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ABSTRACT
In recent years, the neural stochastic differential equation (NSDE) has gained
attention in modeling stochastic representations, while NSDE brings a great success
in various types of applications. However, it typically loses the expressivity when
the data representation is manifold-valued. To overcome such an issue, we suggest a
principled way to express the stochastic representation with the Riemannian neural
SDE (RNSDE), which extends the conventional Euclidean NSDE. Empirical results
on the density estimation on manifolds show that the proposed method significantly
outperforms baseline methods.

1 INTRODUCTION

Recently, there has been a great success in modeling stochastic dynamical systems for complex data
representations, containing spatially high stochasticity. Especially, the stochastic differential equation
(SDE) was adopted by recent studies as a fundamental probabilistic model to express the transition
of stochastic states. For example, Li et al. (2020) suggested the neural SDE, which was the firstly
implemented neural network to train the stochastic dynamics and Song et al. (2020) adopted the
parameterized reverse-SDE (Anderson (1982)) to model the score-based generative models. Park
et al. (2022) introduced the controlled SDE combined with the stochastic optimal control-based
theoretical framework to model the time series. These works opened a new way to express the
time-series data by showing the power of stochastic representations induced by SDE models. Despite
the remarkable recent progress, the major interest in using SDE has been focused on the Euclidean
geometry (i.e., Rd). In other words, conventional approaches inevitably lose the expressivity when
the data representation us defined on other geometry such as Riemannian manifolds (i.e., M).

In this paper, we tackle the above concern by introducing the Riemannian neural SDE (RNSDE)
to model the stochastic dynamics on manifolds. The proposed RNSDE is the natural extension of
conventional Euclidean SDEs, which defines the intrinsic stochastic transition in the local sense and
fully recognizes the geometric structure. Thus, it can resolve expressivity problems of conventional
SDEs on a fundamental level. Specifically, our RNSDE is built upon the Eells-Elworthy-Malliavin
interpretation, where the stochastic trajectories are expressed under the frame bundle geometry.

Contribution. The main contribution of this work is to suggest a general framework for modeling
stochastic representations on Riemannian manifolds. Unlike prior works, our objective function
enables the proposed model to learn stochastic processes without requiring prior information on
target distributions, and thus applicable for high-dimensional and complex datasets. Moreover, by
handling Fokker-Planck Equations, our method can use the network outputs in a direct manner so
that its stochastic representation power is strengthened. Experimental results demonstrate that the
proposed framework outperforms conventional approaches on the density estimation.

2 RELATED WORK
Normalizing Flows on Riemannian Manifolds. MCNF Lou et al. (2020) and RODE Mathieu
& Nickel (2020) defined the ordinary differential equation (ODE) on manifolds and adopted the
continuous normalizing flows (i.e., RCNF) to express the transition of data representations. In their
methods, the stochastic transition was expressed as the ODE flow of log-density on manifolds and
directly calculated the geometric operations (e.g., divergence). In a similar context, diffeomorphic
ODE-based flows were adopted to Lie structures (i.e., SU(n)) by Katsman et al. (2021), which can
preserve the equivariance/invariance.

Riemannian Optimal Transport. Cohen* et al. (2021) directly parameterized the convex potential
map on Riemannian manifolds with a neural network, which can solve the optimal transport problem.
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Rozen et al. (2021) adopted the computationally tractable linear-type normalizing equation to express
the evolution of density according to time.

3 RIEMANNIAN NEURAL STOCHASTIC DIFFERENTIAL EQUATION

Notations. Let M be complete and connected n-dimensional Riemannian manifolds equipped with
the Riemannian metric expressed as the matrix form G ≜ [gij ]1≤i,j≤n. Similarly, we define the
inverse of the Riemannian metric (i.e., co-metric) as G−1 ≜ [gij ]. The Christoffel symbol with
respect to the metric g is denoted as [Γi

jk]1≤i,j,k≤d. The orthonormal frame bundle and the tangent
bundle are denoted as OM and TM, respectively. Please refer to Émery (2012); Ikeda & Watanabe
(2014); Lee & Lee (2003) for more details on Riemannian geometry and stochastic analysis.

Riemannian Neural SDE. Our major interest is to learn the parameterized stochastic process Xθ
t

with parameter θ, which is defined as a solution to the following Stratonovich SDE, Oksendal (1992):

dXθ
t =W (t,Xt; θ)dt︸ ︷︷ ︸

(A)

+

[∫
s∈T

T t
sW (s, ys; θ)ds

]
dt︸ ︷︷ ︸

(B)

+β(θ)π−1
(
Xθ

t

)
◦ dBt︸ ︷︷ ︸

(C)

, (1)

where Bt = [B1
t , · · · , Bn

t ] denotes the n-dimensional standard Wiener process on Rn. We call the
combination of three parameterized terms (i.e., (A), (B) and (C)) a Riemannian Neural Stochastic
Differential Equation (RNSDE). The detailed explanations are provided as follows:

(A) Neural Potential Field. In the first term, we call the parameterized vector field W (t,Xt; θ) ≜
wj(t,Xt; θ)∂

t
j : [0, T ]×M×Θ → TXt

M as the neural potential field, where the set of orthonormal
tangent vectors {∂tj}1≤j≤n ≜ { ∂

∂xj
|Xt

}1≤j≤n denotes the moving frames defined on the trajectories
of stochastic dynamics. This term defines the driving force of stochastic dynamics Xθ

t regarding the
inferred network decisions W (t,Xt; θ) on the current state (t,Xt).

(B) Self-regressive Potential Field. The second term, which is called a self-regressive potential
(of the kth order), is the main object that characterizes our model. The core idea of this term is to
accumulate the decisions of the neural potential field on the history of observed data {s, ys}s∈[t−k,t)

from s = [t− k] to s = t. Specifically, network decisions W (s, ys; θ) ∈ TXs
M on past observed

data at time s ∈ T ≜ [t− k, t) are translated to the tangent space of the current state by using parallel
transport T t

s : TXs
M → TXt

M, and the translated decisions are accumulated overall. Without loss
of generality, we denote this term as T (t; θ) in this paper.

(C) Stochastic Development. The last term, called stochastic development (Hsu (2002); Ikeda &
Watanabe (2014)) controls the diffusive behavior of the proposed SDE on manifolds. The function
π : OM → M is the canonical projection from frame bundle to model manifolds, and Ut ≜
π−1(Xθ

t ) ∈ OM is the horizontal lift of our stochastic dynamics Xθ
t ∈ M. The parameterized

scalar-valued function β : Θ → R+ controls the diffusivity of process Xθ
t . It is noteworthy that the

solution to (1) is called a Brownian motion on M, when W ≡ 0 and β ≡ 1
2 .

Local Representations. Although the RNSDE defined in (1) provides the rigorous stochastic
representation on manifolds, it is not directly applicable for implementation due to the abstract
formulations. Thus, for clarity, we provide the explicit formulation in local representations as follows:
Proposition 1. (Local Representations) Let Xt be a stochastic process represented as a local
coordinate Xt ≜ {xit(w)}1≤i≤n ⊂ M. Then, the proposed RNSDE is defined as follows:

Xθ
t = β(θ)

∫ t

0

√
gij(Xs)dB

j
s+∫ t

0

[
−β(θ)

2
gjk(Xt)Γ

i
jk(Xt) + wj(Xt; θ)∂

t
j +

∫
T
T t
s w

j(ys; θ)∂
s
jds

]
dt, (2)

The detailed derivation is provided in Appendix A.1. The intrinsic local coordinate-based represen-
tation in (2) only requires the metric tensor g and the Christoffel symbol {Γi

jk}1≤i,j,k,≤n for every
point x ∈ M, where the newly appearing terms (i.e., first and second) in (2) reveal the effect of
stochastic development. It transforms the Euclidean stochasticity induced by standard Brownian
motion Bt into Riemannian stochasticity on manifolds by considering the curvature effect (i.e., g,Γ).
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As the propagation of stochastic particles {Xt}0≤t≤T randomly changes the moving frame
{∂j(Xt)}1≤j≤d and its local coordinate system, we call the solution to (2), Xt, as the stochas-
tic local chart flow (SLCF). In this paper, we regard that the Riemannian manifolds M are embedded
compact sub-manifolds of the ambient space, M ⊆ RD for n ≤ D. In other terms, the coordinate
system of the diffusion processXt can be expressed in RD using the global coordinate as Yt ≜ ψ◦Xt

where ψ is the coordinate function.

4 LEARNING DENSITIES FROM SAMPLES

Learning Densities from Samples. The major drawback of prior works is that full information
on target probability densities is required. For example, the conventional RCNF optimizes log-
likelihood (or KL-divergence) between source and target distributions, i.e.,minθ E[log pθ − log pν ].
Unfortunately, this formulation may cause problems in high-dimensional and complex datasets, as
one needs to priorly access the accurate estimation of the data density pν (e.g., KDE). In contrast, our
method utilizes only the set of observed particles {yt} ∼ νt sampled from the unknown probability
measure νt. In other words, we assume that no prior information on target distributions is given.

Objective Function. From the N -number of observed particles {ylt}1≤l≤N at time t, we define the
empirical target measure as νt = 1

N

∑N
l δyl

t
to approximate. Then, the source probability measure is

defined as the law of solution to the proposed RNSDE: µθ
t ≜ P(Xθ

t ∈ ·) ∼ Xθ
t ∈ M. Note that the

source measure µθ
t |{ys}t−k≤s<t is conditioned by the set of conditional observations {ys}t−k≤s<t

encoded in the self-regressive potential field, i.e., (1)-(B). Regarding the definition of µθ
t and ν, our

objective function is posed to minimize the distributional discrepancy (i.e., Wasserstein distance)
between source and target measures:

min
θ

W2

(
µθ
t |{ys}t−k≤s<t, νt

)
. (3)

Specifically, our objective function is posed to minimize the 2-Wasserstein distance at time t. Then,
the problem is accurately calculating the Wasserstein distance by relating the probabilistic structure
of RNSDE. To do so, we are especially interested in the Markovian property:

Markov Diffusive Kantorovich Dual. By the independent increments of Bt, one can show that
the proposed RNSDE preserves the Markov property. Let P θ

t f ≜ E[f(Xθ
t )|X0] be a Markov semi-

group of Xθ
t . Then, by duality, one can define the probability measure called dual semi-group P θ,∗

t
satisfying the equality, Ex∼µ0

[P θ
t f(x)] = Ex′∼P θ,∗

t µ0
[f(x′)], which identifies source probability

measure as µθ
t ≜ P θ,∗

t . This theoretical interpretation has been proposed by Park et al. (2021) to
express the temporal path of probability measure for the Markov process. Inspired by their work, we
define the dual Kantorovich formulation with the dual semi-group to define the Wasserstein distance:
Definition 1. (Markov Diffusive Kantorovich Dual) Let us define two arbitrary functions A,B ∈
C2(M)/R. Then, the diffusive Kantorovich dual is defined as follows:

J ϵ([A,B], θ) =

∫
A(x)dP θ,∗

t (x) +

∫
B(y)dνt(y)− ϵ

∫
e

A(x)+B(y)−d2(x,y)
ϵ dP θ,∗

t ⊗ νt. (4)

It is well-known that the fixed point [A⋆, B⋆] of Sinkhorn-iteration started at [A,B] uniquely deter-
mines the equality, limϵ→0 J ϵ([A⋆, B⋆]; θ) = W2(µ

θ
t , νt). Using this relation, our objective function

in (3) can be reformulated as minθ J∆ϵ([A⋆, B⋆]; θ) with pre-determined parameter ϵ ≜ ∆ϵ ≈ 0.
To solve this new minimization problem, we apply the gradient descent as follows:

θm+1 = θm − τmE
[
∂θβ(θ)

∫ t

0

gjk∂j,kA
⋆(Xθ

s ) +

∫ t

0

∂θβ(θ)g
jkΓi

jk∂iA
∗(Xθ

s )

− ∂θw
j(·; θ)∂jA⋆(Xθ

s )− ∂θ
∑
s∈T

T t
s w

j(ys; θ)∂
s
jA

⋆(Xθ
s )ds

]
, (5)

where τm is the learning rate. Please note that the expectation is taken to measure P. Detailed
derivations are provided in Appendix A.3.

4.1 COMPARISON TO EXISTING METHODS

In conventional Riemannian normalizing flows, the model density pθ is transited by following the
propagation rule: ∂t log pθ(zt) = −divM[Vθ(zt, t)], where zt denotes the ODE flow on the manifold,
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Figure 1: MCNF, Lou et al. (2020) Figure 2: RNSDE (ours)

and Vθ is the parameterized vector field by the neural network. For the numerical simulation of the
equation, they require the computation of Hessian trace. In our case, the model density pt is defined
as the solution to the second-order PDE called a parameterized Fokker-Planck Equation, (pFPE):

pFPE: ∂tp(t, x) = β(θ)∆Mp(t, x)− divM[p(t, x)Vθ(t, x)], (6)

where Vθ(t, ·) ≜W (t, ·; θ)+T (t; θ). In contrast to the conventional approach, the proposed RNSDE
does not need to simulate the pFPE directly. As shown in (4), we indirectly access the measure µθ

t
by calculating the Markovian semi-group. Thus, our method can avoid the computational burden to
calculate the geometric operations for normalizing flows (e.g., divergence, log-determinant), while
preserving the representational power. Katsman et al. (2021) induce the vector field V (t, ·) ≜
∇ log(pν(t, ·)/pθ(t, ·)) ∈ TM, which also solves the pFPE. However, the representational power
can be limited as the network outputs (i.e., Neural ODE) are implicitly utilized to calculate model
density pθ. In contrast, our method directly utilizes the network outputs (e.g., W, T ∈ TM) to model
the vector field V in (6), which enables rich stochastic representations.

5 EXPERIMENTS

In the experiment, we evaluated the performance for estimating densities on the 2-sphere, including
three different densities: 8-shapes, Two moons, and Spiral. Note that the complexity of these densi-
ties is higher compared to those of previous works (e.g., a mixture of von Mises), and the density
estimation is more challenging.

To define the target densities for baseline models, including MCNF (Lou et al. (2020)) and EMSRE
(Rezende et al. (2020)), we utilized samples from target densities as the anchor points of Gaussian
radial functions. After defining the approximated target densities obtained from the Gaussian
KDE, both models were trained to minimize the KL divergence. For our model, we initialized the
start point of stochastic trajectories as Xθ

0 ∼ µ0 ≜ ψ#N (0, In), where N denotes the Gaussian
distribution and ψ is coordinate function. For self-regressive behavior, the conditional observations
are defined as ys ∼ ψ#N (E[Xθ

s ], In). As a consequence, the information of past trajectories Xθ
{s<t}

is consecutively encoded in the current state. For the RNODE, which is a deterministic version of our
RNSDE, we utilized only the potential field term in (1)-(A), where other terms were set to 0.

Table 1: Performance Comparison of Density Estimation. Each model was evaluated in terms of
the 2-Wasserstein distance W2 (×10−2).

Methods MCNF EMSRE (NT = 24,K = 5) RNODE RNSDE

8-shapes 11.258 9.826 8.007 6.052
Two moons 14.335 9.110 7.684 5.871

Spiral 15.153 10.129 9.316 7.294

Experimental Results. As shown in Table 1, the proposed RNSDE significantly outperforms other
baselines by a large margin. This highlights the representation power of the proposed RNSDEs.
The RNODE shows an inferior outcome compared to the RNSDE, which shows the effectiveness
of providing additional information (i.e., conditional observations in (1)-(B) and (C)). Figs 1 and 2
display samples from learned densities (i.e., black dots) and target densities (i.e., red dots) for the
baseline and our model, respectively. While the MCNF fails to approximate the target densities due
to the complex geometric shapes, our method can fit the target densities accurately.

6 CONCLUSION

In this paper, we suggested a principled way to express the stochastic representations on manifolds.
Specifically, we introduced the Riemannian neural SDE with stochastic development defined on
an orthonormal frame bundle. In future work, we plan to theoretically extend the current work by
analyzing the stability of Sinkhorn-iteration and show the learnability of the RNSDE.
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A APPENDIX

A.1 LOCAL EXPRESSION OF STOCHASTIC DEVELOPMENT

In the orthonormal frame bundle OM, the local coordinate is defined as Ut = (Xt, E
k
j ) ∈ OM,

where the tangent of frame bundle can be decomposed as direct sum of two subspaces: TOM =
V OM⊕HOM.

dXi,θ
t =

d∑
j

Ei
j(Ut) ◦ dBj

t + Vθ(Xt)dt,

dEi
j(t) = −Γi

klE
l
j(t) ◦ dXk

t ,

(7)

where Vθ(t, ·) ≜W (t, ·; θ) + T (t; θ). In full description, the Stratonovich SDE in the orthonormal
frame bundle is written as the semi-martingale:

dUt = Hi(Ut) ◦ dBi
t︸ ︷︷ ︸

Local martingale

+ V̂θ(Ut)dt︸ ︷︷ ︸
Adapted process

, (8)

where V̂θ is a horizontal lift of vector field Vθ. By applying Itó’s lemma to the SDE in (8) with the
function f = R ◦ π for arbitrary R : M → R, one can obtain the following representation of SDE.

f(Ut) = f(U0) +

∫ T

0

Hif(Ut) ◦ dBi
t +

∫ T

0

V̂θf(Ut)dt. (9)

In the local coordinate presentation, we can written (9) as follows:

dR(Xt) = HiR(Xt) ◦ dBi
t + V (Xt; θ)R(Xt)dt

= HiR(Xt)dB
i
t +

1

2
d[HiR,B]t + Vθ

t

= R(X0) +Mt +
1

2
Nt + Vθ

t .

(10)

As the lifted function f = R ◦ π uniquely determines the orthonormal basis of tangent space
uei ∈ TM by the property of the fundamental horizontal vector field Hi (i.e., there exists a unique
relation π⋆Hi(Ut) = Utei), we can express Hif(Ut) = Utei. This fact leads the second equality in
the following formulation:

Mt =
∑
i

Hif(Ut)dW
i
t =

∑
i

(df)Ut [Hi(Ut)]dW
i
t . (11)

To understand the above relation precisely, Mt can be expressed as local coordinate. For this, we
denote the basis of horizontal vector space HOM as {∂j ≜ ∂

∂xj
, ∂̄km ≜ ∂

∂ekm
; 1 ≤ j, k,m ≤ d}.

In this case, the horizontal curve Ut in orthonormal frame bundle OM can be represented in local
coordinates, Ut = [Xi

t , e
i
j(t)] as follows:

Hi(Ut)[f ] ≜ Hif(Ut) = (df)Ut [Hi(Ut)]

= eji∂jf(Ut)− ejie
l
mΓk

jl(Xt)∂̄
k
mf(Ut)

= eji∂jR ◦ π([Xi
t , e

i
j(t)])

= (eji∂j)Xt
R(Xi

t) = (Utei)Xt
R(Xi

t)

= T (Xi
t)R(X

i
t),

(12)

where Hi(Ut) ≜ eji∂j − ejie
l
mΓk

jl(Xt)∂̄
k
m is the fundamental horizontal vector field. The third

equality holds as ∂̄km ◦ f([Xi
t , e

i
j(t)]) = ∂̄kmR ◦ π([Xi

t , e
i
j(t)]) = ∂̄kmR(Xt) = 0. In the last equality,

we define the vector field T ∈ TM as uei = eji∂j ≜ T (Xt). To estimate the vector field T (Xt), we
need to find out the explicit numeric of the orthogonal matrix eji by solving the following equation:

(Uei)|Xt = eji∂j |Xt . (13)

vi
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To solve the equation, we take the Riemannian inner product between Uel and Uem, as follows:

⟨Uel, Uem⟩g(Xt) = ⟨eil∂i, ejm∂j⟩g(Xt) = eil⟨∂i, ∂j⟩g(Xt)e
j
m

= eilgij(Xt)e
j
m = δij ,

(14)

where we denote ⟨X,Y ⟩g as the inner product between vector fields X,Y ∈ TM and δlm is the
coordinate delta. Using the relation in (14), the following identity can be easily obtained:∑

k

eike
j
k = gij . (15)

One may express the identity in (15) as the matrix form, as follows:

ETE = G−1, (16)

where we denote E = {eik}, G−1 = gij . To obtain the explicit form of matrix E, we apply the
Cholesky decomposition to the co-metric matrix. (i.e., E = Ch ◦ [G−1]). Finally, the derivation
form of horizontal vector field to f , Hif(Ut) can be written in local coordinate as follows:

Hif(Ut) = (Utei)|Xt
R(Xi

t) = Ch ◦ [G−1(Xt)]
i∂iR(X

i
t). (17)

As the metric matrix is semi-definite positive in our case, the following equality holds by the
elementary algebraic property:

Ch ◦G−1 = G− 1
2 . (18)

Finally, the local martingale term Mt is written in local coordinate as follows:

Mt =
∑
i

G(Xt)
− 1

2 ∂iR(Xt)dW
i
t . (19)

Let us calculate the quadratic variation of the process Mt.

d [M,M]t =

[∑
i

√
g−1
ii ∂iR(Xt)

]2

dt, (20)

where [B,B]t = dt. Thus, Mt is the local martingale.

Nt = [HiR,B]t =

∫
HjHif(Ut)d

[
Bj , Bi

]
t

=

∫ ∑
i

H2
i f(Ut)dt =

∫
∆OMf(Ut) =

∫
∆MR(Xt),

(21)

where ∆OM =
∑

iH
2
i denotes the Bochner’s horizontal Laplacian operator. The last equality is

known as the Bochner’s Laplacian identity. The last term Vθ
t = V (Xt; θ)R(Xt) corresponds to the

anti-development of vector field V̂θ. By collecting the defined stochastic representations, M,N, and
V, the local expressions suggested in (2) is derived.

A.2 LOCAL COORDINATE SYSTEM

Among the various definitions of the local chart ψ, we can select the following two types of local
coordinate system:

1) Parameterization. Let (ϑ, φ) be a local coordinate of the 2-sphere. Then, the global expression is
parameterized with spherical coordinate in the following form:

ψ(ϑ, φ) = [cosφ sinϑ, sinφ sinϑ, cosϑ] ∈ R3. (22)

2) Normal Coordinate. While this coordinate system induces the vanishing metric tensor and the
Christoffel symbol at Xt (i.e., g|Xt

,Γ|Xt
= 0), the diffusion process Xt in the ambient coordinate

system on Rk is expressed as the following form:

dIYt = dI(ψ ◦Xt) = expXt

(
∂jdB

j
t + wj(Xt; θ)∂jdt+

∫
T
T t
s w

j(ys; θ)∂
s
jds

)
. (23)

In the literature, the deterministic version of the proposed differential equation in (23) is known as
the exponential-map flows, Rezende et al. (2020).
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A.3 MARKOV DIFFUSIVE KANTOROVICH DUAL FORMULATION

In this section, we introduce the intuition behind the gradient descent suggested in (5). The proposi-
tions introduced in this section can be found in Berman (2020) and Vialard (2019).

For each function A,B ∈ C2(M)/R, we define two functional operators on C2(M)/R, as follows:

Hϵ
µt

: C(M) → C(M), Hϵ
µt
[A](y) = ϵ log

∫
e−d2(x,y)/ϵ−A(x)/ϵµt(dx), (24)

Hϵ
ν : C(M) → C(M), Hϵ

ν [B](x) = ϵ log

∫
e−d2(x,y)/ϵ−B(y)/ϵνt(dy). (25)

Then, the composition of two operators (i.e.,Hϵ
µt
,Hϵ

ν) is called a log-Sinkhorn iteration S ≜
Hϵ

µt
◦ Hϵ

ν . Let us define Al is the transformed shape of A after l-th iteration: Al = Sl(A) =

S ◦ S · · · ◦ S︸ ︷︷ ︸
l time

(A). Let us define the functional F(Al) : C
2(M)/R → R, as follows:

F(Al) =

∫
Sl ◦A(x)dµθ

t (x) +

∫
Hϵ

µt
[Sl ◦A](y)dνt(y). (26)

Then, the log-Sinkhorn iteration uniquely minimizes the functional F by the following proposition.
Proposition 2. The log-Sinkhorn iteration S has a fixed point Al→∞ in C2(M)/R. This fixed point
is determined up to additive constant, and minimize the functional F uniformly:

F(S ◦Al) ≜ F(Al+1) ≤ F(Al). (27)

Let us assume that, for the large enough l > L with small enough ϵ ≈ 0, the log-Sinkhorn iteration is
converged S ◦Al = Al, and the functional F is minimized. Then, the function Al∨L is approximated
to the d2-transformation (Villani (2008)) of the function Bm∨M .

[Al∨L]
c ≈

[
χsupp(µt) +Bl∨L

]c
, (28)

where χV (x) = 0, if x ∈ V , and χV (x) = ∞ if x /∈ V for the compact subset V ⊂ M, and [f ]c

denotes the d2-transformation of f . By the Kantorovich duality theorem, this theoretical characteristic
of log-Sinkhorn iteration induces the optimal transport between µt and νt.

Theorem 1. (Unique fixed-point of S and Optimal transport) Assume that (µ(ϵ)
t , ν

(ϵ)
t ) → (µt, νt)

in P(M)-weak sense. If A is the fixed point of the log-Sinkhorn operator S on C2(M)/R, then B
converges uniformly to a d2-convex function such that there exists a unique and optimal transport
map Φ satisfying:

Φ(y) = expy(∇gB(y)), Φ#ν = µt, (29)
where exp and ∇g are Riemannian exponential and gradient, respectively.

In short, the proposed iteration approximates the d2-convex function B ≈ Ac and solves the optimal
transport problem, i.e., 2-Wasserstein distance (McCann (2001)).

Parameterized Generator. Our interest is to investigate the stochastic and geometric effect on
evaluating the functional F regarding the probabilistic property of Xθ

t . To do so, we first define the
second-order partial differential operator called infinitesimal generator as follows:

Lθf(x) ≜ β(θ)∆Mf(x)− (Wθ + Tθ)f(x), x ∈ M, f ∈ C2(M), (30)

where ∆M ≜ divM ◦ ∇M is the Laplace-Beltrami operator on M. Note that, due to the time-
dependent behavior, the proposed generator induces the time-inhomogeneous Markov process.
Lemma 1. The solution of the proposed RNSDE, Xθ

t , is the Markov process for any θ ∈ Θ.

As the proposed process Xθ
t is the Markov diffusion process regarding the definition of generator

in (30), one can apply the geometric version of Itó’s lemma (Wang (2014)) to obtain the following
equality:

At
m(Xθ

t ; θ) = Am(X0) +

∫ t

0

LθAm(Xθ
s )ds+

β(θ)

2

∫ t

0

⟨U−1
s ∇gAm(Xs), dBs⟩, (31)
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where U−1
s : TXθ

s
M → Rd is the inverse of frame Us at Xs. Note that the notation for Am is

rewritten in LHS of (31), Aθ ∈ C(M,R)×Θ to emphasize the parameterized generator Lθ in RHS.

F(At
m(·, θ)) =

∫
At

m(Xθ
t , θ)dµt︸ ︷︷ ︸

Parameter Activated

+

∫
Hϵ

µ
θ0
t

[Am](y)dν(y)︸ ︷︷ ︸
Parameter Frozen

= Ex0∼p0
E[At

m(Xθ
t , θ)|X0 = x] +

∫
Hϵ

µ
θ0
t

[Am](y)dν(y)

= Ex0∼p0
E
[
Am(x) +

∫ t

0

LθAm(Xθ
s )ds|X0 = x

]
+

∫
Hϵ

µ
θ0
t

[Am](y)dν(y)

= Ex0∼p0E
[
Am(x) + β(θ)

∫ t

0

∆MAm − (Wθ + Tθ)Amds|X0 = x

]
+

∫
Hϵ

µ
θ0
t

[Am](y)dν(y).

(32)

Notice. In the first equality, the parameter in the second term
∫
Hϵ

µ
θ0
t

[Am](y)dν(y) is considered as

fixed θ = θ0 during the update. This trick makes us to avoid calculating ∂θ
∫
Hϵ

µ
θ0
t

[Am](y)dν(y),

which leads unstable results.

Gradient flow (descent) of functional F with respect to Parameter θ. In dual formulation, the
gradient of functional F can be written as follows:

∂θF(At
m(·, θ)) = ∂θELθA = E∂θβ(θ)A− E∂θWθA− E∂θTθA. (33)

In local coordinate, the gradient with respect to parameter θ is written as follows:

∂θF(At(X
θ
t ; θ))

= E

[
∂θβ(θ)

∫ t

0

gjk∂j,kA(X
θ
s )ds− ∂θw

j(·; θ)∂jA(Xθ
s )ds− ∂θ

∑
s∈T

T t
s w

j(ys; θ)∂
s
jA(X

θ
s )ds

]
,

(34)

where A is the fixed point of log-Sinkhorn iteration. Finally, the gradient flow of θ to minimize the
functional F is defined in the following form:

dθ(s)0≤s<∞ = −τ∂θF(At(X
θ
t ; θ(s))). (35)

The proposed gradient descent in (5) is temporal discretized version of (35).

A.4 GEOMETRIC CALCULATIONS

In this section, we provide the detailed geometric calculation on the 2-Sphere, S2.

Riemannian Metric Tensor, Christoffel Symbol. The following calculation is conducted upon the
spherical coordinate system defined in (22). Then, the Riemannian metric and Christoffel symbol is
calculated as follows:

gij =

(
1 0
0 sin2 ϑ

)
, Γi

jk =

[(
0 0
0 − sinϑ cosϑ

)
,

(
0 cotϑ

cotϑ 0

)]
, (36)

where the Christoffel symbol is defined as Γi
jk = 1

2g
ke (∂jgei + ∂igej − ∂egij) and ∂i denotes the

(spatial) partial derivative with respect to the i-th component.

Parallel Transport, Exponential Map. Let U be a tangent vector on TXs
M at time s, and let Xt be

a another point at time t. Then, the parallel transport of tangent vector U from TXs
M to TXt

M is
defined as follows:

T t
s (U) = U −Tr[(Xt)

TU ]Xt. (37)
Note that the stochastic process Xs is recognize as global representations in the evaluation. For the
Riemannian exponential map, we define the following normalized version:

ExpXt
(U) = cos(∥U∥)Xt +

sin ∥U∥
∥U∥

U. (38)
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