holds because

$$\frac{1}{2}(a_t(x) - \gamma_t^+(x)) = \frac{1}{2}\left(\left(\frac{\sigma(t)^2}{2} + \eta_t\right)\nabla r_t(x) + v(x, t)\right) \quad (127)$$

and

$$\begin{aligned} a_t(x) - \frac{1}{2}(b_t(x) - \gamma_t^-(x)) &= \frac{1}{2}(b_t(x) - \gamma_t^-(x)) + \sigma(t)^2(\mathfrak{s}_t(x) + \nabla r_t(x)) \\ &= \frac{1}{2}\left(\left(-\frac{\sigma(t)^2}{2} + \eta_t\right)\nabla r_t(x) + v(x, t)\right) + \sigma(t)^2(\mathfrak{s}_t(x) + \nabla r_t(x)). \end{aligned} \quad (128)$$

The right-hand side of (126) can be further simplified into

$$\begin{aligned}
\log \frac{d\overrightarrow{\mathbb{P}}^{\mu,a}}{d\overleftarrow{\mathbb{P}}^{\nu,b}}(Y) &= r_0(Y_0) - \log \mathbb{E}_{\mathcal{N}(0, \beta_1^2 I)}[\exp(r_0)] - (r_1(Y_1) - \log \mathbb{E}_{p_{\text{base}}}[\exp(r_1)]) \\
&\quad + \int_0^1 \left[-\langle v(Y_t, t), \mathfrak{s}_t(Y_t) \rangle + \left(\frac{\sigma(t)^2}{2} - \eta_t\right) \langle \nabla r_t(Y_t), \mathfrak{s}_t(Y_t) \rangle + \frac{\sigma(t)^2}{2} \|\nabla r_t(Y_t)\|^2 \right] dt \\
&\quad + \int_0^1 \left[\sigma(t)^{-1} (\langle v(Y_t, t) + \eta_t \nabla r_t(Y_t), \overrightarrow{dW_t} \rangle - \langle v(Y_t, t) + \eta_t \nabla r_t(Y_t), \overleftarrow{dW_t} \rangle) \right. \\
&\quad \left. + \frac{\sigma(t)}{2} (\langle \nabla r_t(Y_t), \overrightarrow{dW_t} \rangle + \langle \nabla r_t(Y_t), \overleftarrow{dW_t} \rangle) \right]. \tag{129}
\end{aligned}$$

To obtain this simplification, it is convenient to define $w(Y_t, t) := v(Y_t, t) + \eta_t \nabla r_t(Y_t)$ and $w^+(x, t) := w(x, t) + \frac{\sigma(t)^2}{2} \nabla r_t(Y_t)$, $w^-(x, t) := w(x, t) - \frac{\sigma(t)^2}{2} \nabla r_t(Y_t)$, which means that we can rewrite the right-hand side of (126) as

$$\begin{aligned} & \int_0^1 \sigma(t)^{-2} \langle w^+, \frac{1}{2}w^+ dt + \sigma(t) \overrightarrow{dW_t} \rangle \\ & - \int_0^1 \sigma(t)^{-2} \langle w^-, \frac{1}{2}w^- dt + \sigma(t) \overleftarrow{dW_t} + \sigma(t)^2 (\mathfrak{s}_t(Y_t) + \nabla r_t(Y_t)) dt \rangle. \end{aligned} \quad (130)$$

Equation (129) then follows from manipulating this expression.

To conclude the proof, we plug equation (129) into the definition of the KL and log-variance CMCD losses:

$$\begin{aligned}
& \mathcal{L}_{\text{KL-CMCD}}(v) = \mathbb{E}_{Y^v \sim \overrightarrow{\mathbb{P}}_{\mu, a^v}} \left[\log \frac{d\overrightarrow{\mathbb{P}}^{\mu, a^v}}{d\overrightarrow{\mathbb{P}}^{\nu, b^v}}(Y^v) \right] \\
& = \mathbb{E}_{Y^v \sim \overrightarrow{\mathbb{P}}_{\mu, a^v}} \left[\int_0^1 \left(-\langle v(Y_t^v, t), \mathfrak{s}_t(Y_t^v) \rangle + \left(\frac{\sigma(t)^2}{2} - \eta_t \right) \langle \nabla r_t(Y_t^v), \mathfrak{s}_t(Y_t^v) \rangle + \frac{\sigma(t)^2}{2} \|\nabla r_t(Y_t^v)\|^2 \right) dt \right. \\
& \quad \left. - \int_0^1 \sigma(t)^{-1} \langle v(Y_t^v, t) + (\eta_t - \frac{\sigma(t)^2}{2}) \nabla r_t(Y_t^v), \overleftarrow{dW_t} \rangle - r(Y_1^v) \right] + \text{const.}, \tag{131}
\end{aligned}$$

where we write $Y^v := Y$ and $a^v := a$ to make the dependency of a on v explicit. And

$$\begin{aligned}
\mathcal{L}_{\text{Var-CMCD}}(v) &= \text{Var}_{Y^v \sim \overrightarrow{\mathbb{P}}^{\mu, a^v}} \left[\log \frac{d\overrightarrow{\mathbb{P}}^{\mu, a}}{d\overrightarrow{\mathbb{P}}^{\nu, b}}(Y^v) \right] \\
&= \text{Var}_{Y^v \sim \overrightarrow{\mathbb{P}}^{\mu, a^v}} \left[r_0(Y_0^v) - \log \mathbb{E}_{\mathcal{N}(0, \beta_0^2 I)}[\exp(r_0)] - (r_1(Y_1^v) - \log \mathbb{E}_{p^{\text{base}}}[\exp(r_1)]) \right. \\
&\quad + \int_0^1 \left[-\langle v(Y_t^v, t), \mathfrak{s}_t(Y_t^v) \rangle + \left(\frac{\sigma(t)^2}{2} - \eta_t\right) \langle \nabla r_t(Y_t^v), \mathfrak{s}_t(Y_t^v) \rangle + \frac{\sigma(t)^2}{2} \|\nabla r_t(Y_t^v)\|^2 \right] dt \\
&\quad \left. + \int_0^1 \left[\sigma(t)^{-1} \left(\langle v(Y_t^v, t) + \eta_t \nabla r_t(Y_t^v), \overrightarrow{dW_t} \rangle - \langle v(Y_t^v, t) + \eta_t \nabla r_t(Y_t^v), \overleftarrow{dW_t} \rangle \right) \right. \right. \\
&\quad \left. \left. + \frac{\sigma(t)}{2} \left(\langle \nabla r_t(Y_t^v), \overrightarrow{dW_t} \rangle + \langle \nabla r_t(Y_t^v), \overleftarrow{dW_t} \rangle \right) \right] \right]. \tag{132}
\end{aligned}$$

Observe that the terms $-\log \mathbb{E}_{\mathcal{N}(0, \beta_0^2 I)}[\exp(r_0)]$ and $\log \mathbb{E}_{p_{\text{base}}}[\exp(r_1)]$ are unknown constants that can be removed, because they appear inside of the divergence. This yields the final expression of the log-variance CMCD loss.

C.2 PROOF OF PROP. 4.2: CROOKS FLUCTUATION THEOREM FOR EXPONENTIAL TILTING

We use the notation of App. C.1. We apply Prop. A.1 with the same choices as in App. C.1, but in this case we leave the expression explicitly in terms of $\overrightarrow{dY_t}$ and $\overleftarrow{dY_t}$, without assuming that Y_t solves any particular SDE. The expression reads:

$$\begin{aligned}
\log \frac{d\overrightarrow{\mathbb{P}}^{\mu,a}}{d\overleftarrow{\mathbb{P}}^{\nu,b}}(Y) = & r_0(Y_0) - \log \mathbb{E}_{\mathcal{N}(0, b_0^2 I)}[\exp(r_0)] - (r_1(Y_1) - \log \mathbb{E}_{p^{\text{base}}}[\exp(r_1)]) \\
& + \int_0^1 \sigma(t)^{-2} \left\langle \left(\frac{\sigma(t)^2}{2} + \eta_t \right) \nabla r_t(Y_t) + v(Y_t, t), \right. \\
& \quad \overrightarrow{dY_t} - \left(\kappa_t Y_t + \left(\frac{\sigma(t)^2}{2} + \eta_t \right) \left(\mathfrak{s}_t(Y_t) + \frac{1}{2} \nabla r_t(Y_t) \right) + \frac{1}{2} v(Y_t, t) \right) dt \left. \right\rangle \\
& - \int_0^1 \sigma(t)^{-2} \left\langle \left(-\frac{\sigma(t)^2}{2} + \eta_t \right) \nabla r_t(Y_t) + v(Y_t, t), \right. \\
& \quad \overleftarrow{dY_t} - \left(\kappa_t Y_t + \left(-\frac{\sigma(t)^2}{2} + \eta_t \right) \left(\mathfrak{s}_t(Y_t) + \frac{1}{2} \nabla r_t(Y_t) \right) + \frac{1}{2} v(Y_t, t) \right) dt \left. \right\rangle. \tag{133}
\end{aligned}$$

This can be simplified to:

$$\begin{aligned}
\log \frac{d\mathbb{P}^{\mu,a}}{d\mathbb{P}_{\nu,b}}(Y) = & r_0(Y_0) - \log \mathbb{E}_{\mathcal{N}(0, \beta_0^2 I)}[\exp(r_0)] - (r_1(Y_1) - \log \mathbb{E}_{p^{\text{base}}}[\exp(r_1)]) \\
& + \int_0^1 \sigma(t)^{-2} \left\langle \eta_t \nabla r_t(Y_t) + v(Y_t, t), \overrightarrow{dY_t} - \overleftarrow{dY_t} \right\rangle + \frac{1}{2} \int_0^1 \left\langle \nabla r_t(Y_t), \overrightarrow{dY_t} + \overleftarrow{dY_t} \right\rangle \\
& - \int_0^1 \left(\langle \kappa_t Y_t, \nabla r_t(Y_t) \rangle + \langle v(Y_t, t), \mathfrak{s}_t(Y_t) + \nabla r_t(Y_t) \rangle \right. \\
& \quad \left. + 2\eta_t \langle \nabla r_t(Y_t), \mathfrak{s}_t(Y_t) \rangle + \eta_t \|\nabla r_t(Y_t)\|^2 \right) dt. \tag{134}
\end{aligned}$$

Applying (138) and (139), we obtain that

$$\int_0^1 \sigma(t)^{-2} \left\langle \eta_t \nabla r_t(Y_t) + v(Y_t, t), \overrightarrow{dY_t} - \overleftarrow{dY_t} \right\rangle = - \int_0^1 (\eta_t \Delta r_t(Y_t) + \nabla \cdot v(Y_t, t)) dt, \quad (135)$$

$$\frac{1}{2} \int_0^1 \left\langle \nabla r_t(Y_t), \overrightarrow{dY_t} + \overleftarrow{dY_t} \right\rangle = r_1(Y_1) - r_0(Y_0) - \int_0^1 \partial_t r_t(Y_t) dt, \quad (136)$$

and plugging these into the right-hand side of (137) concludes the proof.

$$\begin{aligned} \log \frac{d\overrightarrow{\mathbb{P}}^{\mu,a}}{d\overrightarrow{\mathbb{P}}^{\nu,b}}(Y) &= -\log \mathbb{E}_{\mathcal{N}(0, \beta_0^2 I)}[\exp(r_0)] + \log \mathbb{E}_{p^{\text{base}}}[\exp(r_1)] \\ &\quad - \int_0^1 \left(\langle \kappa_t Y_t + 2\eta_t \mathfrak{s}_t(Y_t), \nabla r_t(Y_t) \rangle + \langle v(Y_t, t), \mathfrak{s}_t(Y_t) + \nabla r_t(Y_t) \rangle + \partial_t r_t(Y_t) \right. \\ &\quad \left. + \eta_t \|\nabla r_t(Y_t)\|^2 + \eta_t \Delta r_t(Y_t) + \nabla \cdot v(Y_t, t) \right) dt. \end{aligned} \quad (137)$$

1242 **Lemma C.1.** Suppose that Y satisfies the SDE $\overrightarrow{dY_t} = a_t(Y_t) dt + \sigma(t) \overrightarrow{dW_t}$, and that $\omega_t : \mathbb{R}^d \rightarrow \mathbb{R}^d$
 1243 is differentiable and that $r_t : \mathbb{R}^d \rightarrow \mathbb{R}^d$ twice-differentiable with respect to the position variable and
 1244 differentiable with respect to the time variable. We have that

1245
$$\int_0^T \langle \omega_t(Y_t), \overleftarrow{dY_t} \rangle - \int_0^T \langle \omega_t(Y_t), \overrightarrow{dY_t} \rangle = \int_0^T \sigma(t)^2 \nabla \cdot \omega_t(Y_t) dt, \quad (138)$$

1246 and

1247
$$\begin{aligned} \int_0^T \langle \nabla r_t(Y_t), \overleftarrow{dY_t} \rangle + \int_0^T \langle \nabla r_t(Y_t), \overrightarrow{dY_t} \rangle &= 2 \int_0^T \nabla r_t(Y_t) \circ dY_t \\ 1248 &= 2(r_T(Y_T) - r_0(Y_0) - \int_0^T \partial_t r_t(Y_t) dt), \end{aligned} \quad (139)$$

1252 *Proof.* We have that

1254
$$\int_0^T \langle \omega_t(Y_t), \overleftarrow{dY_t} \rangle - \int_0^T \langle \omega_t(Y_t), \overrightarrow{dY_t} \rangle = [\omega(Y), Y]_T, \quad (140)$$

1256 where $[\omega(Y), Y]_t$ denotes the quadratic variation. Since by Itô's lemma,

1257
$$\overrightarrow{d}(\omega_t(Y_t)) = \left(\partial_t \omega_t(Y_t) + \nabla \omega_t(Y_t)^\top a_t(Y_t) + \frac{1}{2} \sigma(t)^2 \Delta \omega_t(Y_t) \right) dt + \sigma(t) \nabla \omega_t(Y_t)^\top \overrightarrow{dW_t}, \quad (141)$$

1260 we have that

1262
$$[\omega(Y), Y]_T = \int_0^T \sigma(t)^2 \nabla \cdot \omega_t(Y_t) dt \quad (142)$$

1264 The first equality in (139) holds by the fact that

1265
$$\begin{aligned} \int_0^T \langle \nabla r_t(Y_t), \overleftarrow{dY_t} \rangle + \int_0^T \langle \nabla r_t(Y_t), \overrightarrow{dY_t} \rangle \\ 1266 = \lim_{|\pi| \rightarrow 0} \sum_{k=0}^{K-1} \langle \nabla r_{t_{k+1}}(Y_{t_{k+1}}) - \nabla r_{t_k}(Y_{t_k}), Y_{k+1} - Y_k \rangle := 2 \int_0^T \nabla r_t(Y_t) \circ dY_t \end{aligned} \quad (143)$$

1268 where $\pi = (t_k)_{k=0}^K$ with $0 = t_0 < \dots < t_K = T$ and $|\pi| = \max_{k=0:K-1} |t_{k+1} - t_k|$, and the
 1269 second equality holds by Itô's lemma in the Stratonovich formulation. \square

1271 C.3 PROOF OF PROP. 4.4: NETS FOR EXPONENTIAL TILTING

1273 We use the notation of App. C.1 and App. C.2. Define

1275
$$F_t = \log \mathbb{E}_{x \sim p_1^{\text{base}}} [\exp(r_t(x))]. \quad (144)$$

1277 Since $\log \mathbb{E}_{p^{\text{base}}} [\exp(r_1)] - \log \mathbb{E}_{\mathcal{N}(0, \beta_0^2 I)} [\exp(r_0)] = F_1 - F_0 = \int_0^1 \partial_t F_t dt$, we can rewrite equation
 1278 (137) as

1279
$$\begin{aligned} \log \frac{d\overrightarrow{\mathbb{P}}^{\mu, a}}{d\overleftarrow{\mathbb{P}}^{\nu, b}}(Y) &= - \int_0^1 \left(\langle \kappa_t Y_t + 2\eta_t \mathfrak{s}_t(Y_t), \nabla r_t(Y_t) \rangle + \langle v(Y_t, t), \mathfrak{s}_t(Y_t) + \nabla r_t(Y_t) \rangle + \partial_t r_t(Y_t) \right. \\ 1280 &\quad \left. + \eta_t \|\nabla r_t(Y_t)\|^2 + \eta_t \Delta r_t(Y_t) + \nabla \cdot v(Y_t, t) - \partial_t F_t \right) dt. \end{aligned} \quad (145)$$

1284 Thus, for an arbitrary process Y , using Jensen's inequality

1286
$$\begin{aligned} \mathbb{E} \left[\log \frac{d\overrightarrow{\mathbb{P}}^{\mu, a}}{d\overleftarrow{\mathbb{P}}^{\nu, b}}(Y)^2 \right] &= \mathbb{E} \left[\left(\int_0^1 \left(\langle \kappa_t Y_t + 2\eta_t \mathfrak{s}_t(Y_t), \nabla r_t(Y_t) \rangle + \langle v(Y_t, t), \mathfrak{s}_t(Y_t) + \nabla r_t(Y_t) \rangle \right. \right. \right. \\ 1287 &\quad \left. \left. \left. + \partial_t r_t(Y_t) + \eta_t \|\nabla r_t(Y_t)\|^2 + \eta_t \Delta r_t(Y_t) + \nabla \cdot v(Y_t, t) - \partial_t F_t \right) dt \right)^2 \right] \\ 1288 &\leq \mathbb{E} \left[\int_0^1 \left(\langle \kappa_t Y_t + 2\eta_t \mathfrak{s}_t(Y_t), \nabla r_t(Y_t) \rangle + \langle v(Y_t, t), \mathfrak{s}_t(Y_t) + \nabla r_t(Y_t) \rangle \right. \right. \\ 1289 &\quad \left. \left. + \partial_t r_t(Y_t) + \eta_t \|\nabla r_t(Y_t)\|^2 + \eta_t \Delta r_t(Y_t) + \nabla \cdot v(Y_t, t) - \partial_t F_t \right)^2 dt \right], \end{aligned} \quad (146)$$

1294 and the right-hand side is the PINN (physics informed neural network) NETS loss for exponential
 1295 tilting.

We provide an alternative derivation. The Fokker-Planck equation corresponding to the process X^v defined in (13) is:

$$\partial_t \rho_t + \nabla \cdot ((b_\sigma + v) \rho_t) = \frac{\sigma^2}{2} \nabla \cdot \nabla \rho_t \quad (147)$$

We rewrite b_σ^r as follows:

$$\begin{aligned} b_\sigma^r(x, t) &= \kappa_t x + \left(\frac{\sigma(t)^2}{2} + \eta_t\right) (\mathbf{s}_t(x) + \nabla r_t(x)) \\ &= \kappa_t x + \eta_t (\mathbf{s}_t(x) + \nabla r_t(x)) + \frac{\sigma(t)^2}{2} (\mathbf{s}_t(x) + \nabla r_t(x)) \\ &=: \tilde{b}^r(x, t) + \frac{\sigma(t)^2}{2} (\mathbf{s}_t(x) + \nabla r_t(x)). \end{aligned} \quad (148)$$

Thus, equation (147) becomes

$$\partial_t \rho_t + \nabla \cdot ((\tilde{b}^r + v) \rho_t) = \frac{\sigma^2}{2} \nabla \cdot ((-\mathbf{s}_t - \nabla r_t) \rho_t + \nabla \rho_t) \quad (149)$$

Now we want $\rho_t^* \propto \rho_t^{\text{base}} \exp(r_t)$ to fulfill this PDE. We write explicitly

$$\rho_t^*(x) = \frac{\rho_t^{\text{base}}(x) \exp(r_t(x))}{F_t}, \quad \hat{F}_t = \mathbb{E}_{y \sim \rho_t^{\text{base}}} [\exp(r_t(y))]. \quad (150)$$

Since $\nabla \cdot ((-\mathbf{s}_t - \nabla r_t) \rho_t^* + \nabla \rho_t^*) = 0$ by construction, we must enforce

$$\begin{aligned} 0 &= \partial_t \rho_t^* + \nabla \cdot ((\tilde{b}^r + v) \rho_t^*) \\ &= \partial_t \left(\frac{\rho_t^{\text{base}}(x) \exp(r_t(x))}{F_t} \right) + \nabla \cdot (\tilde{b}^r + v) \rho_t^* + \langle \tilde{b}^r + v, \nabla \log \rho_t^* \rangle \rho_t^* \\ &= \partial_t \left(\log \rho_t^{\text{base}} + r_t - \log \hat{F}_t \right) \rho_t^* + \nabla \cdot (\tilde{b}^r + v) \rho_t^* + \langle \tilde{b}^r + v, \mathbf{s}_t + \nabla r_t \rangle \rho_t^*. \end{aligned} \quad (151)$$

Since ρ_t^{base} satisfies $0 = \partial_t \rho_t^{\text{base}} + \nabla \cdot ((\kappa_t x + \eta_t \mathbf{s}_t) \rho_t^{\text{base}}) = \partial_t \rho_t^{\text{base}} + \nabla \cdot ((\tilde{b}^r - \eta_t \nabla r_t) \rho_t^{\text{base}})$, we obtain that

$$\partial_t \log \rho_t^{\text{base}} = -\nabla \cdot (\tilde{b}^r - \eta_t \nabla r_t) - \langle \tilde{b}^r - \eta_t \nabla r_t, \mathbf{s}_t \rangle. \quad (152)$$

Plugging this into the right-hand side of (151) and using that $\log \hat{F}_t = F_t$ with F_t defined in (144) yields

$$\begin{aligned} 0 &= -\nabla \cdot (\tilde{b}^r - \eta_t \nabla r_t) - \langle \tilde{b}^r - \eta_t \nabla r_t, \mathbf{s}_t \rangle + \partial_t r_t - \partial_t F_t + \nabla \cdot (\tilde{b}^r + v) + \langle \tilde{b}^r + v, \mathbf{s}_t + \nabla r_t \rangle \\ &= \nabla \cdot (v + \eta_t \nabla r_t) + \partial_t r_t - \partial_t F_t + \langle v, \mathbf{s}_t + \nabla r_t \rangle \\ &\quad - \langle \kappa_t x + \eta_t \mathbf{s}_t, \mathbf{s}_t \rangle + \langle \kappa_t x + \eta_t (\mathbf{s}_t + \nabla r_t), \mathbf{s}_t + \nabla r_t \rangle \\ &= \nabla \cdot (v + \eta_t \nabla r_t) + \partial_t r_t - \partial_t F_t + \langle v, \mathbf{s}_t + \nabla r_t \rangle \\ &\quad - \langle \kappa_t x + \eta_t \mathbf{s}_t, \mathbf{s}_t \rangle + \langle \kappa_t x + \eta_t (\mathbf{s}_t + \nabla r_t), \mathbf{s}_t + \nabla r_t \rangle \\ &= \nabla \cdot (v + \eta_t \nabla r_t) + \partial_t r_t - \partial_t F_t + \langle v, \mathbf{s}_t + \nabla r_t \rangle + \langle \kappa_t x + 2\eta_t \mathbf{s}_t, \nabla r_t \rangle + \eta_t \|\nabla r_t\|^2 \end{aligned} \quad (153)$$

Thus, for ρ_t^* to satisfy the FPE (147), which means that is the law of the marginal X_t^v , we need v to satisfy (153). Observe that the terms in the right-hand side of (153) match one to one the terms in the right-hand side of (146). Hence, the NETS loss can be interpreted as a PINN loss on the residual of (153).

D ADDITIONAL EXPERIMENTS

D.1 DERIVATION OF THE GENERATIVE SDE WITH DIFFERENT INITIAL VARIANCE σ_0^2

Consider Rectified Flow with $\sigma(t) = \gamma \eta_t$ for some $\gamma > 0$, and with two different choices for the initial variance: σ_0^2 and $\tilde{\sigma}_0^2$. We have that

$$b(x, t) = \kappa_t x + (1 + \gamma) \eta_t \mathbf{s}(x, t) = \frac{\dot{\alpha}_t}{\bar{\alpha}_t} x + \frac{(1 + \gamma)(1 - \bar{\alpha}_t)\dot{\alpha}_t \sigma_0^2}{\bar{\alpha}_t} \mathbf{s}(x, t), \quad (154)$$

$$\tilde{b}(x, t) = \kappa_t x + (1 + \gamma) \tilde{\eta}_t \tilde{\mathbf{s}}(x, t) = \frac{\dot{\alpha}_t}{\bar{\alpha}_t} x + \frac{(1 + \gamma)(1 - \bar{\alpha}_t)\dot{\alpha}_t \tilde{\sigma}_0^2}{\bar{\alpha}_t} \tilde{\mathbf{s}}(x, t), \quad (155)$$

1350 where \mathfrak{s} and $\tilde{\mathfrak{s}}$ are the scores corresponding to σ_0^2 and $\tilde{\sigma}_0^2$, respectively. Next, we apply Corollary A.5
 1351 to relate \mathfrak{s} and $\tilde{\mathfrak{s}}$. Defining
 1352

$$1353 \quad t(r) = \bar{\alpha}^{-1}\left(\frac{\sigma_0 \bar{\alpha}_r}{\tilde{\sigma}_0(1-\bar{\alpha}_r)+\sigma_0 \bar{\alpha}_r}\right), \quad s_r = \frac{\tilde{\sigma}_0(1-\bar{\alpha}_r)+\sigma_0 \bar{\alpha}_r}{\sigma_0}, \quad (156)$$

1354 we have that
 1355

$$1356 \quad \frac{\bar{\alpha}_r}{(1-\bar{\alpha}_r)\tilde{\sigma}_0} = \frac{\bar{\alpha}_{t(r)}}{(1-\bar{\alpha}_{t(r)})\sigma_0}, \quad \tilde{\mathfrak{s}}(x, r) = \frac{1}{s_r} \mathfrak{s}(x/s_r, t(r)), \quad (157)$$

1358 and

$$1359 \quad \tilde{b}(x, r) = \frac{\dot{\alpha}_r}{\bar{\alpha}_r} x + \frac{(1+\gamma)(1-\bar{\alpha}_r)\dot{\alpha}_r \tilde{\sigma}_0^2}{\bar{\alpha}_r s_r} \mathfrak{s}\left(\frac{x}{s_r}, t(r)\right) = \frac{\dot{\alpha}_r}{\bar{\alpha}_r} x + \frac{(1+\gamma)(1-\bar{\alpha}_r)\dot{\alpha}_r \tilde{\sigma}_0^2}{\bar{\alpha}_r s_r} \left(v\left(\frac{x}{s_r}, t(r)\right) - \frac{\dot{\alpha}_{t(r)}}{\bar{\alpha}_{t(r)}} \frac{x}{s_r}\right) \quad (158)$$

$$1362 \quad = \frac{\dot{\alpha}_r}{\bar{\alpha}_r} x + \frac{\dot{\alpha}_r \tilde{\sigma}_0}{s_r} \frac{1+\gamma}{\bar{\alpha}_{t(r)} \sigma_0} \left(v\left(\frac{x}{s_r}, t(r)\right) - \frac{\dot{\alpha}_{t(r)}}{\bar{\alpha}_{t(r)}} \frac{x}{s_r}\right) = \frac{\dot{\alpha}_r}{\bar{\alpha}_r} x + \frac{\dot{\alpha}_r}{\bar{\alpha}_{t(r)}} \frac{(1+\gamma)\tilde{\sigma}_0}{\tilde{\sigma}_0(1-\bar{\alpha}_r)+\sigma_0 \bar{\alpha}_r} \left(v\left(\frac{x}{s_r}, t(r)\right) - \frac{\dot{\alpha}_{t(r)}}{\bar{\alpha}_{t(r)}} \frac{x}{s_r}\right) \quad (159)$$

$$1365 \quad = \frac{\dot{\alpha}_r}{\bar{\alpha}_{t(r)}} \frac{\tilde{\sigma}_0(1+\gamma)}{\tilde{\sigma}_0(1-\bar{\alpha}_r)+\sigma_0 \bar{\alpha}_r} v\left(\frac{x}{s_r}, t(r)\right) + \dot{\alpha}_r \left(\frac{1}{\bar{\alpha}_r} - \frac{1+\gamma}{\bar{\alpha}_{t(r)} (\tilde{\sigma}_0(1-\bar{\alpha}_r)+\sigma_0 \bar{\alpha}_r)^2}\right) x \quad (160)$$

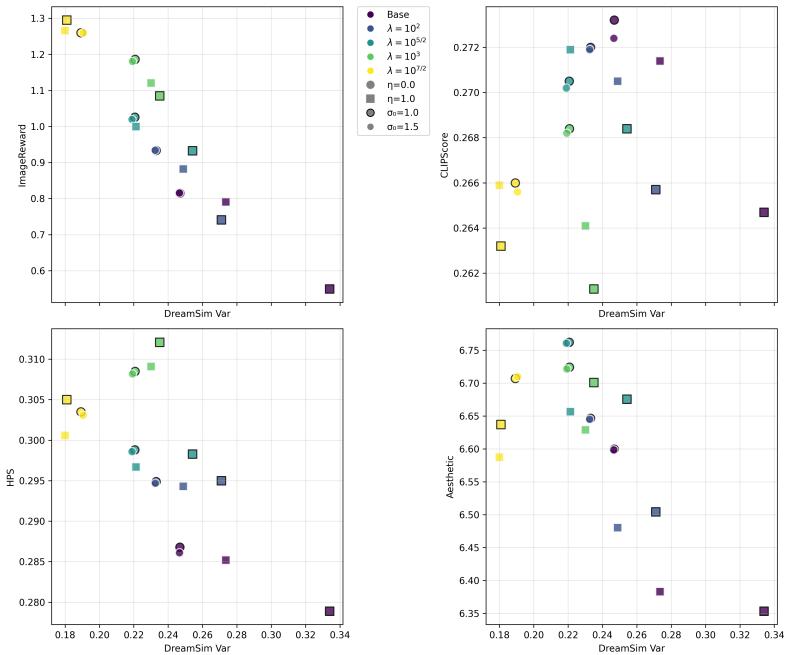
$$1367 \quad = \frac{\dot{\alpha}_r}{\bar{\alpha}_{t(r)}} \frac{\tilde{\sigma}_0(1+\gamma)}{\tilde{\sigma}_0(1-\bar{\alpha}_r)+\sigma_0 \bar{\alpha}_r} v\left(\frac{x}{s_r}, t(r)\right) + \frac{\dot{\alpha}_r}{\bar{\alpha}_r} \left(1 - \frac{\tilde{\sigma}_0(1+\gamma)}{\tilde{\sigma}_0(1-\bar{\alpha}_r)+\sigma_0 \bar{\alpha}_r}\right) x \quad (161)$$

1368 where the second equality holds because $\mathfrak{s}(x, t) = \frac{\bar{\alpha}_t}{(1-\bar{\alpha}_t)\dot{\alpha}_t \sigma_0^2} (v(x, t) - \frac{\dot{\alpha}_t}{\bar{\alpha}_t} x)$, the third equality
 1369 holds because of the first equality in (157), the fourth and fifth equalities hold because of the second
 1370 equality in (156), and the sixth equality holds because $\frac{\dot{\alpha}_{t(r)}}{\bar{\alpha}_r} = \frac{\sigma_0}{\tilde{\sigma}_0(1-\bar{\alpha}_r)+\sigma_0 \bar{\alpha}_r}$, and the seventh
 1371 equality holds by simplifying. And if we want to run inference with a different noise schedule $\sigma(t)$,
 1372 we have that
 1373

$$1374 \quad \tilde{b}_\sigma(x, r) = \tilde{b}(x, r) + \left(\frac{\sigma(t)^2}{2} + \tilde{\eta}_t\right) \tilde{\mathfrak{s}}(x, t). \quad (162)$$

1376 D.2 ADDITIONAL PLOTS

1378 Fig. 3 is the analog of Fig. 2 with training $\sigma_0^2 = 1.5$.



1402 Figure 3: Quality metrics for the base Stable Diffusion 3 model and models fine-tuned at $\sigma_0^2 = 1.5$
 1403 and $\lambda \in \{10^2, 10^{5/2}, 10^3\}$, with inference at $\eta \in \{0, 1\}$ and $\sigma_0 = \{1, 1.5\}$.