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ABSTRACT

We study the problem of training diffusion and flow generative models to sam-
ple from target distributions defined by an exponential tilting of the base den-
sity. This tasks subsumes sampling from unnormalized densities and reward fine-
tuning a pre-trained model, and can be approached from a stochastic optimal con-
trol (SOC) perspective and from a thermodynamics perspective. The SOC for-
mulation has been tackled using adjoint-based methods (Adjoint Matching and
Sampling), and score matching methods, while the thermodynamics formulation
has given rise to algorithms such as CMCD and NETS. Our contributions include
bounding the lean adjoint ODE underlying Adjoint Matching and Sampling, de-
riving bias–variance decompositions that allow a principled comparison between
adjoint-based and score-matching methods, adapting thermodynamic formula-
tions to the exponential tilting setting, and text-to-image fine-tuning experiments.

1 INTRODUCTION

Recent advances in generative modeling have demonstrated the effectiveness of diffusion and flow
matching models for learning complex data distributions (Song et al., 2021; Ho et al., 2020; Lipman
et al., 2022; Albergo et al., 2023; Liu et al., 2023). In many applications, however, it is desirable
to tailor the generative process to favor certain qualities—either by sampling from an unnormalized
target distribution or by fine-tuning a pre-trained model with a reward function (Uehara et al., 2024;
Domingo-Enrich et al., 2025; Zhang & Chen, 2022; Holdijk et al., 2023). A natural way to address
these challenges is via exponential tilting, wherein a base density is modified to a target one by
reweighting with an exponential factor. This formulation not only unifies reward fine-tuning and
sampling from unnormalized distributions but also naturally lends itself to analysis using tools from
stochastic optimal control (SOC), partial differential equation (PDE) analysis, stochastic processes
and thermodynamics.

Motivated by the broad applications, such as text-to-image generation (Domingo-Enrich et al., 2025)
and protein design (Wang et al., 2025), a growing body of work has explored methods for fine-tuning
diffusion and flow models. Although the underlying problem structure aligns well with SOC, par-
ticularly when casting as controlling an SDE with a reward function, the key challenge is the bias
introduced by lifting the base process with an additional control. Uehara et al. (2024) proposed a
two-step strategy with an additional control to draw samples from the biased initial distribution. Ad-
joint matching (Domingo-Enrich et al., 2025) systematically analyzed this problem and introduced
memoryless noise schedules to solve this issue. More recently, reinforcement learning (RL)-based
approaches have also been introduced, e.g. GRPO (Liu et al., 2025b).

In a parallel literature, training diffusion and flow models to sample from unnormalized densities has
also been largely studied. Early work (Zhang & Chen, 2022; Vargas et al., 2023; Berner et al., 2022)
can be viewed as solving an SOC problem where the reward function is related to the unnormal-
ized density. Another branch of work (Phillips et al., 2024; Akhound-Sadegh et al., 2024) leveraged
the target score identity, which relates the score to the unnormalized target density and learns an
SDE to draw samples. The idea of adjoint matching has also been applied to this problem, together
with reciprocal projection for efficient off-policy training (Havens et al., 2025; Liu et al., 2025a).
More recently, Vargas et al. (2024) and Albergo & Vanden-Eijnden (2025) introduced a thermody-
namic formulation of this problem, extending the classical annealed importance sampling (AIS) and
Jarzynski equality perspective using path-space variational inference and PDE formulations.
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In this paper, we provide a unifying framework that formulates training diffusion and flow models
to sample from an exponentially tilted target distribution, which covers reward-based fine-tuning of
a pretrained model, as well as sampling from unnormalized densities. Our main contributions are
as follows: (i) we bound the norm of the lean adjoint ODE for Adjoint Matching and Sampling
(AM/AS), supporting the empirical performance of the algorithms; (ii) we derive bias-variance de-
compositions for adjoint-based and score matching algorithms to compare the algorithms on equal
footing, under which AM/AS and Novel Score Matching (NSM, Phillips et al. (2024)) perform
favorably; (iii) we adapt the thermodynamic framework of Vargas et al. (2024) and Albergo &
Vanden-Eijnden (2025) to the exponential tilting problem which yields analogs of the Controlled
Monte Carlo Diffusions (CMCD) and Non-Equilibrium Transport Sampler (NETS) loss functions,
as well as novel variants of the celebrated Crooks fluctuation theorem and Jarzynski equality. Fi-
nally, we perform reward-based fine-tuning experiments on Stable Diffusion 1.5 and 3 using Adjoint
Matching, refining the techniques of Domingo-Enrich et al. (2025).

2 BACKGROUND

2.1 FLOW MATCHING, DDIM AND FÖLLMER PROCESSES

Flow Matching or Stochastic Interpolants Given a real-valued differentiable function (αt)t∈[0,1]
such that α0 = 0, α1 = 1, and a real-valued differentiable function (βt)t∈[0,1] such that β1 = 0, the
reference flow or stochastic interpolant X̄ is defined as

X̄t = αtY + βtε, (1)

where ε ∼ p0 = N (0, I), Y ∼ pdata. If we let

κt =
α̇t

αt
, ηt = βt

(
α̇t

αt
βt − β̇t

)
, (2)

the Flow Matching reference SDE, whose solution has the same time marginals as the reference flow
up to a time flip, is

dX̃t = −κ1−tX̃t dt+
√
2η1−t dBt, X̃0 ∼ pdata. (3)

That is, for all t ∈ [0, 1], X⃗t and X̄1−t have the same distribution. And the optimal generative SDE
reads

dXt =
(
κtXt +

(σ(t)2

2 + ηt
)
st(Xt)

)
dt+ σ(t) dBt, X0 ∼ N (0, β2

0I), (4)

where st is the score function of the reference process: st(x) = ∇ log pt(x), and the noise schedule
σ is arbitrary. For any σ, the marginals Xt also have the same distribution as the reference flow
marginals X̄t. Setting σ(t) =

√
2ηt yields the memoryless process, which is the time reversal of the

process in (3):

dXt =
(
κtXt + 2ηtst(Xt)

)
dt+

√
2ηt dBt, X0 ∼ N (0, β2

0I). (5)

Remark 2.1. Although the drift terms in (4) and (5) are written in terms of the score to facilitate
the analysis, in Flow Matching the vector field that is learned is vt(x) = κtXt + ηtst(x), and in
DDIM it is often the denoiser ϵt(x) = −βtst(x). These vector fields encode the same information,
and the drifts can be written in terms of any of them.

Subcases of Flow Matching The following processes are particular instances of flow matching:

(i) Föllmer process: Given an increasing function ᾱt such that ᾱ0 = 0 and ᾱ1 = 1, and a
constant σ2

0 > 0, the interpolant X̄ and the coefficients αt, βt, κt and ηt read

X̄t = ᾱtY +
√
ᾱt(1− ᾱt)σ0ε =⇒ αt = ᾱt, βt =

√
ᾱt(1− ᾱt)σ0,

α̇t = ˙̄αt, β̇t =
(1−2ᾱt) ˙̄αt

2
√

ᾱt(1−ᾱt)
σ2
0 , =⇒ κt =

˙̄αt

ᾱt
, ηt =

˙̄αtσ
2
0

2 .
(6)

(ii) DDIM/DDPM: Given an increasing function ᾱt such that ᾱ0 = 0 and ᾱ1 = 1, and a constant
σ2
0 > 0, the interpolants and coefficients αt, βt, κt and ηt read

X̄t =
√
ᾱtY +

√
1− ᾱtσ0ε =⇒ αt =

√
ᾱt, βt =

√
1− ᾱtσ0,

α̇t =
˙̄αt

2
√
ᾱt
, β̇t = − ˙̄αt

2
√
1−ᾱt

σ0, =⇒ κt =
˙̄αt

2ᾱt
, ηt =

˙̄αtσ
2
0

2ᾱt
.

(7)
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(iii) Rectified Flow (OT Flow Matching): Given an increasing function ᾱt such that ᾱ0 = 0 and
ᾱ1 = 1, and a constant σ2

0 > 0, the interpolant X̄ and the coefficients αt, βt, κt and ηt read

X̄t = ᾱtY + (1− ᾱt)σ0ε =⇒ αt = ᾱt, βt = (1− ᾱt)σ0.

α̇t = ˙̄αt, β̇t = − ˙̄αt, =⇒ κt =
˙̄αt

ᾱt
, ηt =

(1−ᾱt) ˙̄αtσ
2
0

ᾱt
.

(8)

2.2 EXPONENTIAL TILTING AND ITS CONTROL AND THERMODYNAMIC FORMULATIONS

The exponential tilting problem Given a Flow Matching model that generates a distribution pbase
over Rd and a function r : Rd → R, consider the task of modifying the model such that the generated
distribution is the following tilted distribution:

p⋆(x) ∝ pbase(x) exp(r(x)). (9)

Two main settings are covered by the exponential tilting framework:

(i) Reward fine-tuning: pbase is the distribution generated by a pre-trained diffusion or flow
matching model, and r is a reward model that takes high values for high quality samples.

(ii) Sampling from unnormalized distributions: The goal is to sample from the unnormalized
distribution proportional to p⋆(x) = exp(−E(x)), where E is the energy function. pbase is a
Gaussian N (0, σ2

1I), and the reward r is chosen to be r(x) = −E(x) + ∥x∥
2

2σ2
1

.

While the Föllmer process is typically used for sampling (e.g. Havens et al. (2025)), and DDIM and
OT Flow Matching are commonly used for generative modeling, the choice of process is independent
of the application.

The stochastic optimal control formulation Domingo-Enrich et al. (2025) proves that the ex-
ponential tilting problem can be reformulated as the following stochastic optimal control (SOC)
problem:1

min
u∈U

E
[
1
2

∫ 1

0
∥u(Xu

t , t)∥2 dt+ g(Xu
1 )
]
, (10)

s.t. dXu
t = (bσ(X

u
t , t) + σ(t)u(Xu

t , t)) dt+ σ(t)dBt, Xu
0 ∼ p0 = N (0, β2

0I), (11)

where bσ(x, t) = κtx+
(σ(t)2

2 + ηt
)
st(x), (12)

as long as the uncontrolled process X = X0 satisfies the memoryless property, meaning that X0

and X1 are statistically independent. (Domingo-Enrich et al., 2025, Prop. 1) shows that a generative
process is memoryless if and only if the noise schedule is chosen as σ(t)2 = 2ηt + χ(t), with
χ : [0, 1]→ R such that for all t ∈ (0, 1], limt′→0+ αt′ exp

(
−

∫ t

t′
χ(s)
2β2

s
ds

)
= 0. In particular, they

refer to σ(t) =
√
2ηt as the memoryless noise schedule, as it is the only one such that the resulting

fine-tuned model can be used to perform inference with an arbitrary noise schedule (Domingo-
Enrich et al., 2025, Thm. 1).

The thermodynamics formulation Methods like CMCD (Vargas et al., 2024) and NETS (Al-
bergo & Vanden-Eijnden, 2025) were developed in a setting where one has access to a time-
dependent energy function (Ut)t∈[0,1], instead of a flow matching vector field that generates pbase
and a time-dependent reward function (rt)t∈[0,1]. That is, their goal is to learn a vector field
that yields a process with marginals p⋆t (x) ∝ exp(−Ut(x)). This is different but related to the
task of learning a vector field that yields a process with marginals p⋆t (x) ∝ pbaset (x) exp(rt(x)),
which solves the exponential tilting problem (9) if (rt)t∈[0,1] is chosen such that r1 = r and
p⋆0 ∝ N (0, β2

0) exp(r0) is easy to sample from. More specifically, we consider processes Xv of
the form

dXv
t = (brσ(X

v
t , t) + v(Xv

t , t)) dt+ σ(t)dBt,

{
Xv

0 ∼ p⋆0 ∝ N (0, β2
0I) exp(r0),

brσ(x, t) :=κtx+
(σ(t)2

2 +ηt
)(
st(x)+∇rt(x)

)
.

(13)

1In (12), st is the score function corresponding to pbase. In practice, bσ is computed using the learned FM
vector field or denoiser (Rem. 2.1).
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and our goal is to learn a v⋆ such that the marginal distribution of Xv⋆

t is p⋆t (x) ∝
pbaset (x) exp(rt(x)). Unlike in the SOC formulation, in the thermodynamics formulation the noise
schedule σ(t) can be picked arbitrarily.

3 STOCHASTIC OPTIMAL CONTROL ALGORITHMS AND ANALYSIS

3.1 ADJOINT-BASED METHODS

Adjoint Matching Adjoint Matching (AM) is a SOC deep learning loss introduced by Domingo-
Enrich et al. (2025). For the exponential tilting problem with scalar σ, it takes the following form:

LAdj−Match(u;X
ū) := 1

2

∫ 1

0

∥∥u(X ū
t , t) + σ(t)ã(t;X ū)

∥∥2 dt, ū = stopgrad(u), (14)

where d
dt ã(t;X

ū) = −∇xbσ(X
ū
t , t)

⊤ã(t;X ū), (15)

ã(1;X ū) = −∇xr(X
ū
1 ). (16)

Domingo-Enrich et al. (2025) refer to the ODE (15)-(16) as the lean adjoint ODE. They show that
if u is a critical point of the expected loss LAdj−Match(u) := E[LAdj−Match(u;X

ū)] that is, if
δ
δuLAdj−Match(u) ≡ 0, then u is the optimal control u⋆.

Adjoint Sampling Adjoint Sampling was introduced by Havens et al. (2025) as a procedure based
on Adjoint Matching to sample from unnormalized densities, with improved efficiency. When pbase
is a GaussianN (0, σ2

1I), we have that X̄t ∼ N (0, (α2
tσ

2
1+β

2
t )I), which means that b(x, t) defined in

(12) is a linear function of x: bσ(x, t) =
(
κt − σ(t)2+2ηt

2(α2
tσ

2
1+β2

t )

)
x := χtx. Hence, the adjoint ODE (15)

needs not be solved as it admits a closed form solution: ã(t;X ū) = − exp
( ∫ 1

t
χs ds

)
∇xr(X

ū
1 ).

To obtain a further speed-up, in Adjoint Sampling the loss is not evaluated at intermediate points of
the trajectory X ū, but rather at points X̄ ū

t = αtX
ū
1 + βtε obtained by noising the final iterate X ū

1 :

LAdj−Sampl(u) := EX̄ū
t =αtXū

1 +βtε

[
1
2

∫ 1

0

∥∥u(X̄ ū
t , t)−exp

( ∫ 1

t
χs ds

)
σ(t)∇xr(X

ū
1 )
∥∥2 dt] (17)

Each rollout X ū
1 can be noised multiple times, which yields an algorithm which is much more

efficient than AM, even though it is more restrictive because it only works for sampling.

The behavior of Adjoint Matching and Sampling depeds heavily on the norm of the solution to the
lean adjoint ODE. In the following proposition we bound the norm of ã(t;X ū) under convexity
assumptions on pbase.
Proposition 3.1 (Norm of the lean adjoint state). Let ã(t,Xu) be the solution of the lean adjoint
ODE (15)-(16) with memoryless schedule σ(t) =

√
2ηt. Assume there exists σ2

1 > 0 such that the
density pbase is 1

σ2
1

-strongly log-concave, i.e. −∇2 log pbase(x) ⪰ 1
σ2
1
I. Let χt := κt − 2ηt

β2
t+α2

tσ
2
1

.
For all t ∈ [0, 1], we have that

∥ã(t,Xu)∥ ≤ exp
( ∫ 1

t
χs ds

)
∥∇xr(X

u
1 )∥. (18)

In particular, (i) for the Föllmer schedule, exp
( ∫ 1

t
χs ds

)
=

σ2
1

(1−ᾱt)σ2
0+ᾱtσ2

1
, (i) for DDPM/DDIM,

exp
( ∫ 1

t
χs ds

)
=

σ2
1

√
ᾱt

(1−ᾱt)σ2
0+ᾱtσ2

1
, and (i) for DDPM/DDIM, exp

( ∫ 1

t
χs ds

)
= ᾱt

(1−ᾱt)2+ᾱ2
t

.

Moreover, when pbase = N (0, σ2
1I) as in Adjoint Sampling, equation (18) holds with equality.

The proof of Prop. 3.1 in App. B.1 relies on bounding the spectrum of Sym(∇bσ), which is con-
nected to the spectrum of ∇2 log pbase. While strong convexity of pbase is a strong condition in
the fine-tuning case, since spectra are local properties, as long as the trajectory X ū spends most of
the time t ∈ [0, 1] in regions where pbaset is locally strongly log-concave (basins of pbaset ), the norm
∥ã(t,X ū)∥will decay accordingly. This explains the norm decay and consequent good performance
of the algorithm in realistic settings (Sec. 5).

3.2 SCORE MATCHING METHODS

In what follows, we include a review of existing score-based generative modeling methods (see
derivations in App. B.2). These methods are designed to learn arbitrary distributions pdata; and all
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require having access to samples from pdata as well as the noiseless score ∇ log pdata, except for
Conditional Score Matching, which only relies on samples from pdata. These loss functions follow
from these three identities involving the score function of the distribution of X̄t (see Thm. A.1):

Conditional score identity: ∇ log pt(x) = −
∫
Rd (x−αty)N (x;αty,β

2
t I) pdata(y) dy

β2
t

∫
Rd N (x;αty,β2

t I) pdata(y) dy
, (CSI)

Target score identity: ∇ log pt(x) =
∫
Rd ∇ log pdata(y)N (x;αty,β

2
t I)pdata(y) dy

αt

∫
Rd N (x;αty,β2

t I)pdata(y) dy
. (TSI)

Novel score identity: ∇ log pt(x) =
∫
Rd (αt∇ log pdata(y)−(x−αty))N (x;αty,β

2
t I) pdata(y) dy

(α2
t+β2

t )
∫
Rd N (x;αty,β2

t I) pdata(y) dy
(NSI)

Observe that (NSI) follows from summing α2
t /(α

2
t +β

2
t ) times (TSI) and β2

t /(α
2
t +β

2
t ) times (CSI).

Target Score Matching The Target Score Matching loss was proposed by (Bortoli et al., 2024),
and is a consequence of the target score identity (TSI), and the fact that when pdata is the tilted
distribution (9), its score is∇ log pdata = ∇ log pbase +∇r(x). The loss function reads

LTSM(ŝ)=E Y∼pdata,
X̄t=αtY+βtε

[ ∫ 1

0
∥ŝ(X̄t, t)− 1

αt

(
∇ log pbase(Y )+∇r(Y )

)
∥2w(X̄t, t) dt

]
, (19)

where w : Rd × [0, 1]→ (0,+∞) is an arbitrary weight function.

Conditional Score Matching The well-known Conditional Score Matching loss was used by the
foundational works on diffusion models (Ho et al., 2020; Song & Ermon, 2019), and can be derived
from the conditional score identity (CSI) analogously to the Target Score Matching loss. In our
notation, the loss reads

LCSM(ŝ) = E Y∼pdata,
X̄t=αtY+βtε

[ ∫ 1

0
∥ŝ(X̄t, t)− X̄t+αtY

β2
t
∥2w(X̄t, t) dt

]
, (20)

where w is an arbitrary weight function as in equation (91).

Novel Score Matching The novel score matching loss was introduced by Phillips et al. (2024),
and can be derived from the novel score identity (NSI) analogously to the Target Score Matching
loss. The loss function reads:

LNSM(ŝ)=E Y∼pdata,
X̄t=αtY+βtε

[ ∫ 1

0
∥ŝ(X̄t, t)− αt(∇ log pbase(Y )+∇r(Y ))−(X̄t−αtY )

α2
t+β2

t
∥2w(X̄t, t) dt

]
. (21)

Iterated Denoising Energy Matching A fourth loss function which assumes access to the density
pdata and thus can only be used for sampling is the iDEM loss (Akhound-Sadegh et al., 2024),
defined as

LiDEM(ŝ)=E Y∼pdata,
X̄t=αtY+βtε,
(εi)

n
i=1∼N (0,I)

[ ∫ 1

0
∥ŝ(X̄t, t)− 1

αt

∑n
i=1∇ log pdata(

X̄t−βtεi
αt

)pdata(
X̄t−βtεi

αt
)∑n

i=1 pdata(
X̄t−βtεi

αt
)

∥2 dt
]
. (22)

It can be viewed as a biased approximation of the quantity

EY∼pdata,X̄t=αtY+βtε

[ ∫ 1

0
∥ŝ(X̄t, t)− E

[
1
αt

(
∇ log pbase(Y ) +∇r(Y )

)
| X̄t

]
∥2 dt

]
, (23)

which is equal to the bias term of the Target Score Matching loss (19) (see (25)).

Solving the exponential tilting problem with score-based methods Naturally, the score-based
methods presented above can also be used to sample from the tilted distribution pdata(x) ∝
pbase(x) exp(r(x)) provided that we have samples from this distribution, which may be obtained
e.g. using SMC methods (Phillips et al., 2024). In practice, the score-based methods that make
explicit use of the score ∇ log pdata = ∇ log pbase(x) +∇r(x) can be used even when we initially
are only able to sample from pbase, as it is expected that if we keep on sampling using the learned
model, the generated distribution will converge to the tilted distribution. In fact, some methods
such as iDEM are introduced to work on-policy in this fashion. However, there are no theoretical
guarantees that the on-policy versions of these algorithms converge to the tilted distribution.
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3.3 ALGORITHM COMPARISON THROUGH BIAS-VARIANCE DECOMPOSITIONS

In this section, we show that all the loss functions presented in Sec. 3 can be written as the sum
of a KL divergence term between a learned process and an optimal process (the bias term), and a
positive term that has no contribution to the expected gradient (the variance term). To compare all
algorithms on an equal footing, we write the learned fine-tuned generative SDE with memoryless
schedule σ(t) =

√
2ηt, i.e. dXt = vft(Xt, t) dt +

√
2ηt dBt, with X0 ∼ N (0, σ2

0I). We set the
importance weights of each loss function such that it takes the form:

L(vft) = E
[
1
2

∫ 1

0

∥∥vft(Xt, t)− ξ(t,X)
∥∥2 1

2ηt
dt
]
, (24)

where the process X and the vector field ξ depend on the specific algorithm (see Prop. 3.2 and
Prop. 3.3). Observe that this general loss can be further rewritten as

L(vft) = E
[ ∫ 1

0

∥∥vft(Xt, t)− E[ξ(t,X)|Xt]
∥∥2 1

2ηt
dt
]︸ ︷︷ ︸

Bias

+E
[ ∫ 1

0

∥∥ξ(t,X)− E[ξ(t,X)|Xt]
∥∥2 1

2ηt
dt
]︸ ︷︷ ︸

Variance

.

(25)

In certain instances, the bias term as the (forward or reverse) KL divergence between the path mea-
sures of the optimal and learned processes, through the Girsanov theorem. The variance term does
not contribute to the expected gradient, but it adds noise to the empirical gradient; it is desirable to
minimize its contribution.

Proposition 3.2 (Bias-variance decomposition for Adjoint Matching and Sampling). The Adjoint
Matching and Sampling loss functions in (14) and (17) fit the general form (24) by setting X =
X ū, X̄ ū resp., and identifying v(x, t)/

√
2ηt = u(x, t), ξ(t,X)/

√
2ηt =

√
2ηtã(t,X). Assume that

the density pbase is 1
σ2
1

-strongly log-concave, i.e. −∇2 log pbase(x) ⪰ 1
σ2
1
I. Then,

(i) The variance term in (25) admits the upper-bound σ2
1

2 EY∼pbase [∥∇xr(Y )∥2] for three sub-
cases of Flow Matching considered in Sec. 2.1.

(ii) If pbase = N (0, σ2
1I) as in AS, the variance term is σ2

1

2 Tr
(
CovY∼N (0,σ2

1I)
[∇xr(Y )]

)
.

(iii) If we consider the AM loss function in which the expectation is with respect to the optimal
process (4), then the bias term is equal to the KL divergence KL(P⋆||Pu) between the optimal
measure and the measure of Xu.

As we remark in Sec. 3.1, the strong convexity assumption on pbase is strong for the fine-tuning
case, but a similar behavior is expected to hold in general. Note the AM loss function with optimal
process expectation can be implemented via a Girsanov factor, and was first studied by (Domingo-
Enrich et al., 2024, App. C.4) under the name SOCM-Adjoint method. Next, we prove a similar
result for score matching methods.

Proposition 3.3 (Bias-variance decomposition for score matching methods). The Target, Condi-
tional and Novel Score Matching loss functions in (19), (20) and (21) fit the general form (24)
by setting X = X̄ (the reference flow) and weight function w(x, t) = ηt, identifying ŝ(x, t) =
vft(x,t)−κtx

2ηt
, and ξ(t,X) = κtX̄t+

2ηt

αt

(
∇ log pbase(Y )+∇r(Y )

)
, ξ(t,X) = κtX̄t− 2ηt(X̄t−αtY )

β2
t

,

and ξ(t,X) = κtX̄t +
2ηt

(
αt(∇ log pbase(Y )+∇r(Y ))−(X̄t−αtY )

)
α2

t+β2
t

, respectively. Moreover,

(i) For TSM and CSM, the variance term in (25) is infinite for the three subcases of Flow Match-
ing considered in Sec. 2.1.

(ii) For NSM, the variance term admits the bounds shown in Tab. 1 (the bounds have a removable
discontinuity at σ0 = 1).

(iii) For TSM, CSM and NSM, the bias term is equal to the KL divergence KL(P⋆||Pŝ) between
the optimal measure and the measure of X ŝ, the process induced by ŝ.

The reason that the variance term is infinite for TSM is that its integrand blows up at t = 0, and
for CSM it blows up both at t = 0 and t = 1. Surprisingly, NSM manages to avoid all blow-ups.
The infinite variance terms for TSM and CSM means that these methods cannot be run with weight
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w(x, t) = ηt, i.e. by optimizing the expected loss function KL(P⋆||Pŝ), as the noise would be in-
finite (up to numerical aspects). Of course, that does not preclude using different weight functions,
but those other weight functions will likely not yield a loss function with a probabilistic interpreta-
tion in terms of path measures like w(x, t) = ηt does. Lastly, iDEM has a similar behavior to TSM,
by the connection that we point out in (23).

Method Föllmer DDIM/DDPM Rectified Flow

AM/AS σ2
1

2 E
[
∥∇xr(Y )∥2

] σ2
1

2 E
[
∥∇xr(Y )∥2

] σ2
1

2 E
[
∥∇xr(Y )∥2

]
TSM +∞ +∞ +∞
CSM +∞ +∞ +∞

NSM
(

σ2
0

2(1−σ2
0)

+
σ4
0

2(1−σ2
0)2

log
(
σ2
0

))
×E

[
∥∇ log pbase(Y )+∇r(Y )+Y ∥2

] −
σ2
0

2(1−σ2
0)

log
(
σ2
0

)
×E

[
∥∇ log pbase(Y )+∇r(Y )+Y ∥2

] σ2
0(π−2)

4

×E
[
∥∇ log pbase(Y )+∇r(Y )+Y ∥2

]
iDEM +∞ +∞ +∞

Table 1: Comparison of the variance term bounds for each method.

4 THERMODYNAMICS-BASED ALGORITHMS AND ANALYSIS

In this section, we adapt the methods from (Vargas et al., 2024) and (Albergo & Vanden-Eijnden,
2025) to solve the thermodynamics formulation of the exponential tilting problem as described in
Sec. 2.2. Relying on similar tools, we also prove novel versions of the escorted Crooks fluctuation
theorem and the Jarzynski equality tailored to the exponential tilting dynamics.

For an arbitrary vector field v, let Xv be the solution of the SDE (13), and let ⃗Xv be the solution of

d ⃗Xv
t =

(
⃗brσ(

⃗Xv
t , t) + v( ⃗Xv

t , t)
)
dt+ σ(t)

←−−
dWt,

{
⃗Xv
0 ∼ p⋆1 ∝ pbase1 exp(r1),
⃗brσ(x, t) :=κtx+

(
ηt− σ(t)2

2

)(
st(x)+∇rt(x)

)
.

(26)

where
←−−
dWt denotes the backward Itô differential, i.e. ⃗Xv

t is the continuous-time limit of the
backward Euler-Maruyama update yℓ−1 = yℓ + ∆tγ−ℓ∆t(yℓ) +

√
∆tσ(ℓ∆t)ξℓ, ξℓ ∼ N (0, I).

Let P⃗v and ⃗Pv be the the path measures of Xv and ⃗Xv . If v = v⋆ is such that Xv⋆ ∼
p⋆t (x) ∝ pbaset (x) exp(rt(x)), Nelson’s relation (Prop. A.2) implies that P⃗v⋆

= ⃗Pv⋆

. By the
reverse implication of Nelson’s relation, the reciprocal statement also holds: if P⃗v = ⃗Pv , then
Xv ∼ p⋆t (x) ∝ pbaset (x) exp(rt(x)) and thus v = v⋆. Hence, any divergence D on path measures
gives rise to a loss function LD(v) = D(P⃗v|| ⃗Pv) whose only minimizer is v = v⋆. The following
proposition shows the loss functions resulting from the KL divergence and the log-variance diver-
gence. Its proof, which involves computing log dP⃗v

d ⃗Pv
(Xv), can be found in (C.1).

Proposition 4.1 (CMCD loss function for exponential tilting). The CMCD loss functions for the
exponential tilting problem based on the KL divergence the log-variance divergence read, respec-
tively:

LKL−CMCD(v) = E
[
log dP⃗v

d ⃗Pv
(Xv)

]
=E

[
−
∫ 1

0
σ(t)−1⟨v(Xv

t , t)+(ηt− σ(t)2

2 )∇rt(Xv
t ),
←−−
dWt⟩−r(Xv

1 )

+
∫ 1

0

(
−⟨v(Xv

t , t), st(X
v
t )⟩+

(σ(t)2

2 −ηt
)
⟨∇rt(Xv

t ), st(X
v
t )⟩+

σ(t)2

2 ∥∇rt(Xv
t )∥2

)
dt
]
,

LVar−CMCD(v) = Var
[
log dP⃗v

d ⃗Pv
(Xv)

]
= Var

[
r0(Y

v
0 )−r1(Y v

1 )

+
∫ 1

0

[
−⟨v(Y v

t , t), st(Y
v
t )⟩+

(σ(t)2

2 −ηt
)
⟨∇rt(Y v

t ), st(Y
v
t )⟩+

σ(t)2

2 ∥∇rt(Y v
t )∥2

]
dt

+
∫ 1

0

[
σ(t)−1

(
⟨v(Y v

t , t)+ηt∇rt(Y v
t ),
−−→
dWt⟩−⟨v(Y v

t , t)+ηt∇rt(Y v
t ),
←−−
dWt⟩

)
+ σ(t)

2

(
⟨∇rt(Y v

t ),
−−→
dWt⟩+⟨∇rt(Y v

t ),
←−−
dWt⟩

)]]
.

(27)
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The Crooks fluctuation theorem (Crooks, 1999) is a fundamental result in non-equilibrium thermo-
dynamics that expresses the Radon-Nikodym derivative between a pair of forward and backward
path measures in terms of a difference of free energies (or logarithm of normalizing constants) and
a work functional. The following result, proven in App. C.2, provides an analogous expression for
the path measures of Xv and ⃗Xv .
Proposition 4.2 (Controlled Crooks fluctuation theorem for exponential tilting). For an arbitrary
process in the support of P⃗v and/or ⃗Pv , the Radon-Nikodym derivative (RND) between P⃗v and ⃗Pv at
reads

dP⃗v

d ⃗Pv
(Y ) = exp

(
− logEN (0,β2

0I)
[exp(r0)] + logEpbase [exp(r1)]

−
∫ 1

0

(
⟨κtYt + 2ηtst(Yt), ∇rt(Yt)⟩+ ⟨v(Yt, t), st(Yt) +∇rt(Yt)⟩+ ∂trt(Yt)

+ ηt∥∇rt(Yt)∥2 + ηt ∆rt(Yt) +∇ · v(Yt, t)
)
dt
)
.

(28)

Drawing analogy to the standard controlled Crooks fluctuation theorem (Vargas et al., 2024; Zhong
et al., 2024), we can treat− logEN (0,β2

0I)
[exp(r0)]+ logEpbase [exp(r1)] as a free energy difference

and the remaining terms as a generalized work functional. Taking the expectation with respect to
Y ∈ P⃗v of the multiplicative inverse of both sides of (28) yields an analog of the escorted Jarzynski
equality, first proposed by Vaikuntanathan & Jarzynski (2008).
Proposition 4.3 (Escorted Jarzynski equality for exponential tilting). The free energy difference
admits the expression

log
( E

pbase [exp(r1)]

EN(0,β2
0I)

[exp(r0)]

)
= logEP⃗v

[
exp

( ∫ 1

0

(
⟨κtYt+2ηtst(Yt), ∇rt(Yt)⟩+ ⟨v(Yt, t), st(Yt)+

∇rt(Yt)⟩+ ∂trt(Yt) + ηt∥∇rt(Yt)∥2 + ηt ∆rt(Yt) +∇ · v(Yt, t)
)
dt
)]
.

(29)

Taking an expectation of the squared log-RND (28) and applying Jensen’s inequality yields an ana-
log of the NETS loss, first introduced by Albergo & Vanden-Eijnden (2025) in the standard thermo-
dynamic setting. The proof is in App. C.3.
Proposition 4.4 (NETS loss function for exponential tilting). Given an arbitrary process Y , the
PINN (physics informed neural network) NETS loss for exponential tilting reads

LNETS(v, F ) = E
[ ∫ 1

0

(
⟨κtYt+2ηtst(Yt), ∇rt(Yt)⟩+⟨v(Yt, t), st(Yt)+∇rt(Yt)⟩

+∂trt(Yt)+ηt∥∇rt(Yt)∥2+ηt ∆rt(Yt)+∇ · v(Yt, t)−∂tFt

)2

dt
]
,

(30)

and it satisfies that LNETS(v, F ) ≤ E
[(

log dP⃗v

d ⃗Pv
(Y )

)2]
.

5 EXPERIMENTS

While the scope of our paper is general, as we cover fine-tuning and sampling, and many different
algorithms, in this section we focus on the performance of Adjoint Matching for fine-tuning Stable
Diffusion 1.5 and Stable Diffusion 3 with ImageReward (Xu et al., 2023) as the reward model. We
fine-tune using the 10000 prompts considered by Xu et al. (2023) and report metrics computed on
their 100-prompt validation dataset (generating 10 images per prompt).

In Fig. 1 we plot the trade-offs Astolfi et al. (2024) between DreamSim variance (Fu et al. (2023),
a metric that measures per-prompt diversity) and ImageReward, CLIPScore (Hessel et al., 2021)
and HPSv2 (Wu et al., 2023). Our results follow the same trend as those of Domingo-Enrich et al.
(2025), which carried out similar experiments on a proprietary base model. We perform inference
with η = 0 (no noise) and η = 1 (memoryless, σ(t) =

√
2ηt), and with two schedules: the default

DDIM schedule and the schedule used during fine-tuning. Remarkably, η = 0 performs better w.r.t
ImageReward and HPS, and η = 1 is better at CLIPScore.

8
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Figure 1: Quality metrics for Stable Diffusion 1.5 fine-tuned with Adjoint Matching.

(a) Results for the base model and models fine-tuned at
σ2
0 = 1 and λ ∈ {102, 105/2, 103}, with inference at

η ∈ {0, 1} and σ0 = {1, 1.5}.

(b) Results for models fine-tuned at σ2
0 ∈ {1, 1.5} and

λ ∈ {102, 105/2, 103}, and different inference parame-
ters. Points linked only differ in training σ2

0 .

Figure 2: Quality metrics for Stable Diffusion 3 fine-tuned with Adjoint Matching.

In Fig. 2(left) we plot the same trade-offs for Stable Diffusion 3, and include Aesthetic Score
(LAION, 2024) as well. Arguably, η = 1 outperforms η = 0 in this case, as most points on the
Pareto front use the former. In Fig. 2(right) we ablate the choice of the initial variance σ2

0 ; as we
show in App. D.1, we can simulate a generative SDE with a rescaled noise schedule σ by reusing
the pretrained vector field, which was we learned at σ2

0 . In the figure, points linked by an arrow cor-
respond to settings which only differ by the training σ2

0 , the tail being for σ2
0 = 1 and the head being

for σ2
0 = 1.5. We perform inference at both σ2

0 = 1 and 1.5. The results are inconclusive, which is
consistent with Prop. 3.2, that states that the (bound on the) variance term for Adjoint Matching is
independent of σ0.

6 DISCUSSION

We introduced new developments that help us understand algorithms for fine-tuning and sampling
with diffusion and flow models. We performed experiments to validate some of our findings. A
direction of future work is to develop methods that leverage both the SOC and thermodynamics
perspectives.

Limitations. We only include experiments on fine-tuning text-to-image diffusion models. We will
leave experiments on other tasks such as protein design and molecule generation for future work.
We also only include experiments on SOC and score matching-based approaches and leave exper-
iments on the proposed thermodynamic-inspired approaches as future work. Our framework is not
comprehensive as it does not include recent reward fine-tuning and sampling algorithms such as Liu
et al. (2025b); Zhang et al. (2024); Akhound-Sadegh et al. (2025).
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A USEFUL THEORETICAL RESULTS

Lemma A.1 (Conditional and target score identities, Bortoli et al. (2024)). Let pt be the density
of the marginal X̄t of the reference flow defined in equation (1). For any α > 0, define the map
Tα as x 7→ Tα(x) = αx, and let (Tα)#p be the pushforward of the distribution p by Tα, whose
density is (Tαt

)#pdata(x) = pdata(x/αt)
1
αt

. We write the density of the Gaussian N (αty, β
2
t I) as

N (x;αty, β
2
t I) = exp

(
− ∥x−αty∥2

2β2
t

)
/(2πβ2

t )
d/2. Then,

pt(x) =
∫
Rd N (x;αty, β

2
t I)pdata(y) dy = [(Tαt

)#pdata ∗ N (0, β2
t I)](x), (31)

and we obtain the following identities:

Conditional score identity: ∇ log pt(x) = −
∫
Rd (x−αty)N (x;αty,β

2
t I) pdata(y) dy

β2
t

∫
Rd N (x;αty,β2

t I) pdata(y) dy
, (CSI)

Target score identity: ∇ log pt(x) =
∫
Rd ∇ log pdata(y)N (x;αty,β

2
t I)pdata(y) dy

αt

∫
Rd N (x;αty,β2

t I)pdata(y) dy
, (TSI)

Novel score identity: ∇ log pt(x) =
∫
Rd (αt∇ log pdata(y)−(x−αty))N (x;αty,β

2
t I) pdata(y) dy

(α2
t+β2

t )
∫
Rd N (x;αty,β2

t I) pdata(y) dy
.

(NSI)

Proof. While this result is not new (see Bortoli et al. (2024) and references within), we provide
a proof here because of its relevance. Observe that Zt = Xt − αtY = βtε ∼ N (0, β2

t I). The
following formula holds for the density of the noised fine-tuned distribution:

pt(x) =
∫
Rd

exp
(
− ∥x−αty∥2

2β2
t

)
(2πβ2

t )
d/2 pdata(y) dy =

∫
Rd

exp
(
− ∥x−ỹ∥2

2β2
t

)
(2πβ2

t )
d/2 pdata(ỹ/αt)

1
αt

dỹ

=
∫
Rd

exp
(
− ∥x−ỹ∥2

2β2
t

)
(2πβ2

t )
d/2 (Tα)#pdata(ỹ) dỹ = [(Tαt)#pdata ∗ N (0, β2

t I)](x),

(32)

where we applied the change of variables ỹ = Tαty = αty, and that the density of the pushforward
(Tαt)#pdata(x) is pdata(x/αt)

1
αt

.

Equation (CSI) follows simply from∇ log pt(x) =
∇pt(x)
pt(x)

and from taking the gradient with respect
to x under the integration sign. We prove (TSI) next. If we let x− αty = z, we have that y = x−z

αt
,

which implies that |dydz | =
1
αt

. Thus, we can write

pt(x) =
∫
Rd

exp
(
− ∥z∥2

2β2
t

)
(2πβ2

t )
d/2 pdata(

x−z
αt

) 1
αt

dz. (33)

12
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And

∇pt(x) =
∫
Rd

exp
(
− ∥z∥2

2β2
t

)
(2πβ2

t )
d/2 ∇x

(
pdata(

x−z
αt

)
)

1
αt

dz (34)

=
∫
Rd

exp
(
− ∥z∥2

2β2
t

)
(2πβ2

t )
d/2 ∇x log pdata(

x−z
αt

)pdata(
x−z
αt

) 1
αt

dz (35)

=
∫
Rd

exp
(
− ∥z∥2

2β2
t

)
(2πβ2

t )
d/2 ∇ log pdata(

x−z
αt

)pdata(
x−z
αt

) 1
α2

t
dz (36)

=
∫
Rd

exp
(
− ∥x−αty∥2

2β2
t

)
(2πβ2

t )
d/2 ∇ log pdata(y)pdata(y)

1
αt

dy. (37)

Using that∇ log pt(x) =
∇pt(x)
pt(x)

concludes the proof of (TSI). To prove (NSI), we sum α2
t

α2
t+β2

t
times

the (TSI) identity and β2
t

α2
t+β2

t
times the (CSI) identity, and obtain:

∇ log pt(x) =

∫
Rd

1

α2
t+β2

t

(
αt∇ log pdata(y)−(x−αty)

)
N (x;αty,β

2
t I) pdata(y) dy∫

Rd N (x;αty,β2
t I) pdata(y) dy

. (38)

Theorem A.2 (Convolution with a Gaussian Preserves Strong Log-Concavity). Let f : Rd →
(0,∞) be a density of the form f(x) = e−φ(x), where φ ∈ C2(Rd) satisfies ∇2φ(x) ⪰ γ I for all
x ∈ Rd, i.e. f is γ-strongly log-concave. Let g(x) = (2πσ2)−d/2 exp

(
−∥x∥

2

2σ2

)
be the density of

N (0, σ2I). Define
h = f ∗ g.

Then h is
γ

1 + γ σ2
-strongly log-concave, i.e.

∇2
[
− log h(x)

]
⪰ γ

1+γ σ2 I ∀x ∈ Rd. (39)

Proof. Set ψ(z) = ∥z∥2
2σ2 , F (y;x) = φ(y) + ψ(x− y). Then h(x) =

∫
Rd e

−F (y;x) dy. A standard
“log-sum-exp” Hessian identity yields

∇2
[
− log h(x)

]
= E

[
∇2

xF (Y ;x)
]
− Var

[
∇xF (Y ;x)

]
, (40)

where Y is drawn from the density proportional to e−F (y;x). We handle the two terms separately.

1. Second-derivative term.

∇2
xF (y;x) = ∇2ψ(x− y) = 1

σ2 I, (41)

so E[∇2
xF ] =

1
σ2 I .

2. Variance term.

∇xF (y;x) = ∇ψ(x− y) = x−y
σ2 , (42)

hence Var[∇xF ] =
1
σ4 Cov(Y ).

Since F (·;x) is (γ + 1/σ2)-strongly convex in y, the Brascamp–Lieb inequality gives

Cov(Y ) ⪯ 1
γ+1/σ2 I = σ2

1+γ σ2 I. (43)

Therefore,

Var[∇xF ] ⪯ 1
σ4 · σ2

1+γ σ2 I = 1
σ2(1+γ σ2) I. (44)

Combining,

∇2[− log h(x)] ⪰ 1
σ2 I − 1

σ2(1+γ σ2)I = γ
1+γ σ2 I. (45)

Thus h is γ
1+γσ2 -strongly log-concave.
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Corollary A.3. Let pt be the density of the marginal X̄t of the reference flow defined in equation (1).
Suppose that the density pdata is in C2(Rd) and is γ-strongly log-concave, i.e. −∇2 log pdata(x) ⪰
γ I for all x ∈ Rd. Then, for all t ∈ [0, 1], the density pt is also in C2(Rd) and γ

α2
t+γβ2

t
-strongly

log-concave.

Proof. By equation (31) from Lemma A.1, we have that

pt(x) = [(Tαt
)#pdata ∗ N (0, β2

t I)](x), (46)

Observe that

∇ log[(Tαt
)#pdata(x)] =

∇(Tαt )#pdata(x)

(Tαt )#pdata(x)
=
∇x

(
pdata(x/αt)

1
αt

)
pdata(x/αt)

1
αt

=
∇pdata(x/αt)

1

α2
t

pdata(x/αt)
1
αt

= ∇ log pdata(x/αt)
αt

,

=⇒ −∇2 log[(Tαt)#pdata(x)] = −
∇2 log pdata(x/αt)

α2
t

⪰ γ
α2

t
I,

(47)

where we used the γ-strong log-concavity of pdata. This shows that (Tαt
)#pdata is γ

α2
t

-strongly
concave. Thus, a direct application of Theorem A.2 with f = pdata, g = N (0, β2

t I) implies that the
strong log-concavity constant of pt is

γ
1+γσ2 =

γ

α2
t

1+
γβ2

t
α2
t

= γ
α2

t+γβ2
t
. (48)

Theorem A.4 (Adaptation of Theorem 2.3 of Shaul et al. (2024)). Let (αt, βt) and (α̃r, β̃r) be
two pairs of flow matching coefficients, i.e., differentiable functions αt, α̃r : [0, 1] → [0, 1], and
αt, α̃r : [0, 1]→ [0,+∞) satisfying:

α0 = α̃0 = 0 = β1 = β̃1, α1 = α̃1 = 1,

and SNR(t) := αt

βt
, S̃NR(t) := α̃t

β̃t
are strictly increasing on [0, 1).

(49)

Define the scale-time transformation from r to t(r) via matching signal-to-noise ratios:
α̃r

β̃r
=

αt(r)

βt(r)
, (50)

and define the scale function

sr := β̃r

βt(r)
= α̃r

αt(r)
. (51)

Then, if pt is the marginal of X̄t := αtY + βtε and p̃t is the marginal of X̃t := α̃tY + β̃tε, for all
r ∈ [0, 1],

∇ log p̃r(x) =
1
sr
∇ log pt(r)(x/sr). (52)

Proof. First, we prove that t(r) is well-defined. Observe that by assumption, SNR and S̃NR are
bijective functions between [0, 1)→ [0,+∞), and that we can construct t(r) := SNR−1

(
S̃NR(r)).

Using the conditional score identity, we obtain that

∇ log pt(x) = −
∫
Rd

x−αty

β2
t
N (x;αty,β

2
t I) pdata(y) dy∫

Rd N (x;αty,β2
t I) pdata(y) dy

, ∇ log p̃t(x) = −
∫
Rd

x−α̃ty

β̃2
t
N (x;α̃ty,β̃

2
t I) pdata(y) dy∫

Rd N (x;α̃ty,β̃2
t I) pdata(y) dy

,

(53)

and observe that
∥x−α̃ry∥2

2β̃2
r

=
∥x−srαt(r)y∥2

2s2rβ
2
t(r)

=
∥x/sr−αt(r)y∥2

2β2
t(r)

, x−α̃ry

β̃2
r

=
x−srαt(r)y

s2rβ
2
t(r)

=
x/sr−αt(r)y

srβ2
t(r)

(54)

which means that

N (x; α̃ry, β̃
2
r I) =

exp
(
− ∥x−α̃ry∥2

2β̃2
r

)
(2πβ̃2

r)
d/2

=
exp

(
−

∥x/sr−α̃t(r)y∥2

2β2
t(r)

)
(2πs2rβ

2
t(r)

)d/2
= 1

sdr
N (x/sr; α̃t(r)y, β̃

2
t(r)I), (55)
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and

∇ log p̃r(x) = −
∫
Rd

x−α̃ry

β̃2
r
N (x;α̃ry,β̃

2
r I) pdata(y) dy∫

Rd N (x;α̃ry,β̃2
r I) pdata(y) dy

= −
∫
Rd

x/sr−αt(r)y

srβ2
t(r)

N (x/sr;α̃t(r)y,β̃
2
t(r)I) pdata(y) dy∫

Rd N (x/sr;α̃t(r)y,β̃
2
t(r)

I) pdata(y) dy
= 1

sr
∇ log pt(r)(x/sr).

(56)

Corollary A.5. Consider Rectified Flow with two values σ0, σ̃0. That is, we take the pairs (αt, βt)

and (α̃t, β̃t) in Theorem A.4 such that:

αt = α̃t = ᾱt, βt = (1− ᾱt)σ0, β̃t = (1− ᾱt)σ̃0. (57)

Let ᾱ−1 : [0, 1]→ [0, 1] be the inverse of the function ᾱ(t) := ᾱt. Then, we have that

t(r) = ᾱ−1( σ0ᾱr

σ̃0(1−ᾱr)+σ0ᾱr
), sr = σ̃0(1−ᾱr)+σ0ᾱr

σ0
. (58)

and by Theorem A.4, if pt is the marginal of X̄t := αtY + βtε and p̃t is the marginal of X̃t :=
α̃tY + β̃tε,

∇ log p̃r(x) =
1
sr
∇ log pt(r)(x/sr). (59)

Proof. Observe that with these choices,

SNR(t) := αt

βt
= ᾱt

(1−ᾱt)σ0
, S̃NR(t) := ᾱt

(1−ᾱt)σ̃0
. (60)

We invert SNR:

y = ᾱt

(1−ᾱt)σ0
=⇒ σ0y − ᾱtσ0y = ᾱt =⇒ ᾱ(t) := ᾱt =

σ0y
1+σ0y

=⇒ SNR−1 = ᾱ−1( σ0y
1+σ0y

).

(61)

Thus,

t(r) = SNR−1
(
S̃NR(r)) = ᾱ−1(

σ0
ᾱr

(1−ᾱr)σ̃0

1+σ0
ᾱr

(1−ᾱr)σ̃0

) = ᾱ−1( σ0ᾱr

σ̃0(1−ᾱr)+σ0ᾱr
), (62)

and

sr = α̃r

αt(r)
= ᾱr

ᾱt(r)
= ᾱr

σ0ᾱr
σ̃0(1−ᾱr)+σ0ᾱr

= σ̃0(1−ᾱr)+σ0ᾱr

σ0
. (63)

Applying Theorem A.4 yields the final result.

Proposition A.1 (Forward–backward Radon–Nikodym derivatives, Prop. 2.2 of Vargas et al.
(2024)). Consider the SDEs

dYt = γ+t (Yt) dt+ σ(t)
−−→
dWt, Y0 ∼ Γ0 =⇒

(
Yt
)
0≤t≤T ∼

−→
P Γ0,γ

+
t , (64)

dYt = γ−(Yt) dt+ σ(t)
←−−
dWt, YT ∼ ΓT =⇒

(
Yt
)
0≤t≤T ∼

←−
P ΓT ,γ−

, (65)

dYt = at(Yt) dt+ σ(t)
−−→
dWt, Y0 ∼ µ =⇒

(
Yt
)
0≤t≤T ∼

−→
P µ,a, (66)

dYt = bt(Yt) dt+ σ(t)
←−−
dWt, YT ∼ ν =⇒

(
Yt
)
0≤t≤T ∼

←−
P ν,b. (67)

Here, (64) and (66) are forward Itô SDEs, and (65) and (67) are backward Itô SDEs, i.e. (64) and
(65) are the continuous-time limits of

yℓ+1 = yℓ +∆tγ+ℓ∆t(yℓ) +
√
∆tσ(ℓ∆t)ξℓ, ξℓ ∼ N (0, I), y0 ∼ Γ0,

yℓ−1 = yℓ +∆tγ−ℓ∆t(yℓ) +
√
∆tσ(ℓ∆t)ξℓ, ξℓ ∼ N (0, I), yT ∼ ΓT .

(68)

Suppose that
−→
P Γ0,γ

+

=
←−
P ΓT ,γ−

, (69)
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and that it is absolutely continuous with respect to both
−→
P µ,a and

←−
P ν,b. Then,

−→
P µ,a-almost surely,

the corresponding Radon–Nikodym derivative can be expressed as

log d
−→
P µ,a

d
←−P ν,b

(Y ) = log dµ
dΓ0

(Y0)− log dν
dΓT

(YT ) (70)

+
∫ T

0
σ(t)−2

〈(
at − γ+t

)
(Yt),

−→
dYt − 1

2

(
at + γ+t

)
(Yt) dt

〉
(71)

−
∫ T

0
σ(t)−2

〈(
bt − γ−t

)
(Yt),

←−
dYt − 1

2

(
bt + γ−t

)
(Yt) dt

〉
. (72)

Proposition A.2 (Nelson’s relation, Nelson (1967); Anderson (1982)). Let
−→
P µ,a and

←−
P ν,b be the

path measures defined in Prop. A.1. For µ and a of sufficient regularity, denote the time–marginals
of the corresponding path measure by

−→
P µ,a

t =: ρµ,at .

Then we have
−→
P µ,a =

←−
P ν,b if and only if ν =

−→
P µ,a

T and bt = at − σ2∇ ln ρµ,at , ∀t ∈ (0, T ].

B PROOFS FOR THE SOC-BASED METHODS

B.1 PROOF OF PROP. 3.1: BOUND ON THE NORM OF THE LEAN ADJOINT STATE

Given a matrix M ∈ Rd×d and a point x ∈ Rd, the Rayleigh quotient is defined as R(M,x) =
⟨x,Mx⟩
⟨x,x⟩ . The norm of the lean adjoint state ã(t,Xu) satisfies the following ODE:

d
dt∥ã(t,X

u)∥2 = 2⟨ã(t,Xu), d
dt ã(t,X

u)⟩ = −2⟨ã(t,Xu),∇xb(Xt, t)
⊤ã(t;X ū)⟩ (73)

= −2R(∇xb(Xt, t)
⊤, ã(t,Xu))∥ã(t;X ū)∥2. (74)

When we integrate this ODE backwards in time from 1 to t ∈ [0, 1], we obtain that

∥ã(t,Xu)∥2 = exp
(
2
∫ 1

t
R(∇xb(Xs, s)

⊤, ã(s,Xu)) ds
)
∥∇xr(X

u
1 )∥2. (75)

Since ã(t,Xu) appears in the the regression target vector field of the Adjoint Matching loss, it
is desirable that the norm ∥ã(t,Xu)∥ is small. A way to obtain bounds on ∥ã(t,Xu)∥ is un-
der the condition that Sym(∇xb(Xt, t)) ⪯ χtI for some constant χt ∈ R, as in this case, since
R(∇xb(Xt, t)

⊤, ã(t,Xu)) = R(Sym(∇xb(Xt, t)), ã(t,X
u)) ≤ χt, we get that

∥ã(t,Xu)∥2 ≤ exp
(
2
∫ 1

t
χs ds

)
∥∇xr(X

u
1 )∥2. (76)

Observe that ∇b(x, t) = κtI +
(σ(t)2

2 + ηt
)
∇st(x), and for the memoryless noise schedule σ(t) =√

2ηt,

∇b(x, t) = κtI + 2ηt∇st(x). (77)

Since ηt > 0, in order to obtain a bound of the form Sym(∇xb(Xt, t)) ⪯ χtI, we need a similar
bound on Sym(∇xst(Xt)). Next, we show that such bounds are easy to obtain in the case in which
the data distribution pdata is Gaussian or strongly log-concave. The former case, under which we can
obtain an analytic expression of the score, is particularly relevant because it is the setting considered
in Adjoint Sampling (Havens et al., 2025).

The gradient ∇b for Gaussian data distributions Now, if assume that pdata = N (0, σ2
1I), as is

the case in the sampling setting, we can compute st explicitly through equation (31) of Lemma A.1.
By equation (31), we obtain that

pt(x) =
∫
Rd

exp
(
− ∥x−αty∥2

2β2
t

)
(2πβ2

t )
d/2

exp
(
− ∥y∥2

2σ2
1

)
(2πσ2)d/2

dy =
exp

(
− ∥x∥2

2(β2
t +α2

t σ2
1)

)(
2π(β2

t+α2
tσ

2
1)
)d/2 , (78)

which implies st(x) = ∇ log pt(x) = − x
β2
t+α2

tσ
2
1

, and this means that

∇b(x, t) = κtI + 2ηt∇st(x) =
(
κt − 2ηt

β2
t+α2

tσ
2
1

)
I =

(
α̇t

αt
−

2βt

(
α̇t
αt

βt−β̇t

)
β2
t+α2

tσ
2
1

)
I =: χtI, (79)
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(i) Föllmer process:

∇b(x, t) =
(
κt − 2ηt

β2
t+α2

tσ
2
1

)
I =

( ˙̄αt

ᾱt
− ˙̄αtσ

2
0

ᾱt(1−ᾱt)σ2
0+ᾱ2

tσ
2
1

)
I =

˙̄αt

ᾱt

(
1− 1

1−ᾱt+ᾱtσ2
1/σ

2
0

)
I =: χtI,

=⇒
∫ 1

t
χs ds =

∫ 1

t
˙̄αs

ᾱs

(
1− 1

1−ᾱs+ᾱsσ2
1/σ

2
0

)
ds = log

( σ2
1

(1−ᾱs)σ2
0+ᾱsσ2

1

)
,

=⇒ ∥ã(t,Xu)∥ = σ2
1

(1−ᾱs)σ2
0+ᾱsσ2

1
∥∇xr(X

u
1 )∥.

(80)

If we set σ2
0 = σ2

1 , we obtain∇b(x, t) = 0 and
∫ 1

t
χs ds = 0.

(ii) DDIM/DDPM:

∇b(x, t) =
(
κt − 2ηt

β2
t+α2

tσ
2
1

)
I =

( ˙̄αt

2ᾱt
−

˙̄αtσ
2
0

ᾱt

(1−ᾱt)σ2
0+ᾱtσ2

1

)
I =

˙̄αt

2ᾱt

(
1− 2

1−ᾱt+ᾱtσ2
1/σ

2
0

)
I := χtI,

=⇒
∫ 1

t
χs ds =

∫ 1

t
˙̄αs

2ᾱs

(
1− 2

1−ᾱs+ᾱsσ2
1/σ

2
0

)
ds = log

( σ2
1

√
ᾱs

(1−ᾱs)σ2
0+ᾱsσ2

1

)
,

=⇒ ∥ã(t,Xu)∥ = σ2
1

√
ᾱs

(1−ᾱs)σ2
0+ᾱsσ2

1
∥∇xr(X

u
1 )∥.

(81)

If we set σ2
0 = σ2

1 , we obtain ∇b(x, t) = − ˙̄αt

2ᾱt
I, and

∫ 1

t
χs ds = 1

2 log(ᾱt), and
∥ã(t,Xu)∥ =

√
ᾱs∥∇xr(X

u
1 )∥.

(iii) Rectified Flow:

∇b(x, t) =
(
κt − 2ηt

β2
t+α2

tσ
2
1

)
I =

( ˙̄αt

ᾱt
−

2
(1−ᾱt) ˙̄αtσ

2
0

ᾱt

(1−ᾱt)2σ2
0+ᾱ2

tσ
2
1

)
I =

˙̄αt

ᾱt

(
1− 2(1−ᾱt)

(1−ᾱt)2+ᾱ2
tσ

2
1/σ

2
0

)
I,

(82)

=⇒
∫ 1

t
χs ds =

∫ 1

t
˙̄αs

ᾱs

(
1− 2(1−ᾱs)

(1−ᾱs)2+ᾱ2
sσ

2
1/σ

2
0

)
ds = log

( σ2
1ᾱs

(1−ᾱs)2σ2
0+ᾱ2

sσ
2
1

)
, (83)

=⇒ ∥ã(t,Xu)∥ = σ2
1ᾱs

(1−ᾱs)2σ2
0+ᾱ2

sσ
2
1
∥∇xr(X

u
1 )∥. (84)

The maximizer of α 7→ log
( σ2

1ᾱs

(1−ᾱs)2σ2
0+ᾱ2

sσ
2
1

)
is α⋆ = σ0√

σ2
0+σ2

1

, and the maximum value

is 1+
√

1+σ2
1/σ

2
0

2 . If we set σ2
0 = σ2

1 , we obtain

∇b(x, t) = ˙̄αt

ᾱt

(
1− 2(1−ᾱt)

(1−ᾱt)2+ᾱ2
t

)
I =

˙̄αt

ᾱt

1−2ᾱt+2ᾱ2
t−2(1−ᾱt)

1−2ᾱt+2ᾱ2
t

I = − (1−2ᾱt) ˙̄αt

(1−2ᾱt+2ᾱ2
t )ᾱt

I, (85)

=⇒
∫ 1

t
χs ds = log

(
ᾱs

(1−ᾱs)2+ᾱ2
s

)
=⇒ ∥ã(t,Xu)∥ = ᾱs

(1−ᾱs)2+ᾱ2
s
∥∇xr(X

u
1 )∥. (86)

The gradient ∇b for 1
σ2
1

-strongly convex data distributions Corollary A.3 proves that when

pdata is 1
σ2
1

-strongly log-concave, then pt is also in C2(Rd) and 1
β2
t+α2

tσ
2
1

-strongly log-concave.

Equivalently, for all x ∈ Rd, t ∈ [0, 1],

−∇st(x) = −∇2 log pt(x) ⪰ I
β2
t+α2

tσ
2
1
, (87)

which means that

∇b(x, t) = κtI + 2ηt∇st(x) ⪯
(
κt − 2ηt

β2
t+α2

tσ
2
1

)
I =

(
α̇t

αt
−

2βt

(
α̇t
αt

βt−β̇t

)
β2
t+α2

tσ
2
1

)
I. (88)

Observe that this upper-bound matches the right-hand side of (79). Hence, we obtain immediately
that for the three subcases, all the equalities involving∇b(x, t) and

∫ 1

t
χs ds become inequalities.

B.2 DERIVATION OF THE TARGET, CONDITIONAL AND NOVEL SCORE MATCHING LOSS
FUNCTIONS

By the target score identity from Lemma A.1, the density pt of the marginal X̄t of the reference flow
in equation (1) satisfies:

∇ log pt(x) =
1
αt

∫
Rd N (x;αty,β

2
t I)∇ log pdata(Y )pdata(y) dy∫

Rd N (x;αty,β2
t I)pdata(y) dy

= 1
αt
E[∇ log pdata(Y ) | X̄t = x] (89)
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We use a well-known argument: for any Rd-valued neural network ŝ,

EY∼pdata,X̄t=αtY+βtε

[ ∫ 1

0
∥ŝ(X̄t, t)−∇ log pt(X̄t)∥2 dt

]
= EY∼pdata,X̄t=αtY+βtε

[ ∫ 1

0
∥ŝ(X̄t, t)∥2 dt− 2

∫ 1

0
⟨ŝ(X̄t, t),∇ log pt(X̄t)⟩dt

]
+ const.

= EY∼pdata,X̄t=αtY+βtε

[ ∫ 1

0
∥ŝ(X̄t, t)∥2 dt− 2

αt

∫ 1

0
⟨ŝ(X̄t, t),E[∇ log pdata(Y ) | X̄t]⟩dt

]
+ const.

= EY∼pdata,X̄t=αtY+βtε

[ ∫ 1

0
∥ŝ(X̄t, t)∥2 dt− 2

αt

∫ 1

0
⟨ŝ(X̄t, t),∇ log pbase(Y ) +∇r(Y )⟩dt

]
+ const.

= EY∼pdata,X̄t=αtY+βtε

[ ∫ 1

0
∥ŝ(X̄t, t)− 1

αt

(
∇ log pbase(Y ) +∇r(Y )

)
∥2 dt

]
+ const.

(90)

where the third equality holds by (89). Hence,

LTSM(ŝ) = E[LTSM(ŝ, X̄)] = EY∼pdata,X̄t=αtY+βtε

[ ∫ 1

0
∥ŝ(X̄t, t)− 1

αt

(
∇ log pbase(Y ) +∇r(Y )

)
∥2 dt

]
.

(91)

Analogously to (89), the conditional score identity (CSI) and the novel score identity (NSI) yield

∇ log pt(x) = −
∫
Rd (x−αty)N (x;αty,β

2
t I) pdata(y) dy

β2
t

∫
Rd N (x;αty,β2

t I) pdata(y) dy
= − 1

β2
t
E[x− αtY | X̄t = x], (92)

∇ log pt(x) =
∫
Rd (αt∇ log pdata(y)−(x−αty))N (x;αty,β

2
t I) pdata(y) dy

(α2
t+β2

t )
∫
Rd N (x;αty,β2

t I) pdata(y) dy
(93)

= 1
α2

t+β2
t
E[αt∇ log pdata(Y )− (x− αtY ) | X̄t = x], (94)

The expressions for the Conditional Score Matching loss LCSM and the Novel Score Matching loss
LNSM follow from an argument analogous to equation (90), the only differences being that in the
second equality we use equations (92) and (94) instead.

B.3 PROOF OF PROP. 3.2: BIAS-VARIANCE DECOMPOSITION FOR ADJOINT MATCHING AND
SAMPLING

For Adjoint Matching and Sampling, observe that u(x, t) = 1√
2ηt

(
vft(x, t)− vbase(x, t)

)
. Hence,

E[LAdj−Match(u;X
ū)]

= E
[
1
2

∫ 1

0

∥∥u(X ū
t , t) + σ(t)⊤ã(t;X ū)

∥∥2 dt]
= E

[
1
2

∫ 1

0

∥∥ 1√
2ηt

(
vft(X

ū
t , t)− vbase(X ū

t , t)
)
+
√
2ηtã(t;X

ū)
∥∥2 dt]

(i)
= E

[
1
2

∫ 1

0

∥∥vft(X ū
t , t)− vbase(X ū

t , t) + 2ηtã(t;X
ū)
∥∥2 1

2ηt
dt
]

= E
[
1
2

∫ 1

0

∥∥vft(X ū
t , t)− E

[
vbase(X

ū
t , t)− 2ηtã(t;X

ū)|X ū
t

]∥∥2 1
2ηt

dt
]

+ E
[
1
2

∫ 1

0

∥∥E[vbase(X ū
t , t)− 2ηtã(t;X

ū)|X ū
t

]
−

(
vbase(X

ū
t , t)− 2ηtã(t;X

ū)
)∥∥2 1

2ηt
dt
]

(95)

Observe that equality (i) yields an expression on the same form as equation (24), with ξ(t,X ū) =
vbase(X

ū
t , t) + 2ηtã(t;X

ū). The second term in the right-hand side of (95) (the variance term) can
be simplified to

E
[
1
2

∫ 1

0

∥∥E[2ηtã(t;X ū)|X ū
t

]
− 2ηtã(t;X

ū)
∥∥2 1

2ηt
dt
]
= E

[ ∫ 1

0
ηt
∥∥E[ã(t;X ū)|X ū

t

]
− ã(t;X ū)

∥∥2 dt]
≤ E

[ ∫ 1

0
ηt
∥∥ã(t;X ū)

∥∥2 dt] ≤ ∫ 1

0
ηt exp

(
2
∫ 1

t
χs ds

)
dt× E

[
∥∇xr(X

u
1 )∥2

]
.

(96)

For the particular case in which pdata is Gaussian, we can similarly obtain an equality:

E
[ ∫ 1

0

∥∥E[2ηtã(t;X ū)|X ū
t

]
− 2ηtã(t;X

ū)
∥∥2 1

2ηt
dt
]

(97)

= E
[ ∫ 1

0
ηt exp

(
2
∫ 1

t
χs ds

)(
∥∇xr(X

u
1 )∥2 − E

[
∥∇xr(X

u
1 )∥2|Xu

t

])
dt
]
, (98)

where the last equality holds by equation (76). Next, we compute
∫ 1

0
ηt exp

(
2
∫ 1

t
χs ds

)
dt in the

three subcases:
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(i) Föllmer process:∫ 1

0
ηt exp

(
2
∫ 1

t
χs ds

)
dt =

∫ 1

0

( σ2
1

(1−ᾱt)σ2
0+ᾱtσ2

1

)2 ˙̄αtσ
2
0

2 dt =
∫ 1

0

( σ2
1

(1−t)σ2
0+tσ2

1

)2 σ2
0

2 dt =
σ2
1

2 .

(99)

(ii) DDIM/DDPM:∫ 1

0
ηt exp

(
2
∫ 1

t
χs ds

)
dt =

∫ 1

0

( σ2
1

√
ᾱt

(1−ᾱt)σ2
0+ᾱtσ2

1

)2 ˙̄αtσ
2
0

2ᾱt
dt =

∫ 1

0

( σ2
1

√
t

(1−t)σ2
0+tσ2

1

)2 σ2
0

2t dt =
σ2
1

2 .

(100)

(iii) Rectified Flow:∫ 1

0
ηt exp

(
2
∫ 1

t
χs ds

)
dt =

∫ 1

0

( σ2
1ᾱt

(1−ᾱt)2σ2
0+ᾱ2

tσ
2
1

)2 (1−ᾱt) ˙̄αtσ
2
0

ᾱt
dt

=
∫ 1

0
(1−t)σ2

0

t

( σ2
1t

(1−t)2σ2
0+t2σ2

1

)2
dt =

σ2
1

2 .
(101)

B.4 PROOF OF PROP. 3.3: BIAS-VARIANCE DECOMPOSITION FOR SCORE MATCHING
ALGORITHMS

Target Score Matching Next, we write the Target Score Matching and Novel Score Matching
losses in the general form (24). Plugging σ(t) =

√
2ηt, we can write

vft(x, t) = κtx+ 2ηtŝ(x, t) =⇒ ŝ(x, t) = vft(x,t)−κtx
2ηt

. (102)

Thus, for Target Score Matching we have that

EY∼pdata,X̄t=αtY+βtε

[
1
2

∫ 1

0
∥ŝ(X̄t, t)− 1

αt

(
∇ log pbase(Y ) +∇r(Y )

)
∥2(2ηt) dt

]
= EY∼pdata,X̄t=αtY+βtε

[
1
2

∫ 1

0
∥ vft(X̄t,t)−κtX̄t

2ηt
− 1

αt

(
∇ log pbase(Y ) +∇r(Y )

)
∥2(2ηt) dt

]
= EY∼pdata,X̄t=αtY+βtε

[
1
2

∫ 1

0
∥vft(X̄t, t)− κtX̄t − 2ηt

αt

(
∇ log pbase(Y ) +∇r(Y )

)
∥2 1

2ηt
dt
]

= EY∼pdata,X̄t=αtY+βtε

[
1
2

∫ 1

0
∥vft(X̄t, t)− E

[
κtX̄t +

2ηt

αt

(
∇ log pbase(Y ) +∇r(Y )

)
|X̄t

]
∥2 1

2ηt
dt
]

+ EY∼pdata,X̄t=αtY+βtε

[
1
2

∫ 1

0
∥E

[
κtX̄t +

2ηt

αt

(
∇ log pbase(Y ) +∇r(Y )

)
|X̄t

]
−
(
κtX̄t +

2ηt

αt

(
∇ log pbase(Y ) +∇r(Y )

))
∥2 1

2ηt
dt
]

(103)

The second term in the right-hand side of (103) (the variance term) can be simplified to

EY∼pdata,X̄t=αtY+βtε

[
1
2

∫ 1

0
∥E

[
2ηt

αt

(
∇ log pbase(Y ) +∇r(Y )

)
|X̄t

]
− 2ηt

αt

(
∇ log pbase(Y ) +∇r(Y )

)
∥2 1

2ηt
dt
]

= EY∼pdata,X̄t=αtY+βtε

[
1
2

∫ 1

0
2ηt

α2
t
∥E

[
∇ log pbase(Y ) +∇r(Y )|X̄t

]
−

(
∇ log pbase(Y ) +∇r(Y )

)
∥2 dt

]
≤

∫ 1

0
ηt

α2
t
dt× EY∼pdata

[
∥∇ log pbase(Y ) +∇r(Y )

)
∥2
]
.

(104)

Observe that ηt

α2
t
=

βt

(
α̇t
αt

βt−β̇t

)
α2

t
. And in particular, for the three subcases:

(i) Föllmer process:
ηt

α2
t
=

˙̄αtσ
2
0

2ᾱ2
t

=⇒
∫ 1

0
ηt

α2
t
dt =

∫ 1

0

˙̄αtσ
2
0

2ᾱ2
t
dt =

∫ 1

0
σ2
0

2t2 dt = +∞. (105)

(ii) DDIM/DDPM:

ηt

α2
t
=

˙̄αtσ
2
0

2ᾱt

ᾱt
=

˙̄αtσ
2
0

2ᾱ2
t

=⇒
∫ 1

0
ηt

α2
t
dt =

∫ 1

0

˙̄αtσ
2
0

2ᾱ2
t
dt = +∞ (106)

(iii) Rectified Flow:

ηt

α2
t
=

(1−ᾱt) ˙̄αtσ
2
0

ᾱt

ᾱ2
t

=
(1−ᾱt) ˙̄αtσ

2
0

ᾱ3
t

=⇒
∫ 1

0
ηt

α2
t
dt =

∫ 1

0
(1−ᾱt) ˙̄αtσ

2
0

ᾱ3
t

dt =
∫ 1

0
(1−t)σ̇2

0

t3 dt = +∞
(107)
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Conditional Score Matching And for Conditional Score Matching, we have that

EY∼pdata,X̄t=αtY+βtε

[
1
2

∫ 1

0
∥ŝ(X̄t, t) +

X̄t−αtY
β2
t
∥2(2ηt) dt

]
= EY∼pdata,X̄t=αtY+βtε

[ ∫ 1

0
∥vft(X̄t,t)−κtX̄t

2ηt
+ X̄t−αtY

β2
t
∥2(2ηt) dt

]
= EY∼pdata,X̄t=αtY+βtε

[
1
2

∫ 1

0
∥vft(X̄t, t)− κtX̄t +

2ηt(X̄t−αtY )
β2
t

∥2 1
2ηt

dt
]

= EY∼pdata,X̄t=αtY+βtε

[
1
2

∫ 1

0
∥vft(X̄t, t)− E

[
κtX̄t +

2ηt(X̄t−αtY )
β2
t

|X̄t

]
∥2 1

2ηt
dt
]

+ EY∼pdata,X̄t=αtY+βtε

[
1
2

∫ 1

0
∥E

[
κtX̄t +

2ηt(X̄t−αtY )
β2
t

|X̄t

]
−

(
κtX̄t +

2ηt(X̄t−αtY )
β2
t

)
∥2 1

2ηt
dt
]
.

(108)

The second term in the right-hand side of (108) (the variance term) can be simplified to

EY∼pdata,X̄t=αtY+βtε

[
1
2

∫ 1

0
∥E

[ 2ηt

(
X̄t−αtY

)
β2
t

|X̄t

]
− 2ηt

(
X̄t−αtY

)
β2
t

∥2 1
2ηt

dt
]

(109)

= EY∼pdata,X̄t=αtY+βtε

[ ∫ 1

0
ηt

β4
t
∥E

[
∇ log pbase(Y ) +∇r(Y )|X̄t

]
−

(
∇ log pbase(Y ) +∇r(Y )

)
∥2 dt

]
(110)

≤
∫ 1

0
ηt

β4
t
dt× EY∼pdata

[
∥∇ log pbase(Y ) +∇r(Y )

)
∥2
]
. (111)

Observe that ηt

β4
t
=

βt

(
α̇t
αt

βt−β̇t

)
β4
t

=
α̇t
αt
− β̇t

βt

β2
t

. And in particular, for the three subcases:

(i) Föllmer process:

ηt

α2
t
=

˙̄αtσ
2
0

2ᾱ2
t (1−ᾱt)2σ4

0
=

˙̄αt

2ᾱ2
t (1−ᾱt)2σ2

0

=⇒
∫ 1

0
ηt

α2
t
dt =

∫ 1

0
˙̄αt

2ᾱ2
t (1−ᾱt)2σ2

0
dt =

∫ 1

0
1

2σ2
0t

2(1−t)2 dt = +∞.
(112)

(ii) DDIM/DDPM:

ηt

β4
t
=

˙̄αtσ
2
0

2ᾱt

(1−ᾱt)2σ4
0
=

˙̄αt

2ᾱt(1−ᾱt)2σ2
0

=⇒
∫ 1

0
ηt

β4
t
dt =

∫ 1

0
˙̄αt

2ᾱt(1−ᾱt)2σ2
0
dt =

∫ 1

0
1

2t(1−t)2σ2
0
dt = +∞.

(113)

(iii) Rectified Flow:

ηt

β4
t
=

(1−ᾱt) ˙̄αtσ
2
0

ᾱt

(1−ᾱt)4
=

(1−ᾱt) ˙̄αtσ
2
0

ᾱt(1−ᾱt)4
=

˙̄αtσ
2
0

ᾱt(1−ᾱt)3

=⇒
∫ 1

0
ηt

β4
t
dt =

∫ 1

0

˙̄αtσ
2
0

ᾱt(1−ᾱt)3
dt =

∫ 1

0
σ2
0

t(1−t)3 dt = +∞.
(114)

Novel Score Matching And for Novel Score Matching, we have that

EY∼pdata,X̄t=αtY+βtε

[
1
2

∫ 1

0
∥ŝ(X̄t, t)− αt(∇ log pbase(Y )+∇r(Y ))−(X̄t−αtY )

α2
t+β2

t
∥2(2ηt) dt

]
= EY∼pdata,X̄t=αtY+βtε

[
1
2

∫ 1

0
∥ vft(X̄t,t)−κtX̄t

2ηt
− αt(∇ log pbase(Y )+∇r(Y ))−(X̄t−αtY )

α2
t+β2

t
∥2(2ηt) dt

]
= EY∼pdata,X̄t=αtY+βtε

[
1
2

∫ 1

0
∥vft(X̄t, t)− κtX̄t −

2ηt

(
αt(∇ log pbase(Y )+∇r(Y ))−(X̄t−αtY )

)
α2

t+β2
t

∥2 1
2ηt

dt
]

= EY∼pdata,X̄t=αtY+βtε

[
1
2

∫ 1

0
∥vft(X̄t, t)− E

[
κtX̄t +

2ηt

(
αt(∇ log pbase(Y )+∇r(Y ))−(X̄t−αtY )

)
α2

t+β2
t

|X̄t

]
∥2 1

2ηt
dt
]

+ EY∼pdata,X̄t=αtY+βtε

[
1
2

∫ 1

0
∥E

[
κtX̄t +

2ηt

(
αt(∇ log pbase(Y )+∇r(Y ))−(X̄t−αtY )

)
α2

t+β2
t

|X̄t

]
−
(
κtX̄t +

2ηt

(
αt(∇ log pbase(Y )+∇r(Y ))−(X̄t−αtY )

)
α2

t+β2
t

)
∥2 1

2ηt
dt
]
.

(115)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The second term in the right-hand side of (115) (the variance term) can be simplified to

EY∼pdata,X̄t=αtY+βtε

[
1
2

∫ 1

0
∥E

[ 2ηt

(
αt(∇ log pbase(Y )+∇r(Y ))+αtY

)
α2

t+β2
t

|X̄t

]
−
( 2ηt

(
αt(∇ log pbase(Y )+∇r(Y ))+αtY

)
α2

t+β2
t

)
∥2 1

2ηt
dt
]

= EY∼pdata,X̄t=αtY+βtε

[ ∫ 1

0
ηtα

2
t

α2
t+β2

t
∥E

[
∇ log pbase(Y ) +∇r(Y ) + Y |X̄t

]
−
(
∇ log pbase(Y ) +∇r(Y ) + Y

)
∥2 dt

]
≤

∫ 1

0
ηtα

2
t

α2
t+β2

t
dt× EY∼pdata

[
∥∇ log pbase(Y ) +∇r(Y ) + Y ∥2

]
.

(116)

And in particular, for the three subcases:

(i) Föllmer process:

ηtα
2
t

α2
t+β2

t
=

˙̄αtσ
2
0

2
ᾱ2

t

ᾱ2
t+ᾱt(1−ᾱt)σ2

0
=

˙̄αtσ
2
0ᾱt

2(ᾱt+(1−ᾱt)σ2
0)

=
˙̄αtσ

2
0ᾱt

2(σ2
0+(1−σ2

0)ᾱt)

=⇒
∫ 1

0
ηtα

2
t

α2
t+β2

t
dt =

∫ 1

0

˙̄αtσ
2
0ᾱt

2(σ2
0+(1−σ2

0)ᾱt)
dt =

∫ 1

0
σ2
0t

2(σ2
0+(1−σ2

0)t)
dt

=

{
σ2
0

2(1−σ2
0)

+
σ4
0

2(1−σ2
0)

2 log
(
σ2
0

)
if σ0 ̸= 1,

1
4 if σ0 = 1.

(117)

(ii) DDIM/DDPM:

ηtα
2
t

α2
t+β2

t
=

˙̄αtσ
2
0

2ᾱt
ᾱt

ᾱt+(1−ᾱt)σ2
0
=

˙̄αtσ
2
0

2(ᾱt+(1−ᾱt)σ2
0)

(118)

=⇒
∫ 1

0
ηtα

2
t

α2
t+β2

t
dt =

∫ 1

0

˙̄αtσ
2
0

2(ᾱt+(1−ᾱt)σ2
0)

dt =
∫ 1

0
σ2
0

2(t+(1−t)σ2
0)

dt =

{
− σ2

0

2(1−σ2
0)

log
(
σ2
0

)
if σ0 ̸= 1,

1
2 if σ0 = 1.

(119)

(iii) Rectified Flow:

ηtα
2
t

α2
t+β2

t
=

(1−ᾱt) ˙̄αtσ
2
0

ᾱt
ᾱ2

t

ᾱ2
t+β̄2

t
=

(1−ᾱt) ˙̄αtᾱtσ
2
0

ᾱ2
t+β̄2

t
(120)

=⇒
∫ 1

0
ηtα

2
t

α2
t+β2

t
dt =

∫ 1

0
(1−ᾱt) ˙̄αtᾱtσ

2
0

ᾱ2
t+β̄2

t
dt =

∫ 1

0
(1−t)tσ2

0

t2+(1−t)2 dt =
σ2
0(π−2)

4 (121)

C PROOFS FOR THE THERMODYNAMICS-BASED METHODS

C.1 PROOF OF PROP. 4.1: CMCD FOR EXPONENTIAL TILTING

We apply Prop. A.1 with T = 1, and the choices Γ0 = N (0, β2
0I), Γ1 = pbase, µ ∝

N (0, β2
0I) exp(r0), ν ∝ pbase exp(r1), and

γ+t (x) = bσ(x, t) = κtx+
(σ(t)2

2 + ηt
)
st(x), (122)

γ−t (x) = bσ(x, t)− σ(t)2st(x) = κtx+
(
− σ(t)2

2 + ηt
)
st(x), (123)

at(x) = κtx+
(σ(t)2

2 + ηt
)(
st(x) +∇rt(x)

)
+ v(x, t)

= γ+t (x) +
(σ(t)2

2 + ηt
)
∇rt(x) + v(x, t),

(124)

bt(x) = at(x)− σ(t)2
(
st(x) +∇rt(x)

)
= κtx+

(
− σ(t)2

2 + ηt
)(
st(x) +∇rt(x)

)
+ v(x, t)

= γ−t (x) +
(
− σ(t)2

2 + ηt
)
∇rt(x) + v(x, t),

(125)
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Observe that when Y solves
−→
dYt = at(Yt) dt+σ(t)

−−→
dWt, it also solves

←−
dYt = at(Yt) dt+σ(t)

←−−
dWt

because σ does not depend on the position. When Y solves these SDEs, Prop. A.1 implies that

log d
−→P µ,a

d
←−P ν,b

(Y ) = r0(Y0)− logEN (0,β2
0I)

[exp(r0)]−
(
r1(Y1)− logEpbase [exp(r1)]

)
+
∫ 1

0
σ(t)−2

〈(σ(t)2

2 + ηt
)
∇rt(Yt) + v(Yt, t),

at(Yt) dt+ σ(t)
−−→
dWt − 1

2

(
at + γ+t

)
(Yt) dt

〉
−
∫ 1

0
σ(t)−2

〈(
− σ(t)2

2 + ηt
)
∇rt(Yt) + v(Yt, t),

at(Yt) dt+ σ(t)
←−−
dWt − 1

2

(
bt + γ−t

)
(Yt) dt

〉
= r0(Y0)− logEN (0,β2

0I)
[exp(r0)]−

(
r1(Y1)− logEpbase [exp(r1)]

)
+
∫ 1

0
σ(t)−2

〈(σ(t)2

2 + ηt
)
∇rt(Yt) + v(Yt, t),

1
2

((σ(t)2

2 + ηt
)
∇rt(Yt) + v(Yt, t)

)
dt+ σ(t)

−−→
dWt

〉
−
∫ 1

0
σ(t)−2

〈(
− σ(t)2

2 + ηt
)
∇rt(Yt) + v(Yt, t),

1
2

((
− σ(t)2

2 + ηt
)
∇rt(Yt) + v(Yt, t)

)
dt+ σ(t)

←−−
dWt

+ σ(t)2
(
st(Yt) +∇rt(Yt)

)
dt
〉
,

(126)

where the last equality holds because

1
2 (at(x)− γ

+
t (x)) = 1

2

((σ(t)2

2 + ηt
)
∇rt(x) + v(x, t)

)
(127)

and

at(x)− 1
2

(
bt(x)− γ−t (x)

)
= 1

2

(
bt(x)− γ−t (x)

)
+ σ(t)2

(
st(x) +∇rt(x)

)
= 1

2

((
− σ(t)2

2 + ηt
)
∇rt(x) + v(x, t)

)
+ σ(t)2

(
st(x) +∇rt(x)

)
.

(128)

The right-hand side of (126) can be further simplified into

log d
−→P µ,a

d
←−P ν,b

(Y ) = r0(Y0)− logEN (0,β2
0I)

[exp(r0)]−
(
r1(Y1)− logEpbase [exp(r1)]

)
+
∫ 1

0

[
− ⟨v(Yt, t), st(Yt)⟩+

(σ(t)2

2 − ηt
)
⟨∇rt(Yt), st(Yt)⟩+ σ(t)2

2 ∥∇rt(Yt)∥2
]
dt

+
∫ 1

0

[
σ(t)−1

(
⟨v(Yt, t) + ηt∇rt(Yt),

−−→
dWt⟩ − ⟨v(Yt, t) + ηt∇rt(Yt),

←−−
dWt⟩

)
+ σ(t)

2

(
⟨∇rt(Yt),

−−→
dWt⟩+ ⟨∇rt(Yt),

←−−
dWt⟩

)]
.

(129)

To obtain this simplification, it is convenient to define w(Yt, t) := v(Yt, t) + ηt∇rt(Yt) and
w+(x, t) := w(x, t) + σ(t)2

2 ∇rt(Yt), w
−(x, t) := w(x, t) − σ(t)2

2 ∇rt(Yt), which means that we
can rewrite the right-hand side of (126) as∫ 1

0
σ(t)−2

〈
w+, 1

2w
+ dt+ σ(t)

−−→
dWt

〉
−
∫ 1

0
σ(t)−2

〈
w−, 1

2w
− dt+ σ(t)

←−−
dWt + σ(t)2

(
st(Yt) +∇rt(Yt)

)
dt
〉
.

(130)

Equation (129) then follows from manipulating this expression.

To conclude the proof, we plug equation (129) into the definition of the KL and log-variance CMCD
losses:

LKL−CMCD(v) = E
Y v∼

−→P µ,av

[
log d

−→P µ,av

d
←−P ν,bv

(Y v)
]

= E
Y v∼

−→
P µ,av

[ ∫ 1

0

(
− ⟨v(Y v

t , t), st(Y
v
t )⟩+

(σ(t)2

2 − ηt
)
⟨∇rt(Y v

t ), st(Y
v
t )⟩+

σ(t)2

2 ∥∇rt(Y v
t )∥2

)
dt

−
∫ 1

0
σ(t)−1⟨v(Y v

t , t) + (ηt − σ(t)2

2 )∇rt(Y v
t ),
←−−
dWt⟩ − r(Y v

1 )
]
+ const.,

(131)
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where we write Y v := Y and av := a to make the dependency of a on v explicit. And

LVar−CMCD(v) = Var
Y v∼

−→P µ,av

[
log d

−→P µ,a

d
←−P ν,b

(Y v)
]

= Var
Y v∼

−→
P µ,av

[
r0(Y

v
0 )− logEN (0,β2

0I)
[exp(r0)]−

(
r1(Y

v
1 )− logEpbase [exp(r1)]

)
+
∫ 1

0

[
− ⟨v(Y v

t , t), st(Y
v
t )⟩+

(σ(t)2

2 − ηt
)
⟨∇rt(Y v

t ), st(Y
v
t )⟩+

σ(t)2

2 ∥∇rt(Y v
t )∥2

]
dt

+
∫ 1

0

[
σ(t)−1

(
⟨v(Y v

t , t) + ηt∇rt(Y v
t ),
−−→
dWt⟩ − ⟨v(Y v

t , t) + ηt∇rt(Y v
t ),
←−−
dWt⟩

)
+ σ(t)

2

(
⟨∇rt(Y v

t ),
−−→
dWt⟩+ ⟨∇rt(Y v

t ),
←−−
dWt⟩

)]]
.

(132)

Observe that the terms− logEN (0,β2
0I)

[exp(r0)] and logEpbase [exp(r1)] are unknown constants that
can be removed, because they appear inside of the divergence. This yields the final expression of
the log-variance CMCD loss.

C.2 PROOF OF PROP. 4.2: CROOKS FLUCTUATION THEOREM FOR EXPONENTIAL TILTING

We use the notation of App. C.1. We apply Prop. A.1 with the same choices as in App. C.1, but in
this case we leave the expression explicitly in terms of

−→
dYt and

←−
dYt, without assuming that Yt solves

any particular SDE. The expression reads:

log d
−→P µ,a

d
←−P ν,b

(Y ) = r0(Y0)− logEN (0,β2
0I)

[exp(r0)]−
(
r1(Y1)− logEpbase [exp(r1)]

)
+
∫ 1

0
σ(t)−2

〈(σ(t)2

2 + ηt
)
∇rt(Yt) + v(Yt, t),

−→
dYt −

(
κtYt +

(σ(t)2

2 + ηt
)(
st(Yt) +

1
2∇rt(Yt)

)
+ 1

2v(Yt, t)
)
dt
〉

−
∫ 1

0
σ(t)−2

〈(
− σ(t)2

2 + ηt
)
∇rt(Yt) + v(Yt, t),

←−
dYt −

(
κtYt +

(
− σ(t)2

2 + ηt
)(
st(Yt) +

1
2∇rt(Yt)

)
+ 1

2v(Yt, t)
)
dt
〉
.

(133)

This can be simplified to:

log d
−→P µ,a

d
←−P ν,b

(Y ) = r0(Y0)− logEN (0,β2
0I)

[exp(r0)]−
(
r1(Y1)− logEpbase [exp(r1)]

)
+
∫ 1

0
σ(t)−2

〈
ηt∇rt(Yt) + v(Yt, t),

−→
dYt −

←−
dYt

〉
+ 1

2

∫ 1

0

〈
∇rt(Yt),

−→
dYt +

←−
dYt

〉
−
∫ 1

0

(
⟨κtYt, ∇rt(Yt)⟩+ ⟨v(Yt, t), st(Yt) +∇rt(Yt)⟩

+ 2ηt⟨∇rt(Yt), st(Yt)⟩+ ηt∥∇rt(Yt)∥2
)
dt.

(134)

Applying (138) and (139), we obtain that∫ 1

0
σ(t)−2

〈
ηt∇rt(Yt) + v(Yt, t),

−→
dYt −

←−
dYt

〉
= −

∫ 1

0

(
ηt ∆rt(Yt) +∇ · v(Yt, t)

)
dt, (135)

1
2

∫ 1

0

〈
∇rt(Yt),

−→
dYt +

←−
dYt

〉
= r1(Y1)− r0(Y0)−

∫ 1

0
∂trt(Yt) dt, (136)

and plugging these into the right-hand side of (137) concludes the proof:

log d
−→
P µ,a

d
←−P ν,b

(Y ) = − logEN (0,β2
0I)

[exp(r0)] + logEpbase [exp(r1)]

−
∫ 1

0

(
⟨κtYt + 2ηtst(Yt), ∇rt(Yt)⟩+ ⟨v(Yt, t), st(Yt) +∇rt(Yt)⟩+ ∂trt(Yt)

+ ηt∥∇rt(Yt)∥2 + ηt ∆rt(Yt) +∇ · v(Yt, t)
)
dt.

(137)
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Lemma C.1. Suppose that Y satisfies the SDE
−→
dYt = at(Yt) dt+σ(t)

−−→
dWt, and that ωt : Rd → Rd

is differentiable and that rt : Rd → Rd twice-differentiable with respect to the position variable and
differentiable with respect to the time variable. We have that∫ T

0
⟨ωt(Yt),

←−
dYt⟩ −

∫ T

0
⟨ωt(Yt),

−→
dYt⟩ =

∫ T

0
σ(t)2∇ · ωt(Yt) dt, (138)

and ∫ T

0
⟨∇rt(Yt),

←−
dYt⟩+

∫ T

0
⟨∇rt(Yt),

−→
dYt⟩ = 2

∫ T

0
∇rt(Yt) ◦ dYt

= 2
(
rT (YT )− r0(Y0)−

∫ T

0
∂trt(Yt) dt

)
,

(139)

Proof. We have that ∫ T

0
⟨ωt(Yt),

←−
dYt⟩ −

∫ T

0
⟨ωt(Yt),

−→
dYt⟩ = [ω(Y ), Y ]T , (140)

where [ω(Y ), Y ]t denotes the quadratic variation. Since by Itô’s lemma,

−→
d
(
ωt(Yt)

)
=

(
∂tωt(Yt) +∇ωt(Yt)

⊤ at(Yt) +
1
2 σ(t)

2 ∆ωt(Yt)
)
dt+ σ(t)∇ωt(Yt)

⊤−−→dWt,

(141)

we have that

[ω(Y ), Y ]T =
∫ T

0
σ(t)2∇ · ωt(Yt) dt (142)

The first equality in (139) holds by the fact that∫ T

0
⟨∇rt(Yt),

←−
dYt⟩+

∫ T

0
⟨∇rt(Yt),

−→
dYt⟩

= lim|π|→0

∑K−1
k=0 ⟨∇rtk+1

(Ytk+1
)−∇rtk(Ytk), Yk+1 − Yk⟩ := 2

∫ T

0
∇rt(Yt) ◦ dYt

(143)

where π = (tk)
K
k=0 with 0 = t0 < · · · < tK = T and |π| = maxk=0:K−1 |tk+1 − tk|, and the

second equality holds by Itô’s lemma in the Stratonovich formulation.

C.3 PROOF OF PROP. 4.4: NETS FOR EXPONENTIAL TILTING

We use the notation of App. C.1 and App. C.2. Define

Ft = logEx∼pbase
1

[exp(rt(x))]. (144)

Since logEpbase [exp(r1)]−logEN (0,β2
0I)

[exp(r0)] = F1−F0 =
∫ 1

0
∂tFt dt, we can rewrite equation

(137) as

log d
−→P µ,a

d
←−P ν,b

(Y ) = −
∫ 1

0

(
⟨κtYt + 2ηtst(Yt), ∇rt(Yt)⟩+ ⟨v(Yt, t), st(Yt) +∇rt(Yt)⟩+ ∂trt(Yt)

+ ηt∥∇rt(Yt)∥2 + ηt ∆rt(Yt) +∇ · v(Yt, t)− ∂tFt

)
dt.

(145)

Thus, for an arbitrary process Y , using Jensen’s inequality

E
[
log d

−→P µ,a

d
←−P ν,b

(Y )2
]
=E

[( ∫ 1

0

(
⟨κtYt+2ηtst(Yt), ∇rt(Yt)⟩+⟨v(Yt, t), st(Yt)+∇rt(Yt)⟩

+∂trt(Yt)+ηt∥∇rt(Yt)∥2+ηt ∆rt(Yt)+∇ · v(Yt, t)−∂tFt

)
dt
)2]

≤ E
[ ∫ 1

0

(
⟨κtYt+2ηtst(Yt), ∇rt(Yt)⟩+⟨v(Yt, t), st(Yt)+∇rt(Yt)⟩

+∂trt(Yt)+ηt∥∇rt(Yt)∥2+ηt ∆rt(Yt)+∇ · v(Yt, t)−∂tFt

)2

dt
]
,

(146)

and the right-hand side is the PINN (physics informed neural network) NETS loss for exponential
tilting.
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We provide an alternative derivation. The Fokker-Planck equation corresponding to the process Xv

defined in (13) is:

∂tρt +∇ · ((bσ + v)ρt) =
σ2

2 ∇ · ∇ρt (147)

We rewrite brσ as follows:

brσ(x, t) = κtx+
(σ(t)2

2 + ηt
)(
st(x) +∇rt(x)

)
= κtx+ ηt

(
st(x) +∇rt(x)

)
+ σ(t)2

2

(
st(x) +∇rt(x)

)
=: b̃r(x, t) + σ(t)2

2

(
st(x) +∇rt(x)

)
.

(148)

Thus, equation (147) becomes

∂tρt +∇ · ((b̃r + v)ρt) =
σ2

2 ∇ ·
((
− st −∇rt

)
ρt +∇ρt

)
(149)

Now we want ρ⋆t ∝ ρbaset exp(rt) to fulfill this PDE. We write explicitly

ρ⋆t (x) =
ρbase
t (x) exp(rt(x))

Ft
, F̂t = Ey∼ρbase

t
[exp(rt(y))]. (150)

Since∇ ·
((
− st −∇rt

)
ρ⋆t +∇ρ⋆t

)
= 0 by construction, we must enforce

0 = ∂tρ
⋆
t +∇ · ((b̃r + v)ρ⋆t )

= ∂t
(ρbase

t (x) exp(rt(x))

F̂t

)
+∇ · (b̃r + v)ρ⋆t + ⟨b̃r + v,∇ log ρ⋆t ⟩ρ⋆t

= ∂t
(
log ρbaset + rt − log F̂t

)
ρ⋆t +∇ · (b̃r + v)ρ⋆t + ⟨b̃r + v, st +∇rt⟩ρ⋆t .

(151)

Since ρbaset satisfies 0 = ∂tρ
base
t +∇ ·

(
(κtx+ ηtst)ρ

base
t

)
= ∂tρ

base
t +∇ ·

(
(b̃r − ηt∇rt)ρbaset

)
,

we obtain that

∂t log ρ
base
t = −∇ ·

(
b̃r − ηt∇rt

)
− ⟨b̃r − ηt∇rt, st⟩. (152)

Plugging this into the right-hand side of (151) and using that log F̂t = Ft with Ft defined in (144)
yields

0 = −∇ ·
(
b̃r − ηt∇rt

)
− ⟨b̃r − ηt∇rt, st⟩+ ∂trt − ∂tFt +∇ · (b̃r + v) + ⟨b̃r + v, st +∇rt⟩

= ∇ ·
(
v + ηt∇rt

)
+ ∂trt − ∂tFt + ⟨v, st +∇rt⟩

− ⟨κtx+ ηtst, st⟩+ ⟨κtx+ ηt
(
st +∇rt

)
, st +∇rt⟩

= ∇ ·
(
v + ηt∇rt

)
+ ∂trt − ∂tFt + ⟨v, st +∇rt⟩

− ⟨κtx+ ηtst, st⟩+ ⟨κtx+ ηt
(
st +∇rt

)
, st +∇rt⟩

= ∇ ·
(
v + ηt∇rt

)
+ ∂trt − ∂tFt + ⟨v, st +∇rt⟩+ ⟨κtx+ 2ηtst,∇rt⟩+ ηt∥∇rt∥2

(153)

Thus, for ρ⋆t to satisfy the FPE (147), which means that is the law of the marginal Xv
t , we need v to

satisfy (153). Observe that the terms in the right-hand side of (153) match one to one the terms in
the right-hand side of (146). Hence, the NETS loss can be interpreted as a PINN loss on the residual
of (153).

D ADDITIONAL EXPERIMENTS

D.1 DERIVATION OF THE GENERATIVE SDE WITH DIFFERENT INITIAL VARIANCE σ2
0

Consider Rectified Flow with σ(t) = γηt for some γ > 0, and with two different choices for the
initial variance: σ2

0 and σ̃2
0 . We have that

b(x, t) = κtx+ (1 + γ)ηts(x, t) =
˙̄αt

ᾱt
x+

(1+γ)(1−ᾱt) ˙̄αtσ
2
0

ᾱt
s(x, t), (154)

b̃(x, t) = κtx+ (1 + γ)η̃ts̃(x, t) =
˙̄αt

ᾱt
x+

(1+γ)(1−ᾱt) ˙̄αtσ̃
2
0

ᾱt
s̃(x, t), (155)
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where s and s̃ are the scores corresponding to σ2
0 and σ̃2

0 , respectively. Next, we apply Corollary A.5
to relate s and s̃. Defining

t(r) = ᾱ−1( σ0ᾱr

σ̃0(1−ᾱr)+σ0ᾱr
), sr = σ̃0(1−ᾱr)+σ0ᾱr

σ0
, (156)

we have that
ᾱr

(1−ᾱr)σ̃0
=

ᾱt(r)

(1−ᾱt(r))σ0
, s̃(x, r) = 1

sr
s(x/sr, t(r)), (157)

and

b̃(x, r)=
˙̄αr

ᾱr
x+

(1+γ)(1−ᾱr) ˙̄αrσ̃
2
0

ᾱrsr
s( x

sr
, t(r))=

˙̄αr

ᾱr
x+

(1+γ)(1−ᾱr) ˙̄αrσ̃
2
0

ᾱrsr

ᾱt(r)

(1−ᾱt(r)) ˙̄αt(r)σ
2
0

(
v( x

sr
, t(r))− ˙̄αt(r)

ᾱt(r)

x
sr

)
(158)

=
˙̄αr

ᾱr
x+

˙̄αrσ̃0

sr

1+γ
˙̄αt(r)σ0

(
v( x

sr
, t(r))− ˙̄αt(r)

ᾱt(r)

x
sr

)
=

˙̄αr

ᾱr
x+

˙̄αr
˙̄αt(r)

(1+γ)σ̃0

σ̃0(1−ᾱr)+σ0ᾱr

(
v( x

sr
, t(r))− ˙̄αt(r)

ᾱt(r)

x
sr

)
(159)

=
˙̄αr

˙̄αt(r)

σ̃0(1+γ)
σ̃0(1−ᾱr)+σ0ᾱr

v( x
sr
, t(r)) + ˙̄αr

(
1
ᾱr
− 1+γ

ᾱt(r)

σ̃0σ0

(σ̃0(1−ᾱr)+σ0ᾱr)2

)
x (160)

=
˙̄αr

˙̄αt(r)

σ̃0(1+γ)
σ̃0(1−ᾱr)+σ0ᾱr

v( x
sr
, t(r)) +

˙̄αr

ᾱr

(
1− σ̃0(1+γ)

σ̃0(1−ᾱr)+σ0ᾱr

)
x (161)

where the second equality holds because s(x, t) = ᾱt

(1−ᾱt) ˙̄αtσ2
0

(
v(x, t) − ˙̄αt

ᾱt
x
)
, the third equality

holds because of the first equality in (157), the fourth and fifth equalities hold because of the second
equality in (156), and the sixth equality holds because ᾱt(r)

ᾱr
= σ0

σ̃0(1−ᾱr)+σ0ᾱr
, and the seventh

equality holds by simplifying. And if we want to run inference with a different noise schedule σ(t),
we have that

b̃σ(x, r) = b̃(x, r) +
(σ(t)2

2 + η̃t
)
s̃(x, t). (162)

D.2 ADDITIONAL PLOTS

Fig. 3 is the analog of Fig. 2 with training σ2
0 = 1.5.

Figure 3: Quality metrics for the base Stable Diffusion 3 model and models fine-tuned at σ2
0 = 1.5

and λ ∈ {102, 105/2, 103}, with inference at η ∈ {0, 1} and σ0 = {1, 1.5}.
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