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Abstract

Although Large Visual Language Models (LVLMs) have demonstrated exceptional
abilities in understanding multimodal data, they invariably suffer from hallucina-
tions, leading to a disconnection between the generated text and the correspond-
ing images. Almost all current visual contrastive decoding methods attempt to
mitigate these hallucinations by introducing visual uncertainty information that
appropriately widens the contrastive logits gap between hallucinatory and targeted
ones. However, due to uncontrollable nature of the global visual uncertainty, they
struggle to precisely induce the hallucinatory tokens, which severely limits their
effectiveness in mitigating hallucinations and may even lead to the generation
of undesired hallucinations. To tackle this issue, we conducted the theoretical
analysis to promote the effectiveness of contrast decoding. Building on this in-
sight, we introduce a novel optimization strategy named Hallucination-Induced
Optimization (HIO). This strategy seeks to amplify the contrast between hallucina-
tory and targeted tokens relying on a fine-tuned theoretical preference model (i.e.,
Contrary Bradley-Terry Model), thereby facilitating efficient contrast decoding to
alleviate hallucinations in LVLMs. Extensive experimental research demonstrates
that our HIO strategy can effectively reduce hallucinations in LVLMs, outper-
forming state-of-the-art methods across various benchmarks. Code is released at
https://github.com/BT-C/HIO.

1 Introduction

The recent success of Large Vision-Language Models (LVLMs) marks a major milestone in artificial
intelligence research [OpenAI, 2023, Alayrac et al., 2022, Li et al., 2023a, Liu et al., 2023c, Zhu
et al., 2023, Bai et al., 2023, Dai et al., 2023, Wang et al., 2023b, Driess et al., 2023]. By seamlessly
integrating visual cues with Large Language Models (LLMs), LVLMs have demonstrated unparal-
leled expertise in multimodal comprehension, logical reasoning, and interactive engagement. This
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Figure 1: (Left) Challenges and Solutions of Contrast Decoding Strategy. Visual Contrastive Decoding,
despite introducing perturbations to induce hallucinations, fails to effectively enlarge the logits gap between
hallucinatory and targeted tokens, resulting in unsatisfactory outputs. On the contrary, our method addresses
the issue by significantly amplifying the logits gap between hallucinatory and targeted tokens. (Right) The
performance of various methods on CHAIR metrics. Our HIO generates descriptions with fewer hallucination
tokens compared to other visual contrastive decoding methods, achieving lower scores on the CHAIRs and
CHAIRi metrics.

integration has ushered in a new era in AI, breaking through traditional limitations and enabling a
more holistic understanding of complex information OpenAI [2023], Yang et al. [2023], Lu et al.
[2023], Zhang et al. [2022], Sun et al. [2024]. Despite these advancements, certain challenges remain,
particularly the issue of hallucination Li et al. [2023b], Gunjal et al. [2023], Liu et al. [2023b],
Lovenia et al. [2023]. Hallucination occurs when the language model generates content that deviates
from the image’s actual content, including imagined objects, fabricated scenes, incorrect spatial
relationships, and misidentified categories.

Substantial research efforts have been directed towards mitigating hallucinations in Large Vision-
Language Models (LVLMs). These efforts include post-hoc correction methods that refine LVLM
outputs after the fact Zhou et al. [2023] and self-correcting frameworks specifically designed to
reduce object hallucinations Yin et al. [2023]. Additionally, numerous decoding strategies have been
developed to minimize hallucinations through the enhanced use of textual and visual priors Leng et al.
[2023], Zhang et al. [2024], Favero et al. [2024], Zhu et al. [2024], Wang et al. [2024], Chen et al.
[2024]. These methods aim to alleviate hallucinatory tendencies by integrating visual uncertainty,
thereby increasing the contrastive disparity between hallucinatory and target logits. For example,
Leng et al. [2023] augment the hallucinatory effect by introducing Gaussian noise into the images.
Similar approaches by Zhang et al. [2024] and Favero et al. [2024] introduce substantial image
noise, effectively reducing the original image to pure noise or unrecognizable content. Zhu et al.
[2024] use instructional bias to enable the model to amplify its own hallucinations, while Wang et al.
[2024] focus on deliberately amplifying the inherent image bias in LVLMs.

However, the inherent uncontrollable nature of global visual uncertainty challenges the precise
induction of hallucinatory tokens. This limitation significantly undermines the effectiveness of these
methods in reducing hallucinations and may inadvertently lead to undesired hallucinatory outputs.
As shown in the left portion of the Fig. 1 Spoon, Table, and Fork are identified as hallucinated words,
while People being the accurate term. For Greedy Decoding method shown in Fig. 1 (a), Table is
selected as the final output based on the logits distribution. Moreover, although Visual Contrastive
Decoding introduces perturbations to images to enhance hallucinations in Fig. 1 (b), it fails to widen
the logits gaps between hallucinatory (Spoon, Table, and Fork) and targeted tokens (People), yielding
a new hallucination as Fork.

To tackle this issue, we conducted the theoretical analysis to explore mechanisms for more effective
contrast decoding (refer to Section 5 for detailed information on the process). Theoretically, a clear
distinction between hallucinatory and target tokens can significantly enhance the effectiveness of
contrast decoding methods in mitigating hallucinations. Based on this crucial insight, we introduce a
novel optimization strategy called Hallucination-Induced Optimization (HIO). This strategy enhances
the distinction between hallucinatory and targeted tokens by utilizing a refined theoretical preference
model(as shown in the Fig. 1 on the left, section (c)), accurately outputting the correct result, People.
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Consequently, this improves the efficiency of contrast decoding, thereby mitigating hallucinations in
Large Vision-Language Models (LVLMs). Furthermore, our proposed method significantly reduces
hallucinations in LVLMs compared to existing contrast decoding methods(as shown in the Fig. 1 on
the right). To sum up, our main contributions are as follows:

1. We conducted a comprehensive theoretical analysis to explore mechanisms that enhance the
effectiveness of the contrast decoding strategy.

2. We introduce Hallucination-Induced Optimization (HIO), an innovative strategy that utilizes
a finely-tuned theoretical preference model to intensify the contrast between hallucinatory
and target tokens. This enhancement strengthens the effectiveness of contrast decoding and
effectively reduces hallucinations in Large Visual Language Models (LVLMs).

3. Extensive experimental research demonstrates that our Hallucination-Induced Optimization
(HIO) strategy effectively reduces hallucinations in Large Visual Language Models (LVLMs),
surpassing state-of-the-art methods across various benchmarks.

2 Related Work

Hallucination in LVLMs. Before the advent of Large Language Models (LLMs), "hallucination"
in natural language processing (NLP) primarily referred to generating nonsensical or source-deviating
content Lee et al. [2018], Zhou et al. [2020], Lin et al. [2021], Ji et al. [2023], Zhang et al. [2023], Shi
et al. [2023]. Recent studies have tackled the complexities of object hallucination in Large Vision-
Language Models (LVLMs), focusing on evaluation and detection methods Wang et al. [2023a], Liu
et al. [2023a], Li et al. [2023b], Lovenia et al. [2023]. The CHAIR metric Rohrbach et al. [2018]
evaluates the exact match between generated and ground-truth image captions, while POPE Li et al.
[2023b] assesses the model’s awareness of object existence through binary classification.

Decoding Method. The decoding method determines the generation of text tokens at each time
step within language models. Traditional decoding strategies such as beam search Boulanger-
Lewandowski et al. [2013], top-k decoding Fan et al. [2018], and sampling methods Holtzman et al.
[2019], despite their widespread use, are prone to producing hallucinatory content. Recent research
Li et al. [2022], Chuang et al. [2023], Leng et al. [2023], Huang et al. [2023] has made attempts
to address this issue by proposing better decoding methods. For instance, Leng et al. [2023] uses
contrastive decoding in LVLMs; However, global visual uncertainty poses challenges to the precise
induction of hallucinatory tokens, limiting the effectiveness of mitigation strategies and risking
unwanted hallucinations. To address this, we developed Hallucination-Induced Optimization (HIO),
a novel strategy that enhances the contrast between hallucinatory and targeted tokens. Fig.1 presents
the comparison results, where our approach demonstrates superior performance than other decoding
methods.

3 Preliminaries

We first review the Contrast Decoding pipeline in Leng et al. [2023] (and later Zhang et al. [2024],
Favero et al. [2024]). Then take a close look at the Bradley-Terry model Bradley and Terry [1952]
and its application such as Direct Preference Optimization Rafailov et al. [2024]. Inspired by these
studies, we propose our Hallucination-Induced Optimization.
Visual Contrastive Decoding. We consider an LVLM parameterized by θ. The model takes a textual
query input x and a visual input v, where v provides contextual visual information to assist the model
in generating a relevant response y to the textual query. The response y is sampled auto-regressively
from the probability distribution conditioned on the query x and the visual context v. Mathematically,
this can be formulated as:

yt ∼ pθ (yt | v, x, y<t) ∝ exp logitθ (yt | v, x, y<t) (1)

where yt denotes the token at time step t, and y<t represents the sequence of generated tokens up to
the time step t− 1. Specifically, given a textual query x and a visual input v, the model generates
two distinct output distributions: one conditioned on the original v and the other on the distorted
visual input v′, which is derived by applying pre-defined distortions (i.e., Gaussian noise mask) to the
original v. Then, a new contrastive probability distribution is computed by exploiting the differences
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between the two initially obtained distributions. The new contrastive distribution pvcd is formulated
as:

pvcd (y | v, v′, x) = softmax[(1 + α) logitθ (y | v, x)− α logitθ (y | v′, x)] (2)
where larger value of α indicate a stronger amplification of differences between the two distributions
(α = 0 reduces to regular decoding).
Direct Preference Optimization. Reinforcement learning (RL) effectively fine-tunes Large Language
Models (LLMs) to align with human behavior. Given an input x and a response y, a language model
policy πθ generates a conditional distribution πθ(y | x). RL aims to maximize the average reward of
outputs, with the reward function r(x, y). To prevent overoptimization Gao et al. [2023], the objective
loss includes a KL-divergence term, controlling the divergence between the language model policy
and its reference policy πref(y | x), typically derived from supervised fine-tuning. Thus, the overall
objective is formulated as:

max
πθ

Ex∼D,y∼πθ(y|x)
[
r(x, y)− α log

πθ(y | x)
πref(y | x)

]
(3)

where D is a dataset of prompts and α is a coefficient to control KL-divergence term. However, opti-
mizing the above loss term with common strategies like proximal policy optimization (PPO) Schulman
et al. [2017] is complex to tune. Recently, direct preference optimization (DPO) Rafailov et al. [2024]
simplifies the above process by leveraging preference data for optimization. Here, the preference
data is defined as D = {x(i), y

(i)
w , y

(i)
l }Ni=1, where y

(i)
w and y

(i)
l represent preferred and dispreferred

responses given an input prompt x. These are then presented to human labelers who express prefer-
ences for one answer, denoted as yw ≻ yl | x where yw and yl denote the preferred and dispreferred
respectively. Following a Bradley-Terry model [Bradley and Terry, 1952], the probability of obtaining
each preference pair is:

p(yw ≻ yl | x) =
exp (r(x, yw))

exp (r(x, yw)) + exp (r(x, yl))
. (4)

where the superscript i is omitted for simplicity. In DPO, the optimization of Eqn. (3) can be
formulated as classification loss over the preference data as:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
α log

πθ(yw|x)
πref(yw|x)

− α log
πθ(yl|x)
πref(yl|x)

)]
. (5)

DPO enables learning πθ from a fixed dataset of preferences, which is lightweight. However, the
challenge arises because the direct application of DPO does not reliably induce hallucinations in a
manner that meets the criteria specified in Eqn. (17).

4 Method

An overview of the proposed HIO method is shown in Fig. 2. It constructs a more-hallucinated LVLM
by inducing hallucinations from the original LVLM to amplify the contrast between hallucinatory and
targeted tokens, thereby enhancing the efficiency of contrast decoding and mitigating hallucinations in
LVLMs. In Section 4.1, we harness a fine-tuned theoretical preference model to amplify the contrast
between hallucinatory and targeted tokens. Furthermore, to induce more potential hallucinations
for effective contrast decoding, we propose to amplify multiple hallucination tokens based on a
theoretical foundation presented in Eqn. 17 of Section 5. This theory demonstrates that effective
contrastive decoding requires a consistent difference between the logits of potential hallucinated
tokens and the correct token. And Section 4.3 introduces additional constraints to overcome the
limitations of existing classification loss in amplifying the contrast between hallucinatory and targeted
tokens.

4.1 Contrary Bradley-Terry Model (CBTM)

We harness a fine-tuned theoretical preference model (i.e., Contrary Bradley-Terry Model [Bradley
and Terry, 1952]) to amplify the contrast between hallucinatory and targeted tokens. The studies on
hallucination mitigation Zhao et al. [2023], Yu et al. [2023], Zhou et al. [2024] utilize BT model by
defining the non-hallucinatory output as yw and the hallucinatory output as yl. Subsequently, they
employ BT model training to incentivize the model to prioritize outputs without hallucinations over
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Figure 2: An overview of Hallucination-Induced Optimization (HIO). Our approach comprises two phases:
the training stage and inference decoding. During the training stage, given an input image, a query, and a
manually annotated correction, the Large Visual Language Model (LVLM) produces multiple instances of
hallucinated content. We then apply our Hallucination-Induced Optimization (HIO) method to train an ‘Evil’
LVLM by inducing hallucinations from the original LVLM. In the inference phase, the logits from the trained
‘Evil’ LVLM are used to contrast with those generated by the original LVLM, effectively reducing the presence
of hallucinations.

those containing them.
However, within the context of contrast decoding, inducing hallucinations is crucial, and the resulting
model output must satisfy the criteria outlined in Eqn. (17). (The detailed derivation of this formula
is provided in Section5). To meet the requirements specified in Eqn. (17), the logits associated with

hallucinated tokens l̂i
{v,x,y<t}

need amplification, while at least one of the logits for the correct

token l̂j
{v,x,y<t}

must be reduced. In contrast to the prevailing research efforts focused on alleviating
hallucinations, our approach enables the model to learn to fit the distribution containing hallucinations
while avoiding convergence with the distribution of correct outputs. The details are outlined as

follows. To regulate l̂i
{v,x,y<t}

and l̂j
{v,x,y<t}

, we utilize the dataset introduced by Yu et al. [2023].
This dataset is notable for providing a pair of outputs per input, with the output paragraphs being
mostly identical except for differences in certain words or short phrases. By leveraging this dataset,
we approximate the conditions outlined in Eqn. (17) within a unified statement. Different from
Eqn. (5), we apply the Bradley-Terry (BT) [Bradley and Terry, 1952] model in a reversed way, the
objective is:

p(yl ≻ yw | x) = exp (r(x, yl))

exp (r(x, yl)) + exp (r(x, yw))

= σ

(
β log

πθ(yl|v, x)
πref(yl|v, x)

− β log
πθ(yw|v, x)
πref(yw|v, x)

)
.

(6)

where σ(·) is defined as a sigmoid function and the reference model πref(y|x) is usually implemented
by an instruction-tuned base model we want to improve, and is kept fixed during DPO training. Only
the policy model πθ(y|x) is updated.

4.2 Amplification of Multiple Targeted Hallucination (AMTH)

The methodology delineated in Eqn. (6), along with the conventional application of Direct Preference
Optimization (DPO) for mitigating hallucinations, is limited to highlight the difference between a
single hallucination token and the target token. Consequently, these approaches fall short in enhancing
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the distinctions among other hallucinations relative to the target tokens, which is critical as shown
in Eqn. (17). In this section, we will explain how to amplify the differences between multiple
hallucination tokens and target tokens through modifications at both the loss function and data levels.
Multiple Hallucination-Induced Optimization. Achieving the desired distribution through single
positive and negative sample fitting preference training is not feasible, leading conventional Direct
Preference Optimization (DPO) applications Zhao et al. [2023], Yu et al. [2023], Zhou et al. [2024]
to overlook a significant number of hallucinations. Thus, drawing inspiration from the implications
of Eqn. (17), our approach strategically induces multiple hallucinations to increase the probability of
producing a correct word in the output. As demonstrated in Eqn. (17), effective contrast decoding
necessitates not only the amplification of one hallucination but also the consideration of a diverse set
of potential hallucinations. We propose the simultaneous fitting of multiple pairs of preference data
when modeling distributions for the same input preference, treating all pairs of preference data with
equal importance. Based on Eqn. (6), we apply the Bradley-Terry (BT) [Bradley and Terry, 1952]
model in a multi-pair way, the objective is:

k∏
i=1

p(yl ≻ yw | x) =
k∏

i=1

exp (r(x, yli))

exp (r(x, yli)) + exp (r(x, yw))

=

k∏
i=1

σ

(
β log

πθ(yli|x)
πref(yli|x)

− β log
πθ(yw|x)
πref(yw|x)

)
.

(7)

where {yli}, i ∈ {1, 2, . . . , k} represent the multiple potential hallucination tokens. Assuming access
to a static dataset of comparisons D =

{
x(i), y

(i)
w , {y(i)li }

}N

i=1
sampled from p, we can parametrize a

reward model r(x, y) and estimate the parameters via maximum likelihood. Framing the problem as
a binary classification we have the negative log-likelihood loss:

LAMTH(πθ;πref) = −E(x,yl,yw)∼D

[
log

( k∏
i=1

p(yl ≻ yw | x)
)]

(8)

= −E(x,yl,yw)∼D

k∑
i=1

[
log σ

(
β log

πθ(yli|v, x)
πref(yli|v, x)

− β log
πθ(yw|v, x)
πref(yw|v, x)

)]
(9)

Acquisition of Multiple Candidate Hallucinations. While numerous hallucination datasets exist Yu
et al. [2023], Zhao et al. [2023], Zhou et al. [2024], they are either generated by GPT or manually
rewritten, and thus do not accurately represent the model’s potential for multiple hallucinations.
Therefore, we propose a novel approach: allowing the model to directly output tokens with high
confidence as negative samples. While this approach may incorrectly classify some correct tokens as
hallucinations, it compensates by providing true value-labeled data for correction and supplementation.
Consequently, this method effectively amplifies multiple hallucinations while reducing the target
token. The detailed training process of our method is outlined in Algorithm 1.

4.3 Advanced Constraints for Inducing (ACI)

To overcome the limitations of existing classification loss in amplifying the contrast between halluci-
natory and targeted tokens, we introduces additional constraints. The preference optimization strategy
outlined in Eqn. (8) allows the model to accommodate a specific range of preference distributions
through the cross-entropy in the classification loss function. The precise formulation is as follows:

πθ(yl|v, x) =
m∑
t=1

exp ˆlkt

{v,x,y<t}∑N
j exp l̂j

{v,x,y<t}
, {kt} ∈ yl, t = {1, 2, . . . ,m} (10)

where m represents the length of the sentence yl and {kT } is token of each word, and the definition

of l̂i
{v,x,y<t}

is shown in Section 5. While the use of cross-entropy to minimize encoding length
helps the model align with the desired output sentence, it does not consistently ensure that the logits
of induced hallucinations meet the conditions specified in Eqn. (17).
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For example, the goal of Eqn. (8) is to increase πθ(yl|v, x), but both increasing exp ˆlkt

{v,x,y<t}

or decreasing
∑N

j exp l̂j
{v,x,y<t}

can achieve this goal. Meanwhile, decreasing the value of∑N
j exp l̂j

{v,x,y<t}
can also allow πθ(yw|v, x) to meet the optimization criteria. As shown in

Fig. 3, the blue curve, representing the disparity between the logits of the hallucinatory and targeted
tokens, typically exhibits a positive trend. Nevertheless, it’s important to note occasional segments
where this value dips below zero. To tackle this issue, we further add restrictions based on Eqn. (8):

LHIO(πθ;πref) = −E(x,yl,yw)∼D

k∑
i=1

[
log σ

(
β log

πθ(yli|v, x)
πref(yli|v, x)

− β log
πθ(yw|v, x)
πref(yw|v, x)

)
(11)

+ γ

(
1

m

m∑
t=1

ˆlkt

{v,x,y<t} − l̂i
{v,x,y<t}

)]
By implementing this constraint, the model can be fitted to the distribution of preference statements,
thereby further expanding the difference between hallucination tokens and target tokens.

5 Fundamental Conditions for Contrast Decoding

Contrast decoding is capable of mitigating hallucinations when specific conditions are met. This
section delves into a comprehensive discussion and analysis of these conditions.
Definition. Let l{v,x,y<t}

i represent the probability of the i-th token in the model’s vocabulary given
the query x, the visual context v and the sequence of generated tokens up to the time step (t − 1).
The logits can be formulated as:

logitθ (yt | v, x, y<t) = L{v,x,y<t} = (l
{v,x,y<t}
1 , l

{v,x,y<t}
2 , . . . , l

{v,x,y<t}
N ) (12)

where N denotes the vocabulary length.

Definition. Let L̂{v,x,y<t} represents the ideal logits for contrast decoding, L
′{v,x,y<t} repre-

sents the logits with hallucination and L∗{v,x,y<t} represents the logits of correct token, where
{L′{v,x,y<t}, L∗{v,x,y<t}} ∈ L{v,x,y<t}. The results of contrast decoding of logits can be formulated
as:

δ{v,x,y<t} = (1 + α)L{v,x,y<t} − αL̂{v,x,y<t} (13)
where larger α values indicate a stronger amplification of differences between the two distributions
(α = 0 reduces to regular decoding). The condition for the absence of hallucination in the logits
subsequent to subtraction is that the values of the logits corresponding to all hallucinatory tokens are
less than the magnitudes of the logits corresponding to the correct lexical tokens. The aforementioned
condition is articulated mathematically as follows:

Proposit.
max δ

′{v,x,y<t} < min δ∗{v,x,y<t} (14)

where δ
′{v,x,y<t} denotes the result of the subtraction between the logits of all hallucinated vocabulary

tokens and the logits after their ideal amplification. δ∗{v,x,y<t} represents the outcome of the
subtraction between the logits corresponding to all correct vocabulary tokens and the logits under
the ideal scenario. Eqn. 14 represents a theoretical upper bound, which guides us in enhancing the
effectiveness of Contrast Decoding method for hallucination elimination by ensuring that the logits
of all hallucinated words are lower than those of the correct words. Upon expansion of the left side of
the equation, the following result is obtained:

max δ
′{v,x,y<t} = max{(1 + α)L

′{v,x,y<t} − αL̂
′{v,x,y<t}}

= max{(1 + α)l
{v,x,y<t}
i − αl̂i

{v,x,y<t}}, i ∈ {k
′

1, k
′

2, . . . , k
′

m}

≥ 1

m

km∑
i=k1

((1 + α)l
{v,x,y<t}
i − αl̂i

{v,x,y<t}
)

(15)

where m denotes the total number of hallucinated vocabulary items, and kj represents the subscript
position of the i-th hallucinated vocabulary within the set L{v,x,y<t}. For the right side of the equation,
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one of the correct lexical items is selected as the subject for amplification.

min δ∗{v,x,y<t} = min{(1 + α)L∗{v,x,y<t} − αL̂∗{v,x,y<t}}

≤ (1 + α)l
{v,x,y<t}
j − αl̂j

{v,x,y<t}
, j ∈ {k∗1 , k∗2 , . . . , k∗n}

(16)

where n denotes the total number of correct lexical items. Based on Eqn. (15) and Eqn. (16), Eqn. (14)
can be simplified to the form presented as follows:

m× ((1 + α)l
{v,x,y<t}
j − αl̂j

{v,x,y<t}
)−

km∑
i=k1

((1 + α)l
{v,x,y<t}
i − αl̂i

{v,x,y<t}
) > 0

km∑
i=k1

(l̂i
{v,x,y<t} − l̂j

{v,x,y<t}
) > J

(17)

where J represents (1+α)
α

∑km

i=k1
(l

{v,x,y<t}
i − l

{v,x,y<t}
j ). In the context of the contrast decoding

method, given that the parameters of the original model remain invariant, the output can be character-

ized as a constant. Eqn. 17 delineates the logits for all hallucinated tokens l̂i
{v,x,y<t}

and contrasts

these with the logits of a single correct token l̂j
{v,x,y<t}

. It postulates that, for an optimal logits
output, a pronounced divergence must be maintained between the logits of hallucinated tokens and
the logit of the correct token.

Eqn. 17 illustrates that hallucinations can be effectively eliminated through contrastive decoding if the
difference between the logits of the hallucinatory token and the correct token in the ‘Evil’ LVLM’s
output (Left part of Eqn.17) exceeds that in the original LVLM output (J in Eqn.17). For example, as
depicted in the lower part of Fig. 2, where "Dogs" is a hallucination and "Benches" is the correct
label, the hallucination of "Dogs" is removed when the difference between the logits for "Dogs" and
"Benches" in the ‘Evil’ LVLM output surpasses the difference in the original LVLM output. When
this condition is met for all potential hallucinations, all hallucinations are effectively eliminated.

6 Experiments

6.1 Experimental Settings

Benchmarks. We evaluate HIO on three benchmarks including: (1) Quantitative metrics POPE Li
et al. [2023b] on MSCOCO Lin et al. [2014] dataset. The Polling-based Object Probing Evaluation
Li et al. [2023b] offers a streamlined approach to assessing object hallucination. In this benchmark,
LVLMs are queried about the existence of specific objects in a given image. (2) CHAIR Rohrbach
et al. [2018], Caption Hallucination Assessment with Image Relevance, is a specialized tool designed
to evaluate the occurrence of object hallucination in image captioning tasks. (3) General-purposed
Multimodal Large Language Model Evaluation (MME) Fu et al. [2023] benchmark, which provides
an extensive benchmark designed to evaluate LVLMs across multiple dimensions, including ten
perception-related subtasks and four cognition-focused ones.
Implementation Description We evaluate our model across three Large Vision-Language Models
(LVLMs): LLaVA 1.5, InstructBLIP, and MiniGPT-4. For decoding, we use Llama-7B and Vicuna-
7B as the linguistic decoder for LLaVA and InstructBLIP/MiniGPT-4, respectively. Our model’s
performance is compared against three leading models in the field: OPERA Huang et al. [2023],
VCD Leng et al. [2023], and VDD Zhang et al. [2024]. To ensure a fair and rigorous comparison, we
adhere to the configurations and guidelines from the original works and codebases of the compared
models. The training is conducted on a robust computational setup: 4x RTX 3090 GPUs for LLaVA
1.5, 8x V100 GPUs for MiniGPT-4, and 4x A6000 GPUs for InstructBLIP. Each training session
lasts approximately 2-4 hours. Hyperparameters including alpha and beta are set to 1.0 and 0.1,
respectively, in accordance with the VCD model’s specifications.

6.2 Experimental Results

POPE. To evaluate HIO’s capability on object hallucination, we compare it with several state-of-the-
art Decoding methods on POPE. The results are shown in Tab. 1, which presents the experimental
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results on the POPE dataset across random, popular, and adversarial settings. Our method consistently
outperforms the standard decoding strategy, with average improvements of 6.2% in accuracy and
7.3% in F1 score across all LVLMs. Additionally, our approach clearly surpasses state-of-the-art
decoding methods, demonstrating its effectiveness in mitigating object hallucinations. The improved
performance across random, popular, and adversarial settings further confirms that our HIO method
effectively reduces hallucinations in diverse scenario.

Dataset Setting Decoding Accuracy↑ Precision Recall F1 Score↑

MSCOCO

Random

Regular 83.29 92.13 72.80 81.33
VCD 87.73 91.42 72.80 87.16
ICD 89.56 88.71 90.66 89.68
VDD 90.00 97.36 79.13 88.79
Ours 90.21 93.23 86.85 89.94

Popular

Regular 81.88 88.93 72.80 80.06
VCD 85.38 86.92 83.28 85.06
ICD 86.16 83.18 90.66 86.76
VDD 85.91 94.33 76.33 84.40
Ours 88.12 88.96 86.83 87.84

Adversarial

Regular 78.96 83.06 72.75 77.57
VCD 80.88 79.45 83.29 81.33
ICD 79.71 74.35 90.66 81.70
VDD 83.52 89.34 76.20 82.20
Ours 84.32 84.28 84.33 84.34

Table 1: Results on POPE. Regular decoding denotes direct sampling, whereas VCD refers to Visual Contrastive
Decoding method, whereas VDD refers to Visual Debias Decoding. The best performances within each setting
are bolded.

CHAIR. Beyond the "Yes-or-No" discriminative evaluations conducted on the POPE and MME
datasets, we also assess our model’s performance in open-ended caption generation using the CHAIR
benchmark. Tab.2 and Tab.5 display results for 500 randomly selected images from the COCO
val2017 and val2014 datasets, respectively. These results show consistent improvements in our model
compared to other methods. Specifically, our approach significantly reduces object hallucinations in
generated captions, as evidenced by lower CHAIRS and CHAIRI scores (8.1% reduction in CHAIRS
and 4.9% in CHAIRI). Furthermore, it enhances caption detail, as indicated by higher Recall scores.
Overall, our method achieves an effective balance between accuracy and detail in open-ended caption
generation by widening the gap between hallucinated and correct tokens.

Row Method Length CHAIRS ↓ CHAIRI ↓ Recall ↑
1 - 100.6 50.0 15.4 77.1
2 VCD 100.4 48.6 14.9 77.3
3 OPERA 98.6 47.8 14.6 76.8
4 OPERA (fast) 85.3 48.6 14.5 76.7
5 ICD 106.3 50.8 15.0 78.5

6 Ours 110.3 41.4 10.5 77.4

Table 2: Hallucination performance of different methods.

MME. To evaluate HIO’s capability on object-level and attribute-level hallucination, we compare it
with several state-of-the-art Decoding methods on MME. The results are shown in Tab. 3. Consistent
with the performance on POPE and CHAIR, HIO also achieves competitive results on MME compared
to other decoding methods. Concretely, HIO outperforms the VCD 6.4%, 21.7%, 4.7% and 17.0% at
Existence, Count, Position on MME, respectively. The results demonstrate the effectiveness of our
method.

6.3 Ablation Study

To verify the effectiveness of each component of the proposed HIO, we conduct ablation studies on
Contrary Bradley-Terry Model(CBTM), Amplification of Multiple Targeted Hallucination(AMTH)
and Advanced Constraints for Inducing(ACI) under the MSCOCO Lin et al. [2014]. The results
are shown in Tab. 4. when constrained by CBTM in Exp 2, the model outperforms the baseline(i.e.,
Exp 1). This helps LVLM amplify hallucinations. Furthermore, after being integrate with AMTH
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Model Decoding Object-level Attribute-level Total Scores↑Existence↑ Count↑ Position↑ Color↑

LLaVA1.5
Regular 175.67 124.67 114.00 151.00 565.33
VCD 184.66 138.33 128.67 153.00 604.66
VDD 190.00 143.33 145.00 165.00 643.33

Ours 190.00 160.00 133.33 170.00 653.33

Table 3: Results on the hallucination subset of MME. Regular decoding denotes direct sampling, VCD denotes
Visual Contrastive Decoding method, whereas VDD refers to Visual Debias Decoding. The best performances
within each setting are bolded.

in Exp 3, LVLM obtain sigificant gains on CHAIRS and CHAIRI . When integrate with ACI, the
LVLM achieve superior performance on CHAIRS , CHAIRI and Recall. These results demonstrate
the effective of each component. Moreover, we have enriched the ablation study to analyze the

Exp CBTM AMTH ACI CHAIRS ↓ CHAIRI ↓ Recall↑
1 - - - 33.4 9.07 81.1

2 ✓ - - 18.6 5.08 79.9
3 ✓ ✓ - 14.2 3.06 80.5
4 ✓ ✓ ✓ 11.2 2.02 81.3

Table 4: Ablation study with different components of our model on CHAIR-COCO.

generalization capability of our proposed components to unseen categories, as detailed in Table 4. For
the Unseen-P dataset, we collected data from MSCOCO, A-OKVQA, and GQA, ensuring no overlap
with the training set, resulting in 495 samples across 10 distinct classes. These experiments show that
our components generalize effectively to unseen data. Finally, we have integrated the ablation study
into the experimental results section, rather than presenting it separately.

Dataset CBTM AMTH ACI Accuray ↑ PrecisionI ↑ Recall ↑ F1 Score ↑
- - - 88.88 84.88 95.63 83.93
✓ - - 89.79 86.22 95.63 90.68

unseen-N ✓ ✓ - 91.83 95.30 88.64 91.85
✓ ✓ ✓ 92.97 91.94 94.75 93.33
- - - 81.15 64.86 100.00 78.68
✓ - - 82.61 66.66 100.00 80.02

unseen-P ✓ ✓ - 84.05 72.41 87.51 79.24
✓ ✓ ✓ 85.51 75.01 87.51 80.76

Table 5: Ablation study on the generalization of each component on unseen datasets.

7 Discussion

In this study, we conduct an in-depth examination of the principles governing contrast decoding and
the prerequisites for its efficacy. Based on our findings, we introduce HIO, an innovative model
optimization approach designed to induce hallucinations. This method significantly amplifies hallu-
cinatory elements within the model, thereby effectively mitigating them through contrast decoding.
Extensive experimentation across various datasets has demonstrated that HIO effectively reduces
hallucinations and achieves state-of-the-art performance.

Limitations & Future Work.
Our findings establish a necessary, but not sufficient, condition for the successful operation of contrast
decoding. Further exploration of more effective conditions could significantly enhance the efficiency
of contrast decoding in mitigating hallucinations. Additionally, exploring training-free methods to
induce hallucinations could reduce the computational costs associated with decoding.
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Appendix

A Algorithm

The algorithm outlines the process by which the model generates its own series of potential hallucina-
tions. Using the sample pairs produced by the model, we apply our proposed Hallucination-Induced
Optimization (HIO) to enhance the distinction between hallucinated and target labels. Ultimately,
hallucinations are mitigated through contrastive decoding.

Using paired hallucination and non-hallucination annotations from the RLHF-V dataset, we apply
beam search to generate multiple outputs where hallucination token annotations occur. These outputs
include both correct and hallucinated results, which we use as hallucination samples to reinforce
the model’s confidence in its outputs. The correct annotations from RLHF-V serve as ground truth,
helping the model avoid hallucinations by differentiating between hallucinated and target tokens.
This approach expands the contrast between hallucinated and target tokens, effectively reducing
hallucinations.

Algorithm 1 Training LVLM to Amplify Multiple Targeted Hallucination

Require: training image set V; user prompt set X ; pair-wise groundtruth descriptions, Y
′

for hallucination
description and Y∗ for correct description; LVLMM(·) with parameters θ

1: According to each pair’s hallucination description Y
′

and correct description Y∗, get starting subscripts of
Y

′
compared with Y∗. Different subscripts denoted as I = {i

′
1, i

′
2, . . . , i

′
n}.

2: Initialize the LVLM’s parameter θ and an empty set Snew ← {}
3: for each image v ∈ V , each prmopt x ∈ X , the correpsonding hallucinatory description y

′
∈ Y

′
and

correpsonding hallucinatory description y∗ ∈ Y∗ do
4: Get starting subscripts of Y

′
compared with Y∗. Different subscripts denoted as I

′
= {i

′
1, i

′
2, . . . , i

′
m}

5: for i
′
t ∈ I

′
do

6: y
′

<i
′
t

represents the sequence of generated tokens up to the time step (i
′
t − 1)

7: Generate next logits L
{v,x,y

<i
′
t
}
=M(v, x, y

′

<i
′
t
) = (l

{v,x,y
<i

′
t
}

1 , l
{v,x,y

<i
′
t
}

2 , . . . , l
{v,x,y

<i
′
t
}

N )

8: Find Top-K subscripts J
{v,x,y

<i
′
t
}

= argminT⊆{1,2,...,n},|T |=K

∑
j∈T l

{v,x,y
<i

′
t
}

j =

{j1, j2, . . . , jk} where l
{v,x,y

<i
′
t
}

j1
≥ l

{v,x,y
<i

′
t
}

j2
≥ · · · ≥ l

{v,x,y
<i

′
t
}

jk

9: for jt ∈ J
{v,x,y

<i
′
t
}

do
10: y

′

<(i
′
t+1)

= y
′

<i
′
t
∪ jt

11: δ = 1
12: while y

′

(i
′
t+δ)

is not period do

13: L
{v,x,y

<i
′
t+δ

}
=M(v, x, y

′

<i
′
t+δ

)

14: y
′

<(i
′
t+δ+1)

= y
′

<i
′
t+δ
∪ argminj L

{v,x,y
<i

′
t+δ+1

}

15: δ = δ + 1
16: end while
17: end for
18: end for
19: end for
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B Mathematical Derivations

In this appendix, we present a comprehensive verification of Eqn. (17), which is elucidated through
the following detailed procedure:

m× ((1 + α)l
{v,x,y<t}
j − αl̂j

{v,x,y<t}
)−

km∑
i=k1

((1 + α)l
{v,x,y<t}
i − αl̂i

{v,x,y<t}
) > 0

α

km∑
i=k1

(l̂i
{v,x,y<t} − l̂j

{v,x,y<t}
)− (1 + α)

km∑
i=k1

(l
{v,x,y<t}
i − l

{v,x,y<t}
j ) > 0

α

(1 + α)

km∑
i=k1

(l̂i
{v,x,y<t} − l̂j

{v,x,y<t}
) >

km∑
i=k1

(l
{v,x,y<t}
i − l

{v,x,y<t}
j )

km∑
i=k1

(l̂i
{v,x,y<t} − l̂j

{v,x,y<t}
) > J

(18)

C Visualization

This figure demonstrates the effectiveness of our ACI method (described in Section 4.3). The y-axis
shows the difference between the hallucination token and the target token. The blue curve represents
this difference without ACI, while the orange curve represents it with our proposed ACI. Clearly, our
method accurately induces hallucinations, further amplifies the difference between the hallucination
token and the target token, and thus effectively reduces hallucinations.

Figure 3: The Difference between hallucination token and target token. The horizontal axis represents
the progression of training steps, while the vertical axis quantifies the disparity in logits, calculated as the
hallucination token’s logits minus those of the target token. It is evident that ACI effectively augments the
distinction between the hallucination and target tokens.

D Additional experiments

MME. To evaluate HIO’s capability on object-level and attribute-level hallucination, we compare it
with several state-of-the-art Decoding methods on MME. The results are shown in Tab. 3. Consistent
with the performance on POPE and CHAIR, HIO also achieves competitive results on MME compared
to other decoding methods. Concretely, HIO outperforms the VCD at Existence, Count, Position,
Color, Posters, on MME, respectively. The complete POPE evaluation is shown in the Tab 7.

Model Decoding Existence Count Position Color Posters Celebrity Scene Landmark Artwork OCR Percetion

LLaVA1.5
Regular 175.67 124.67 114.00 151.00 127.82 113.59 148.30 129.95 102.20 92.00 1279.19
VCD 184.66 138.33 128.67 153.00 132.11 120.94 152.20 140.45 109.60 104.00 1363.96

Ours 190.00 160.00 133.33 170.00 145.50 138.50 158.70 165.00 121.00 142.50 1524.70

Table 6: Results on all MME perception-related tasks. The best performance of each setting is bolded.
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Dataset Setting Model Decoding Accuracy↑ Precision Recall F1 Score↑

MSCOCO

Random

LLaVA1.5
Regular 83.29 92.13 72.80 81.33
VCD 87.73 91.42 83.28 87.16
Ours 90.21 93.23 86.85 89.94

miniGPT4
Regular 67.04 69.06 66.54 67.77
VCD 69.60 72.76 66.73 69.62
Ours 77.96 74.15 85.86 79.57

InstructBLIP
Regular 80.71 81.67 79.19 80.41
VCD 84.53 88.55 79.32 83.68
Ours 87.33 96.12 77.73 85.95

Popular

LLaVA1.5
Regular 81.88 88.93 72.80 80.06
VCD 85.38 86.92 83.28 85.06
Ours 88.1 88.96 86.83 87.84

miniGPT4
Regular 60.89 61.34 65.74 63.46
VCD 62.91 63.69 64.81 64.24
Ours 72.51 67.75 85.86 75.74

InstructBLIP
Regular 78.22 77.87 78.85 78.36
VCD 81.47 82.89 79.32 81.07
Ours 84.83 90.59 77.72 83.67

Adversarial

LLaVA1.5
Regular 78.96 83.06 72.75 77.57
VCD 80.88 79.45 83.29 81.33
Ours 84.32 84.28 84.33 84.34

miniGPT4
Regular 59.42 59.64 64.45 61.95
VCD 62.07 62.15 66.76 64.37
Ours 67.52 62.79 85.86 72.64

InstructBLIP
Regular 75.84 74.30 79.03 76.59
VCD 79.56 79.67 79.39 79.52
Ours 82.96 86.82 77.70 82.02

A-OKVQA

Random

LLaVA1.5
Regular 83.45 87.24 78.36 82.56
VCD 86.15 85.18 87.53 86.34
Ours 90.61 94.97 85.73 90.19

miniGPT4
Regular 64.79 65.26 65.73 65.50
VCD 66.68 66.47 68.21 67.33
Ours 74.74 69.46 88.13 77.69

InstructBLIP
Regular 80.91 77.97 86.16 81.86
VCD 84.11 82.21 87.05 84.56
Ours 88.56 90.25 86.46 88.32

Popular

LLaVA1.5
Regular 79.90 80.85 78.36 79.59
VCD 81.85 78.60 87.53 82.82
Ours 86.93 87.84 85.73 86.77

miniGPT4
Regular 60.75 60.67 68.84 64.50
VCD 62.22 62.23 68.55 65.24
Ours 62.83 58.54 88.13 70.35

InstructBLIP
Regular 76.19 72.16 85.28 78.17
VCD 79.78 76.00 87.05 81.15
Ours 81.16 78.17 86.46 82.11

Adversarial

LLaVA1.5
Regular 74.04 72.08 78.49 75.15
VCD 74.97 70.01 87.36 77.73
Ours 80.83 78.08 85.73 82.71

miniGPT4
Regular 58.88 58.56 68.50 63.14
VCD 60.67 60.56 68.47 64.28
Ours 58.36 55.24 88.24 67.93

InstructBLIP
Regular 70.71 65.91 85.83 75.56
VCD 74.33 69.46 86.87 77.19
Ours 74.55 69.74 86.46 77.22

GQA

Random

LLaVA1.5
Regular 83.73 87.16 79.12 82.95
VCD 86.65 84.85 89.24 86.99
Ours 89.06 93.53 83.93 88.47

miniGPT4
Regular 65.13 65.38 66.77 66.07
VCD 67.08 68.30 69.04 68.67
Ours 73.83 70.03 83.21 76.05

InstructBLIP
Regular 79.65 77.14 84.29 80.56
VCD 83.69 81.84 86.61 84.16
Ours 87.26 89.09 84.93 86.96

Popular

LLaVA1.5
Regular 78.17 77.64 79.12 78.37
VCD 80.73 76.26 89.24 82.24
Ours 84.76 85.35 83.93 84.63

miniGPT4
Regular 57.19 58.55 60.81 59.66
VCD 62.14 61.14 72.26 66.24
Ours 64.74 60.72 83.28 70.21

InstructBLIP
Regular 73.87 69.63 84.69 76.42
VCD 78.57 74.62 86.61 80.17
Ours 77.11 73.42 84.93 78.76

Adversarial

LLaVA1.5
Regular 75.08 73.19 79.16 76.06
VCD 76.09 70.83 88.75 78.78
Ours 82.11 80.96 83.93 82.42

miniGPT4
Regular 56.75 56.26 67.99 61.57
VCD 57.78 57.70 69.82 63.18
Ours 59.09 56.11 83.23 67.02

InstructBLIP
Regular 70.56 66.12 84.33 74.12
VCD 75.08 70.59 85.99 77.53
Ours 74.86 70.69 84.93 77.16

Table 7: Results on POPE. Regular decoding denotes direct sampling. Higher accuracy and F1 score indicate
better performance and fewer hallucinations. The best performances within each setting are bolded.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have listed our contributions in both abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have listed our contributions in dicussion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: As shown in our proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All code and data are provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: It is faithfully reproduce the main experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:[Yes]
Justification: sure
Guidelines: As demonstrated in Fig.3.

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As depicted in Implementation Description.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: As demonstrated in Limitations and Future Works section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Yes, the paper describe safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, the creators or original owners of assets (e.g., code, data, models), used in
the paper, are properly credited and respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes, the new assets introduced in the paper is well documented and the
documentation is provided alongside the assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: yes
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: Yes, we describe potential risks.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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