
STEAD: Robust Provably Secure Linguistic
Steganography with Diffusion Language Model

Yuang Qi†, Na Zhao†, Qiyi Yao, Benlong Wu,
Weiming Zhang, Nenghai Yu, Kejiang Chen∗

University of Science and Technology of China
Anhui Province Key Laboratory of Digital Security

{qiyuang@mail., znzhaona@mail., chenkj@}ustc.edu.cn

Codes: https://github.com/7-yaya/STEAD

Abstract

Recent provably secure linguistic steganography (PSLS) methods rely on main-
stream autoregressive language models (ARMs) to address historically challenging
tasks, that is, to disguise covert communication as “innocuous” natural language
communication. However, due to the characteristic of sequential generation of
ARMs, the stegotext generated by ARM-based PSLS methods will produce serious
error propagation once it changes, making existing methods unavailable under
an active tampering attack. To address this, we propose a robust provably secure
linguistic steganography with diffusion language models (DLMs). Unlike ARMs,
DLMs can generate text in partial parallel manner, allowing us to find robust po-
sitions for steganographic embedding that can be combined with error-correcting
codes. Furthermore, we introduce an error correction strategies, including pseudo-
random error correction and neighborhood search correction, during steganographic
extraction. Theoretical proof and experimental results demonstrate that our method
is secure and robust. It can resist token ambiguity in stegotext segmentation and, to
some extent, withstand token-level attacks of insertion, deletion, and substitution.

1 Introduction

In the increasingly digital world, the relevance of linguistic steganography has grown significantly. It
offers a discreet method for covert communication across various applications, including intelligence
operations, secure corporate communications, and privacy preservation [1]. Furthermore, in regions
with strict censorship policies, linguistic steganography can serve as a means to bypass content
restrictions, enabling individuals to share and access information discreetly. Traditional linguistic
steganography methods typically embed secret messages directly into existing text by modifica-
tion [2, 3] or by training a specialized text generation model to produce steganographic text [4, 5].
However, these methods’ security cannot be guaranteed, and they remain susceptible to detection
by sophisticated steganalysis techniques [6, 7, 8, 9]. Alternatively, provably secure steganography
(PSS) methods [10, 11, 12] theoretically guarantee the indistinguishability of the stego (the carrier
containing hidden data) and the cover (the original unaltered carrier).

In recent years, the progress of generative artificial intelligence has underscored the potential of
autoregressive models (ARMs) in the field of provably secure linguistic steganography [13, 14, 15,
16, 17]. ARMs [18, 19, 20] generate text sequentially by predicting the next token based on the
preceding context. They have played a particularly significant role in advancing provably secure
steganography due to the precise sampling they provide, a capability that is unattainable in natural
language environments [21].

∗Corresponding author; †: equal contribution

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/7-yaya/STEAD

However, despite the high quality of text generated by ARMs, their sequential generation characteristic
makes previous provably secure steganography methods highly vulnerable [22, 23, 24, 25, 26]. In
ARMs, the probability of each token being generated is conditional on all previously generated
tokens, meaning that once a stego token is altered, it not only interferes with the message of
the current token but also impacts all messages of subsequent tokens due to the change in the
conditional distribution. In a strictly regulated environment, adversaries may tamper with the text
transmitted over public channels, causing significant disruption to message extraction. Additionally,
the ambiguity in the segmentation of stegotext further increases the likelihood of errors during
message extraction [27, 28, 29, 30].

Recently, the rapid development of discrete diffusion language models (DLMs) [31, 32, 33, 34, 35, 36]
has presented an opportunity to address the vulnerabilities in provably secure linguistic steganography.
DLMs have gained considerable attention since their introduction to the field of text generation,
emerging as a promising alternative for sequential generation. Unlike ARMs, which generate
tokens sequentially, DLMs begin from a completely noisy state and dynamically refine the entire
sequence in a parallel manner. This different generation paradigm can, to some extent, mitigate the
error propagation caused by sequential generation, thereby enhancing provably secure linguistic
steganography and addressing its lack of robustness. Furthermore, the growing popularity of diffusion
language models also provides an ideal camouflage environment for steganography.

However, directly bringing the DLM into PSS will not solve the problem of error propagation.
Specifically, the advantages brought by DLM’s parallel sampling can only be realized within a single
denoising step. The model distribution for the next step still depends on the previously sampled
tokens. Directly deploying PSS to DLM does not bring the expected robustness, and, due to the
strong binding between the distributions and the token positions, it will be more fragile than the PSS
method based on ARM when faced with possible position offsets (such as additions, deletions, or
token ambiguity). Therefore, correcting potential errors within each step is crucial for achieving
robust steganography based on DLM.

In this paper, we propose a provably secure and robust linguistic STEgAnography method using
a Diffusion language model, namely STEAD (serving as an acronym for the technique while
metaphorically highlighting its “steady” nature). To achieve error-correctable message embedding
within a single-step denoising process, we introduce a message-driven pseudo-random number
sampling algorithm with a fixed embedding capacity, based on the trade-off between robustness
and embedding capacity. The message is embedded only at denoising positions which satisfies the
encoding conditions of repetition error-correcting coding. We refer as a robust position embedding
with repetitive error correction coding. During extraction, in addition to decoding ECC, we also
introduce a neighborhood search strategy to address position offsets caused by insertions and deletions.

Contributions: (1) we propose a provably secure and robust linguistic steganography framework
based on discrete diffusion language models; (2) we design robust position embedding with repetitive
error correction coding and neighborhood search strategy to enhance the robustness of steganography;
and (3) theoretical proof and experimental results demonstrate the superiority of STEAD in terms of
security and robustness.

2 Background

2.1 Preliminaries

Definition 2.1 (Stegosystem). A symmetric key steganographic system (stegosystem) is a triple
S = (K, E ,D), where (1)K(λ)→ k is a probabilistic key generation algorithm that takes the security
parameter λ and outputs a symmetric key k; (2) a probabilistic encoding algorithm E(k,h,m)→ st
takes a key k, a channel history h and a message m as inputs, and outputs a stegotext st; and (3)
a deterministic decoding algorithm D(k,h, st) → m takes a key k, a channel history h, and a
stegotext st, and outputs a decoded message m.
Definition 2.2 (Computational Security). A stegosystem S = (K, E ,D) is computationally secure
under chosing hidden-text attack if, for any probabilistic polynomial-time adversaryA, the advantage
of A in distinguishing between the output stegotext of the steganographic encoding algorithm E and
the output of random sampler O is negligible. Formally, if∣∣∣Pr [AE(k,h,m)

(
st, 1λ

)
= 1

]
− Pr

[
AO(h,·) (1λ) = 1

]∣∣∣ < negl(λ), (1)

2

for all sufficiently large λ ∈ N, where negl(λ) is a negligible function that correlates to the security
parameter λ, the stegosystem is computationally secure.
Definition 2.3 (Correctness). A stegosystem S = (K, E ,D) is correct if, for any message m and any
history h, there exists a negligible function such that E and D satisfy the relationship:

Pr [D(k, E(k,m,h),h) ̸= m] < δ, (2)
where δ is a correctness parameter, which is typically very close to 0.

Under the threat model of limited tampering capability, robustness ensures that the secret message
can be successfully extracted even if the stegotext is under attack by adversaries.
Definition 2.4 (δ-Robustness against Fα,β,γ-Tampering). A stegosystem S = (K, E ,D) is said to
be δ-robust if, for all probabilistic polynomial-time adversaries A who have the Fα,β,γ-bounded
tampering ability, for any ft ∈ Fα,β,γ , there exists a negligible function such that

Pr [D(k, ft(E(k,m,h)),h) ̸= m] < δ. (3)
Definition 2.5 (Pseudo-Random Number Generator). A pseudo-random number generator (PRNG)
is a deterministic polynomial-time algorithm such that takes a λ-bit seed k ∈ {0, 1}λ as input, and
ouputs a m(λ)-bit string, where m(λ) > λ. There exists a negligible function negl(λ) for any
probabilistic polynomial time distinguisher A, such that∣∣∣∣ Pr

k←{0,1}λ
[A (PRNG(k)) = 1]− Pr

u←{0,1}m(λ)
[A (u) = 1]

∣∣∣∣ < negl(λ), (4)

where the seed k is randomly selected from {0, 1}λ, and u is uniformly chosen from {0, 1}m(λ).

2.2 Related Works

Masked diffusion language models. Unlike autoregressive models, diffusion language models
support parallel generation. They mask the original tokens with special symbols M with a certain
probability during the forward diffusion process, and learn the denoising distribution during the
reverse process, thereby generate complete text. The original sequence of tokens x0 = [x1

0, . . . ,x
L
0]

of length L. Define a forward Markov process at time steps s to t,

q(xt|xs) =

L∏
i=1

(βt1{xi
t = M}+ (1− βt)1{xi

t = xi
s}), (5)

where each token at position i ∈ {1, . . . , L} is replaced with the mask symbol M with probability βt,
1(·) is the indicator function. The reverse process is given by a parameterized model pθ(xs|xt) =∏L

i=1 pθ(x
i
s|xt, t). In practice, pθ(xs|xt) is learned through a masked language model (such as

BERT or a Transformer encoder), and a categorical distribution is output for each masked position.

Provably secure steganography with autoregressive models. Recently, researchers have proposed
several provably secure linguistic steganography methods based on ARMs. These methods are
dedicated to designing message embedding algorithms that are indistinguishable from the normal
generation process, i.e., random sampling. Kaptchuk et al. [15] introduced the Meteor method
based on interval reversibility using a random sampling process akin to arithmetic encoding. Ding
et al. [16] utilized the concept of “sampled distribution” to express information and presented the
Discop method based on distribution copies. This method defines a probability distribution, from
which multiple distribution copies are created, and then uses the index values of distribution copies to
express messages. Wang et al. [17] proposed SparSamp, achieving unambiguous message embedding
and extraction with a high embedding rate and an added complexity of only O(1). The above
methods can achieve provably secure linguistic steganography based on ARMs. None of them alter
the probability distribution of words to be generated by the model during the process of embedding
secret messages. But at the same time, none of them are robust to any form of stego tampering.

Comparision to Works Done Concurrently The works conducted concurrently with this paper
have also noted the lack of robustness in linguistic steganography. Perry et al. [22] have fully
discussed the robust steganography of LLMs but have ignored the concern for steganographic security.
Wu et al. [25], who also propose a DLM-based robust linguistic steganography, adopt a coverless
paradigm, leading to inconsistent research scope with ours. Bai et al. [23] proposed a provably secure
steganographic method focused on asymmetric resource scenarios (PSARS), which achieves certain
robustness while achieving provable security.

3

3 Threat Model

In this section, we define the adversary’s goals and capabilities in robust steganographic scenarios.

3.1 Adversary Motivation

We consider a probabilistic polynomial-time (PPT) adversary operating in a highly regulated environ-
ment, responsible for detecting and disrupting covert communication behaviors that may be present
in text publications. This involves two key capabilities: first, the ability to detect steganographic text,
corresponding to the well-established field of steganalysis, which is concerned with the security of
steganography; second, the ability to prevent the steganographic recipient from extracting the secret
message, which relates to the robustness of steganography. Since steganographic texts are often
transmitted over public channels, this can be achieved through a Man-in-the-middle attack. In this
attack, the adversary intercepts the text that the steganographic sender attempts to publish, alters it,
and then republishes it, with the receiver only able to access the tampered message. In real-world
Internet scenarios, a potential Man-in-the-middle adversary could be a social media operator or an
email service provider that is subject to governmental policy requirements.

However, the adversary’s ability to modify the text provided by the sender is not without limitations.
Excessive regulation or censorship may provoke strong public opposition, and overly stringent
policies are often difficult to enforce at a low cost. Internet service providers, driven by business
interests, also need to respect users and cannot engage in unlimited alteration of uploaded content.
Therefore, the adversary is not aiming to fundamentally alter the content of the text, which creates a
trade-off in its ability to interfere with the extraction process.

3.2 Adversary Capabilities

Detection ability. In a generative linguistic steganography scenario, the ability of a PPT adversary
to detect can be defined as the advantage in distinguishing between the output of a steganographic
embedding algorithm (stegotext) and the original output of the model (covertext).

Tampering ability. The ability of an adversary to tamper with stegotexts can be defined as a
tampering function ft which ensures that for any stegotext x as input, the tampered text ft(x)
satisfies that the extent of substitution, insertion, and deletion of words does not exceed α, β, γ,
respectively. Formally, let V be the vocabulary and let x = (x1, x2, . . . , xL) ∈ VL be the input text
of length L. Define the tampering function ft : VL → V∗ and denote its output by y = ft(x) ∈ V∗,
where V∗ is with an uncertain length. Let Nsub, Nins, Ndel be the number of substitutions, insertions,
and deletions, respectively. Then for given parameters 0 ≤ α, β, γ ≤ 1, ft is required to satisfy
Nsub(x,y) ≤ αL, Nins(x,y) ≤ βL, Ndel(x,y) ≤ γL. The tampering function is required to
satisfied ft ∈ Fα,β,γ , where Fα,β,γ is a feasible set of functions,

Fα,β,γ(x) =
{
y ∈ V∗

∣∣Nsub(x,y) ≤ αL, Nins(x,y) ≤ βL, Ndel(x,y) ≤ γL
}
. (6)

4 STEAD Methodology

In this section, we will first define the concept of a secure and robust steganographic system and
introduce how to utilize the different characteristics of diffusion language models and autoregressive
models to find the robust positions for steganographic embedding. Then, we will introduce a
provably secure linguistic steganographic method, STEAD, that can achieve robustness against
insertion, deletion, substitution, as well as token ambiguity. In this paper, we focus on symmetric
key steganographic systems: the sender and receiver share the same settings, including an exact
same diffusion language model, an initialized prompt, a pre-negotiated key (seed) of pseudo-random
number generator, and a set of sampling parameters.

Figure 1 shows the embedding and extraction process of steganography using STEAD. Specifically,
in the embedding stage, we proposed “robust position embedding with error correction coding” for
DLM. We only embed messages at positions that are simultaneously and independently denoised to
avoid cumulative errors. In each step, we select a fixed embedding capacity based on the minimum
entropy of the distribution and use repetitive codes as error correction codes (ECC) to correct errors
while minimizing interference between different embedding positions. In the extraction process, in

4

MASK MASK MASK MASK MASK

car at aMASK MASK

MASK MASK MASK MASK MASK

1 0 0

MASK MASK

car at astoppedThe bus at astoppedThe

The car stopped at a The bus stopped at a

Diffusion Language Model

Random Transfer from MASK

Predict
Distribution

Send ReceiveTemper

Steganographic Embedding Steganographic Extracting

t = 1

t = 0

0

Message Bits

0

Extracted Bits

Neighborhood
Search
Extraction

Robust Position
Embedding
with ECC

-Neighborhood

Figure 1: An overview of the proposed STEAD stegosystem.

addition to decoding ECC, we also introduce a neighborhood search strategy to address the position
offset caused by insertion and deletion.

4.1 Diffusion Sampling Process

To achieve robustness in linguistic steganography, we innovatively refer to the multiple positions of
tokens that can be synchronously independently sampled in one single timestep of the DLM as a batch
of robust positions suitable for steganography, which is significantly different from the generation
process of the ARM. To generate a token sequence of length L, the reverse diffusion process starts
with the sequence x1:L

t=1 where xi
t=1 is fully masked by a special token M for all i ∈ {1, . . . , L}. For

timestep t to s with 0 ≤ s < t ≤ 1, the conditional distribution for the reverse process is factorized
as p(xs|xt) =

∏L
i=1 p(x

i
s|xt), where the conditional distribution for each token is:

p(xi
s|xt) =


1, xi

t ̸= M,xi
s = xi

t,
s/t, xi

t = M,xi
s = M,

t−s
t pθ(x

i
s|xt), xi

t = M,xi
s ̸= M.

(7)

From the above distribution, it can be seen that during the normal generation process, when xi
t ̸= M,

that is, the current position has been denoised in previous steps, the token no longer changes, xi
s = xi

t;
when xi

t = M, the model uses two pseudo-random numbers riM and ris generated by the PRNG to
determine xi

s:

xi
s =

{
M, riM < s/t,

Samplepθ(·|xt)(r
i
s), riM ≥ s/t,

(8)

where riM is used to determine whether the state at the current position i is “keep mask" or “remove
mask", while ris is used to decide whether to sample a specific text token from the category distribution
pθ provided by the model. We denote the pseudo-random sampling process of sampling a token x
from the discrete distribution pθ using the pseudo-random number r as x← Samplepθ

(r).

Let the number of tokens been unmasked in step s of the reverse denoising process as Nunmask,s, it
can be calculated as Nunmask,s =

∑L
i=1 1

[
xi
t = M

]
· 1

[
riM ≥ s/t

]
. These tokens will be converted

in parallel and independently from masks to specific linguistic tokens within a single time step, and it
can be denoted as:

xi
s = Samplepθ(·|xt)(r

i
s). (9)

It can be seen that the sampling process of the aforementioned diffusion language model can be
divided into two stages, each controlled by a sequence of pseudo-random numbers. The first stage is
determined by rM to identify which positions will be denoised at the current time step, while the
second stage is controlled by rs, which determines which specific text tokens the masked positions
will be predicted as.

4.2 Message-driven Pseudo-random Number Sampling

5

a b c d

0 0.1 0.3 0.6 1

a b c

0 0.1 0.4 1

a b c d

0 0.2 0.4 0.6 1

e

0 Bit

1 Bit

2 Bit
0.8

Figure 2: An example of message-driven
PRN sampling with different capacity.
Tokens that are not selected under the
given PRN are marked in gray.

During steganographic embedding, we keep the first part
of pseudo-random-unmasking unchanged, and adopt a
message-driven PRN sampling with a fixed embedding
capacity to substitute the sampling function in Formula
(9). Formally, for a distribution pθ(x

j
s|xt) for a posi-

tion j that will be unmasked during this step, where
j ∈ {j1, . . . , jNunmask,s}, in step t to s, if the embedding
capacity is ℓ, given message bits mj ∈ {0, 1}ℓ for this po-
sition, the steganographically sampled token (stegotoken)
driven by the message is:

xj
s = Samplepθ(·|xt)(r

j
s(m

j)), (10)

where rjs(m
j) = [rjs + dec(mj)

2ℓ
] mod 1, which is a

message-driven PRN, dec(m) denotes for the decimal
representation of m. Especially, when ℓ = 0, message-driven PRN sampling is equivalent to direct
pseudo-random sampling. The algorithm for determining sampled tokens based on message-driven
PRNs is presented in Algorithm 1. The corresponding algorithm for extracting secret messages based
on distribution and given tokens is Algorithm 2. Both are shown in Appendix A.

Figure 2 shows how to use the embedding algorithm to embed messages into distributions with
different capacities. Taking the distribution in the third row as an example, given an origin pseudo-
random number , if the message to be embedded is “01”, the token “e” will be selected. Similarly,
during the extraction process, the message can be obtained based on the token and the PRN.

It is noteworthy that the marks that can be selected by the message after the given random number
are limited. If an attempt is made to extract a message from a mark that cannot be selected, the
extraction will fail. For example, the mark “d” in the third row of the figure does not correspond to
any message. We call the characteristic of steganography based on message-driven pseudo-random
number sampling that can only extract messages from specific tokens its error localization property.

4.3 Robust Position Embedding with Repetitive Error Correction Coding

In robust provable security steganography, token tampering differs from traditional bit flipping: each
token may carry multiple bits, and tampering may cause all bits carried by the token to appear as
random errors. Moreover, due to the dependence of the embedding and extraction algorithms on the
model-predicted categorical distribution, incomplete token recovery will interfere with the subsequent
sampling distribution, thereby invalidating message extraction.

Due to the independence of the denoising positions at the same time step, we have the opportunity to
apply an error-correcting code (ECC) during the embedding process. When choosing an ECC, we
hope to maintain the independence of the distribution as much as possible to reduce the entanglement
between simultaneously sampled tokens; in addition, since the capacity of the secure steganography
method is limited by information entropy, the code length is quite short. Formally, during the reverse
denoising process from time t to s, where positions j1, . . . , jNunmask,s are unmasked, a message of
length ℓs is embedded into these positions using the message-driven pseudo-random steganography
algorithm. We must select ℓs for all these positions in each denoising step.

Firstly, any stegosystem must meet the requirement of correctness. It can be seen from Figure 2 that
if 2-bit messages are embedded in the distribution of the first row based on the given pesudo-random
number, the same token “c” will be sampled using messages “00” and “01”. As a result, conflicts will
occur when extracting the messages. For each independent distribution pθ, the maximum capacity
that can be embedded in a distribution without causing message conflicts depends on the negative
logarithm of the probability of the most likely outcome, i.e., the min-entropy. Discop [16] and
SparSamp [17] respectively provided solutions to the decoding uniqueness problem in message-
driven random number sampling steganography systems, while also striving to maximize entropy
utilization. However, their embedding schemes all require the use of multi-step joint distributions,
which conflicts with our original intention of error correction for independent embedding.

Therefore, considering the trade-off between error-correcting capability and embedding capacity,
to prioritize the strongest robustness, a repetition code was chosen in our method, that is, a same
message m ∈ {0, 1}ℓs is embedded for all j ∈ {j1, . . . , jNunmask,s} with the same length ℓs for step s.

6

For j ∈ {j1, . . . , jNunmask,s}, the maximum embedding capacity is determined by the minimum ℓ value
corresponding to all these positions’ distributions to satisfy the min-entropy constraint. Besides,
due to the requirement of repetition codes, we only embed secret messages in steps that meet the
condition Nunmask,s ≥ 3. According to the aforementioned conditions, set

ℓs =

{
minj∈{j1,...,jNunmask,s}

(⌊
− log2

(
max

(
pθ(x

j
s|xt)

))⌋)
, Nunmask,s ≥ 3,

0, Nunmask,s < 3.
(11)

which means that, for steps where Nunmask,s is insufficient or the minimum entropy is not enough, no
message is involved in the generation of tokens.

We refer to positions that meet these two conditions as robust positions. Robust positions are a
subset of denoising positions and satisfy the following: (1) The number of such positions in each step
is at least 3; (2) The minimum entropy of the distribution allows each position to embed at least 1
bit. When the denoising position set of a denoising step meets the above conditions, STEAD will
embed the same message bits at these positions. We denote the number of robust positions as Nrobust,s,
abbreviated as Ns (used to distinguish from the number of general denoising locations, Nunmask,s).

For non-robust positions, sampling is entirely guided by PRNs rs. Since the sender and receiver
can fully synchronize the pseudo-random number generator and the diffusion language model, the
pseudo-random numbers here can serve as pseudo-random error-correcting codes [37], to cope with
possible token substitutions at these non-robust positions.

4.4 Pseudo-random Error Correction and Neighborhood Search Extraction

During extraction, since the receiver shares the same model, PRNG, sampling settings, and key
with the sender, the denoising process in the extraction process can be fully synchronized with the
embedding process. For the receiver, all text positions can be divided into two categories: one
is the robust position that embeds the message, and the other is the non-robust position that uses
pseudo-random number sampling without embedding the message. Although the message is only
embedded in the robust position, due to the distribution dependency between the preceding and
succeeding time steps, the receiver needs to recover from all possible errors at all positions, rather
than just dealing with the robust positions.

Firstly, we only consider token substitution as the tampering, that is, each token maintains its position
in the tampered sequence as it was during generation. For each batch of robust positions, the receiver
first applies the message-driven pseudo-random sampling algorithm to each position to extract the
message embedded within the tokens. The intended message bits are then obtained by decoding
the result with the repetition code. Correct message recovery is guaranteed as long as the number
of tampered tokens in the batch does not exceed half. Subsequently, the receiver can re-run the
message embedding process using the recovered message to restore any altered tokens. For non-
robust positions, the pseudo-random numbers used for sampling are shared between the sender and
receiver, allowing them to function as a pseudo-random error-correcting code. Consequently, the
receiver can detect if a non-robust position has been tampered with by observing the outcome of the
pseudo-random sampling and can readily restore the original token.

stopped atcarThe a

0 1 2 3 4Position

Original Sequence

(L=5)

5

stopped atcarThe a
Tampered Sequence

(L=6)
Inserted Token

Misalignment of Positions

1-Neighborhood of "little"

little stopped atThe a

Neighborhood Search Extraction

little

car

Match Found!

Figure 3: An example of positional misalignment
due to an inserted token.

However, if errors such as insertion or deletion
occur, it may cause the position of the stegoto-
ken to be misaligned with its original sampling
position during embedding. In severe cases, it
may affect the message extraction of all tokens
in a batch of robust positions. As shown in Fig-
ure 3, an inserted token “little” causes the orig-
inal tokens at the denoising positions to shift a
certain distance from their supposed positions.
To address this, we have designed a µ-nearest
neighbor search mechanism to handle the ex-
traction difficulties caused by the increase or
decrease in token quantity. In particular, when an error occurs during extraction, we search the
µ-neighborhood corresponding to the current position, attempting to use neighborhood tokens to
correct the offset of the current position. The window size µ adjusts dynamically according to the

7

length of the tampered text: µ = max(2, |L − L′|), where L represents the length of the original
sequence, and L′ represents the length after tampering. This strategy adapts to different attack
strengths while avoiding excessive computational complexity.

4.5 Proof of Security and Robustness

The security of STEAD comes from the fact that it only replaces the sampling function within each
timestep of the diffusion language model during the steganographic embedding, without damaging
the model’s predicted probability distribution. Below, we prove that the stegotext output by the
steganographic embedding algorithm and the original output randomly sampled by the model are
computationally indistinguishable.

Theorem 4.1. For any polynomial-time distinguisherA, it is computationally infeasible to distinguish
between the stegotext of the steganographic encoding algorithm E and the output of the original
model sampler O.

Lemma 4.2. For any polynomial-time distinguisher A, its advantage in distinguishing between the
output of E and O can be reduced to an advantage in distinguishing between r(m) and r.

Proof. From Formula (9) and Formula (10), it follows that at each timestep s, the only difference
between an original sampled token and one from the steganographic encoding algorithm is the
pseudo-random number used: rjs versus rjs(m). Since both procedures use the same PRNG as the
original diffusion model, we derive Lemma 4.2.

Suppose, for contradiction, that there exists a PPT distinguisher A that can distinguish be-
tween PRNs after “offset” and pure PRNs with a non-negligible advantage ϵ(λ) such that
|Pr[A(r(m)) = 1]− Pr[A(r) = 1]| = ϵ(λ), we use A to construct a new algorithm A′, which
can distinguish between PRNG outputs and truly uniform bits. On input challenge X ∈ {0, 1}m(λ),
A′ answers A’s oracle queries by Y =

[
X + dec(m)

2ℓ

]
mod 1, and outputs whatever A outputs.

If the challenge is X ← PRNG(k), then A′ gives A exactly r(m), at this time Pr[A′ = 1|X ←
PRNG(k)] = Pr[A(r(m)) = 1]. If the challenge X is uniformly random, then

[
X + dec(m)

2ℓ

]
mod

1 is still uniformly random (constant offset does not change the uniform distribution), and Pr[A′ =
1|X ← Um(λ)] = Pr[A(r) = 1]. Then we have |Pr[A′(PRNG(k)) = 1]− Pr[A′(u) = 1]| =
|Pr[A(r(m)) = 1]− Pr[A(r) = 1]| = ϵ(λ), so A′ distinguishes PRNG(k) from uniform u ←
Um(λ) with non-negligible advantage ϵ(λ), contradicting the definition of PRNG.

Therefore, the stegotext output by the steganographic embedding algorithm and the original output
randomly sampled by the model are computationally indistinguishable.

Theorem 4.3 (Fα,β,γ-Robustness). Let the stego length be L. For every step 0 ≤ s < t ≤ 1,
if the adversary’s tampering capabilities are bounded by Fα,β,γ that satisfy 2(α + β + γ) <

mins
Ns

L , β + γ < µ
L , where Ns is the number of robust positions in time s, a STEAD stegosystem

S = (K, E ,D) with a denoising probability t−s
t and µ-neighborhood searching is robust.

Proof of Theorem 4.3 is given in Appendix B. It is worth noting that all the discussions about
tampering above are conducted at token-level. Other advanced forms of perturbation, such as
tokenization ambiguity (see Appendix C) or synonym substitution, can ultimately be reduced to
combinations of token-level substitution, insertion, and deletion.

5 Experiments

Detailed experimental settings are provided in Appendix D.
Capacity. In Table 1, we have calculated the effective embedding capacity of STEAD under differ-
ent top-p settings while also displaying the model’s average entropy. We compared the embedding
capacity with the latest secure robust linguistic steganography method, PSARS [23], which is based
on ARM. It can be seen that under the same sampling parameters, the steganographic embedding
capacity of STEAD is still significantly higher than that of PSARS (whose secure parameter is set to
32 due to a trade-off between capacity and robustness).

8

Table 1: Comparison of capacity and overhead of provably secure robust steganography methods

Method Model Temperature Top-p
Embedding

capacity
(bit / 103 token)

Entropy
(bit / token)

Encoding
rate

(s / bit)

Decoding
rate

(s / bit)

PSARS [23] QWEN2 1.0 1.00 13.81 3.48 1.6583 1.5893

STEAD DREAM 1.0

1.00 84.08 7.78 0.9859 1.0712
0.98 58.31 6.54 1.4431 1.4949
0.92 36.33 4.59 2.3471 2.2642
0.90 33.23 4.20 2.6030 2.3012

DiscopQw DiscopDs SparSampQw SparSampDs PSARSQw STEADDiffusion0
20
40
60
80

100

Recove
ry Rate

 (%)

Correct Wrong Lost

(a) α = 0.01

DiscopQw DiscopDs SparSampQw SparSampDs PSARSQw STEADDiffusion0
20
40
60
80

100

Recove
ry Rate

 (%)
Correct Wrong Lost

(b) α = 0.05

DiscopQw DiscopDs SparSampQw SparSampDs PSARSQw STEADDiffusion0
20
40
60
80

100

Recove
ry Rate

 (%)

Correct Wrong Lost

(c) α = 0.1

- - - - PSARSQw STEADDiffusion0
20
40
60
80

100

Recove
ry Rate

 (%)

Correct Wrong Lost

(d) α = 0.15

- - - - PSARSQw STEADDiffusion0
20
40
60
80

100

Recove
ry Rate

 (%)

Correct Wrong Lost

(e) α = 0.2

DiscopQw DiscopDs SparSampQw SparSampDs PSARSQw STEADDiffusion0
20
40
60
80

100

Recove
ry Rate

 (%)

Correct Wrong Lost

(f) β∗ = 2

DiscopQw DiscopDs SparSampQw SparSampDs PSARSQw STEADDiffusion0
20
40
60
80

100

Recove
ry Rate

 (%)

Correct Wrong Lost

(g) β∗ = 4

DiscopQw DiscopDs SparSampQw SparSampDs PSARSQw STEADDiffusion0
20
40
60
80

100

Recove
ry Rate

 (%)

Correct Wrong Lost

(h) β∗ = 6

DiscopQw DiscopDs SparSampQw SparSampDs PSARSQw STEADDiffusion0
20
40
60
80

100

Recove
ry Rate

 (%)

Correct Wrong Lost

(i) β∗ = 8

DiscopQw DiscopDs SparSampQw SparSampDs PSARSQw STEADDiffusion0
20
40
60
80

100

Recove
ry Rate

 (%)

Correct Wrong Lost

(j) β∗ = 10

DiscopQw DiscopDs SparSampQw SparSampDs PSARSQw STEADDiffusion0
20
40
60
80

100

Recove
ry Rate

 (%)

Correct Wrong Lost

(k) γ∗ = 2

DiscopQw DiscopDs SparSampQw SparSampDs PSARSQw STEADDiffusion0
20
40
60
80

100

Recove
ry Rate

 (%)

Correct Wrong Lost

(l) γ∗ = 4

DiscopQw DiscopDs SparSampQw SparSampDs PSARSQw STEADDiffusion0
20
40
60
80

100

Recove
ry Rate

 (%)

Correct Wrong Lost

(m) γ∗ = 6

DiscopQw DiscopDs SparSampQw SparSampDs PSARSQw STEADDiffusion0
20
40
60
80

100

Recove
ry Rate

 (%)

Correct Wrong Lost

(n) γ∗ = 8

DiscopQw DiscopDs SparSampQw SparSampDs PSARSQw STEADDiffusion0
20
40
60
80

100

Recove
ry Rate

 (%)

Correct Wrong Lost

(o) γ∗ = 10

Figure 4: Robustness against token substitution, insertion and deletion. α represents the proportion
of random substitutions, β∗ and γ∗ represent the number of random insertions and deletions. Error
bars represent the standard deviation of the correct rate.

Linguistic quality. Figure 5 shows the average perplexity (PPL) values of stegotexts generated by
STEAD and covertexts randomly sampled by the same DLM, and it can be seen that under different
top-p truncation settings, the PPL of the stegotexts remains consistent with the covertext.

Statistical security. We conducted steganalysis tests using various DNN-based steganalyzers. These
tests are designed to distinguish between covertext generated from the DLM via random sampling
and stegotext generated by STEAD. We generated 1000 pairs of covertext and stegotext with p = 0.9
under two datasets. We adopted three steganalysis methods based on deep learning: FCN [6], R-

p=1.0 p=0.9 p=0.80

5

10

PP
L
↓

PPL-S
PPL-C

Figure 5: Comparison of PPL.

Table 2: Steganalysis results for STEAD

Dataset
Method FCN R-BiLSTM-C LSTMATT

IMDB 50.67±0.82% 49.00±1.59% 49.50±1.27%

C4 49.92±2.79% 49.08±2.66% 50.25±0.54%

9

BiLSTM-C [7], and LSTMATT [38]. Table 2 shows that the detection error rate PE approaches 50%.
This indicates that steganalysis methods cannot perform better than random guessing in detecting
stegotext generated by STEAD, which demonstrates the security of our stegosystem.

DiscopQw DiscopDs SparSampQw SparSampDs PSARSQw STEADDiffusion0
20
40
60
80

100

Recove
ry Rate

 (%)

Correct Wrong Lost

(a) Weak

DiscopQw DiscopDs SparSampQw SparSampDs PSARSQw STEADDiffusion0
20
40
60
80

100

Recove
ry Rate

 (%)

Correct Wrong Lost

(b) Strong

Figure 6: Robustness against mixed to-
ken attacks under two intensities.

Robustness against token-level attacks. We apply ran-
dom token-level substitution, insertion, and deletion to
stegotexts, each with various intensities. The results are
shown in Figure 4. Then we define mixed token-level
attacks as attacks that simultaneously apply token-level
substitution, insertion, and deletion. We define two at-
tack intensities, weak and strong, using the parameter sets
(α = 0.01, β∗ = 1, γ∗ = 1) and (α = 0.1, β∗ = 3, γ∗ =
3), respectively, as shown in Figure 6. It can be seen that
at the token level, STEAD is more resistant to various
attacks than the comparison methods, whether against a
single type of attack or mixed attacks.

DiscopQw DiscopDs SparSampQw SparSampDs PSARSQw STEADDiffusion0
20
40
60
80

100

Recove
ry Rate

 (%)

Correct Wrong Lost

(a) 0.01

DiscopQw DiscopDs SparSampQw SparSampDs PSARSQw STEADDiffusion0
20
40
60
80

100

Recove
ry Rate

 (%)

Correct Wrong Lost

(b) 0.05

DiscopQw DiscopDs SparSampQw SparSampDs PSARSQw STEADDiffusion0
20
40
60
80

100
Recove

ry Rate
 (%)

Correct Wrong Lost

(c) 0.1

DiscopQw DiscopDs SparSampQw SparSampDs PSARSQw STEADDiffusion0
20
40
60
80

100

Recove
ry Rate

 (%)

Correct Wrong Lost

(d) 0.2

DiscopQw DiscopDs SparSampQw SparSampDs PSARSQw STEADDiffusion0
20
40
60
80

100

Recove
ry Rate

 (%)

Correct Wrong Lost

(e) 0.3

Figure 7: Robustness against semantic attacks. From left to right, substitute the synonyms of words
(not tokens) in the text with proportions of 0.01, 0.05, 0.1, 0.2, and 0.3 respectively.
Robustness against realistic attack scenarios. Figure 7 shows the robustness evaluation to more
challenging scenarios. There is a semantic synonym substitution attack at word-level based on
TextAttack [39]. With a word substitution rate of 0.1, non-robust methods are rendered almost
entirely ineffective, whereas STEAD sustains an extraction correction rate above 80%.

w/o RPS+ECC, NSE w/o NSE STEAD0
20
40
60
80

100

Recove
ry Rate

 (%)

(a) α = 0.2 w/o RPS+ECC, NSE w/o NSE STEAD0
20
40
60
80

100

Recove
ry Rate

 (%)

(b) β∗ = 10 w/o RPS+ECC, NSE w/o NSE STEAD0
20
40
60
80

100
Recove

ry Rate
 (%)

(c) γ∗ = 10

Figure 8: Ablation study.

Ablation study. Our method comprises
three key components: a message-driven
PRN sampling algorithm, robust position
embedding with error correction coding
(RPE+ECC), and a neighborhood search ex-
traction (NSE) strategy. The ablation study
for these components is presented in Fig-
ure 8. We evaluated robustness against to-
ken substitution (using α = 0.2), token in-
sertion (with β∗ = 10), and token deletion
(with γ∗ = 10). The baseline steganographic algorithm (i.e., without RPE, ECC, and NSE) performs
embedding and extraction directly on the DLM. Its robustness is comparable to that of the ARM-based
method, indicating that the advantages of STEAD are not derived solely from the DLM itself. The
integration of RPE and ECC confers resistance to substitution by leveraging the DLM’s parallel
characteristic at specific, limited positions—a key innovation of STEAD. Furthermore, the inclusion
of NSE enables STEAD to handle insertion and deletion.

6 Conclusion

We propose STEAD, a novel, robust, and provably secure linguistic steganography method utilizing a
Diffusion Language Model (DLM). STEAD employs the random synchronous sampling characteristic
of the DLM, combined with error correction codes and a neighbor search extraction strategy, to
achieve robustness against substitution, insertion, deletion, and token ambiguity. We demonstrate the
performance of STEAD through theoretical proofs and extensive experiments. Results indicate that
STEAD exhibits a higher embedding capacity and enhanced robustness over comparable methods.

10

Acknolegment

This work was supported in part by the National Natural Science Foundation of China under Grant
U2336206, Grant 62472398, Grant U2436601, and Grant 62402469. We are grateful to Bai et al., the
authors of [23], for generously providing the code associated with their work and offering valuable
guidance.

References
[1] Y. Lin and Z. Wang, “A novel method for linguistic steganography by english translation using attention

mechanism and probability distribution theory,” Plos one, vol. 19, no. 1, p. e0295207, 2024.

[2] T. Yang, H. Wu, B. Yi, G. Feng, and X. Zhang, “Semantic-preserving linguistic steganography by pivot
translation and semantic-aware bins coding,” IEEE Transactions on Dependable and Secure Computing,
vol. 21, no. 1, pp. 139–152, 2023.

[3] C.-C. Chang, “Reversible linguistic steganography with bayesian masked language modeling,” IEEE
Transactions on Computational Social Systems, vol. 10, no. 2, pp. 714–723, 2022.

[4] Z.-L. Yang, X.-Q. Guo, Z.-M. Chen, Y.-F. Huang, and Y.-J. Zhang, “Rnn-stega: Linguistic steganography
based on recurrent neural networks,” IEEE Transactions on Information Forensics and Security, vol. 14,
no. 5, pp. 1280–1295, 2018.

[5] Z.-L. Yang, S.-Y. Zhang, Y.-T. Hu, Z.-W. Hu, and Y.-F. Huang, “Vae-stega: linguistic steganography
based on variational auto-encoder,” IEEE Transactions on Information Forensics and Security, vol. 16, pp.
880–895, 2020.

[6] Z. Yang, Y. Huang, and Y.-J. Zhang, “A fast and efficient text steganalysis method,” IEEE Signal Processing
Letters, vol. 26, no. 4, pp. 627–631, 2019.

[7] Y. Niu, J. Wen, P. Zhong, and Y. Xue, “A hybrid r-bilstm-c neural network based text steganalysis,” IEEE
Signal Processing Letters, vol. 26, no. 12, pp. 1907–1911, 2019.

[8] H. Yang, Y. Bao, Z. Yang, S. Liu, Y. Huang, and S. Jiao, “Linguistic steganalysis via densely connected lstm
with feature pyramid,” in Proceedings of the 2020 ACM Workshop on Information Hiding and Multimedia
Security, 2020, pp. 5–10.

[9] S. Li, J. Wang, and P. Liu, “Detection of generative linguistic steganography based on explicit and latent
text word relation mining using deep learning,” IEEE Transactions on Dependable and Secure Computing,
vol. 20, no. 2, pp. 1476–1487, 2022.

[10] N. J. Hopper, J. Langford, and L. Von Ahn, “Provably secure steganography,” in Annual International
Cryptology Conference. Springer, 2002, pp. 77–92.

[11] N. Hopper, L. von Ahn, and J. Langford, “Provably secure steganography,” IEEE Transactions on Comput-
ers, vol. 58, no. 5, pp. 662–676, 2008.

[12] K. Solanki, K. Sullivan, U. Madhow, B. Manjunath, and S. Chandrasekaran, “Provably secure steganog-
raphy: Achieving zero kl divergence using statistical restoration,” in 2006 International Conference on
Image Processing. IEEE, 2006, pp. 125–128.

[13] Z. Ziegler, Y. Deng, and A. M. Rush, “Neural linguistic steganography,” in Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 1210–1215.

[14] S. Zhang, Z. Yang, J. Yang, and Y. Huang, “Provably secure generative linguistic steganography,” in
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, 2021, pp. 3046–3055.

[15] G. Kaptchuk, T. M. Jois, M. Green, and A. D. Rubin, “Meteor: Cryptographically secure steganography
for realistic distributions,” in Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 1529–1548.

[16] J. Ding, K. Chen, Y. Wang, N. Zhao, W. Zhang, and N. Yu, “Discop: Provably secure steganography in
practice based on" distribution copies",” in 2023 IEEE Symposium on Security and Privacy (SP). IEEE,
2023, pp. 2238–2255.

[17] Y. Wang, G. Pei, K. Chen, J. Ding, C. Pan, W. Pang, D. Hu, and W. Zhang, “Sparsamp: efficient provably
secure steganography based on sparse sampling,” in Proceedings of the 34th USENIX Conference on
Security Symposium, ser. SEC ’25. USA: USENIX Association, 2025.

[18] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., “Language models are unsupervised
multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.

11

[19] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell et al., “Language models are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[20] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro,
F. Azhar et al., “Llama: Open and efficient foundation language models,” arXiv preprint arXiv:2302.13971,
2023.

[21] K. Chen, H. Zhou, H. Zhao, D. Chen, W. Zhang, and N. Yu, “When provably secure steganography meets
generative models,” arXiv preprint arXiv:1811.03732, vol. 1, no. 3, p. 4, 2018.

[22] N. Perry, S. Gupte, N. Pitta, and L. Rotem, “Robust steganography from large language models,” arXiv
preprint arXiv:2504.08977, 2025.

[23] M. Bai, J. Yang, K. Pang, X. Xu, Z. Yang, and Y. Huang, “Provably robust and secure steganography in
asymmetric resource scenarios,” in 2025 IEEE Symposium on Security and Privacy (SP). IEEE Computer
Society, 2025, pp. 1382–1400.

[24] J. Wu, Z. Wu, Y. Xue, J. Wen, and W. Peng, “Generative text steganography with large language model,”
in Proceedings of the 32nd ACM International Conference on Multimedia, 2024, pp. 10 345–10 353.

[25] Z. Wu, J. Wen, Y. Xue, Z. Zhang, and Y. Zhou, “Gtsd: Generative text steganography based on diffusion
model,” arXiv preprint arXiv:2504.19433, 2025.

[26] C. Pan, D. Hu, Y. Wang, K. Chen, Y. Peng, X. Rong, C. Gu, and M. Li, “Rethinking prefix-based
steganography for enhanced security and efficiency,” IEEE Transactions on Information Forensics and
Security, vol. 20, pp. 3287–3301, 2025.

[27] J. Nozaki and Y. Murawaki, “Addressing segmentation ambiguity in neural linguistic steganography,” arXiv
preprint arXiv:2211.06662, 2022.

[28] Y. Qi, K. Chen, K. Zeng, W. Zhang, and N. Yu, “Provably secure disambiguating neural linguistic
steganography,” IEEE Transactions on Dependable and Secure Computing, 2024.

[29] R. Yan, Y. Yang, and T. Song, “A secure and disambiguating approach for generative linguistic steganogra-
phy,” IEEE Signal Processing Letters, vol. 30, pp. 1047–1051, 2023.

[30] R. Yan, T. Song, and Y. Yang, “A near-imperceptible disambiguating approach via verification for generative
linguistic steganography,” in 2024 IEEE International Conference on Systems, Man, and Cybernetics
(SMC). IEEE, 2024, pp. 1638–1643.

[31] J. Austin, D. D. Johnson, J. Ho, D. Tarlow, and R. Van Den Berg, “Structured denoising diffusion models
in discrete state-spaces,” Advances in neural information processing systems, vol. 34, pp. 17 981–17 993,
2021.

[32] S. S. Sahoo, M. Arriola, Y. Schiff, A. Gokaslan, E. M. Marroquin, J. T. Chiu, A. M. Rush, and V. Kuleshov,
“Simple and effective masked diffusion language models,” in The Thirty-eighth Annual Conference on
Neural Information Processing Systems.

[33] J. Shi, K. Han, Z. Wang, A. Doucet, and M. Titsias, “Simplified and generalized masked diffusion for
discrete data,” Advances in neural information processing systems, vol. 37, pp. 103 131–103 167, 2024.

[34] X. Han, S. Kumar, and Y. Tsvetkov, “Ssd-lm: Semi-autoregressive simplex-based diffusion language model
for text generation and modular control,” in Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2023, pp. 11 575–11 596.

[35] M. Arriola, A. Gokaslan, J. T. Chiu, Z. Yang, Z. Qi, J. Han, S. S. Sahoo, and V. Kuleshov, “Block diffusion:
Interpolating between autoregressive and diffusion language models,” arXiv preprint arXiv:2503.09573,
2025.

[36] J. Ye, Z. Xie, L. Zheng, J. Gao, Z. Wu, X. Jiang, Z. Li, and L. Kong, “Dream 7b,” 2025. [Online].
Available: https://hkunlp.github.io/blog/2025/dream

[37] M. Christ and S. Gunn, “Pseudorandom error-correcting codes,” in Annual International Cryptology
Conference. Springer, 2024, pp. 325–347.

[38] J. Zou, Z. Yang, S. Zhang, S. u. Rehman, and Y. Huang, “High-performance linguistic steganalysis,
capacity estimation and steganographic positioning,” in International Workshop on Digital Watermarking.
Springer, 2020, pp. 80–93.

[39] J. Morris, E. Lifland, J. Y. Yoo, J. Grigsby, D. Jin, and Y. Qi, “Textattack: A framework for adversarial
attacks, data augmentation, and adversarial training in nlp,” in Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, 2020, pp. 119–126.

[40] L. A. Bauer, J. K. Howes, S. A. Markelon, V. Bindschaedler, and T. Shrimpton, “Leveraging generative
models for covert messaging: Challenges and tradeoffs for" dead-drop" deployments,” in Proceedings of
the Fourteenth ACM Conference on Data and Application Security and Privacy, 2024, pp. 67–78.

12

https://hkunlp.github.io/blog/2025/dream

[41] Qwen, :, A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, H. Lin,
J. Yang, J. Tu, J. Zhang, J. Yang, J. Yang, J. Zhou, J. Lin, K. Dang, K. Lu, K. Bao, K. Yang, L. Yu, M. Li,
M. Xue, P. Zhang, Q. Zhu, R. Men, R. Lin, T. Li, T. Tang, T. Xia, X. Ren, X. Ren, Y. Fan, Y. Su, Y. Zhang,
Y. Wan, Y. Liu, Z. Cui, Z. Zhang, and Z. Qiu, “Qwen2.5 technical report,” 2025. [Online]. Available:
https://arxiv.org/abs/2412.15115

[42] DeepSeek-AI, “Deepseek llm: Scaling open-source language models with longtermism,” arXiv preprint
arXiv:2401.02954, 2024. [Online]. Available: https://github.com/deepseek-ai/DeepSeek-LLM

[43] A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learning word vectors for sentiment
analysis,” in Proceedings of the 49th annual meeting of the association for computational linguistics:
Human language technologies, 2011, pp. 142–150.

[44] C. Cachin, “An information-theoretic model for steganography,” in International Workshop on Information
Hiding. Springer, 1998, pp. 306–318.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The key contributions and scope are outlined in both the section abstract and
the introduction (Section 1).

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of our method are discussed in Experiments and Conclusion
(See Section 5 and Section 6).

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

13

https://arxiv.org/abs/2412.15115
https://github.com/deepseek-ai/DeepSeek-LLM

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper provides the full set of assumptions for each theoretical result and
includes detailed and correct proofs in Section 4.5 and Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We will disclose the source code and dataset processing methodology upon
acceptance of the paper, and the datasets used are all public datasets.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

14

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will disclose the source code and dataset processing methodology upon
acceptance of the paper, and the datasets used are all public datasets.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the main experiment in Section 5 and give a more detailed setup
in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: This experiment does not involve statistical significance, and error bars are not
reported because it would be too computationally expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the computer resources in the Implementation Details (Ap-
pendix D) and our experiments report the time needed (Section ??).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The intent of this paper is to secure covert communications to maintain public
privacy.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

16

https://neurips.cc/public/EthicsGuidelines

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The abstract and introduction sections (Section 1) of the paper discuss the
potential positive societal impacts of this paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

17

Answer: [Yes]

Justification: The paper properly credits all existing assets used, providing appropriate
citations and acknowledging the creators. The version of each asset is clearly stated, and the
license names and terms of use are provided. Additionally, the sources for all code packages
and datasets are correctly cited, and the corresponding licenses and copyright terms are
respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

18

paperswithcode.com/datasets

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper clearly describes the usage of LLMs (Large Language Models) as
an important component in the core methods and explains their role and significance in the
research. The LLM is used as a key element and impacts the innovation and scientific rigor
of the methodology. Therefore, the authors have made the appropriate declaration to ensure
transparency and compliance.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Algorithms of STEAD

A.1 Message-Driven Pseudo-Random Number Sampling

See the Algorithm 1.

A.2 The Main Process of Message Extraction

In this section, we describe the main process of message extraction for the receiver in the STEAD
stegosystem. Also, we give in detail the error correction and µ-neighborhood search strategy.

For each stego, the receiver initializes an offset vector o1:L with all zeros, o1:L
t=1 = 0. During

the extraction process at each time step t → s, the receiver first checks the denoising positions
{j1, . . . , jNs} by rM. Then the receiver finds the corresponding stegotokens stj1,...,jNs . Calculate
the corresponding stego capacity ℓ at the denoising positions by Formula (11) based on the predicted
distribution pθ(x

j
s|xt). If ℓ = 0, the receiver can directly check whether the stegotoken stj at each

denoising position j has been tampered with using the PRN rjs. If tampered, the corrected token can
be obtained by Formula (9). If ℓ > 0, for each denoising position j, the receiver attempts to extract
the secret message ms using the distribution pθ(x

j
s|xt), the corresponding stegotoken stj , and the

19

https://neurips.cc/Conferences/2025/LLM

Algorithm 1 EMBED(P, r,m): an message embedding algorithm based on message-driven pseudo-
random number sampling

Input: A distribution P , a pseudo-random number r, optional ℓ-bit message m
1: cumul← 0
2: if ℓ > 0 then
3: r ←

[
r + dec(m)

2ℓ

]
mod 1

4: end if
5: for k ∈ {0, 1, . . . , |P |} do
6: cumul← cumul + P (k)
7: if cumul > r then
8: x← token corresponding to P (k)
9: break

10: end if
11: end for

Output: sampled token v

Algorithm 2 EXTRACT(P, r, x): an message extracting algorithm based on message-driven pseudo-
random number sampling

Input: A distribution P , a pseudo-random number r, a sampled token x
1: cumul, rleft, rright ← 0
2: for k ∈ {0, 1, . . . , |P |} do
3: cumul← cumul + P (k)
4: if x corresponds to P(k) then
5: rleft ← cumul − P (k)
6: rright ← cumul
7: break
8: end if
9: end for

10: for m ∈ {0, 1, . . . , 2ℓ} do
11: if rleft <

[
r + dec(m)

2ℓ

]
mod 1 < rright then

12: m← bin(m) ▷ Succeed to extract
13: return m
14: end if
15: end for
16: return m←“x” ▷ Fail to extract

Output: Extracted message m

PRN rjs using Algorithm 2. Since the secret messages embedded at all denoising positions of step
t→ s are encoded using a repetition code, the receiver can decode the most likely embedded secret
message fragment at the current time step through voting and identify which positions may have been
tampered with. The receiver can then correct the erroneous positions using the decoded message.

However, due to the possible increase and deletion of tokens, there may be a situation where all the
stegotokens at the denoising positions are shifted, making it impossible to extract the correct message
from any of the positions.

For all positions where extraction fails, the receiver checks whether they can be corrected using the
existing offset. If the correction is successful, the stego is updated, and the process proceeds to the
next position. If the offset correction is ineffective, or the offset value at the current position is zero,
the receiver performs a neighborhood search. This involves scanning for tokens within the range of
µ around the current position of the stegotoken in the stego sequence. For each neighboring token,
an attempt is made to extract the information. If a token that can be successfully extracted is found
during the neighborhood search, it is considered that the correct stego position has been found. The
offset relative to the original denoising position is calculated, and the offset vector is updated from
the current position to the next non-mask position. Finally, the correction of the generation process is
completed.

20

B Proof of Robustness

Proof. We divide failure into two independent cases and bound each probability separately.

(1) Since the repetitive code has a minimum distance Ns, up to ⌊Ns/2⌋ token substitution can be
corrected. The adversary can replace at most αL tokens total. In one step, Ns tokens out of L are
denoised, chosen uniformly at random. By a Chernoff bound,

Pr
(
substitutions in step > Ns/2

)
≤ exp

(
− (Ns/2− αL)2

2αL

)
. (12)

Since 2α < Ns/L, this exponent grows with L, making the probability negligible. Over polynomially
many diffusion steps, the total remains negligible.

(2) Insertions or deletions shift stego positions by at most (β + γ)L. During extraction, for each
expected position i, we search within its µ-neighborhood {i − µ, . . . , i + µ} for the most likely
token under the original distribution. If (β + γ)L < µ, then even after insertions and deletions,
every remaining stego token remains within the search window. Thus, all positions can be realigned
correctly. Since addition and deletion also mean that the token at position i changes. Therefore, it is
also necessary to add β and γ to the previously calculated ECC boundaries.

Combining these results, the STEAD stegosystem can achieve robustness against Fα,β,γ-bounded
adversaries, when 2(α+ β + γ) < mins(Ns/L), and β + γ < µ

L .

C Deal with Tokenization Ambiguity

Steganography	
Embedding

Language	Modelmessage

Tokenizer

Stegotext

Tokenizer

Stego Tokens

Steganography	
Extraction

Language	Modeldecoded	message

0110
1011

1100
0001

Probability changes.

Decode
Error!!!

Tokenization
Ambiguity

[…	,
“▁any”,	“thing”,	

…]

[…	,
“▁anything”,	

…]

“…	anything…”

Retokenized	
Tokens

Figure 9: An example of tokenization ambiguity given by [28]. The sender generates a token
sequence corresponding to subwords “_any” and “thing” during steganography embedding. During
transmission, the stego-tokens are decoded into the text “anything”. Unfortunately, the receiver
may retokenize “anything” as a single token “_anything”. This can lead to errors in steganography
extraction.

Tokenization ambiguity (TA) [27, 29, 30, 28, 17], or segmentation ambiguity, refers to a phenomenon
that a tokenizer may not re-decode a token sequence into the same tokens. Figure 9 gives an example.
It can be seen that the appearance of TA is basically accompanied by the increase or decrease in the
total number of tokens, as well as changes in specific tokens. Although there are existing methods
that do not harm the distribution to eliminate token ambiguity in steganography, such as backtracking
with checkpoints [40] and SyncPool [28], these methods do not constitute a competitive relationship
with the method proposed in this paper. The impact of TA will not exceed the limited threat model of
substitution, insertion, and deletion discussed in Section 3.2. Therefore, the proposed provably secure
robust steganography method in this paper can naturally handle most token ambiguity cases, unless
the ambiguity phenomenon occurs too frequently. However, the method aiming at simply eliminating
ambiguity cannot counter the active tampering of the adversary.

21

D Experimental Settings

D.1 Models and datasets.

We adopt the latest advanced text diffusion model Dream [36] as the stego generator. For the
autoregressive model, we choose two popular models, Qwen2.5-7B [41] and Deepseek-7B-base [42],
with similar performance to Dream to fairly compare the performance of steganographic methods.
We randomly select 200 text from the IMDb dataset [43] as input for the text generation task. Each
text is truncated to the first two sentences for context. The model generates 512 tokens for each
context as stego or cover under specific sampling settings.

D.2 Configs.

In the text sampling process of generating text by language models, text quality is influenced by three
sampling parameters: temperature, top-p, and top-k. The temperature controls the randomness of
the output. The lower the temperature, the more deterministic the text is (which usually leads better
quality); versa, the more diverse it is. Top-p sampling (a.k.a. Nucleus Sampling) dynamically selects
the smallest set of words with cumulative probability exceeding the threshold p. Top-k sampling
samples from the highest probability k words at each step. The three together adjust the deterministic
and diversity of the generated text. We test our method under various temperature, top-p, and top-k
settings.

D.3 Metrics.

There are four evaluation aspects in the experiment, namely capacity, security, and robustness.

Capacity includes effective capacity and theoretical limit capacity, respectively represented as
embedding capacity and entropy. The embedding capacity is calculated as the average number of
bits per stego token embedded. We calculate the sum of the entropy of the probability distribution of
denoised tokens at each step in the process of generating the complete token sequence by the model.
The sum of the entropy divided by the total number of tokens is the theoretical limit of the embedding
bit number per token.

Security is evaluated through three metrics: Kullback-Leibler divergence (KLD), PE , and perplex-
ity (PPL). KLD measures the distribution difference between cover and stego from the perspective of
information theory [44]. It is calculated as the relative entropy between the probability distribution of
generating cover and that of generating stego. PE represents the detection error rate of a steganalyzer,
which is calculated as the proportion of samples misclassified to the total number of samples. It is
used to empirically demonstrate the ability of the stego bypass a detector. PPL reflects the uncertainty
of the model in text prediction. The lower the PPL, the better the model. By comparing the PPL
changes of the stego and cover generated by the model, it can also reflect the degree of influence of
the steganographic methodon the statistical distribution of the generated text.

Robustness is evaluated through: (1) a coarse-grained metric, success rate of message extraction
which is calculated as the proportion of samples where the message is completely correctly extracted
(binary outcome), and (2) a set of fine-grained metric, the recovery rate of message denoted as a triplet
(correct rate, wrong rate, lost rate). Specially, when stego is perturbed, the extraction algorithm
may not be able to extract a message of the same length as the embedded message, which means that
the message after a certain bit has been lost. We calculate the lost rate as 1−min(ℓext, ℓemb)/ℓemb

where ℓext and ℓemb are the length of extracted message and embedded message. Correspondingly,
the correct rate and wrong rate represent the proportion of correct bits (of non-lost message) and
wrong bits (of non-lost message), respectively, among the total embedded message bits.

22

E Additional Experiments

E.1 Migration and Redundancy Experiments

E.1.1 Failure of Migrating Existing Methods to Diffusion Models

Although text diffusion models provide opportunities for designing robustness in provably secure
linguistic steganography, simply migrating existing methods based on the autoregressive model
to diffusion models is still infeasible. We directly replace the random sampling algorithm in the
generation process of the diffusion model with the existing steganographic algorithm, achieving
a simple migration from ARM version to DLM version. Table 3 demonstrates the success rate of
message extraction of the ARM version of Discop, the DLM version of Discop, and our method
STEAD under token ambiguity. The results show that direct migration has seriously damaged the
availability of Discop.

Table 3: Results of Migrating Existing ARMs-based Methods to Diffusion Models
Method/
Model

Discop/
Qwen

Discop/
DeepSeek

Discop/
Dream

STEAD/
Dream

Correct rate (%) 96.00 98.82 0.94 99.49
Wrong rate (%) 0.00 0.00 0.65 0.00
Lost rate (%) 4.00 1.17 98.41 0.51

Success rate (%) 95.50 97.50 0.00 ↓ 99.49

E.1.2 Failure of Adding Redundant Encoding to Existing Methods

Adding redundancy codes to existing provably secure steganographic methods based on autoregressive
models may seem like a straightforward way to enhance robustness. However, ARMs suffer from
error propagation—tampering with one token disrupts the probability distribution of all subsequent
sampling steps (see Figure 1). Therefore, using error-correcting codes (e.g., repetition codes, BCH, or
LDPC) cannot make this idea of directly combining non-robust methods with redundancy encoding
feasible. To demonstrate this limitation, we take the Qwen model as an example and apply a (20, 1)
repetition code to the Discop method. The experimental results of robustness agaisnt mix attack (with
strong intensity) in Table 4 confirm this claim.

Table 4: Results of applying a (20,1) repetition code to Discop on Qwen.
Method/ Model Capacity (bit) Correct rate (%) Wrong rate (%) Lost rate (%) Decoded length (bit)

Discop/ Qwen 59.70 2.55 0.00 97.45 1.21
STEAD/ Dream 23.93 83.43 0.79 15.78 20.06

E.2 Additional Results about Ablation Study

E.2.1 Why Use Repetition Codes

The use of repetition codes in STEAD is motivated by the unique characteristics of robust provably
secure text steganography:

Scenario-specific requirements. Unlike traditional bit-flipping in lossy channels, text token tam-
pering can corrupt multiple bits simultaneously (since each token carries multiple bits). For provably
secure steganography, full token recovery is critical—any residual error propagates to subsequent
extraction steps. This demands a mechanism robust to complete token-level failures.

Constraints on code parameters. In STEAD’s one-step generation, robust positions support very
short code lengths with high error-correction demands. Table 5 shows that under typical conditions
(assuming ≤ 1 token error per step), linear codes degenerate to repetition codes when parameters
approach (n, 1).

23

Trade-off clarification. We acknowledge the trade-off between robustness and embedding capacity.
Repetition codes were chosen to prioritize maximum robustness, which is critical for the first DLM-
based provably secure method. While algebraic codes (e.g., BCH) offer efficiency in longer codes,
they underperform in our short-code, high-error scenario.

Table 5: Degeneration of linear codes to repetition codes under short-length constraints.
Dataset IMDB C4

Code length 6.28 6.69
Error length 1.92 2.05

E.2.2 Computational Overhead of Neighborhood Search Strategies

The window size µ is dynamically adjusted based on the tampered text length: µ = max(2, |L−L′|),
where L denotes the original sequence length and L′ is the length after tampering. This strategy
balances adaptability to varying attack intensities (e.g., insertion/deletion) while avoiding excessive
computational overhead. To validate this setting, we tested decoding performance under different
fixed µ values using the strong mixed attack scenario. Table 6 shows that the larger µ achieves higher
accuracy without significant time overhead per effective bit.

Table 6: Computational overhead of neighborhood search strategies with varying window sizes µ.
µ Total time (s) Decode time (s/bit) Correct rate (%) Wrong rate (%) Lost rate (%)

1 48.22 2.80 70.99 1.06 27.96
2 59.46 2.78 88.80 0.26 10.94
4 62.12 2.77 92.87 0.33 6.79

E.3 Quantitative Estimation of Provable Robustness Boundaries

We tested the average number of occurrences of different values of Ns in a 512-length token sequence
generation under various prompts (using different IMDB datasets and C4 datasets). Due to the
repetition code we adopt, embedding is required only when N is greater than 3. As shown in Table 7,
although the distribution of Ns is different, the minimum value of Ns is always 3.

The theoretical assumption 2(α+ β + γ) < mins(Ns/L)) defines the boundary for perfect 100%
extraction accuracy. In practice, this boundary is strict and rarely met in complex real-world scenarios.
For example, in generating 512-length text, minNs is typically 3, leading to a theoretical tampering
threshold of 0.3% (i.e., 1.5 tokens out of 512). This strict boundary is difficult to satisfy under
realistic attacks. However, this does not invalidate message extraction beyond the boundary.

Experimental results (Figures 4, 6, 7) show a gradual rather than abrupt decline in accuracy: (1)
At low tampering intensities (below the boundary), extraction accuracy remains nearly 100%; (2)
As tampering exceeds the boundary, accuracy decreases steadily but retains practical utility (e.g.,
82.63% correct extraction even with 10 insertions in 500 samples, as shown in prior robustness tests).
This aligns with real-world language environments, where attacks vary in intensity but rarely cause
extreme tampering. The theoretical bound serves as a benchmark for optimal performance, while
empirical results demonstrate the method’s resilience beyond this idealized scenario.

Table 7: Empirical statistics of Ns supporting the estimation of provable robustness boundaries.
Dataset Ns = 3 Ns = 4 Ns = 5 Ns = 6

IMDB 16.2 3.3 0.6 0.1
C4 13.2 2.8 0.45 0.15

E.4 Results of Robustness under Token Ambiguity

In previous experiments, all attacks were conducted at the token level. In the steganography scenario,
a more general case is that the receiver can only obtain the text. Table 8 shows the extraction success

24

rates of different steganography methods when directly extracting the steganographic text. All the
compared methods did not add any disambiguation means, only comparing the robustness of the
provably secure steganographic methods themselves against TA.

Table 8: Robustness under TA

Method/
Model

Discop/
Qwen

Discop/
DeepSeek

SparSamp/
Qwen

SparSamp/
DeepSeek

ARS/
Qwen

STEAD/
Dream

Success rate 95.50% 97.50% 92.42% 96.00% 89.04% 99.49%

F Visualization of Generated Texts

Example Stegotext 1 I can understand your concern. During pregnancy,
watching some sensitive or potentially graphic content, especially
content about violence, gore, etc., could certainly be unsettling
and disturbing. It’s completely normal for watching videos or
content that affected you to be cared for. Being aware of your
reaction, you’re absolutely not required to watch anything else
that can upset you again. That’s part of the privilege of under-
standing that pregnancy is an emotional journey too, for you.

It’s generally wise to be cautious with the types of content you
watch or information you consume, especially when you’re trying
to enjoy your pregnancy safely and comfortably. News, documen-
taries, and videos that might show harm to others, especially in
violent situations, can cause some people severe emotional dis-
tress. Moreover, emotional reactions can be highly amplified dur-
ing pregnancy, so it’s good to take steps to keep your emotions
centered and protected.

Here are some other things you might want to do to ensure a pos-
itive and healthy mental and physical experience during pregnancy:

- **Regular relaxation and stress management techniques**: This
can include activities such as meditation, yoga, or deep breathing
exercises.

- **Healthcare check-ups**: Regular visits to a healthcare
provider can provide you with support regarding mental health,
as well as offer guidance about nutrition and exercise, or if your
blood pressure or weight need to be on track.

- **Create a support system**: Let a trusted partner or friend
know about how you might be feeling. It’s okay to ask for help
when and if you need it.
- **Community of parents and other parents-to-be**: Sometimes,
stories and experiences can help normalize the pregnancy journey.
Consider a local community group or online support group to find
people whose advice and encouragement can be supportive.

You’re not alone in your pregnancy, and it’s perfectly alright
to acknowledge the need and avoid this kind of content if makes
you feel upset or harmful to yourself.

Moreover, if you ever feel persistent symptoms, such as:
- A change in appetite
- Intense crying without a sign of any problem
- Irritability or persistent or severe nausea to the point to dis-
turb your day

- Persistent, severe headaches
- Severe anxiety

25

Then it’s appropriate to reach out for support. A doctor or
healthcare professionals are ready to assist and guide you, don’t
let you suffer through it.

Remember, your health and happiness during pregnancy is very im-
portant, and you can take the necessary steps to make your own
pregnancy experience a safe and positive one. Every pregnancy is
unique, so are our needs and preferences. Good luck!

Example Stegotext 2 It’s great to hear that you’ve found a movie that
you can really enjoy. In the future, I hope you’ll be more care-
ful in the future when you’re in the process of reviewing movies.
I’m an AI and I don’t keep up with trends or watch movies, but I
can give you some guidance and tips on how to write a good review.

Let’s imagine a movie review and pretend that it’s from a movie by
a director named Madsen. A major fan of Madsen films might think
that this would be the type of movie you might want to avoid, if
I’ve been recommending Madsen movies to you. In fact, I’m not
sure if the movie has a Madsen movie in it (they probably don’t).
This might cause some of you to avoid this movie. I’ll give you a
tip in the description what it’s about:

I know you probably love Madsen’s films too. I’m a fan of his
movies and I have a lot of his movies in my collection. But trust
me, this is not the type of movie that you want to watch. It’s
a terrible movie that’s bad for every reason in existence. Hor-
rible plot holes, terrible actors, and horrendous writing. It’s
a tough watch that will make you sad for Madsen’s movies. It’s a
shame, but I have to warn you, that it’s not possible for you to
enjoy it. However, the film has a small amount of humor of irony,
that makes it funny at times. I can assure you, if you are a Mad-
sen fan, you will not care one bit. So, please, avoid that movie.
You’ve been warned.

When writing a review for any other movie from Madsen, take note
of what feels right to you. If it’s funny, or dramatic, mention
some of those things in it. Don’t forget to give your honest
opinion and why. If there’s anything that you have about a cer-
tain genre, or about a particular director, don’t be afraid to
point it out, but be general. Don’t single out a Madsen movie
or a genre. Think of a target audience for which you might be
or might not be the target audience wanting to see it. This way,
you’ll be giving a review that will be helpful to potential view-
ers who share your interests. This will make your review more
helpful to others who might or might not appreciate the movie as
well as you found the experience be.

26

	Introduction
	Background
	Preliminaries
	Related Works

	Threat Model
	Adversary Motivation
	Adversary Capabilities

	STEAD Methodology
	Diffusion Sampling Process
	Message-driven Pseudo-random Number Sampling
	Robust Position Embedding with Repetitive Error Correction Coding
	Pseudo-random Error Correction and Neighborhood Search Extraction
	Proof of Security and Robustness

	Experiments
	Conclusion
	Algorithms of STEAD
	Message-Driven Pseudo-Random Number Sampling
	The Main Process of Message Extraction

	Proof of Robustness
	Deal with Tokenization Ambiguity
	Experimental Settings
	Models and datasets.
	Configs.
	Metrics.

	Additional Experiments
	Migration and Redundancy Experiments
	Failure of Migrating Existing Methods to Diffusion Models
	Failure of Adding Redundant Encoding to Existing Methods

	Additional Results about Ablation Study
	Why Use Repetition Codes
	Computational Overhead of Neighborhood Search Strategies

	Quantitative Estimation of Provable Robustness Boundaries
	Results of Robustness under Token Ambiguity

	Visualization of Generated Texts

