
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Rastgoo, Mohammad Naim, Nakisa, Bahareh, Maire, Frederic, Rakotoni-
rainy, Andry, & Chandran, Vinod
(2019)
Automatic driver stress level classification using multimodal deep learning.
Expert Systems with Applications, 138, Article number: 1127931-11.

This file was downloaded from: https://eprints.qut.edu.au/131392/

c© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

License: Creative Commons: Attribution-Noncommercial-No Derivative
Works 4.0

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1016/j.eswa.2019.07.010

https://eprints.qut.edu.au/view/person/Rastgoo,_Mohammad_Naim.html
https://eprints.qut.edu.au/view/person/Nakisa,_Bahareh.html
https://eprints.qut.edu.au/view/person/Maire,_Frederic.html
https://eprints.qut.edu.au/view/person/Rakotonirainy,_Andry.html
https://eprints.qut.edu.au/view/person/Rakotonirainy,_Andry.html
https://eprints.qut.edu.au/view/person/Chandran,_Vinod.html
https://eprints.qut.edu.au/131392/
https://doi.org/10.1016/j.eswa.2019.07.010


 

Accepted Manuscript

Automatic Driver Stress Level Classification Using Multimodal Deep
Learning

Mohammad Naim Rastgoo , Bahareh Nakisa , Frederic Maire ,
Andry Rakotonirainy , Vinod Chandran

PII: S0957-4174(19)30489-0
DOI: https://doi.org/10.1016/j.eswa.2019.07.010
Reference: ESWA 12793

To appear in: Expert Systems With Applications

Received date: 26 February 2019
Revised date: 30 June 2019
Accepted date: 5 July 2019

Please cite this article as: Mohammad Naim Rastgoo , Bahareh Nakisa , Frederic Maire ,
Andry Rakotonirainy , Vinod Chandran , Automatic Driver Stress Level Classifica-
tion Using Multimodal Deep Learning, Expert Systems With Applications (2019), doi:
https://doi.org/10.1016/j.eswa.2019.07.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.eswa.2019.07.010
https://doi.org/10.1016/j.eswa.2019.07.010


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

    1 

 

Highlights 
 Multimodal fusion model based on CNN-LSTM network to recognize driver stress 

level. 

 First Deep learning approach applied to ECG, vehicle data and environmental data.  

 Multimodal deep learning approach is effective in detecting driver stress level. 

 Fusion approach using CNN-LSTM performs better than handcrafted feature 

extraction. 
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ABSTRACT Stress has been identified as one of the contributing factors to vehicle crashes which 

create a significant cost in terms of loss of life and productivity for governments and societies. 

Motivated by the need to address the significant costs of driver stress, it is essential to build a practical 

system that can detect drivers’ stress levels in real time with high accuracy. A driver stress detection 

model often requires data from different modalities, including ECG signals, vehicle data (e.g. steering 

wheel, brake pedal) and contextual data (e.g. weather conditions and other ambient factors). Most of 

the current works use traditional machine learning techniques to fuse multimodal data at different 

levels (e.g. feature level) to classify drivers’ stress levels. Although traditional multimodal fusion 

models are beneficial for driver stress detection, they inherently have some critical limitations (e.g. 

ignore non-linear correlation across modalities) that may hinder the development of a reliable and 

accurate model. To overcome the limitations of traditional multimodal fusion, this paper proposes a 

framework based on adopting deep learning techniques for driver stress classification captured by 

multimodal data. Specifically, we propose a multimodal fusion model based on convolutional neural 

networks (CNN) and long short-term memory (LSTM) to fuse the ECG, vehicle data and contextual 

data to jointly learn the highly correlated representation across modalities, after learning each 

modality, with a single deep network. To validate the effectiveness of the proposed model, we 

perform experiments on our dataset collected using an advanced driving simulator.  In this paper, we 

present a multi-modal system based on the adoption of deep learning techniques to improve the 

performance of driver stress classification. The results show that the proposed model outperforms 

model built using the traditional machine learning techniques based on handcrafted features (average 

accuracy: 92.8%, sensitivity: 94.13%, specificity: 97.37% and precision: 95.00%). 

 

Keywords: Deep Learning; Driver stress detection; Convolutional Neural Network; Long short Term 

Memory; ECG signal; Vehicle data  

 

 

1. INTRODUCTION 

Stress is an unpleasant mental state can 

contribute to road traffic crashes and lead to a 

large numbers of injuries and fatalities every 

year. Stress can increase crash risk nearly 

tenfold, according to Virginia Tech 

Transportation Institute (Brown et al., 2016). 

Australian national crash reports also show that 

feeling stressed is a contributing factor to fatal 

crashes (Beanland, Fitzharris, Young, & Lenné, 

2013). Reducing the numbers of traffic 

accidents and enhancing public road safety is 

becoming an urgent issue for governments and 

industries. Therefore, an accurate drivers’ stress 

level detection system is needed to reduce the 

risk of crashes and to increase driver safety. 

Recent research into automatic driver stress 

level recognition has shown that the use of 

multimodal data can substantially improve the 

classification performance (Healey & Picard, 

2005; Katsis, Katertsidis, Ganiatsas, Fotiadis, 
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& others, 2008; Lanatà et al., 2015; Rigas, 

Goletsis, Fotiadis, & others, 2012). The 

multimodal data, which can monitor a driver’s 

stress, includes the driver’s physiological 

signals, physical responses and ambient 

parameters (Rastgoo, Nakisa, Rakotonirainy, 

Chandran, & Tjondronegoro, 2018). There are 

multitude studies that have used physiological 

signals to detect driver stress levels (Healey & 

Picard, 2000; Katsis et al., 2008; Singh, 

Conjeti, & Banerjee, 2013; Urbano, Alam, 

Ferreira, Fonseca, & Simíões, 2017). Among 

the various physiological responses, 

electrocardiogram (ECG) signals which are 

influenced largely by momentary Autonomic 

nervous system (ANS) activities are known to 

be an important stress indicator (Lee et al., 

2007). The ECG signal represents the heart’s 

electrical activity over time. In a stressful 

driving situation, the sympathetic part of the 

ANS will be activated instantaneously, which 

results in an increase in heart activity (Rastgoo 

et al., 2018). In addition to physiological 

responses to stress, drivers’ stress responses 

can be also detected through physical or 

behavioural reactions. In a stressful situation, 

drivers physically react to control vehicles and 

avoid crashes. The reaction time is fast and 

depending on the type of reaction can vary 

from milliseconds to seconds (Green, 2000). 

These physical reactions of drivers can be 

monitored using vehicle data such as steering 

wheel, vehicle acceleration and deceleration 

data (Bořil, Sadjadi, Kleinschmidt, & Hansen, 

2010; Lanatà et al., 2015; D. S. Lee et al., 2017; 

Rigas et al., 2012).  

Apart from a driver’s physical responses, 

contextual data contains important information 

for detecting drivers’ stress level. Ambient or 

environmental data as an important contextual 

data can affect stress level of drivers (Hill & 

Boyle, 2007). The environmental data include 

different ambient information such as weather, 

visibility level, time of the day, driving routes, 

and other drivers’ behaviours.  

Fusing environmental data with physiological 

and physical stress responses can be beneficial 

for building an accurate driver’s stress level 

detection model. This is due to that fact that 

data from different modalities can describe the 

same stressful event and each modality carries 

stress related information. Moreover, there is 

some stress related information across the 

modalities which can provide the 

complementary information to improve the 

performance of driver stress detection. In order 

to extract such information, it is important to 

capture the correlation between modalities with 

a compact set of latent variables. 

To date, most of the studies have applied 

traditional multimodal fusion models like 

sensor-level, feature level or decision level 

fusion (Healey & Picard, 2005; Katsis et al., 

2008; Lanatà et al., 2015; Rigas et al., 2012),  

whereby all the extracted features from each 

modality are combined into one vector to use in 

a next data analysis step. However, these 

approaches are not able to capture the non-

linear correlation across data modalities, as the 

correlation between features in each modality is 

stronger (Ngiam et al., 2011). This is because, 

these sort of approaches focus on learning the 

patterns within each modality separately, rather 

than learning patterns that occurs 

simultaneously across multiple data modalities. 

Moreover, most of the existing studies rely 

solely on extracting handcrafted features from 

different modalities to build multimodal fusion 

models. However, handcrafted feature 

extraction techniques are time-consuming, ad-

hoc and require an in-depth knowledge and 

expertise (Pourbabaee, Roshtkhari, & 

Khorasani, 2017). 

In recent years, deep learning (DL) techniques 

have been successfully applied in different 

contexts to build multimodal fusion models (Hu 

& Li, 2016; Huang & Kingsbury, 2013; Kanjo, 

Younis, & Ang, 2019; Karpathy et al., 2014; Y. 

Liu, Chen, Peng, & Wang, 2017; Ngiam et al., 

2011; Yang et al., 2017). Deep learning 

approaches relieve the burden of manually 

extracting handcrafted features. Multimodal 

fusion models based on deep learning methods 

have been proposed to jointly learn and explore 

the highly correlated representation across 

modalities after learning each modality data, 
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using a single deep network. Moreover, deep 

learning approaches remove the need for expert 

input and are able to construct the salient 

features from each modality.  

In the context of driving, multimodal deep 

learning approaches have been applied for path 

prediction using a fusion of LiDAR and GPS 

(Aranjuelo, Unzueta, Arganda-Carreras, & 

Otaegui, 2018; Virdi, 2017), pedestrian 

detection for autonomous vehicles (Liu, Zhang, 

Wang, & Metaxas, 2016), predicting driver 

action via the fusion of image, speed and 

angular velocity (Chi & Mu, 2017), and action 

prediction using steering action and vehicle 

status (Xu, Gao, Yu, & Darrell, 2017).  

However, fusion of multi-model data based on 

deep learning approaches has not previously 

been investigated for driver stress detection.  

In this study, we propose a multimodal deep 

learning model with the aim of fusing ECG 

signals, vehicle dynamics data and 

environmental data. The proposed model is 

based on convolutional neural networks and 

long-short term memory networks (CNN-

LSTM). The multimodal deep learning model 

based on CNN-LSTM networks helps in fusing 

the ECG signals, vehicle dynamics data and 

environmental data to capture the driver stress 

related information within and across the 

modalities.  

In this study, drivers’ stress is categorized into 

three stress levels: low, medium and high. The 

proposed model is evaluated on our dataset 

collected from an advanced driving simulator. 

This dataset contains ECG signals, vehicle 

dynamics data and environmental data from 27 

participants captured from multiple scenarios 

made up of driving situations designed to 

induce different levels of stress. The 

performance of the proposed model is also 

compared with models based on handcrafted 

feature extraction methods.  

This study’s contributions are: 

 To propose a framework based on a deep 

learning technique (CNN-LSTM) to 

accurately build a drivers’ stress level 

detection model based on the fusion of 

ECG, vehicle data and contextual data. To 

the best of our knowledge, no other work 

has applied deep learning to a combination 

of modalities like physiological signal, 

physical and environmental data for stress 

detection. 

 To conduct various experiments to compare 

the performance of the proposed multimodal 

deep learning technique with frameworks 

based on traditional multimodal fusion 

models (handcrafted feature extraction 

method with feature level fusion). In 

addition, the analysis and fusion of drivers’ 

physiological, physical and environmental 

data to explore their significance in stress 

detection is presented.  

2. RELATED WORK 

Due to the multimodal nature of stress, 

interpreting and analysing the multimodal data 

together is recommended to build a robust and 

reliable stress detection model. Different 

modalities can be used to measure a driver’s 

stress including driving stressors, the driver’s 

ambient and individual parameters (contextual 

data), and the driver’s psychological, 

physiological and physical responses to stress. 

Given the relative ease of collecting 

physiological signals and vehicle dynamics 

data, researchers have investigated the 

correlation between these data and drivers’ 

stress levels (Lanatà et al., 2015; Lee et al., 

2017; Rigas et al., 2012). The majority of the 

works in the literature employ the traditional 

statistical analysis methods (tradition machine 

learning techniques), whereby, a number of 

handcrafted features are extracted from the 

data, and then computational models are built 

to classify driver stress levels. Although 

handcrafted features yield promising results, 

the quality of the selected features significantly 

affects the classification performance. 

Therefore, extracting the most important 

representative and critical features is always a 

challenging problem (Bahareh Nakisa, Rastgoo, 

Tjondronegoro, & Chandran, 2017). Moreover, 

extracting salient features using expert 
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knowledge is time-consuming and ad-hoc and 

the extracted features are not always robust to 

variations such as noise and scaling. 

Several studies have taken advantage of 

combining different modalities to build an 

accurate driver stress level detection models 

with acceptable detection speed. Urbano et al. 

(2017) proposed a model using a fusion of ECG 

and electrodermal activity (EDA) signals to 

detect two stress levels of drivers using a linear 

discriminant analysis classifier. The built 

models achieved 81–97% accuracy. In another 

study (Singh, Conjeti, & Banerjee, 2013), a 

three-level stress level detection model based 

on the fusion of photoplethysmogram (PPG), 

EDA and respiration (RSP) signals was built 

using a recurrent neural network classifier. The 

precision, sensitivity and specificity of the 

proposed model for discriminating three stress 

levels of drivers (low, medium, and high) were 

reported to be 89.23%, 88.83% and 94.92%, 

respectively. Rigas et al. (2012) fused several 

features extracted (feature level fusion) from 

ECG, electrodermal activity (EDA), respiration 

signals (RSP), and vehicle dynamics data to 

detect two stress levels of drivers. The features 

were fed to a naïve Bayes classifier and 

achieved 96% accuracy. In another study 

(Lanatà et al., 2015), 42 features extracted from 

ECG, EDA, RSP and vehicle dynamics data 

(steering wheel, car velocity and driver 

response time ) and then fused (feature level 

fusion) to detect three stress levels of drivers 

using a nearest mean classifier. The built model 

achieved over 90% accuracy. Rigas, Goletsis, 

Bougia, & Fotiadis (2011) extracted a number 

of features from physiological signals (ECG, 

EDA and RSP), physical data (head movement) 

and contextual data (environmental data) and 

fused them to build a driver stress detector. The 

built model using an SVM classifier achieved 

86% accuracy. 

The fusion of the data in most of these studies 

is performed at the feature level. Using this 

approach, feature data from each modality is 

concatenated to form one feature vector which 

is used to solve classification problems. 

However, this approach is not able to capture 

the non-linear correlation in multimodal time-

series data, as the correlation between features 

in each modality is stronger (Ngiam et al., 

2011). This is because, these sorts of 

approaches focus on learning the patterns 

within each modality separately rather than 

learning patterns that occur simultaneously 

across multiple data modalities.  

To overcome the difficulties in obtaining 

effective and robust features and capturing the 

non-linear correlation across the modalities, 

deep learning (DL) techniques have been 

proposed. DL techniques have the ability to 

learn the features from the raw data and can  be 

actively applied to multidimensional signal 

processing due to their state-of-the-art 

performance and strong capabilities in 

constructing reliable features in different fields 

such as speech recognition (Hinton et al., 2012)  

and time-series data analysis (Y. Liu et al., 

2017; Zheng, Liu, Chen, Ge, & Zhao, 2014).  

Among the DL methods, convolutional neural 

networks (CNNs) have been successfully used 

for constructing strong and suitable features for 

different problems (Burkert, Trier, Afzal, 

Dengel, & Liwicki, 2015; Dwivedi, 

Biswaranjan, & Sethi, 2014; Hajinoroozi, Mao, 

Jung, Lin, & Huang, 2016; Yan, Teng, Smith, 

& Zhang, 2016). The strong feature learning 

capabilities of CNNs make them an ideal 

choice for multidimensional signal processing 

applications. CNNs are artificial neural 

networks that can capture the local 

dependencies and invariant features in the data. 

CNNs with different layers can first extract 

local, low-level features from the raw input and 

then increasingly more global and high level 

features in deeper layers. Experimental results 

confirm that CNNs surpass traditional machine 

learning approaches (Hajinoroozi et al., 2016; 

Zhu et al., 2014).  Zhu et al. (2014) proposed a 

CNN network using electrooculography (EOG) 

signal to detect driver drowsiness and the 

obtained result using deep learning is proven to 

be more efficient in drowsiness compared to 

manual ad-hoc feature extraction. Acharya, Oh, 

Hagiwara, Tan, & Adeli (2018) proposed a 13-

layer deep convolutional neural network (CNN) 
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is implemented to detect normal, preictal, and 

seizure classes. Using a CNN model, different 

studies could model complex models to classify 

different emotions using physiological signals 

(Chen & Jin, 2015; Martinez, Bengio, & 

Yannakakis, 2013). 

Long Short-Term Memory (LSTM) networks, a 

special type of Recurrent Neural networks 

(RNNs), have gained popularity due to their 

ability to exploit the temporal dependencies in 

time-series data. Recently, LSTM networks 

achieved state-of-the-art performance in 

different domains such as machine translation, 

voice recognition and emotion recognition 

(Hinton et al., 2012; Nakisa, Rastgoo, 

Rakotonirainy, Maire, & Chandran, 2018; 

Neverova et al., 2016; F. Yan & Mikolajczyk, 

2015). Recently, LSTM network is applied to 

driving domain and obtained a promising 

performance. Wollmer et al. (2011) proposed a 

novel algorithm for driver’s distraction and 

showed that LSTM enable a reliable subject 

independent distraction model with the 

accuracy of 96%. More modern approaches are 

proposed based on the combination of CNN 

and LSTM networks across a wide variety of 

domains to understand long-term context 

(Valiente, Zaman, Ozer, & Fallah, 2019; 

Zhang, Chan, & Jaitly, 2017). For example, 

Donahue et al. (2015) proposed a new model 

that combines LSTM with CNN networks for 

visual recognition problem. Zhang et al. (2017) 

explored a very deep Convolutional LSTMs for 

speech recognition. 

Moreover, deep learning techniques have been 

shown to be effective methods in generating a 

joint representation across modalities in 

different domains such as audio-visual speech 

recognition (Huang & Kingsbury, 2013), 

predicting driver actions using image and speed 

and angular velocity (Xu et al., 2017), and 

action prediction using steering action and 

vehicle status (Chi & Mu, 2017). However, the 

temporal information is not considered in these 

deep learning networks, which deviate from the 

natural properties of time-series data. 

Recently, some studies attempted to model 

temporal multimodal data to capture the 

temporal information about the multimodal 

sequences (Karpathy et al., 2014; Liu et al., 

2016; Liu et al., 2017; Yang et al., 2017) and 

the proposed models were evaluated using 

image and audio-visual data. However, 

temporal multimodal fusion based on deep 

learning techniques (CNN-LSTM network) has 

not been exploited in the domain of driving. 

3. METHODOLOGY 

In this section, a multimodal deep learning 

model based on CNN-LSTM networks to build 

a drivers’ stress level detection model is 

presented. The proposed model is evaluated on 

our dataset collected from an advanced driving 

simulator. A description of dataset is provided 

in Section 3.1. Then, the proposed multimodal 

fusion framework is presented in Section 3.2.  

3.1 Dataset Description 

The dataset used in this study was recorded in 

response to different stressful situations in the 

context of driving. The experiment was 

conducted in an advanced driving simulator 

(Figure 1). Consisting of a car with an 

automatic transmission, front view (180-

degree), rear-view mirrors, audio system, a 

hydraulic system to simulate vehicle motion 

and SCANeR™ studio software. The 

surrounding sounds such as engine, road noise 

and other traffic interactions sounds is 

simulated accurately by the audio system. 

Further information on the driving simulator 

can be found at 

https://research.qut.edu.au/carrsq/services/a

dvanced-driving-simulator/ 

The physiological signals such as ECG signals, 

vehicle data and environmental data are 

acquired using the software: SCANeR™ studio 

and BIOPAC MP150. BIOPAC MP150 was 

used to acquire physiological signals such as 

ECG signals with a sampling rate of 1000 Hz 

which was down sampled to 200 Hz.  In 

addition, SCANeR™ studio was used to 

acquire vehicle data such as brake pedal, gas 

pedal, steering wheel data and environmental 

data such as distance to next vehicle, number of 
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lanes, lane width, weather related data, visibility related data and time of the day.

 

Figure 1. CARRS-Q advanced simulator used for our data collection. The simulator consists of a car with an 

automatic transmission, front view (180-degree), rear-view mirrors, audio system, and hydraulic system to 

simulate vehicle motion, and a BIOPAC system to obtain physiological signals.  

 

The sampling rate of SCANeR™ studio is set 

to 60 Hz.  It should be noted that all the data 

from the SCANeR™ and BIOPAC software 

was synchronised. In this study, data were 

collected from 27 participants aged 21–40 years 

(55% male). All participants were required to 

have a valid driver’s license in Australia, and to 

regularly drive for a total of at least one hour 

every week. The experiment for each 

participant took about one hour on average. 

 

3.2 Data collection Scenarios 

 

The experimental protocol is structured into 

two phases: pre-experiment, and driving 

scenario experiment.  

Prior to the commencement of experiments, all 

participants were instructed via email about the 

experiment (task details, wearable sensing, data 

acquisition, driving routes, and safety 

instructions). Some restrictions such as to avoid 

drinking caffeine and alcohol prior to the data 

collection were applied to the participants.  

Before starting driving, each participant was 

asked to relax for 2–3 minutes in order to 

record their physiological baseline. Then, the 

participant drove through six driving scenarios. 

Along with data from the experimental 

scenarios, driver’s data (ECG signal, vehicle 

dynamic data and environmental data) were 

continuously acquired. In the first driving 

scenario (practice drive), the participant was 

asked to drive on a simple route to become 

familiar with simulator environment and how to 

control the car. After the practice drive, the 

participant drove on the next five driving 

scenarios: Urban1, Urban2, Highway, City1 

and City2 landmarks. It should be noted that 

the scenario order was randomised across 

participants to avoid learning effects.  

Each scenario contains several designed 

stressors to induce different stress levels into 

the driver. During each scenario, the drivers 

were asked every two minutes to provide their 

responses (verbally) to a short questionnaire 

about their stress levels (low, medium and 

high). The applied stressors in this study are 

derived from different studies (Hill & Boyle, 

2007; Lee et al., 2017; Rodrigues, Kaiseler, 

Aguiar, Cunha, & Barros, 2015) and 

categorised into four groups. 

 

3.2.1 Traffic 

 

Traffic congestion is a resource of stress 

(Rastgoo et al., 2018).  Several traffic densities 

were designed in this study in order to simulate 

driving in different traffic levels. Table 1 shows 
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the vehicle densities per km in the different 

driving scenarios.  

 

Table1: Traffic densities in different driving 

scenarios 

Scenarios Number of Vehicles per 

Kilometre 

Urban 1 0 

Urban 2 30 

Highway 50 

CBD 1 50 

CBD 2 60 

 

Table 2: driving road situations for different 

scenarios 

Scenarios Narrow 

roads 

Curve 

road 

Tight 

corner 

Urban 1 - - - 

Urban 2 X X - 

Highway - X - 

CBD1 X X X 

CBD 2 - X X 

 

Table3: Simulator parameters set for other vehicles 

to simulate bad driving behaviors  

Simulator parameters 

Stay on lane 

Sign observing 

Priority observing 

Safety time 

Speed limit risk 

Overtake risk 

 

Table 4: Weather-related condition for the driving 

scenarios. 

Scenarios Rain 

density 

(0-1) 

Foggy 

weather 

Night-

time 

driving 

Urban 1 - - - 

Urban 2 - - X 

Highway (0.2-1) X X 

CBD 1 (0.3-0.6) X - 

CBD 2 - - - 

 

3.2.2 Driving road situations 

 

Several driving road situations such as driving 

in narrow roads, curved roads and tight corners 

are applied to induce different stress levels in 

drivers. Table 2 presents the used driving road 

situations in each scenario. It should be noted 

the range of curve radius in the proposed 

scenarios are varied between 17m and 1200m. 

 

3.2.3 Other drivers’ behaviours. 

 

Other drivers’ behaviours such as changing 

lane, dangerous overtaking, travelling at speed 

greater than allocated signage, tailgating can 

induce different stress levels into the driver. In 

this study, we have set several parameters in 

the simulator, listed in Table 3, to simulate the 

mentioned behaviors into some other drivers. It 

should be noted that the reported behaviors are 

set for the Highway and CBD1 and CBD 2 

driving scenarios.  

 

3.2.4 Weather and visibility related conditions 

 

In this study, several weather-related conditions 

like rain, fog and driving at night are applied to 

the driving scenarios as stressor. Table 4 

presents the list of weather conditions in each 

driving scenario.  

 

3.3  Multimodal Fusion Architecture 

This section presents a temporal multimodal 

deep learning model architecture. The proposed 

model aims to fuse ECG signals, vehicle 

dynamics data and environmental data over 

time into a joint representation to capture the 

stress related information within and across 

modalities over time and improve driver stress 

level classification. The proposed model 

consists of four different steps: pre-processed 

input data, feature learning, fusion and 

classification (see Figure 2). 

In this study, the pre-processed input data are 

collected from ECG signals, vehicle dynamics 

data and environmental modalities. The raw 

ECG signals were used for this study. 
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Figure 2: The proposed framework of the multimodal fusion model based on a deep learning technique (CNN-

LSTM) to classify the stress level of drivers into three levels. The input of this system is the ECG signals, 

vehicle data (brake pedal, steering wheel, gas pedal) and contextual data (distance to next vehicle, lane width, 

number of lanes, time of the day, weather related conditions and visibility. The output of this model is the 

driver’s stress level, classified into low, medium or high stress. Each modality is fed into individual CNN to 

extract feature maps (Feature learning step). The output of the feature maps from the ECG signals, vehicle data 

and contextual data is concatenated to form the joint representation (fusion step). The joint representation is fed 

into a two-layer LSTM followed by a dense layer (classification step). The output of the dense layer from the 

modalities is combined to create a joint representation and then is fed into a two-layer dense followed by a 

Softmax layer for stress level classification. 

 

 

From the vehicle dynamics data, steering 

wheel, gas pedal, and brake pedal data are used 

in this study. From the contextual data, distance 

to next vehicle, lane width, number of lanes, 

time of the day, weather-related conditions data 

and visibility-related conditions data are used.  

To prepare the data, it is assumed that we are 

given five drives per subject as each subject 

drove in five different stressful situations. 

Every two minutes in each drive, the driver’s 

stress level is classified as low, medium or high 

stress and recorded.  To remove subject specific 

physiological signal baseline and life-style 

factors influencing it, a min-max normalisation 

is applied. The normalised ECG signals are 

passed to a Butterworth band-pass filter (5–15 

Hz) to reduce the noise from muscle noise and 

baseline wander. Then, the normalised and 

filtered ECG signals, vehicle dynamics data 

and contextual data are fed into the CNN 

architecture for feature learning. 

To prepare the data for the CNN architecture, 

the sliding window strategy was applied to each 

low level feature from each modality. Using 

sliding window strategy, the signals are 

segmented into a fixed window size and degree 

of overlap. The segmented windows are the 

new training data and will get the same labels 

as the original trials. 

After that, each new training data (segmented 

window at time t) from each modality is fed 

into the CNN model to learn features. In this 

step, the CNN architecture is applied to the 

segmented window (e.g. window  ) from the 

raw ECG signals as well as low level features 

from vehicle and contextual data to construct 

feature maps and learn hierarchical features. 

The CNN presented in this study is composed 

of two convolutional max-pooling blocks (see 
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Table 5.), each of which is constituted by a 

convolutional layer, an Exponential Linear Unit 

(ELU), a batch normalisation layer and a max 

pooling layer. Since in this study, all the used 

modalities/ low features from each modality are 

time-series, the 1D convolution layer was used.  

The convolution layer convolves the low-level 

features of each modality (window  ) or the 

previous layer’s output with the set of filters to 

be learned. 

It captures the temporal information using 

trainable filters with the fixed size. The second 

layer of the CNN architecture, the activation 

function, Exponential Linear Units (ELU), 

maps the output of previous layer. In the next 

layer, a batch normalisation layer normalises 

the value of different feature maps in the 

previous layer. Finally, the last layer, a max-

pooling layer, finds the maximum feature maps 

over a range of local neighbourhood. 

It should be noted that during the process of 

feature learning from each modality by the 

CNN architecture, both the current input data 

(window  ) and its history are considered. 

Specifically, at window     the recent per-

modality history (      ) is appended to the 

current window to obtain the current feature 

maps representation. The proposed number of 

filters, window size and strides in the CNN 

architecture are selected by trial and error to 

achieve high detection accuracy. 

In the fusion step, the generated feature maps 

from ECG signals, vehicle dynamics data and 

contextual data at time t are concatenated to 

create one vector feature map (joint 

representation) from all the modalities. The 

generated joint representation at time   is fed 

into the classification step, a two-layer LSTM 

network followed by a two-layer dense and a 

Softmax layer to model the overall multimodal 

feature representation. 

It should be noted that an LSTM network 

consists of hidden state or memory, which can 

help to store its previous hidden layers and 

learn the stress related information over time. 

Thus, the output of the       is computed 

using the current state as well as the previous 

hidden states (t-1), which can capture the 

temporal pattern of the previous joint 

representations as well. We should emphasise 

that this architecture not only tries to learn the 

patterns within each modality individually, but 

it also learns the patterns across modalities 

using the joint representations. This 

architecture is fully trained in an end-to-end 

manner and does not require any explicit 

feature extraction. 

4. RESULTS 

Extensive experiments were conducted to 

determine if the proposed multimodal fusion 

model (CNN-LSTM) can be used as an 

effective method for an accurate driver stress 

level detection model using the combination of 

ECG signals, vehicle dynamics data and 

contextual data. The performance of the 

proposed deep learning model is also compared 

with a handcrafted features approach (refer to 

Section 4.1 for details of the handcrafted 

feature approach). The ECG signals, vehicle 

data and contextual data were segmented into 

consecutive windows of a fixed size and degree 

of overlap. In this study, we evaluated the 

performance of the proposed temporal models 

using different window sizes. However, the 

degree of window overlap in this study is fixed, 

the raw physiological signals were segmented 

with 90% overlap.  

The performance of the multimodal fusion 

models (handcrafted features and deep learning 

model) are evaluated and compared with 

different window sizes (Section 4.3.1). 

Since the goal of this study is to build an 

accurate driver stress level detection model 

with the potential to be applied to real-time 

applications, the performance of the 

multimodal fusion models are evaluated on 

small window sizes. 

In order to train our models, learning batches of 

10 sequences were used. The early stopping on 

validation set is also applied.

 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

11 

 

 

Table 5: The CNN architecture 

CNN 

Convolutional Layer Filter= 20, 

Kernel size=(10, 1), Stride=2 

Exponential Linear Units (ELU) Alpha= 0.1 

Batch Normalisation + Dropout (0.15)  

Max-Pooling Pool-size= (2, 1), Stride=2 

Convolutional Layer Filter=20, 

Kernel size= (10, 1), Stride=2 

Exponential Linear Units(ELU) Alpha=0.1 

Batch Normalisation+ Dropout (0.15)  

Max-pooling Pool-size= (2, 1), Stride=2 

4.1 Handcrafted features approach for 

comparison with the proposed model 

To evaluate the performance of the proposed 

model based on a CNN-LSTM network and to 

present the effectiveness of this model, we 

provided handcrafted feature methods for 

comparison. This section presents the 

framework of driver stress level detection 

model based on feature extraction methods.  

The framework based on feature extraction 

from each modality (ECG, vehicle data and 

contextual data) contains three main steps: pre-

processing, feature extraction, and 

classification. 

In the first stage, a Butterworth band-pass filter 

(5–15 Hz) is applied to the ECG signals to 

reduce the noise from muscle noise and 

baseline wander. The two other modalities, 

vehicle data and contextual data are normalised 

with a zero mean and unit variance. 

To extract features from the ECG signal, Heart 

Rate Variability (HRV) parameter is used. This 

parameter is considered to be a low-level ECG 

feature. HRV is defined as the time fluctuations 

between sequences of successive heart beats. 

To measure HRV, first R-peaks are extracted 

from the ECG signal using the Pan-Tompkins 

algorithm (Pan & Tompkins, 1985), and then 

based on the extracted peaks, the HRV is 

measured. Afterwards, the most common time-

domain features from HRV are extracted. HRV 

time-domain features are influenced largely by 

momentary ANS activities; thus, HRV time-

domain analysis can be used to measure 

instantaneous driver stress responses (Lee et 

al., 2007). Statistical features such as mean and 

standard deviation are commonly used to detect 

drivers’ stress levels (Rastgoo et al., 2018). The 

mean of the first difference of the HRV data, 

average normal-to-normal (NN) and intervals, 

standard deviation of normal-to-normal 

intervals (SDNN), square root of the mean 

squared difference of successive normal-to-

normal intervals (RMSSD), and number of 

pairs of successive normal-to-normal intervals 

that differ by more than 50 ms (PNN50) are the 

most common HRV time-domain features 

extracted in relation to driver stress detection 

(Guo, Brennan, & Blythe, 2013; Healey & 

Picard, 2000; Katsis et al., 2008; Lanatà et al., 

2015; Wang, Lin, & Yang, 2013) . The list of 

extracted features in this study is tabulated in 

Table 6. 

Extracted features from vehicle dynamics data 

are mean of steering wheel, mean of gas pedal 

data, and mean of brake pedal data. These 

features shows the instantaneous body reactions 

to control the car. Therefore, we can use the 

short window sizes to capture their information 

related to stress. 

Generally, environmental features can be 

divided into four main categories: (1) weather-

related conditions, (2) visibility-related 

conditions, (3) driver environment interactions, 

and (4) driving routes data. In our previous 

work, the common environmental features 

extracted from these categories to detect driver 

stress level was reviewed (Rastgoo et al., 

2018). 
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The advanced driving simulator used in this study is able to collect a group of these features 

Table 6. Handcrafted features from ECG signals, vehicle dynamics data and environmental data 

 Handcrafted Features 

 

 

 

ECG features (HRV 

time-domain) 

mean 

Standard deviation 

Mean of the first difference of HRV 

average normal-to-normal (NN) and intervals 

standard deviation of normal-to-normal intervals (SDNN) 

square root of the mean squared difference of successive normal-to-normal 

intervals (RMSSD) 

number of pairs of successive normal-to-normal intervals that differ by more than 

50 ms (PNN50) 

 

Vehicle dynamics 

data 

Mean of steering wheel angle 

Mean of brake pedal data 

Mean of gas pedal data 

 

 

Environmental data 

distance to next vehicle 

lane width 

number of lanes 

time of the day 

weather info (sun/ low rain, medium rain, high rain, fog) 

 

 

such as distance to next vehicle, lane width, 

number of lanes, time of the day, weather info 

(sun/ low rain, medium rain, high rain) and fog 

(Lee et al., 2017; Lanatà et al., 2015, Rigas et 

al., 2012).  

In the next step the extracted features from each 

modality are concatenated to create one single 

vector of features which is fed into a classifier 

to classify driver stress into three levels. In this 

study, the LSTM network with two stacked 

cells is used to classify drivers’ stress levels. 

It should be noted that all the extracted features 

from the various modalities are shown to be 

effective in detecting driver stress levels, and 

these features are used to compare the proposed 

framework based on CNN-LSTM with other 

works in the literature.  

4.2  Experimental results 

4.2.1 Fusion of modalities and comparison 

with handcrafted features model 

In this section, we assess the performance of 

the proposed driver stress level detection model 

using a deep learning (CNN-LSTM) approach 

against the model using a handcrafted feature 

approach. The effectiveness of the models is 

evaluated based on different window sizes: 30 

seconds, 10 seconds, and 5 seconds. Since the 

goal of this study is to build an automatic stress 

classification model with the potential to be 

applied to real-time applications, small window 

sizes were selected.  

Table 7 presents the relative performance of the 

deep learning model and the handcrafted 

features model based on ECG signal, vehicle, 

and contextual data individually, and the fusion 

of the modalities using multimodal fusion 

models. The average accuracies of multimodal 

fusion models over 10 runs is calculated. 

Based on Table 7, the multimodal fusion model 

with the CNN-LSTM network using the fusion 

of modalities over different window sizes 

outperformed the same model with a 

handcrafted features approach. The 

performance of each modality using 

handcrafted features and CNN-LSTM is also 

presented in the table. The false positive for 

three modalities as well as fusion of them are 

also reported. Of the three modalities, vehicle 

dynamics data followed by ECG signals, over 

different window sizes, performed better than 

the contextual data. When the window size was 

reduced, the average accuracies of vehicle 

dynamics data and ECG signal decreased. 
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While their false positives with smaller window 

sizes is higher than bigger window sizes. The 

average accuracies of vehicle 

Table 7. The average performance (accuracy and false positive) of multimodal fusion models using CNN-

LSTM and handcrafted features methods with different window sizes. 

 

 

Modalities T1= 30sec T2= 10 sec T3= 5 sec 

Accuracy False 

Positive 

Accuracy False 

Positive 

Accuracy False 

Positive 

 

Handcrafted 

features 

ECG 74.3% 9.5% 73.8% 10.3% 70.4% 11.1% 

Vehicle dynamics data 78.1% 8.9% 77.4% 9.4% 72.5% 9.8% 

Environmental data 55.5% 16.5% 54.6% 14.4% 51.2% 15.5% 

Fusion 92.1% 4.19% 86.6% 13.7% 85.3% 14.1% 

Automatic 

features 

extracted by 

CNN 

ECG 81.4% 8.6% 79.5% 8.3% 76.5% 8.3% 

Vehicle dynamics data 77.2% 9.1% 76.8% 8.8% 70.7% 8.7% 

Environmental data 58.2% 15.2% 55.4% 11.4% 53.6% 12.5% 

Fusion 96.3% 7.5% 93.3% 8.2% 92.8% 9.1% 

 

 

dynamics data and ECG signals using CNN-

LSTM with a small window size (T3=5 sec) are 

still higher than the average accuracy of the 

handcrafted features model. The reported false 

positives using CNN-LSTM is better than using 

handcrafted features model.  

The results also show that the fusion of 

modalities over different window sizes 

outperformed a single modality. Over the 

fusion of modalities, the average accuracy and 

false positive of CNN-LSTM with a short 

window size is better than the model with the 

handcrafted features approach. 

The average accuracy and false positive for 

deep learning model confirm the outstanding 

performance over the handcrafted feature 

model for driver stress levels recognition model 

 

4.2.2 Confusion Matrices of Multimodal 

Fusion Model Based on CNN-LSTM and 

Handcrafted Features over Different 

Window Sizes 

 

In this section, the best performance achieved 

using the multimodal fusion models 

(handcrafted features and CNN-LSTM) for 

different window sizes is investigated (Figures 

3–5).  

From all the figures, we can generally observe 

that recognising a high stress level is more 

difficult than recognising low stress or medium 

stress. In fact, a high stress level is mostly 

misclassified as medium stress, due to the fact 

that the number of samples for high stress are 

less than for the other two levels of stress. 

Figure 3 shows the confusion matrices of driver 

stress level detection based on the CNN-LSTM 

network and handcrafted features with 30-

second window respectively. Based on the 

figure, recognising high stress level using both 

models are more difficult than other stress 

levels. Although the performance of both 

models in detecting driver stress levels with a 

30-second window is high, detecting high stress 

level using handcrafted features is more 

confusing than medium and low stress levels.  

Similarly, the performance of the CNN-LSTM 

network in detecting three stress levels with a 

10-second window is better than the 

handcrafted features model (Figure 4). It has 

been also shown that high stress is often 

confused with medium stress. It can be seen 

from figure 5 that as the window size 

decreased, the performance of the two 

multimodal fusion models also decreased.
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(a)                                      (b) 

Figure 3. The confusion matrix of the best model achieved using: (a) CNN-LSTM network, (b) handcrafted 

features, with a 30-second window. 

 

 

 
(a)                                                 (b) 

Figure 4. The confusion matrix of the best model achieved using: (a) handcrafted features, (b) CNN-LSTM 

network, with a 10-second window.  

 

 

 
   (a)          (b) 

Figure 5. The confusion matrix of the best model achieved using: (a) handcrafted features, (b) CNN-LSTM 

network, with a 5-second window size. 

 

 

Based on figure 5, the accuracy of detecting 

low and medium stress levels using CNN-

LSTM is higher than using the handcrafted 

features approach. The CNN-LSTM network 

can detect a high stress level better than the 

handcrafted features model. 

 

4.2.3 Comparison of the proposed 

framework with other works 

 

The final experiment compares the best 

achieved result (highest accuracy) from the 

multimodal fusion model using the CNN-

LSTM network against some other recent 

works with state-of-the-art performance. 

Experimental results are shown in Table 8, 

indicating the classification accuracies of 

different driver stress level detection methods. 

The comparison shows that most of the studies 

in the literature focused on the fusion of 

physiological modalities, which may not be 

practical for continuous stress monitoring of 

drivers and, therefore, adversely affect the 

acceptability of the system.  

These compared studies in the literature 

categorized driver’s stress into different stress 

classes.  
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Table 8. The comparison of the best performance achieved using the proposed model based on the CNN-LSTM 

network with other recent works. 

 

 

Based on the table, Healey and Picard (2000) 

categorized stress classes into four stress 

classes (low, medium, high and very high stress 

classes. Singh et.al (2013) proposed a model 

based on three stress classes (low, medium and 

high). Lanata et.al (2015) proposed three stress 

classes: normal (no-stress), stress level 1 (low 

and medium) and stress level 2 (high). Rigas 

et.al (2011) only focused on two stress classes, 

no stress versus stress. In our study, we focused 

on three stress classes, low, medium and high 

stress levels. It should be noted that high stress 

level in our study is equal to high and very high 

stress classes in Healey and Picard (2000).  

Although, Rigas et.al (2012) proposed a model 

to fuse physiological signals with other 

modalities like vehicle data and contextual 

data, the applied methods were used to detect 

only two stress classes (stress versus non-

stress) and the accuracy achieved was lower 

than that achieved using our model. Moreover, 

they utilised different physiological signals that 

may affect the acceptability of their system by 

drivers for real-time applications. In addition, 

most of these studies are not appropriate to 

rapidly detect driver stress, as they use long 

window sizes (longer than 5 seconds), whereas, 

we achieved state-of-the-art performance using 

a 5-second window. 

Although Lanatà et al. (2015) classified three 

stress levels (normal, stress levels 1 and stress 

level 2) of drivers using a handcrafted features 

model based on a 5-second window and 

achieved a high accuracy, the achieved 

performance is not as high as that of our 

proposed model using the CNN-LSTM 

network. 

In addition, the proposed model fused different 

physiological signals which is more obtrusive 

and invasive than our proposed model. In this 

study, we only fused ECG signals with vehicle 

dynamics data and contextual data, which can 

result in higher system acceptability compared 

to Lanatà et al. (2015). 

In comparison with other recent works, our 

proposed model has shown state-of-the-art 

performance in building an accurate driver 

stress level detection model. There are some 

advantages in using our proposed model based 

on the CNN-LSTM model. The first advantage 

is that the proposed model using ECG signals, 

vehicle dynamics data and contextual data is 

less invasive and obtrusive than many of the 

other recent models. Therefore, it can be used 

for real-time applications. In addition, we 
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showed that by using a small window size, the 

proposed multimodal model can achieve a more 

accurate result. Lastly, the use of the CNN-

LSTM network to build such a system, removes 

the need for expert knowledge to extract 

features, as required by many of the other 

recent models.  

 

4.3   CONCLUSION 

In this paper, we proposed an accurate driver 

stress level detection model using the 

multimodal fusion model based on deep 

learning techniques. Specifically, we used the 

CNN-LSTM network to automatically fuse 

ECG signals, vehicle dynamics data and 

contextual data to find a joint feature 

representation across multimodal data and 

enhance the detection performance. The 

performance of the proposed model with 

different window sizes was evaluated on our 

dataset collected from an advanced driving 

simulator. The results showed that using a 

multimodal fusion model based on the CNN-

LSTM network with a small window size using 

ECG signals, vehicle dynamics data and 

contextual data, increased the accuracy of 

drivers’ stress detection compared to the 

handcrafted features model. This is due to the 

fact that the multimodal fusion model based on 

deep learning (CNN-LSTM) is able to 

efficiently combine the complementary 

information across and within ECG signals, 

vehicle dynamics data and contextual data 

during the feature representation process. Also, 

the results showed that deep learning can be a 

promising approach for the study of driver’s 

stress classification. 
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