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ABSTRACT

We study the problem of training diffusion and flow generative models to sam-
ple from target distributions defined by an exponential tilting of the base den-
sity. This tasks subsumes sampling from unnormalized densities and reward fine-
tuning a pre-trained model, and can be approached from a stochastic optimal con-
trol (SOC) perspective and from a thermodynamics perspective. The SOC for-
mulation has been tackled using adjoint-based methods (Adjoint Matching and
Sampling), and score matching methods, while the thermodynamics formulation
has given rise to algorithms such as CMCD and NETS. Our contributions include
bounding the lean adjoint ODE underlying Adjoint Matching and Sampling, de-
riving bias—variance decompositions that allow a principled comparison between
adjoint-based and score-matching methods, adapting thermodynamic formula-
tions to the exponential tilting setting, and text-to-image fine-tuning experiments.

1 INTRODUCTION

Recent advances in generative modeling have demonstrated the effectiveness of diffusion and flow
matching models for learning complex data distributions (Song et al., 2021} Ho et al., 2020} Lipman
et al.| [2022; |Albergo et al.l [2023]; [Liu et al.l 2023). In many applications, however, it is desirable
to tailor the generative process to favor certain qualities—either by sampling from an unnormalized
target distribution or by fine-tuning a pre-trained model with a reward function (Uehara et al., 2024;
Domingo-Enrich et al., [2025} |[Zhang & Chenl 2022} |[Holdijk et al., [2023)). A natural way to address
these challenges is via exponential tilting, wherein a base density is modified to a target one by
reweighting with an exponential factor. This formulation not only unifies reward fine-tuning and
sampling from unnormalized distributions but also naturally lends itself to analysis using tools from
stochastic optimal control (SOC), partial differential equation (PDE) analysis, stochastic processes
and thermodynamics.

Motivated by the broad applications, such as text-to-image generation (Domingo-Enrich et al.,[2025]))
and protein design (Wang et al.,|2025), a growing body of work has explored methods for fine-tuning
diffusion and flow models. Although the underlying problem structure aligns well with SOC, par-
ticularly when casting as controlling an SDE with a reward function, the key challenge is the bias
introduced by lifting the base process with an additional control. [Uehara et al.| (2024) proposed a
two-step strategy with an additional control to draw samples from the biased initial distribution. Ad-
joint matching (Domingo-Enrich et al., [2025)) systematically analyzed this problem and introduced
memoryless noise schedules to solve this issue. More recently, reinforcement learning (RL)-based
approaches have also been introduced, e.g. GRPO (Liu et al.|[2025b)).

In a parallel literature, training diffusion and flow models to sample from unnormalized densities has
also been largely studied. Early work (Zhang & Chenl [2022; |Vargas et al., 2023} Berner et al., 2022)
can be viewed as solving an SOC problem where the reward function is related to the unnormal-
ized density. Another branch of work (Phillips et al.|[2024; |Akhound-Sadegh et al.,|2024)) leveraged
the target score identity, which relates the score to the unnormalized target density and learns an
SDE to draw samples. The idea of adjoint matching has also been applied to this problem, together
with reciprocal projection for efficient off-policy training (Havens et al., |2025; [Liu et al.l 2025a).
More recently, |Vargas et al.|(2024) and |Albergo & Vanden-Eijnden|(2025)) introduced a thermody-
namic formulation of this problem, extending the classical annealed importance sampling (AIS) and
Jarzynski equality perspective using path-space variational inference and PDE formulations.



Under review as a conference paper at ICLR 2026

In this paper, we provide a unifying framework that formulates training diffusion and flow models
to sample from an exponentially tilted target distribution, which covers reward-based fine-tuning of
a pretrained model, as well as sampling from unnormalized densities. Our main contributions are
as follows: (i) we bound the norm of the lean adjoint ODE for Adjoint Matching and Sampling
(AM/AS), supporting the empirical performance of the algorithms; (ii) we derive bias-variance de-
compositions for adjoint-based and score matching algorithms to compare the algorithms on equal
footing, under which AM/AS and Novel Score Matching (NSM, Phillips et al.| (2024))) perform
favorably; (iii) we adapt the thermodynamic framework of |Vargas et al| (2024) and |Albergo &
Vanden-Eijnden| (2025) to the exponential tilting problem which yields analogs of the Controlled
Monte Carlo Diffusions (CMCD) and Non-Equilibrium Transport Sampler (NETS) loss functions,
as well as novel variants of the celebrated Crooks fluctuation theorem and Jarzynski equality. Fi-
nally, we perform reward-based fine-tuning experiments on Stable Diffusion 1.5 and 3 using Adjoint
Matching, refining the techniques of Domingo-Enrich et al.| (2025).

2 BACKGROUND
2.1 FLOW MATCHING, DDIM AND FOLLMER PROCESSES

Flow Matching or Stochastic Interpolants ~ Given a real-valued differentiable function (a):e0,1]
such that ap = 0, a; = 1, and a real-valued differentiable function (3;).c[0,1] such that 5; = 0, the
reference flow or stochastic interpolant X is defined as

Xt = Y + Bee, (1
where € ~ pg = N (0,1), Y ~ pgata. If we let
Kt = %’ = Bt(%ﬂt - Bt)» (2)

the Flow Matching reference SDE, whose solution has the same time marginals as the reference flow
up to a time flip, is

dX; = —k1_ X;dt + /201 dB;, X0 ~ Ddata- 3)

That is, for all ¢ € [0, 1], X  and X;_, have the same distribution. And the optimal generative SDE
reads

dXt = (HtXt —|— (U 5)2 + nt)ﬁt(Xt)) dt + O'(t) dBt, X() ~ N(O, ﬂg:[), (4)

where s, is the score function of the reference process: s:(x) = V log p;(), and the noise schedule
o is arbitrary. For any o, the marginals X, also have the same distribution as the reference flow
marginals X;. Setting o(t) = /21, yields the memoryless process, which is the time reversal of the

process in (3):

dXt = (HtXt + 277t5t(Xt)) dt + \/277,5 ch XO ~ ./\/’(07 681) (5)
Remark 2.1. Although the drift terms in and () are written in terms of the score to facilitate
the analysis, in Flow Matching the vector field that is learned is vi(xz) = k: Xy + m5¢(x), and in

DDIM it is often the denoiser €,(x) = —[B;5.(x). These vector fields encode the same information,
and the drifts can be written in terms of any of them.

Subcases of Flow Matching The following processes are particular instances of flow matching:

(i) Follmer process: Given an increasing function &; such that &g = 0O and &; = 1, and a
constant 08 > 0, the interpolant X and the coefficients oy, f3;, k¢ and 7, read

Xe=aY +a (1l —ap)ooe = ar=a, B =+/au(l—ar)oo,

; ~ 3 (1-2a4)ar 2 Qg &yop (6)
oy — (¢ = ——F—=0, — Kt = =* = —.
t ty Bt 2\/@ 0 t &g’ nt 2

(ii)) DDIM/DDPM: Given an increasing function &, such that &y = 0 and @y = 1, and a constant
0(2) > 0, the interpolants and coefficients oy, [3;, k¢ and 7, read

Xt:\/O_étY+\/1*O_lt0'0€ —— :\/O_Zt, Bt :\/1*0_&0’0,
. . . 40 (7)
ay = 20/%“) Bt = 9 /7(1)”_&1 00, = Kt = %7 e = 215%0 .
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(iii) Rectified Flow (OT Flow Matching): Given an increasing function &; such that &g = 0 and
a1 = 1, and a constant U% > 0, the interpolant X and the coefficients oy, 3;, ¢ and 7; read

Xt = @tY + (1 — 0700’()5 = oy = Oy, Bt = (]. — dt)Uo.
Y (1-&0)s02 ®)

Q) m = s

Ql

Gy =y, Pr=-—q, = K=

Q

2.2 EXPONENTIAL TILTING AND ITS CONTROL AND THERMODYNAMIC FORMULATIONS

The exponential tilting problem Given a Flow Matching model that generates a distribution pP2s

over R? and a function r : R? — R, consider the task of modifying the model such that the generated
distribution is the following tilted distribution:

p* () oc pP**(x) exp(r()). ©)

Two main settings are covered by the exponential tilting framework:

(i) Reward fine-tuning: p®®* is the distribution generated by a pre-trained diffusion or flow

matching model, and r is a reward model that takes high values for high quality samples.
(ii) Sampling from unnormalized distributions: The goal is to sample from the unnormalized
distribution proportional to p*(x) = exp(—E(x)), where E is the energy function. p®®*° is a

Gaussian (0, 071), and the reward r is chosen to be r(z) = —E(x) + %
1

While the Follmer process is typically used for sampling (e.g. Havens et al.| (2025)), and DDIM and
OT Flow Matching are commonly used for generative modeling, the choice of process is independent
of the application.

The stochastic optimal control formulation |Domingo-Enrich et al| (2025) proves that the ex-
ponential tilting problem can be reformulated as the following stochastic optimal control (SOC)
problem

min B[4 [ [u(X§,1)]? df + (X)) (10)
s.t. dXP = (be (X[ 1) + o()u(XP, t)) dt + o(t)d By, XY ~ po = N(0,521), (11)

_ o(t)?
where by (z,t) = kix + (T3 4+ m) s (), (12)

as long as the uncontrolled process X = X0 satisfies the memoryless property, meaning that X
and X are statistically independent. (Domingo-Enrich et al.|[2025] Prop. 1) shows that a generative
process is memoryless if and only if the noise schedule is chosen as o(t)? = 2n; + x(t), with

x : [0,1] = R such that for all ¢ € (0, 1], limy o+ cpr exp (— f; ’;SZ) ds) = 0. In particular, they

refer to o (t) = /2n; as the memoryless noise schedule, as it is the only one such that the resulting
fine-tuned model can be used to perform inference with an arbitrary noise schedule (Domingo-
Enrich et al., 2025, Thm. 1).

The thermodynamics formulation Methods like CMCD (Vargas et al., 2024) and NETS (Al-
bergo & Vanden-Eijnden, 2025) were developed in a setting where one has access to a time-
dependent energy function (Uy)co,1), instead of a flow matching vector field that generates ppase
and a time-dependent reward function (7¢);c[o,1]. That is, their goal is to learn a vector field
that yields a process with marginals p}(z) x exp(—U(z)). This is different but related to the
task of learning a vector field that yields a process with marginals p}(x) o pPas(z)exp(r¢(z)),
which solves the exponential tilting problem (9) if (7¢);c[0,1] is chosen such that 7; = 7 and
P o< N(0,33) exp(ro) is easy to sample from. More specifically, we consider processes X of
the form

Xy ~ pf o< N(0, 5312 exp(ro),
by (2, 8) = kg (25 ) (54(2) + Ve ().
(13)

'In (T2), s is the score function corresponding to pP2%¢. In practice, b, is computed using the learned FM
vector field or denoiser (Rem. 2.1).

dX}P = (b5(XP,t) +v(XP, 1) dt + o(t)d By, {
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and our goal is to learn a v* such that the marginal distribution of X  is pf(z) o
pP®¢(x) exp(r¢(x)). Unlike in the SOC formulation, in the thermodynamics formulation the noise
schedule o (t) can be picked arbitrarily.

3  STOCHASTIC OPTIMAL CONTROL ALGORITHMS AND ANALYSIS

3.1 ADJOINT-BASED METHODS

Adjoint Matching Adjoint Matching (AM) is a SOC deep learning loss introduced by Domingo-
Enrich et al.| (2025). For the exponential tilting problem with scalar o, it takes the following form:

L Adj—Mateh (u; X™) 1= %fol Hu(X,fL, t) + O'(t)d(t;Xﬂ)||2 dt, @ = stopgrad(u), (14)

where a(t; X%) = —V,b, (XE t) Ta(t; X9, (15)

a(l; X%) = —V,r(X%). (16)

Domingo-Enrich et al| (2023) refer to the ODE (I3)-(16)) as the lean adjoint ODE. They show that

if w is a critical point of the expected 10ss Laqj—match(t) := E[LAdj—Maten(u; X™)] that is, if
%L:Adj_MatCh(u) = 0, then w is the optimal control u*.

d
dt

Adjoint Sampling Adjoint Sampling was introduced by [Havens et al.| (2025)) as a procedure based
on Adjoint Matching to sample from unnormalized densities, with improved efficiency. When p"2s¢
is a Gaussian V' (0, o71), we have that X; ~ N(0, (a?0%+/37)1), which means that b(z, t) defined in

2
(T2) is a linear function of z: b, (z,t) = (k¢ — %ﬁ%))x := x:x. Hence, the adjoint ODE (13)

needs not be solved as it admits a closed form solution: a(t; X%) = —exp (ftl Xs ds) Vor(XT).
To obtain a further speed-up, in Adjoint Sampling the loss is not evaluated at intermediate points of
the trajectory X", but rather at points X;* = o, X{* + (€ obtained by noising the final iterate X"

LAdj—Samp1 (1) := E o, x748e [% fol Hu()_(?,t)—exp (];1 Xs ds)a(t)er(Xf)H2 dt] (17)

Each rollout X can be noised multiple times, which yields an algorithm which is much more
efficient than AM, even though it is more restrictive because it only works for sampling.

The behavior of Adjoint Matching and Sampling depeds heavily on the norm of the solution to the
lean adjoint ODE. In the following proposition we bound the norm of a(t; X™) under convexity
assumptions on pP?s,

Proposition 3.1 (Norm of the lean adjoint state). Let a(t, X") be the solution of the lean adjoint
ODE (13)-(T6) with memoryless schedule o(t) = \/21,. Assume there exists o3 > 0 such that the

. b 3 . 1 . 2 b 3 1 . 2 ¢
density p°®° is U—%-strongly log-concave, i.e. —V*logp°*°(x) = U—%I. Let x¢ 1= Kt — WZ%G%
For all t € [0, 1], we have that

- 1
la(t, X[ < exp ([, xsds)[|[Var(X{)]. (18)
. . .. 1 2 .
In particular, (i) for the Follmer schedule, exp ( [, xsds) = WZW (i) for DDPM/DDIM,

1 o2\/a; . 1 &y
exp (j‘t Xs dS) = W, and (l) fOr DDPM/DDIM, exp (j; Xs dS) = m
Moreover, when p®**¢ = N (0, a21) as in Adjoint Sampling, equation (I8)) holds with equality.

The proof of [Prop. 3.1|in [App. B.1|relies on bounding the spectrum of Sym(Vb, ), which is con-
nected to the spectrum of Vlog p®®°. While strong convexity of pP2s is a strong condition in
the fine-tuning case, since spectra are local properties, as long as the trajectory X“ spends most of
the time ¢ € [0, 1] in regions where pP*° is locally strongly log-concave (basins of pP#°), the norm
la(t, X™)|| will decay accordingly. This explains the norm decay and consequent good performance
of the algorithm in realistic settings (Sec. 3)).

3.2 SCORE MATCHING METHODS

In what follows, we include a review of existing score-based generative modeling methods (see
derivations in [App. B.2). These methods are designed to learn arbitrary distributions pgat,; and all
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require having access to samples from pgat, as well as the noiseless score V 1og pyata, except for
Conditional Score Matching, which only relies on samples from pgat.. These loss functions follow
from these three identities involving the score function of the distribution of X; (see[Thm. A.1):

.. L _ Jpa@—cuy)N(@;049,8;1) Paata(y) dy
Conditional score identity: Viogpi(x) = B7 Joa N @iy, B7D) pamea () Ay (CSDH
_ Jra V1og paata ()N (#3049,8; ) Pdata (y) dy

- a [pa N(z;00y,821)paata (y) dy ’ (TSD)
_ Jra(@tV1og paata ()= (z—aey))N (z500y,8; 1) Paata(y) dy (NSI)
o (@24+87) Jra N (z;04y,82]) pdata(y) dy

Target score identity: Vlog p:(x)

Novel score identity: V log pi(x)

Observe that (NSI) follows from summing o7 /(o + 32) times (TSI) and 82 /(o + 57) times (CSI).

Target Score Matching The Target Score Matching loss was proposed by (Bortoli et al., [2024),
and is a consequence of the target score identity (TSI)), and the fact that when pqat, is the tilted
distribution (@), its score is V 10g paata = V log P3¢ + Vr(z). The loss function reads

Lrsm()=E yepun, [fo 13(Xe, )= 2 (Viogpb»e(Y)+Vr(Y))|Pw(Xs, 1) dt],  (19)
Xi=aY+Bie

where w : R? x [0,1] — (0, +00) is an arbitrary weight function.

Conditional Score Matching The well-known Conditional Score Matching loss was used by the
foundational works on diffusion models (Ho et al.,2020; Song & Ermon, |2019)), and can be derived
from the conditional score identity analogously to the Target Score Matching loss. In our
notation, the loss reads

CCSM(é) =E _ Y~paata, [fol Hé(Xtv t) - Xt;gty sz(Xtv t) dt] ) (20)
Xi=a,Y +Bie i

where w is an arbitrary weight function as in equation (91).
Novel Score Matching The novel score matching loss was introduced by [Phillips et al.| (2024),

and can be derived from the novel score identity analogously to the Target Score Matching
loss. The loss function reads:

_ s (V log pPa5e . (Ri—on _
ENSM(E):]EXYNp;f% [ Jo 18(Xy, ¢)—eliiosr Wi?fg?” Xemae¥))120p( X, 1) dt]. (21)
t=aY +0te

Iterated Denoising Energy Matching A fourth loss function which assumes access to the density
Ddata and thus can only be used for sampling is the iDEM loss (Akhound-Sadegh et all |2024),
defined as

n X¢—Bteg Xt —Bie;
A 1)ar o 1 iz V1ogpdata (TG )Pdata (L)
LipeM(B)=E  vopiua, | Jo 15(Xet) == - . P t
Xt,:OltY'i‘ﬂt& v Zizl pdata(T)
(€3)i=1~N(0,I)

12dt|. (22)

It can be viewed as a biased approximation of the quantity

Tiar v ase %
EYNPdata,Xt:atY+5t€ [ fO ||S(Xt7 t) - E [o% (V logpb (Y) + VT(Y)) | Xt] ||2 dt] ) (23)
which is equal to the bias term of the Target Score Matching loss (I9) (see (23))).

Solving the exponential tilting problem with score-based methods Naturally, the score-based
methods presented above can also be used to sample from the tilted distribution pgaga(z) o
PP (z) exp(r(x)) provided that we have samples from this distribution, which may be obtained
e.g. using SMC methods (Phillips et al., 2024). In practice, the score-based methods that make
explicit use of the score V 10g paata = V log p"**¢(z) + Vr(z) can be used even when we initially
are only able to sample from pP®€, as it is expected that if we keep on sampling using the learned
model, the generated distribution will converge to the tilted distribution. In fact, some methods
such as iDEM are introduced to work on-policy in this fashion. However, there are no theoretical
guarantees that the on-policy versions of these algorithms converge to the tilted distribution.
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3.3 ALGORITHM COMPARISON THROUGH BIAS-VARIANCE DECOMPOSITIONS

In this section, we show that all the loss functions presented in can be written as the sum
of a KL divergence term between a learned process and an optimal process (the bias term), and a
positive term that has no contribution to the expected gradient (the variance term). To compare all
algorithms on an equal footing, we write the learned fine-tuned generative SDE with memoryless
schedule o (t) = /2n, i.e. dX; = vg(Xy,t) dt + /21 dBy, with Xo ~ N(0,081). We set the
importance weights of each loss function such that it takes the form:

Llvr) =E[3 [ [lon(Xe.t) — £(t, X)||* 55 at], (24)

where the process X and the vector field ¢ depend on the specific algorithm (see and
[Prop. 3.3). Observe that this general loss can be further rewritten as

L(on) = E [ or(Xest) — El6(t, X)X 5 ae] + B[ ) [|&(t %) — Ele(, X)X 55 ]

Bias Variance

(25)

In certain instances, the bias term as the (forward or reverse) KL divergence between the path mea-
sures of the optimal and learned processes, through the Girsanov theorem. The variance term does
not contribute to the expected gradient, but it adds noise to the empirical gradient; it is desirable to
minimize its contribution.

Proposition 3.2 (Bias-variance decomposition for Adjoint Matching and Sampling). The Adjoint
Matching and Sampling loss functions in (14) and fit the general form @24) by setting X =
X% XU resp., and identifying v(z,t)//2m; = u(z,t), £(t, X) /21 = /2ma(t, X ). Assume that
the density p®® is U—lf—strongly log-concave, i.e. —V?log p*¢(x) = 0_—1%1. Then,

(i) The variance term in (23) admits the upper-bound %%Eywpbase [[IV2r(Y)|?] for three sub-
cases of Flow Matching considered in

(ii) If p*®° = N(0, 031) as in AS, the variance term is %%Tr(CovyNN(O,U%I) [Vor(Y))).

(iii) If we consider the AM loss function in which the expectation is with respect to the optimal
process (@), then the bias term is equal to the KL divergence KL(IP*||P“) between the optimal
measure and the measure of X".

As we remark in the strong convexity assumption on pP2 is strong for the fine-tuning
case, but a similar behavior is expected to hold in general. Note the AM loss function with optimal
process expectation can be implemented via a Girsanov factor, and was first studied by (Domingo-
Enrich et al 2024, App. C.4) under the name SOCM-Adjoint method. Next, we prove a similar
result for score matching methods.

Proposition 3.3 (Bias-variance decomposition for score matching methods). The Target, Condi-
tional and Novel Score Matching loss functions in (19), and fit the general form
by setting X = X (the reference flow) and weight function w(x,t) = mn, identifying §(xz,t) =

LDt and €(t, X) = 5y Xy + 22 (V108 Poase (V) + Vr(Y)), £(t X) = ki, X, — 22e5z0),

t
201 (0t (V 108 phase (V) +Vr(Y)) = (X1 —a,Y))
aZ+pB2
(i) For TSM and CSM, the variance term in (23) is infinite for the three subcases of Flow Match-
ing considered in
(ii) For NSM, the variance term admits the bounds shown in (the bounds have a removable
discontinuity at g = 1).

(iii) For TSM, CSM and NSM, the bias term is equal to the KL divergence KL(IP*||P*) between
the optimal measure and the measure of X °, the process induced by s.

and £(t, X) = ke Xy + , respectively. Moreover,

The reason that the variance term is infinite for TSM is that its integrand blows up at ¢ = 0, and
for CSM it blows up both at £ = 0 and ¢t = 1. Surprisingly, NSM manages to avoid all blow-ups.
The infinite variance terms for TSM and CSM means that these methods cannot be run with weight
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w(x,t) = n, i.e. by optimizing the expected loss function KL(IP*||P#), as the noise would be in-
finite (up to numerical aspects). Of course, that does not preclude using different weight functions,
but those other weight functions will likely not yield a loss function with a probabilistic interpreta-
tion in terms of path measures like w(x, t) = 7 does. Lastly, iDEM has a similar behavior to TSM,
by the connection that we point out in (23).

Method Follmer DDIM/DDPM Rectified Flow

02 02 0_2
AMJ/AS LE[|Var(¥)[?] FE[|Var(¥)[?] FE[|Var(¥)[?]
TSM +oo +o0 +0o0
CSM +oo +o0 +0o0

2 4 2
NSM Gy oz e (8)) ~ sl s 8) o=z

X]E[HVlogphase(Y)+VT(Y)+Y\\2] X]E[HVlogpbase(Y)+Vr(Y)+Y|\2] XJE[HVlogpb““e<Y)+Vr(Y)+YH2J

iDEM +00 400 400

Table 1: Comparison of the variance term bounds for each method.

4 THERMODYNAMICS-BASED ALGORITHMS AND ANALYSIS

In this section, we adapt the methods from (Vargas et al., [2024) and (Albergo & Vanden-Eijnden)
2025) to solve the thermodynamics formulation of the exponential tilting problem as described in
Relying on similar tools, we also prove novel versions of the escorted Crooks fluctuation
theorem and the Jarzynski equality tailored to the exponential tilting dynamics.

For an arbitrary vector field v, let X” be the solution of the SDE (T13)), and let X" be the solution of

X§ ~ pt o< phae exp(ry),

B (2, ) = kgt (e — 20 (s (2) + Ve ().
(26)

aXy = (bn(Xy,t) +o(Xy, ) dt + o (£)AW,, {

where dW; denotes the backward Ito differential, ie. X ¢ is the continuous-time limit of the
backward Euler—Maruyama update y,—1 = ye + Aty,, At(yg) + VAto(LA)E, & ~ (0 I).
Let P and PV be the the path measures of X" and Xv. If v = v* is such that X*" ~

pr(x) o< pbase(x)exp(ry(z)), Nelson’s relation l| implies that B*" = Pv". By the

reverse implication of Nelson’s relation, the reciprocal statement also holds: if Pv — ]f”“, then
XV ~ pr(z) oc pbae(z) exp(r¢(z)) and thus v = v*. Hence, any divergence D on path measures

gives rise to a loss function £p(v) = D(P?||P?) whose only minimizer is v = v*. The following
proposition shows the loss functions resulting from the KL divergence and the log-variance diver-
gence. Its proof, which involves computing log (X v}, can be found in (CI).

Proposition 4.1 (CMCD loss function for exponentlal tilting). The CMCD loss functions for the

exponential tilting problem based on the KL divergence the log-variance divergence read, respec-
tively:

Lxr.-cmep(v) = Ellog S = (Xv)]
—E [ fy o) u(X2, 1) +(

- Jy (—(00XE 0, (XD + (255 —m) (Vi (X2), su(X0))+ 295 IVr (X)) at,

2 \Vr(X7), AW,)—r(X?)

Lvar—cnmen(v) = Var[bg (Xv)] = Var {TO(YOU)—rl(Yf)
+fy [0, 8, s () + (25— ><ww> s (V) + 245 [V (v)]1?] at
+fo[ (O O+ T (V) AW = (Y ) 4+ TV, W)
( V?"t (W V’I’t 7 m>):|:| .

27)
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The Crooks fluctuation theorem (Crooks, [1999) is a fundamental result in non-equilibrium thermo-
dynamics that expresses the Radon-Nikodym derivative between a pair of forward and backward
path measures in terms of a difference of free energies (or logarithm of normalizing constants) and
a work functional. The following result, proven in[App. C.2] provides an analogous expression for

the path measures of X and Xv.

Proposition 4.2 (Controlled Crooks fluctuation theorem for exponential tilting). For an arbitrary

process in the support of BY and/or P?, the Radon-Nikodym derivative (RND) between PY and PV at
reads

jg: (Y) = exp ( — log Enro,21)[exp(70)] + 10g Epppase [exp(r1)]

— Jo ((5e¥e+ 2ms0(02), Tr(%) + (0(¥5, 1), 60(¥5) + Vre(¥e)) + Byre(¥)

+ [V (V)I2 + e Ar(¥:) + V- 0(Ye, 1)) dt).
(28)

Drawing analogy to the standard controlled Crooks fluctuation theorem (Vargas et al., [2024} [Zhong
et al2024), we can treat —log Er (g gz21)[exp(ro)] +10g Epase [exp(r1)] as a free energy difference
and the remaining terms as a generalized work functional. Taking the expectation with respect to
Y € P of the multiplicative inverse of both sides of yields an analog of the escorted Jarzynski
equality, first proposed by [Vaikuntanathan & Jarzynski| (2008)).

Proposition 4.3 (Escorted Jarzynski equality for exponential tilting). The free energy difference
admits the expression

E base [exp(r1)] 1
10g (W) = logEﬂ_ﬁv [eXp (fo ((Kt}/t+277t5t(yz), vrt(}/t)> + <’U(}/;§, t), St(}/t)—i_

Vre(Y2)) + Opre(Ye) + me | Vre (YO |2 + 1 Are(Ye) + V- 0(Y, t)) dt)] '
(29)

Taking an expectation of the squared log-RND (28) and applying Jensen’s inequality yields an ana-
log of the NETS loss, first introduced by |Albergo & Vanden-Eijnden|(2025) in the standard thermo-

dynamic setting. The proof is in

Proposition 4.4 (NETS loss function for exponential tilting). Given an arbitrary process Y, the
PINN (physics informed neural network) NETS loss for exponential tilting reads

Lwrs(v, F) = B[ fy ((5Ye+ 2 (Y5), Vi (V) +(0(Yi, 1), 50(Y) + Vri(10))
9 (30)
+ 0y (V) IV (YD) P+ Aro(V) 4V - o(Yi, ) =0 F, ) ],

and it satisfies that Lxgrs (v, F) < E[(log jﬁ:: (Y))Q]

5 EXPERIMENTS

While the scope of our paper is general, as we cover fine-tuning and sampling, and many different
algorithms, in this section we focus on the performance of Adjoint Matching for fine-tuning Stable
Diffusion 1.5 and Stable Diffusion 3 with ImageReward (Xu et al., [2023)) as the reward model. We
fine-tune using the 10000 prompts considered by Xu et al.| (2023) and report metrics computed on
their 100-prompt validation dataset (generating 10 images per prompt).

In we plot the trade-offs [Astolfi et al.| (2024) between DreamSim variance (Fu et al.| (2023)),
a metric that measures per-prompt diversity) and ImageReward, CLIPScore (Hessel et al., 2021
and HPSv2 (Wu et al., [2023)). Our results follow the same trend as those of Domingo-Enrich et al.
(2025), which carried out similar experiments on a proprietary base model. We perform inference
with = 0 (no noise) and 7 = 1 (memoryless, o(t) = 1/27;), and with two schedules: the default
DDIM schedule and the schedule used during fine-tuning. Remarkably, 7 = 0 performs better w.r.t
ImageReward and HPS, and n = 1 is better at CLIPScore.
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ters. Points linked only differ in training o3.

Figure 2: Quality metrics for Stable Diffusion 3 fine-tuned with Adjoint Matching.

In left) we plot the same trade-offs for Stable Diffusion 3, and include Aesthetic Score
2024) as well. Arguably, n = 1 outperforms 1 = 0 in this case, as most points on the
Pareto front use the former. In right) we ablate the choice of the initial variance 03; as we
show in we can simulate a generative SDE with a rescaled noise schedule o by reusing
the pretrained vector field, which was we learned at o2. In the figure, points linked by an arrow cor-
respond to settings which only differ by the training o3, the tail being for 02 = 1 and the head being
for 03 = 1.5. We perform inference at both 02 = 1 and 1.5. The results are inconclusive, which is
consistent with that states that the (bound on the) variance term for Adjoint Matching is
independent of 0.

6 DISCUSSION

We introduced new developments that help us understand algorithms for fine-tuning and sampling
with diffusion and flow models. We performed experiments to validate some of our findings. A
direction of future work is to develop methods that leverage both the SOC and thermodynamics
perspectives.

Limitations. We only include experiments on fine-tuning text-to-image diffusion models. We will
leave experiments on other tasks such as protein design and molecule generation for future work.
We also only include experiments on SOC and score matching-based approaches and leave exper-
iments on the proposed thermodynamic-inspired approaches as future work. Our framework is not
comprehensive as it does not include recent reward fine-tuning and sampling algorithms such as

et al.| (2025b)); Zhang et al.| (2024);|Akhound-Sadegh et al.| (2025).




Under review as a conference paper at ICLR 2026

REFERENCES

Tara Akhound-Sadegh, Jarrid Rector-Brooks, Avishek Joey Bose, Sarthak Mittal, Pablo Lemos,
Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, et al.
Iterated denoising energy matching for sampling from boltzmann densities. In Proceedings of the
41st International Conference on Machine Learning, pp. 760-786, 2024.

Tara Akhound-Sadegh, Jungyoon Lee, Avishek Joey Bose, Valentin De Bortoli, Arnaud Doucet,
Michael M. Bronstein, Dominique Beaini, Siamak Ravanbakhsh, Kirill Neklyudov, and Alexan-
der Tong. Progressive inference-time annealing of diffusion models for sampling from boltzmann
densities, 2025.

Michael S. Albergo and Eric Vanden-Eijnden. Nets: A non-equilibrium transport sampler. arXiv
preprint arXiv:2410.02711, 2025.

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Brian D.O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313-326, 1982.

Pietro Astolfi, Marlene Careil, Melissa Hall, Oscar Mafias, Matthew Muckley, Jakob Verbeek, Adri-
ana Romero Soriano, and Michal Drozdzal. Consistency-diversity-realism pareto fronts of condi-
tional image generative models. arXiv preprint arXiv:2406.10429, 2024.

Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on diffusion-based
generative modeling. arXiv preprint arXiv:2211.01364, 2022.

Valentin De Bortoli, Michael Hutchinson, Peter Wirnsberger, and Arnaud Doucet. Target score
matching, 2024.

Gavin E. Crooks. Entropy production fluctuation theorem and the nonequilibrium work relation for
free energy differences. Phys. Rev. E, 60:2721-2726, Sep 1999.

Carles Domingo-Enrich, Jiequn Han, Brandon Amos, Joan Bruna, and Ricky T. Q. Chen. Stochas-
tic optimal control matching. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky T. Q. Chen. Adjoint matching:
Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control. In
The Thirteenth International Conference on Learning Representations, 2025.

Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel, and
Phillip Isola. Dreamsim: Learning new dimensions of human visual similarity using synthetic
data. arXiv preprint arXiv:2306.09344, 2023.

Aaron Havens, Benjamin Kurt Miller, Bing Yan, Carles Domingo-Enrich, Anuroop Sriram, Brandon
Wood, Daniel Levine, Bin Hu, Brandon Amos, Brian Karrer, Xiang Fu, Guan-Horng Liu, and
Ricky T. Q. Chen. Adjoint sampling: Highly scalable diffusion samplers via adjoint matching.
arXiv preprint arXiv:2504.11713, 2025.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems, volume 33. Curran Associates, Inc., 2020.

Lars Holdijk, Yuanqi Du, Ferry Hooft, Priyank Jaini, Berend Ensing, and Max Welling. Stochastic
optimal control for collective variable free sampling of molecular transition paths. Advances in
Neural Information Processing Systems, 36:79540-79556, 2023.

LAION. Laion aesthetic score predictor. https://laion.ai/blog/
laion-aesthetics/}, 2024. Accessed: 2024-09-27.

10


https://laion.ai/blog/laion-aesthetics/
https://laion.ai/blog/laion-aesthetics/

Under review as a conference paper at ICLR 2026

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling, 2022.

Guan-Horng Liu, Jaemoo Choi, Yongxin Chen, Benjamin Kurt Miller, and Ricky T. Q. Chen. Ad-
joint schrodinger bridge sampler. arXiv preprint arXiv:2506.22565, 2025a.

Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan,
Di Zhang, and Wanli Ouyang. Flow-grpo: Training flow matching models via online rl. arXiv
preprint arXiv:2505.05470, 2025b.

Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
with rectified flow. In The Eleventh International Conference on Learning Representations, 2023.

Edward Nelson. Dynamical theories of brownian motion. 1967.

Angus Phillips, Hai-Dang Dau, Michael John Hutchinson, Valentin De Bortoli, George Deligian-
nidis, and Arnaud Doucet. Particle denoising diffusion sampler. In International Conference on
Machine Learning, pp. 40688-40724. PMLR, 2024.

Neta Shaul, Juan Perez, Ricky T. Q. Chen, Ali Thabet, Albert Pumarola, and Yaron Lipman. Be-
spoke solvers for generative flow models. In The Twelfth International Conference on Learning
Representations, 2024.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
arXiv preprint arXiv:1907.05600, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations (ICLR 2021), 2021.

Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee
Diamant, Alex M Tseng, Tommaso Biancalani, and Sergey Levine. Fine-tuning of continuous-
time diffusion models as entropy-regularized control. arXiv preprint arXiv:2402.15194, 2024.

Suriyanarayanan Vaikuntanathan and Christopher Jarzynski. Escorted free energy simulations: Im-
proving convergence by reducing dissipation. Physical Review Letters, 100(19):190601, 2008.

Francisco Vargas, Will Sussman Grathwohl, and Arnaud Doucet. Denoising diffusion samplers. In
The Eleventh International Conference on Learning Representations, 2023.

Francisco Vargas, Shreyas Padhy, Denis Blessing, and Nikolas Niisken. Transport meets variational
inference: Controlled monte carlo diffusions. In The Twelfth International Conference on Learn-
ing Representations, 2024.

Chenyu Wang, Masatoshi Uehara, Yichun He, Amy Wang, Avantika Lal, Tommi Jaakkola, Sergey
Levine, Aviv Regev, Tommaso Biancalani, et al. Fine-tuning discrete diffusion models via re-
ward optimization with applications to dna and protein design. In The Thirteenth International
Conference on Learning Representations, 2025.

Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
image synthesis. arXiv preprint arXiv:2306.09341, 2023.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Dinghuai Zhang, Yizhe Zhang, Jiatao Gu, Ruixiang Zhang, Josh Susskind, Navdeep Jaitly, and
Shuangfei Zhai. Improving gflownets for text-to-image diffusion alignment. arXiv preprint
arXiv:2406.00633, 2024.

Qinsheng Zhang and Yongxin Chen. Path integral sampler: A stochastic control approach for sam-
g g g g p 1YY
pling. In International Conference on Learning Representations, 2022.

Adrianne Zhong, Ben Kuznets-Speck, and Michael R DeWeese. Time-asymmetric fluctuation theo-
rem and efficient free-energy estimation. Physical Review E, 110(3):034121, 2024.

11



Contents

[A__Useful theoretical results| 12
[B_Proofs for the SOC-based methods| 16
.1 Proof of |Prop. 3.1} Bound on the norm of the lean adjointstatef . . . . . ... ... 16

.2 Derivation of the Target, Conditional and Novel Score Matching loss functions| . . 17

.3 Proof of |Prop. 3.2} bias-variance decomposition for Adjoint Matching and Sampling| 18

4 Proof of |Prop. 3.3} bias-variance decomposition for score matching algorithms| . . 19

|C  Proofs for the thermodynamics-based methods| 21
C.1 Proof of |Prop. 4.1} CMCD for exponential tilting] . . . . . ... ... ... .. .. 21
C.2 Proof of |Prop. 4.2} Crooks fluctuation theorem for exponential tilting|. . . . . . . . 23
C.3  Proof of |Prop. 4.4 NETS for exponential tilting| . . . . . . ... ... ... . ... 24
[DAdditional experiments| 25
D.1 Derivation of the generative SDE with different initial variance o& . . . . . . . . . 25

2 Additional plots| . . . . ..o 26

A USEFUL THEORETICAL RESULTS

Lemma A.1 (Conditional and target score identities, Bortoli et al.| (2024)). Let p; be the density
of the marginal X, of the reference flow defined in equation (l). For any oo > 0, define the map
Ty as x — To(x) = ax, and let (T, )#p be the pushforward of the distribution p by T, whose

density is (Ta,) #Pdata () = Paata(®/cr) 2. We write the density of the Gaussian N (owy, BE1) as
N (w; vy, B3T) = exp ( — Lzl /(27r,3§>d/2. Then,

$) = fRd N(:Ea agy, ﬁ?l)pdata(y) dy = [(Toct)#pdata * N(07 ,B?I)](SL‘), (31)

and we obtain the following identities:

. 2
\V4 IOg Dy (x) — _ Jra (I*Otty)./\/.(w,at:%ﬂt D) Pdata(y) dy (CSI)

Conditional score identity: B Jea N (w5009, B7D) paata(y) dy

Jra V10g paata(y)N (@3009,87 1) Pdata(y) dy
23 f]Rd N(:v aty, :Bf, )pdmm(y) dy ? (TSI)

/i d(atv]ogpdata(y) (33 ary) )N (23009, 671) paata () dy
VIngt( ) = (aZ+B2) [za N(x;01y,821) paata(y) dy '

Target score identity: Viogpi(z) =

Novel score identity:
(NSI)

Proof. While this result is not new (see |Bortoli et al.| (2024) and references within), we provide
a proof here because of its relevance. Observe that Z; = X; — oY = e ~ N0, B,?I). The
following formula holds for the density of the noised fine-tuned distribution:

exp( llz— atyu?) exp( llz—g112 ) ) )
fRd Wpdata(y) dy = fRd Wﬁdma(y/%)i dy
exp (7 llz— %nz)
267 o\ g
= fRd W(Ta)#pdata(y) dy = [(Tat)#pdata * N(O» ﬁfl)](x%

where we applied the change of variables y = T,,,y = oy, and that the density of the pushforward
(Tat )#pdata(m) is pdata(x/at) o%

(32)

Equation (CST)) follows simply from V log p;(z) = Vpp Eg) and from taking the gradient with respect
to z under the integration s1gn We prove (TSI) next. If we let # — auy = z, we have that y = #2=,
which implies that | dy | = ==. Thus, we can write
oxp (- L212)
pe(z) = Jpa Wpdata(w,;z)o% dz. (33)

12
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And
o (158
28 T—2z
Vpi(r) = [ sz (Pdata(52)) 77 dz (34)
exp (—%)
= fRd va log pdata(%)pdata( :L’(;tz)o% dz (35)
exp (~L212)
= Jou —gmme V108 Pdata (52 )Pata (52) 5 d2 (36)
_ exp (7\\1*;;?/\\2) Ld
= fRd WVIngdata(y)pdata(y) o 4Y- (37)

2
Using that V1og p;(z) = vp’: Eg) concludes the proof of (TSI). To prove (NSI), we sum ﬁ times

. . B8z . . . .
the (TSI) identity and o715z times the (CSI) identity, and obtain:

Jrd fj_ﬁQ (atv log Pdata(y)*(ﬂifaty))N(w?aty,ﬁ?I) Pdata(y) dy
t t

Vlogpi(z) = Jpa N (@50:9,871) paata(y) dy (38)

O
Theorem A.2 (Convolution with a Gaussian Preserves Strong Log-Concavity). Let f : R? —
(0, 00) be a density of the form f(z) = e=%\), where ¢ € C?(R?) satisfies V>@(x) = I forall

x € RY ie. fis~y-strongly log-concave. Let g(x) = (2mo?)~4/? exp(f%) be the density of
N(0,0%1). Define

h = fxg.
Then h is Trgaz—strongly log-concave, i.e.
VZ[—logh(z)] = Tzl Vze R9. (39)

Proof. Set)(z) = H;,“; ,F(y;z) = o(y) + (z — y). Then h(z) = [za e F¥®) dy. A standard
“log-sum-exp” Hessian identity yields

VZ[—logh(z)] = E[V2F(Y;xz)|] — Var[V,F(Y;z)], (40)

—F(y:%) 'We handle the two terms separately.

where Y is drawn from the density proportional to e
1. Second-derivative term.

ViF(y;x) = V(z —y) = 1, (41)
soE[V2F] = L 1.

2. Variance term.

V. F(y; ) = Vi(r —y) = 25, (42)

hence Var[V, F] = Z; Cov(Y).

Since F(-; ) is (y + 1/0?)-strongly convex in y, the Brascamp—Lieb inequality gives

2

Cov(Y) = %11/02 I=%x1 (43)
Therefore,
2
Var[V,F] =< 0—14 : 1+Uwa2 I= 02(1+1702) 1. (44)
Combining,
VZ[f log h(l’)] t %I — 0'2(1"11'7‘72)1 - 1+zo.2 I (45)
Thus h is ﬁ-strongly log-concave. O

13
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Corollary A.3. Let p; be the density of the marginal X, of the reference flow defined in equation (T)).
Suppose that the density pqata is in C%(R?) and is y-strongly log-concave, i.e. —V?10g paata(z) =
v 1 for all x € RY. Then, for all t € [0,1], the density p; is also in C*(R?) and W-stmngly

log-concave.

Proof. By equation (3T) from Lemma[A.1] we have that
pi(x) = [(Ta,) #Pdata * N (0, B7D)] (2), (46)
Observe that

v Tf‘«“t atal® Valp ata(x/at)aflt Vpdata(x/at)é
V10g[(Te )iPasca(@)] = T2 test = e )

Pdata(l'/at)o% - pdata(w/at)% Qg

— —V210g[(Th, ) pPaata (1)) = — L1BRasm(z/an) 4 p

__ Vlog pdata(z/ct)
)

47
where we used the y-strong log-concavity of pgata. This shows that (T, )#Pdata 1S —z-strongly

concave. Thus, a direct application of Theoremwith [ = Pdata> g = N(0, 321) implies that the
strong log-concavity constant of p; is

~

2

i0i — « — 0l
1+~y02 — 82 T aZ4BET (48)
I+ '
Yt
]

Theorem A.4 (Adaptation of Theorem 2.3 of |Shaul et al|(2024)). Let («y, 8:) and (&, BT) be
two pairs of flow matching coefficients, i.e., differentiable functions ay,a,. : [0,1] — [0,1], and
ag, &, 1 [0,1] — [0, +00) satisfying:

aO:d():O:/Bl:Bl) alz&lzl’

and SNR(t) := 3¢, g\\ff{(t) = % are strictly increasing on [0, 1). 49
Define the scale-time transformation from r to t(r) via matching signal-to-noise ratios:
and define the scale function
Sp 1= %(:) = %(:) on

Then, if p; is the marginal of X; := oY + i and py is the marginal oth =&Y + Be, for all
r € [0,1],

Vlogp,(x) = -V 1og i) (/1) (52)

Proof. First, we prove that ¢(r) is well-defined. Observe that by assumption, SNR and SNR are
bijective functions between [0, 1) — [0, +00), and that we can construct £(r) := SNR™' (SNR(r)).

Using the conditional score identity, we obtain that

vl Jra 5N (@500y,B71) paaca (y) dy T los Jed m}':z”N(w;dtyﬁ?I)pdata(y) dy
0 r)=— L 0 T)=— =
ge(2) Jra N (@009, B7T) paata(y) dy 7 8P (x) Joa N(@3;609,871) paata(y) dy 7
(53)
and observe that
lz—ayll® _ lz=srarmyl® _ lla/sr—awmyll? T—@ry _ TSrQu(nY _ E/Sr—Quny 54
22 - 2,262 - 262 9 22 - ,2[32 - s 62 ( )
232 SePE(r) t(r) B7 SEPE(r) SrPi(r)

which means that

~ exp (—M) exp (7%%) )
~ 2432 . . B }
N (w5 ary, B71) = Crp2yar <2ﬂ3353<r;(>d>/2 = N (@/sr;8u0yy, By D), (59)
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and
Jra TN (23809, B71) paata (v) dy

Jra N (236y,821) paata (y) dy

o/sr—a . 56
f-Rd %N(w/ST;&t(T)ZLBtZ(T)I) Pdata(y) dy ( )
k =1Vl
S ngt(’!’) (l‘/ST)

_ ) §
Jra N (2 /5038y y,87 (9 T) Paata(y) dy

¥ log iy (z) = —

O

Corollary A.5. Consider Rectified Flow with two values oo, 6. That is, we take the pairs (o, Bt)
and (&, ft) in Theoremsuch that:

o = Gy = 0, B = (1—au)oo, B = (1 — ) Go. (57
Let &= :]0,1] — [0, 1] be the inverse of the function &(t) := &y. Then, we have that
J— 00 _ oo(l=&y)+o00,
Hr) = a UemLSims), s = Col=ddiod (58)

and by Theorem if p; is the marginal of X; := oY + Bie and Py is the marginal of X, =
th =+ ,@té‘,

Vlogp,(z) = iVlogpt(r)(m/sT). (59)

Proof. Observe that with these choices,

SNR(t) := gt = g=2550- SNR(t) = =355 (60)
We invert SNR:
Yy = “*i;ﬁ = 00y — dton =0 = d(t) = Q= 1ig_zy — S:NI{_1 == @_l(li(;zy).
(61)
Thus,
~1(aNT 1/ 0 T=atyeg - cod,
t(r) = SNR™'(SNR(r)) = & 1(#) =0 N (5 2% ), (62)
and
— Gr _ Oy _ a, _ Go(1=a,)+ooar
51T Gy T By 1 C— 70 . (63)
Applying Theorem[A4]yields the final result. O

Proposition A.1 (Forward-backward Radon-Nikodym derivatives, Prop. 2.2 of [Vargas et al.
(2024))). Consider the SDEs

AV, = v (Vo) dt + o(t) dWs,  Yo~Ty —> (Vo) perer ~ PBroad (64)
A, =4~ (V) dt + o) AW, Yr~Tr = (V)yoep~ BIT7, 65)
0, = a,(Y) dt +o(t)dWr,  Yorp = (Yi)gopeq ~ BH%, (66)
dY, = b, (Y) dt +o(t) AW, Yr~w = (Vi)goep~ BV 67)

Here, (64) and (66) are forward 1t6 SDEs, and (63) and (©7) are backward It SDEs, i.e. (64) and
(63) are the continuous-time limits of

Yor1 = Yo + Aty (o) + VALo (LAL)E,, & ~N(0,1), yo ~ Lo,

(68)
Yo1 = Yo + Atyn, (Ye) + VAto (CAL)E,, &~ N(0,1), yr ~ I'r.
Suppose that
Froo™ = prra, (69)
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and that it is absolutely continuous with respect to both ﬁ”’a and ﬁ”’b. Then, ?“’a-almost surely,
the corresponding Radon—Nikodym derivative can be expressed as

log%( ) = log §-(Yo) — log % (Y7) (70)
+ T o) 2((ar — ) (¥2), dYs — L@ + ) (¥3) dt) (71)
— o) <(t—%)(mﬁ;—g(btﬂ;)(mdt) (72)

— <=
Proposition A.2 (Nelson’s relation, Nelson| (1967); |Anderson| (1982)). Let P ** and PV be the
path measures defined in For u and a of sufficient regularity, denote the time-marginals
of the corresponding path measure by

Then we have

Pra = prb ifand only if v = ﬁ%a and by = a; — o?Vinpl"®, vt € (0,T).

B PROOFS FOR THE SOC-BASED METHODS

B.1 PROOF OF[PROP. 3.1} BOUND ON THE NORM OF THE LEAN ADJOINT STATE

Given a matrix M € R?*? and a point z € R?, the Rayleigh quotient is defined as R(M,x) =

<f;fi§°> . The norm of the lean adjoint state a (¢, X) satisfies the following ODE:

Slat, X1 = 2(a(t, Xv), Fat, X*)) = =2(a(t, X*), Vab(X;, t) Ta(t; X™)) (73)
= —2R(V.b( Xy, t) T a(t, X %)) ||la(t; X%)|2. (74)

When we integrate this ODE backwards in time from 1 to ¢ € [0, 1], we obtain that
l|a(t, X“)||2 = exp (th (Vb( X ) ,d(s,X“))ds)HVIT(X}‘)H? (75)

Since a(t, X*) appears in the the regression target vector field of the Adjoint Matching loss, it
is desirable that the norm ||a(t, X™)|| is small. A way to obtain bounds on |a(¢, X*)|| is un-
der the condition that Sym(V,b(X¢,t)) < x.I for some constant x; € R, as in this case, since
R(V.b(X,t)T,a(t, X")) = R(Sym(V,b(Xy, 1)), a(t, X*)) < x¢, we get that

la(t, X )12 < exp (2 f,' xs ds) [Var(X1)]% (76)

Observe that Vb(z,t) = ke + (%t)z + ) Vs (2), and for the memoryless noise schedule o (t) =
V 277t9
Vb(x,t) = kel + 2 Vs (). 77

Since n; > 0, in order to obtain a bound of the form Sym(V,b(X¢,t)) =< x:I, we need a similar
bound on Sym(V;s:(X;)). Next, we show that such bounds are easy to obtain in the case in which
the data distribution pqat, is Gaussian or strongly log-concave. The former case, under which we can
obtain an analytic expression of the score, is particularly relevant because it is the setting considered
in Adjoint Sampling (Havens et al., [2025)).

The gradient Vb for Gaussian data distributions Now, if assume that pgat. = N (0, O’%I), as is
the case in the sampling setting, we can compute s; explicitly through equation of Lemma
By equation (31]), we obtain that

oy |2 e 212
(z) = exp (_ : 2;3??11” ) exp (*%) du — exp (7 2(/1;4’”+L§a§>) (78)
Pe\T) = JRa (27 pZ)d/2 (2702)d/2 Yy = (2#(5t2+afa'f))d/2 ;

which implies s;(x) = Vlogp,(z) = — and this means that

X
BT TaZ52
Bitaiof

Vb(x,t) = el + 20 Vs (@) = (ke — grioez)l= (58 — wﬁ(++ﬁ))1 =1, (79
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(i) Follmer process:
— — Gi0p — 1 —.
Vb(z,t) = (ke — ﬁ"’-{—atal z)I = ( - &t(l—&t)a%+o7faf)1 =2r(1- 1—o7t+54ta'f/08):[ = xel,

0_2
= [/ xsds = [} 2 (1~ rapamyer) s = log (ramyakrazss):

E\‘QI
[

o} u
= |la(t, X")| = WHVMUQ)W
(80)
If we set 0 = o7, we obtain Vb(x,t) = 0 and ftl xsds = 0.
(ii) DDIM/DDPM:
dp03
— — (G oy — & 2 —
Vb(z,t) = (K“t ﬁ2+a af)l - (% N (17&t)0%+5¢t0f)1 - 2(17;(1 - 17dt+5¢t0%/a§)1 =Xl
_ _ N
= ft Xs ds = t E(l 1z angoc al/a' )dS - IOg ((175451)0%%»0750%)7
= lat. X")|| = i V(X))
8D
If we set 03 = 0%, we obtain Vb(x,t) = 72%1, and ftl xsds = 3log(a), and

lat, X*)I| = Vas||Ver(XT)].-
(iii) Rectified Flow:
(1 at)ato‘o

Vbl t) = (i — gl )1 = (3 — (e strazes) 1 = 2 (1~ mayiradezar)L

I5
=8

Q1R

(82)
- o2a,
ola m
= lla(t, X")|| = WHVIT(*XH I (84)

o‘?&s
(1-a.)203+a207

(e0]

/52 27
o5+o3

The maximizer of a — log ( )isa* = and the maximum value

. 144/140%/02 .
is %‘Tl/% If we set 02 = o3, we obtain
_Gu (1 2(1-ay) _ ooy 124287 —2(1—ay)y _  (1-2a)&
Vb(x,t) - ai (1 (17at)2+a§)1 - az 1725¢;+2a§ I= (1—2a:+2a2)a L @35

1 Qs ~ u _ Qs u
= J; Xst:lOg(W) = |la(t, X")| = W\W#(-’Q)W (86)

The gradient Vb for U—lz-strongly convex data distributions Corollary proves that when
1
Ddata 18 U—lz-strongly log-concave, then p; is also in C?(R?) and m-strongly log-concave.
1 t t-1
Equivalently, for all x € R4, ¢ € [0, 1],

—Vsi(z) = —V2logpi(z) = (87)

1
which means that
a 28(8LB-p
Vb(l‘,t) = HtI+ 2mV§t(m) = (Klt — ﬂtziiztfaf)l = (OT: — ﬂ(fJﬁiafo'f))I' (88)
Observe that this upper-bound matches the right-hand side of (79). Hence, we obtain immediately
that for the three subcases, all the equalities involving Vb(x, t) and j;l Xs ds become inequalities.

B.2 DERIVATION OF THE TARGET, CONDITIONAL AND NOVEL SCORE MATCHING LOSS
FUNCTIONS

By the target score identity from Lemma the density p; of the marginal X; of the reference flow
in equation () satisfies:

(z5019, fI Vlo ata (Y)Pdata d %
Viogp(r) = o B R e oy = BV logpawa(V) | X =] (89)
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We use a well-known argument: for any R%valued neural network 3,

1 A _ _
EYdiata Xi= 041Y+ﬁt5[f0 H Xt? )—V]ngt(Xt)Hth]

=Eypy K= mYJrBtE[fO 18(Xs, t)||%dt — 2f0 1), Vlogpt()_(t» dt] + const.
:EY~pdm,Xt:atY+ﬁta[fo S(Xp )2 dt— 2 [1(3( X E[V log paata(Y) | X)) dt] + const.
=Eypyon X = mYJrﬁts[ 8(Xs, )2 dt — = fo (X:, ) Vlogpbase(Y) + Vr(Y)) dt] + const.
=By pyn %= mYJrBtE[fO 15(X¢, 1) — - (V log pPa¢(Y) + Vr(Y)) |2 dt] + const.

(90)
where the third equality holds by (89). Hence,

Lrsn(3) = ElLrsn(3, X)) = Ey oo Somary e Ly 18X, ) — 2 (Vlogp?=(¥) + Vr(Y)) |2 di].
1)

Analogously to (89), the conditional score identity and the novel score identity yield

z—oy) N (z;00y,8%1 ata d %
Vlogpi(r) = — e s Y = —&Ele — Y | Xy =a],  (92)
_ Jpa(@tV 10g paata (y) = (@—asy) )N (2304 y,8;1) paata(y) dy
Vlogp(a) = S o T N a0y, 570 panee () Ay 93)
= wE[atVIngdam(Y) — (2 — oY) | Xy = 2], (94)

The expressions for the Conditional Score Matching loss Lcgy and the Novel Score Matching loss
Lnsw follow from an argument analogous to equation (90), the only differences being that in the
second equality we use equations (92)) and (94) instead.

B.3 PROOF OF[PROP. 3.2l BIAS-VARIANCE DECOMPOSITION FOR ADJOINT MATCHING AND
SAMPLING

For Adjoint Matching and Sampling, observe that u(z,t) =
E[£Adj—Maten (u; X™)]
—E[L [} [|w(XF, t) + o) Ta(t; X ™) de]
=E[} fy | A= (un(XF, 1) = vhase (X7, 1)) + V2ma(t; X )| di]
DEL ) ore(XF, ) — viase (X7, 1) + 2mei(t; X7)||* 5 ]
=E[3 fy [lon (X7, 1) E[ubase(Xtﬁ,t)—277td(t;X“)|Xt“]|| 5 dt]

E[L 1B [vbase (XF 1) — 2ma(t; X ) XF] = (0base( X7, 8) — 2mai(t; X)) || 5 3y dt]
95)
Observe that equality (i) yields an expression on the same form as equation (24), with £(¢, X™) =

Ubase(X{, t) + 2m¢a(t; X™). The second term in the right-hand side of (93) (the variance term) can
be simplified to

(vft (ZL', t) - /Ubase(m7 t)) . Hence,

o

2m

E[L [ |E[2na(t; X™)| XF] - 2n.a(t; X* HQ - dt] = E[ [ ne|[Ea(t; X™)|X7] — d(t;Xﬁ)Hth]
< E[fo 77tH5L t; XW) H dt] < fo ¢ eXp (th xs ds) dt x E[[|[V,r(X1)|?].

(96)

For the particular case in which pqat, is Gaussian, we can similarly obtain an equality:
E[ fy [E[2ma(t: X7)|X7] - 2malt; X7 55 df] 97)
=E[ [y mexp (2, xs ds) (|Var (X012 — E[[|Vor(X1))2|X4]) di], (98)

where the last equality holds by equation (76). Next, we compute fol e exp (2 ftl Xs ds) dt in the
three subcases:
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(i) Follmer process:

1 1 2 2 qy02 2 52
fO Nt eXp (2ft Xs dS) dt = fO ((1 at)(jr;JratU ) 01200 dt = fO ( 1-t) J(Z]tha ) %’dt =3

(i) DDIM/DDPM:
o2 Qi 2(;”(7 o f 22 o
Jo meexp (2 [} xads) dt = [y (reaisriaer) st dt = fy (aoiims) o 4t = 3

(iii) Rectified Flow:

fo neexp (2 [ xs ds) dt = fo ((1—at 2(%"+&%U§)2(1 a;za’a" dt

_ rl(-to? it 2 _ o
—Jo t ((14)%3%%%) dt = :

(101)

B.4 PROOF OF[PROP. 3.3l BIAS-VARIANCE DECOMPOSITION FOR SCORE MATCHING
ALGORITHMS

Target Score Matching Next, we write the Target Score Matching and Novel Score Matching

losses in the general form (24). Plugging o (t) = /27, we can write
v (2, 1) = Ry + 2n8(z, t) = §(x,t) = W (102)

Thus, for Target Score Matching we have that

By paaea, Remae Y +8ie [% fol 18(Xe, 1) — a% (V 10g phase(Y) + VT(Y)) [1*(2m:) dt]

=Mmmxwwmﬁﬁwﬁ%¥&—in%m>+w (1)) 122 ]

= By s Kemary e |5 Jo 106 (Xt t) = 50Xy — 22 (V10g phase (V) + Vr(Y)) 17 57 dt]

= Ey opys ooy s 0e |5 Jo 108 (Ko, t) — B[k X + 22 (V10g poase(Y) + Vr(Y)) | X] 2 55 dit]
+ By s Kemarey +60c 15 Jo [E[KeXs + 22 (V1og prase(Y) + Vr(Y)) X,

— (litXt + Q(Xi; (V log phase(Y) + Vr(Y )) 1 dt]
(103)

The second term in the right-hand side of (T03) (the variance term) can be simplified to
Ey < paata, K=o Y+, [% fol H]E[% (V log phase(Y') + VT(Y)) |Xt]
— 2 (Vlog prase (Y) + Vr(Y)) [ o5 dt]
= By mpgua Ko—ar Ve |3 o 2% ||H‘3[V 10g Phase (V) + Vr(Y)| X,] (104)
— (V1og phase(Y) + Vr(Y))||* dt]
< Jy 25 dt X Eyp,, [V 108 Poase (V) + Vr(V)) ).

(&8 —pu . .
Observe that % = ﬁf(afai;’&) And in particular, for the three subcases:
t t

(i) Follmer process:

) 1
b Paa- fda G- (105)
(i) DDIM/DDPM:
n _ L b} C I dt = [ Seobdt = 106
a2 T @ 203 = 0 fO 2a2 ( )
(>iii) Rectified Flow:
m _ % (1 Ott)afgo — fl ﬂdt f 7t) a'g dt fl (17t)d‘g dt_+
aZ = &2 &3 0 a? 0 &3 0 B =T

(107)
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Conditional Score Matching And for Conditional Score Matching, we have that
1A %, _
Eywpdatavxt:aty+ﬂt€ [% fo HS(Xt’ t) + & g?ty ||2(277t) dt]

1 X t)—re X X, —
= By g Comarv +ie [ Jo 1285505 4 Xeggel |2 (2m,) ]

1 v v 20 (Xe—arY
= EYdiata7Xt:atY+ﬁt5 [% fO HU&(Xt’ t) o I{tXt + ! B2 : ”2 2:% dt]
1 - - 21 (Xy—a Y
= EYNPdacath:Oéf,Y-i-ﬁtE [% fO HUft(Xt’ t) - ]E[K’tXt + el t2 k) |X ] H22E’l]t dt]
1 v 20 (X —arY) | © 20 (Xe— arY)
+EY~pdm,Xt:atY+ﬂtaB Jo IE[reXe + ! B2 )|X] (re Xt + ek 4)”227“ dt].
(108)
The second term in the right-hand side of (TO8) (the variance term) can be simplified to
1 2ne ( Xe—arY 2m Xt_aty
By g timaeye 3 i IB[2 00 ) 2o o 1oy (109)
1, =
=Ey e K=oy +ie [ Jo BEIE[VI0gpoase(V) + Vr(Y)|X:] = (Viog ppase(Y) + Vr(Y)) |* dt]
(110)
< Jo 5 dt X Eypyn, [V 10g prase(Y) + Vr(Y)) [[2]. (111)
ne 5r(a Bt — 51) %—% . . .
Observe that 5= tB L 57 L. And in particular, for the three subcases:
(1) Follmer process:
K3 2 =
nf? = zag(fﬁ;ﬂt)%g = 2@3(1330203
(TR, U . SRR S | S— |- (2
= Jo az @ = fo 2a2(1—a;)%02 fo 20212 (1—1)2
(ii) DDIM/DDPM:
ol A
JL/p— 2a¢ — Qi
BE T (1— at)200 T 2a.(1-a¢)%03 (113)
t 1 Qi _rl 1 —
= fO ar dt fO 2a:(1—a)%02 dt = fO 2t(1—¢)202 dt = +o0
(iii) Rectified Flow:
1—ay)dpol . .
o % _ (-an&ol _ &0
ﬁf (175&)4 &t(l 5(04 &t(]_,at)S (114)
ata 1 o2
= fo #r dt fo a(1— a,)S = fo t(1—0t)3 dt = +o0
Novel Score Matching And for Novel Score Matching, we have that
1~/ a(V lo, ase(Y)+Vr(Y)—(Xi—ar Y
EYdiataaXt:atY“ﬁgtE [% fO ||S(Xt’ t) - ( i (1%2-[3?( E ( ) “2(27%) dt]
(X t)— ke X V1 ase V)V (Y))—(Xi—a Y
= EYdiata,)?t:atY+ﬁts[§ fo va ( fzgt ke Xt s (V1ogprase( ifﬂa,?( ) —(Xe—ae )||2(277t) dt}
1 - > 20 (@6 (V 10g phase (Y)+Vr(Y))— (Xt —arY)
= EYdiata7Xt=atY+/8t5 [% fO vat(Xt7 t) — h Xy — t( f - ai+p? — ) HQQ}B dt]
1 o o 2n¢ at(v log p ase(Y)JFvT(Y))_(Xt_a Y)
= EYdiata7Xt:atY+6t5 [% fO HU&(XtV t) - E[HtXt + ( - 0‘?4‘6? t ) |X ] H22717t dt]
1 o 20 (@e(V10g Pase (V) +Vr(Y) = (Xi—aiY)) | &
+ EYNPdata,Xt:OttY+5t€ [% fO ||E[K:tXt + ( - (X?"FB? ) ‘Xt]
o 200 (@ (V10g prase (V) + V7 (¥Y)— (X~ )
- (K;tXt + a%+5t2 )”2 27” dt]

(115)
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The second term in the right-hand side of (TT3) (the variance term) can be simplified to

20t (@t (V10g phase (Y)+Vr(Y))+a:Y ) | &
EYNPdata»Xt:&tY+ﬂt5[ fO ||E|: ( : ai+p7 )|Xt]
21 (0 (V108 Phase (V) +Vr (Y)) +auY ) | 19
- ( Q157 )H 2n; dt]
— (116)
= EYNPda:th:aterﬁtE[ 0 o;-i-ﬂz ”E[v 1ngbase( ) + VT(Y) + Y|Xt]
— (V1og poase(Y) + Vr(Y) + Y)|? dt]
1 Oy
< sz At X Ey npua [IV 108 phase (V) + Vr(Y) + Y?].
And in particular, for the three subcases:
(i) Follmer process:
o? &taz a? (itcrz&t oimjdt
Zttzz O—z—tf— 7 = 350G Oy = Pl g2
ai+P7 2 4+ai(1—ag)od 2(ai+(1—ae)og) 2(0’0+(1 og)ar)
1 ntat Gola
= 0 aerBz fO 2( 0'(2,+ 1001 )t fO 2( 2+ 1 o ) ) de (117)
0_2 4
_ fu—ocr%) M= log(%) ifoo # 1,
i if gg — 1.
(i1) DDIM/DDPM:
neag (;t;to d — G104
a2+pB2 T art+(l—ar)o? T 2(at+(1f)at)ag) (118)
2
1 nta? o rl G0l 2 070_ log(O'O) ifO'() 7é 17
= o ¥ A=y syt cen 4 = Jo swrtaen 4t = {1 o ifoo =1
3 =1.
(119)
(iii) Rectified Flow:
5 (1—&y)égod 2 s - 9
NeQy ay _ (A-ayararog (120)
af+B; T ai+py aitp?
1 na? 1 (1—&)&rasos 1 (1-t)tald o2 (m—2)
— 0 0‘%“"5(2 dt f Wdt 0 t2+(1 t) dt 1 (121)

C PROOFS FOR THE THERMODYNAMICS-BASED METHODS

C.1 PRrROOF OF[PROP. 4.1 CMCD FOR EXPONENTIAL TILTING

We apply [Prop. A.1| with T = 1, and the choices Ty = N(0,82), T1 = p’*°, u o

base

N (0, B31) exp(ro), v o< p*®¢exp(ry), and

Vi (x) = by (z,t) = ke + (”(5)2 + nt)st( ), (122)
vy (2) = by (z,t) — o (t)?s4(2) = Ky + ( a(t) + nt) +(x), (123)
ay(z) = Kyx + (U(;)z +

) (se(2) + Vre(z)) + v(z, t) a24)

m
= (@) + (2 ) V() + vz, 1),
be(x) = ar(x) — o () (s¢(x) + Vri(z))
:mtx—i—( U(t) +77t)( (x )+V7“t($))+v(x,t) (125)
=7 (@) + (- 7 e + ) V(@) + v(z, 1),
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Observe that when Y™ solves (17t = a(Yy) dt+o(t) (W, it also solves dY; = a;(Y;) dt+o(t) th
because o does not depend on the position. When Y solves these SDEs, [Prop. A.T]implies that
log %( ) = r0(Yo) —log Enro,gzr) [exp(ro)] — (r1(Y1) — 1og Epppace [exp(r1)])
+ Jy o (6)2((Z5 + ) Ve (Y0) + (Y ),
ay(Yy) dt + o(t) W, — 3 (@ +7) (V) dt)
— Jy oO72(( = 245 + ) Vra(¥) + v (Y1),
ar(Ye) dt + o(t) T, — & (b, + 7)) (V) dt)
= 19(Yo) — log Exr(0,p21)[€xp(r0)] — (r1 (Y1) — log Epase [exp(r1)]) (126)
Sy o7 m) V() + (V)
(

(P85 + ) Vri(Ya) + 0(Yi. 1) dt + o(t) AT,
_|_

— fy o) 2((~ T 1 ) Vri(Yy) +u(Yi, 1),
L((= 292 10U (Y) + v(Yi, 1)) dt + o(t) IW,
+o(t)? (st(Yt) +Vr(Yy)) dt),

where the last equality holds because

Lay(@) =7/ () = L (22 4 0)) Vri(2) + o(a, 1)) (127)

and

ay(x) = 5(be(2) — 7 (@) = 5(be(2) — 77 (2)) + (1) (se(2) + Vre(2))
(®)

= 1((= 292 4 ) Vry(2) + v(z, 1)) + 0 () (s5:(2) + Vri(z). (129
The right-hand side of (126) can be further simplified into
log dﬁ%(i’) =ro(Yy) — log Enr(o,821) [exp(ro)] — (7‘1 (Y1) — log Eppase [exp(rl)])
+y |~ 008, 51 (YD) + (245 = m) (Vra(¥2), s(¥0)) + 245 [ Vr(v0)]12] at
+ fo { (Y, t) + eV (Ye), CW v(Ye, ) +m:Vr(Yy), mﬁ) )
2O ((Try(V;), dW,) + (Vry(Yi), Xmﬂ)].
To obtain this simpliﬁcation it is convenient to define w(Y:,t) := wv(Y:,t) + n:Vri(Y:) and

wh(z,t) == w(z,t) + U(t) Vri(Yz), w(z,t) := w(a,t) — %t)ert(Yt), which means that we
can rewrite the right-hand Side of @ as

fl o(t)"*(wt, twtdt + ot (W>

0

130
— [l o) 2w, tw~dt + o(t £) AW + o () (5¢(Yr) 4+ V(Y1) dt). (30

Equation (T29) then follows from manipulating this expression.

To conclude the proof, we plug equation (129) into the definition of the KL and log-variance CMCD
losses:

Lxr-cmep(v) =Ky, 2,0 [log %(YU)]
1 v v a(t)? v v a(t)? v
~Eyo Frer | Jo (— (WO, 1), (V) + (TG = me) (Vre(V0), s (V) + 28 [V (¥V)|?) dt

- fo (Y1) + (e — %t)z)VTt(th), m> — r(Yf’)} + const.,

(131)
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where we write YV := Y and a” := a to make the dependency of a on v explicit. And
Lyar—cmep(v) = Vary,, 2, .0 {log ﬁ%(yv)}
= Vary,, .. |:’I’0(YOU) — log Enr(o,p21) [exp(ro)] — (rl(Yf’) — log Epbase [exp(rl)])
o [ 000, s () + (295 = ) (Tr(V2), oY) + 255 [T (v) 2] at
+Jy [ T8 + (V) AW = (VP 8) + V() W)
( (Vr (Y, CW (Vr (Y, m )H

(132)

Observe that the terms — log E (9, g21) [exp(r0)] and log E vase [exp(r1 )] are unknown constants that
can be removed, because they appear inside of the divergence. This yields the final expression of
the log-variance CMCD loss.

C.2 PROOF OF[PROP. 4.2k CROOKS FLUCTUATION THEOREM FOR EXPONENTIAL TILTING

We use the notation of [App. C.1] We apply [Prop. A.T| with the same choices as in[App. C.1} but in

this case we leave the expression explicitly in terms of d_Yi and dY;, without assuming that Y; solves
any particular SDE. The expression reads:

log %( ) =10(Yp) — log EMW&I) [exp(ro)] — (r1 (Y1) — log Eppase [exp(rl)])
+ fy o (6) (L 1) Vi (V) + 0(Ye t),
4Y; = (se¥s + (T4 + ) (51 (¥0) + 3Vr() + Jo(i, 1) dt)
— Jo o= ZE 4 ) Vr(Ye) + v(Y, 1),

Y, — (koY (= 295 4 me) (5e(¥2) + S V(YD) + Bo (Y, 1)) dt).
(133)

This can be simplified to:

log %( ) =ro(Yp) — log E/\/(o,,ﬁgl) [exp(ro)] — (rl(Yl) —log E pase [exp(rl)])

+ Jy o2 Vry(¥3) + 0¥ t), Yy = ) + 1 i (Vre(¥)), dY; + ;)
— Ji (Yo Fro(Y0) + (0(¥is 1), 50(Y0) + Tre(¥0))
+ 20 (V' (Y2), 5 (Y0)) + il Ve (V3)]2)
(134)
Applying (I38) and (139), we obtain that
Jy o) (me Vr(¥e) + 0(Vi, ) ), dY) — T> — [ (e A (V) + V- u(Yi, 1) i, (135)

0
Lo (Vr(v), @+ A% ) = n (V) = ro(¥o) = [y dnu(Ve) b, (136)
and plugging these into the right-hand side of (I37) concludes the proof:

dBH ”( )

log T —log EN(O,B@D lexp(r0)] 4 log E pase [exp(r1)]

— Jo ({eYe+ 2ms(¥0), Tro(¥2)) + (0(¥ist), 51(¥5) + Vru(Yo)) + 0ure(Y3)
+ | Vre(Y) |12 + 1 Ary(Yy) + V- 0(Ys, t)) at.
(137)
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Lemma C.1. Suppose that Y satisfies the SDE d?t = ay(Y;) dt+o(t) AW, and that w, : R? — R?
is differentiable and that r, : R® — R? twice-differentiable with respect to the position variable and
differentiable with respect to the time variable. We have that

FE (Y2, 5) — [T (wn(V2), dYs) = 2V - wy (V) dt, (138)
and
ST (V), %) + [TV (%), dYs) = 2 [T Vry(Y) o Y,

(139)
=2(rr(Yr) —10(Yo) fo Oyre(Yy) dt),

Proof. We have that
T (%), 355 — [T (wi(¥), dYs) = Ylr, (140)
where [w(Y"), Y]; denotes the quadratic variation. Since by It6’s lemma,

H)(Wt(yt)) = (8twt(yt) + Vwr (Vo) T au(Ye) + 5 0(t)° Awt(yi)) dt + o (t) Ve (Vo) T VW7,

(141)
we have that
W), Y]r = [y o(t)? V- wi(Yy) dt (142)
The first equality in (T39) holds by the fact that
Jo (%), 8% + J) (9 (), d%2) 1)
= T o Yoy (Vrne s, (Viy) = Ve, (Vi ), Yiesr — Yi) 1= 2 [ Vre(Yi) 0 dY,
where 1 = (t3)F_, with 0 = g < --- < tx = T and |7| = maxy—o.x—1 |tx+1 — L/, and the
second equality holds by It6’s lemma in the Stratonovich formulation.
C.3 PROOF OF[PROP. 4.4} NETS FOR EXPONENTIAL TILTING
We use the notation of [App. C.1|and[App. C.2| Define
Fy = log B, ppase [exp(re(2))]- (144)

Since log E vase [exp(r1)] —log E (o g21) [exp(ro)] = Fi—Fo = fol O Fy dt, we can rewrite equation

{137 as
log 4E22(v) = — [ ((mes + 20su(¥2), Vro(¥2)) + (0¥, 1), 50(Y2) + Vre(¥0)) + Oure(¥0)

IV (Vo) |2 4 e Ara(Ye) + V- v(¥i, 1) — 0, ) dt
(145)

Thus, for an arbitrary process Y, using Jensen’s inequality
E[log 2 (v)?] =E[(( i (¥t 2msu(¥2), Vra(Vo)+ (0(¥e, 1), 5(Ye) +Vre(¥2))
FOr (V) (Y 2 4 Ar(V) 4V - u(¥i, 1)~ ) dt) |
<E[ fy ((keYit2mse(Yh), Vre(Y)+(u(Yi, £), 50(Y0) +9re(¥0)

2
+0yre (Ye) +0e | Vre (Vo) |2+ AT‘t(Yt)+V'U(Yt’t)*atFt) dt]’
(146)
and the right-hand side is the PINN (physics informed neural network) NETS loss for exponential
tilting.
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We provide an alternative derivation. The Fokker-Planck equation corresponding to the process X"
defined in (13) is:

0ipr + V- ((by +0)pr) = 5V - Vg (147)
We rewrite 0], as follows:
b (2, t) = kew + (ZE- + ) (se(2) + Vre(2))
= ki + e (8¢ () + Vre(z)) + %t)Q (se(z) + Vre(a)) (148)

~ 2
= (2,t) + 2 (s0(2) + Vre(@)).
Thus, equation (T47) becomes

~ 2
6tpt + V- ((br + U)pt) = %V . (( — 5 — Vrt)pt + th) (149)
Now we want pF oc pPa¢ exp(r;) to fulfill this PDE. We write explicitly
base 2) exp(re(z ~
pi(x) = L ELowe@) - f — | exp(re(y))]. (150)

Since V - (( — s; — Vr¢) pf + Vp;) = 0 by construction, we must enforce
0=20ipf + V- ((b" +v)p})
base (1) exp (7 (4 Ir r K\ ok
= 0y (L)) L7 (5 4 v)pf + (B + v, Vlog pf )} (151)
= 9y (log ph»® + ry — log Fy) pf + V- (b7 + v)pf + (0" + v, 5 + Vre) pf.

Since pp* satisfies 0 = 0, pp*® + V - (ke + 1mi8¢) pp™©) = Oypp™© + V - ((l;r — 0 Vry) ppese),
we obtain that

O log phase = —V . (5’ — mVn) — (5’ — V7, 5¢). (152)

Plugging this into the right-hand side of (T31)) and using that log F, = F, with F, defined in (T449)
yields
0=-V- (l;" —nVry) — (0" — V1, 80) + Oy — O F, + V- (b 4+ 0) + (0" + 0,5, + Vry)
=V (v+nVry) + 0y — O F, + (v,8, + Vry)
— (K@ + M5y, 8¢) + (K + e (8¢ + Vi), 8¢ + Vi)
=V (v+nVry) + 0y — O F, + (v,8, + Vry)
— (K + e, 6¢) + (Rew + me (50 + V), 8¢ + Vry)

=V (’U + ntVrt) + atrt — 8tFt + <U,5t + Vrt> + <:‘<Ctl’ + 277155157 VTt> + 77t||Vrt||2
(153)

Thus, for p;} to satisfy the FPE (147)), which means that is the law of the marginal X}, we need v to
satisfy (I53). Observe that the terms in the right-hand side of (I33) match one to one the terms in
the right-hand side of (T46). Hence, the NETS loss can be interpreted as a PINN loss on the residual

of (T33).
D ADDITIONAL EXPERIMENTS

D.1 DERIVATION OF THE GENERATIVE SDE WITH DIFFERENT INITIAL VARIANCE 03

Consider Rectified Flow with o(t) = yn; for some v > 0, and with two different choices for the
initial variance: o2 and 535. We have that

b, 1) = mex + (1 +)mes(a, 1) = Srg 4 VO8G0, ) (154)

ba,t) = R + (L+)iid(x, 1) = Seg 4 TNA_008T05, ) (155)

[e%3
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where s and 5 are the scores corresponding to o and G2, respectively. Next, we apply Corollary
to relate s and 5. Defining

_— i _ &0(1—ar)+oodnr
tr) = o GrrstSimer ), 8 = Tl (156)
we have that
a5 = Ty Slar) = ds(a/se t(r), (157)
and
7 &, 14+79)(1—a, )&, 62 &, 14+9)(1—a,)&,.62 Gt (r Gy
b(z,r) =%z + ( W)(&Tsar )2 20s(E,t(r)) =52 + ( 7)(0—“1 e (17atit)()g)yt(r)gg (”(ivf(r))*g%;i)
(158)
_ Gy Gr5q 1+ A(ry _ &y &, (14)& Gtry
- %TQH_ OLSTO &t(r)A;o (U(i’ t(?“))— @:(r) i) - %7‘ 07(:(” 50(1—@r)+(;o@7~ (U(Sir’ t(’l“)) o @:(r) i)
(159)
_ &, Go(1+7) = (1 1+ 5
- oi(j(r) 50(1—0&7~)+00&rv(£’t(71)) + Ozr(a - &t(j) (6’0(1—22?—?-00&02) (160)
_ Gy Go(1+7) &y Go(1+7)
= Fuy mlicanteea VG ) + 3 (1 mna )3 oes,) (161)

where the second equality holds because s(x,t) = (1—05#03 (v(z,t) — g—:x), the third equality
holds because of the first equality in (T37), the fourth and fifth equalities hold because of the second
equality in (T36), and the sixth equality holds because &&—i” 55025 To0a, and the seventh
equality holds by simplifying. And if we want to run inference with a different noise schedule o (t),
we have that

018 020 022 024

026 028 030 032 034

DreamSim Var

018 020 022 024 026 028 030 032 034

DreamSim Var

_7 c®)? | ~\z
bo(z,7) = b(x,r) + (T5- + i) 5(, t). (162)
D.2 ADDITIONAL PLOTS
is the analog of with training 03 = 1.5.
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Figure 3: Quality metrics for the base Stable Diffusion 3 model and models fine-tuned at 03 = 1.5
and \ € {102,10°/2,103}, with inference at ) € {0, 1} and op = {1, 1.5}.
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