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Abstract

The goal of unsupervised feature selection is to
identify a feature subset based on the intrinsic char-
acteristics of a given dataset without user-guided
information such as class variables. To achieve this,
score functions based on information measures
can be used to identify essential features. The ma-
jor research direction of conventional information-
theoretic unsupervised feature selection is to min-
imize the entropy of the final feature subset. Al-
though the opposite way, i.e., maximization of the
joint entropy, can also lead to novel insights, stud-
ies in this direction are rare. For example, in the
field of information retrieval, selected features that
maximize the joint entropy of a feature subset can
be effective discriminators for reaching the tar-
get tuple in the database. Thus, in this work, we
first demonstrate how two feature subsets, each ob-
tained by minimizing/maximizing the joint entropy,
respectively, are different based on a toy dataset.
By comparing these two feature subsets, we show
that the maximization of the joint entropy enhances
the pattern discrimination power of the feature sub-
set. Then, we derive a score function by remedying
joint entropy calculation; high-dimensional joint
entropy calculation is circumvented by using the
low-order approximation. The experimental results
on 30 public datasets indicate that the proposed
method yields superior performance in terms of
pattern discrimination power-related measures.

1 INTRODUCTION

Recent advancements in storage technology have led to ex-
ponential growth of data, such as the web ecosystem [Brick-
ley et al., 2019]. This proliferation of data poses significant
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challenges in distinguishing meaningful patterns within the
vast complexity and volume of information [Puerto-Santana
et al., 2023]. In particular, when the number of features
becomes excessively large, patterns in the dataset can lose
their discriminative power since the similarity among all
patterns becomes similar, making subsequent analysis un-
reliable [Watanabe, 1969]. In such contexts, Unsupervised
Feature Selection (UFS) emerges as an effective approach,
offering a method to select core features from the original
dataset.

The goal of UFS is to reduce the number of features needed
for data representation while maintaining the essential in-
formation [Li et al., 2012, Shang et al., 2022, Karami et al.,
2023, Feng et al., 2016, Wang et al., 2015]. Because there
is no user-guided information, such as class variables, UFS
methods should identify a feature subset based on the intrin-
sic characteristics of the dataset. By eliminating unnecessary
features, the high dimensionality of the dataset can be reme-
died, and hence novel patterns [Wang et al., 2023] in the
dataset can easily be identified. Regarding this, informa-
tion entropy is known as a popular tool for measuring the
information content of a variable set.

Conventional studies of information-theoretic UFS predom-
inantly focus on measuring the relevancy or redundancy
of features in the original dataset and selecting essential
features [Hu et al., 2022, Wang et al., 2022]. In this frame-
work, the algorithms are often designed to minimize the
entropy of feature pairs in candidate feature subsets1, which
is a major research direction of current UFS studies [Zhu
et al., 2023, Zhang et al., 2023]. By comparison, the study
of maximizing the entropy of feature subsets is pretty rare,
even though this strategy can also lead to novel insights
where the discrimination power of patterns is important. To
achieve this, we can consider a UFS process that maximizes
the information content or the pattern discrimination power

1It should be noted that, in the information theory, the min-
imization of joint entropy of feature pairs is equivalent to the
maximization of mutual information of feature pairs.
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of selected feature subset for the given dataset, which can
be viewed as the opposite direction of conventional studies.

In this work, we propose an information-theoretic UFS
method that identifies a compact yet effective feature subset
by maximizing entropy. First, we will demonstrate how two
feature subsets, each obtained by minimizing/maximizing
the joint entropy of features to be selected, respectively, are
different based on a simple toy dataset. Our example shows
that the maximization of joint entropy leads to the enhance-
ment of the pattern discrimination power for given dataset;
all the patterns in the datasets can be discriminable with
a minimal number of features. Next, we derive our score
function for information-theoretic UFS based on the joint
entropy maximization. Unfortunately, it is well-known that
the estimation of high-dimensional joint entropy is demand-
ing in practice due to a limited number of patterns [Seo et al.,
2019, Lee and Kim, 2013]. As a possible solution, we rem-
edy the computation of high-dimensional joint entropy from
a large number of features by decomposing it into the sum of
low-dimensional joint entropy terms instead of introducing
heuristic approaches [Yuan et al., 2021b,a]. Finally, we vali-
dated the performance of the proposed UFS method using
30 public datasets and confirmed its superiority in terms of
pattern discrimination power-related measures. The main
contributions of this work are summarized as follows:

• An information-theoretic UFS method is introduced,
which maximizes entropy to identify an effective fea-
ture subset, thereby significantly enhancing pattern
discrimination power within datasets.

• A comparative analysis demonstrates our approach us-
ing a toy dataset, illustrating the differences between
feature subsets obtained through entropy minimiza-
tion and maximization, and highlighting the enhanced
pattern discrimination power achieved with entropy
maximization.

• To tackle the computational challenge of high-
dimensional joint entropy, we introduce a novel score
function for UFS based on joint entropy decomposi-
tion.

• The efficacy of the proposed method is validated
through extensive testing on 30 public datasets, which
confirms its superiority in improving pattern discrimi-
nation power over existing UFS methods.

2 RELATED WORK

The primary aim of UFS is to reduce the dimensionality of
data while preserving the inherent structure useful for subse-
quent tasks. These UFS methods can be roughly categorized
according to their strategy for FS as filter, wrapper, and
hybrid methods [Solorio-Fernández et al., 2020]. Among
them, the filter methods that do not assume a fixed learning

algorithm can be further divided into two groups: univari-
ate and multivariate approaches. Typically, the multivariate
unsupervised feature filters yield better performance than
the univariate feature filters because the multivariate ap-
proach is able to consider the relation among features to be
selected. In this work, we focus on the multivariate feature
filter approach.

A majority of UFS methods are concentrated on preserving
local structures and identifying latent labels of the given
dataset, relying on similarity among data patterns. In this
regard, He et al. [2006] introduced the Laplacian score, a
method that ranks features based on how well they preserve
the local structure of data. Similarly, Cai et al. [2010] pro-
posed a multi-cluster FS technique designed to maintain the
multi-cluster characteristics of the data. Other works tried to
incorporate additional information for better identification
of local structures. For instance, Yang et al. [2011] suggested
an unsupervised discriminative FS method that integrates
both discriminative information and intrinsic data structure
using an l2,1-norm. Li et al. [2012] devised a UFS algorithm
with a non-negative constraint, utilizing non-negative matrix
factorization to construct the projection matrix for FS. Zhu
et al. [2023] leveraged an l2,0-norm constraint to perform
group UFS. Lastly, Villa et al. [2021] proposed a radial basis
kernel (U2) to manage non-linearity within the conventional
UFS framework of l2,1-norm regularization.

In another group of studies, the UFS was embedded into a
subsequent unsupervised learner, such as the clustering al-
gorithm. Wang et al. [2015] combined clustering algorithms
with a UFS process in their embedded UFS method. Miao
et al. [2022] also presented an embedded technique based
on graph regularization, which is capable of preserving the
local reconstruction relationships among neighboring data
points. Shang et al. [2022] proposed a UFS approach that uti-
lizes non-negative spectral feature learning with an adaptive
rank constraint. This adaptive constraint enables the algo-
rithm to update the local structure more accurately during
the UFS process. Zhang et al. [2020] incorporated an adap-
tive graph learning constraint to integrate a similarity matrix
into the existing UFS framework. Recently, Karami et al.
[2023] introduced a variance-covariance distance (VCSD) to
tackle both dimensionality reduction and subspace learning.

Numerous UFS methods have been developed to account
for the information within the data. Faivishevsky and Gold-
berger [2012] introduced a UFS method that estimates mu-
tual information (MI) between features. Instead of rely-
ing on a parametric model for this calculation, their ap-
proach uses statistical dependencies between features. Yuan
et al. [2021a] developed a UFS method grounded in fuzzy
rough set theory for handling mixed data. Specifically, their
method constructs a fuzzy information system from the orig-
inal data and selects features based on a fuzzy dependency
function, thereby maximizing feature relevance. Another
notable extension is Fuzzy MI (FMI), which reformulates
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Table 1: A toy dataset composed of six patterns and four
categorical features (f1, f2, f3, and f4), and two selected
feature subsets guided by minimizing (min) and maximiz-
ing (max) joint entropy, respectively.

Original Features Entropy-based UFS
Pattern min max

f1 f2 f3 f4 f1 f2 f3 f4

p1 A A A A A A A A
p2 B A B A B A B A
p3 A B C A A B C A
p4 A B A B A B A B
p5 A B B B A B B B
p6 A B C B A B C B

MI under the fuzzy theory [Yuan et al., 2021b]. However,
these methods often entail a high computational cost for
calculating MI between features and additionally require the
tuning of hyperparameters. Feng et al. [2016] proposed an
efficient UFS method for hyperspectral image datasets by
employing heuristic high-dimensional MI estimation. Simi-
larly, Lim and Kim [2021] incorporated pairwise MI into the
spectral learning framework. A common drawback of those
approaches is that the analysis of the final feature subset
may not be theoretically supported because the score func-
tion is devised heuristically. In addition, they are unsuitable
for maximizing the pattern discrimination power of data,
which is the primary focus of this work.

3 PROPOSED METHOD

3.1 MOTIVATION

Conventional information-theoretic UFS methods often con-
centrate on selecting features that decrease the dissimilar-
ity among patterns, thereby enhancing the performance
of subsequent learners, such as the clustering algorithm.
In this context, the objective function can be designed
to minimize the joint entropy of the final feature subset
S, which can be represented as argminS H(S) where
H(S) = −

∑
P (S) logP (S). In contrast, we may search

for a feature subset by optimizing argmaxS H(S).

To demonstrate how the two objective functions lead to
different final feature subsets, we created a toy dataset con-
sisting of six patterns and four categorical features (f1, f2,
f3, and f4) as shown in Table 1. The toy dataset shows that
none of a single feature can distinguish all the patterns; for
example, patterns p1, p3, p4, p5 and p6 are indiscriminable
in the viewpoint of f1 because they are assigned to the same
category, A. Suppose that we want to identify the optimal
feature subset where |S| = 2 that minimizes H(S). This
problem can be solved by instantiating all the feature pairs,
measuring the joint entropy values, and then choosing a

feature subset that yields a minimal H(S) value.

The second rightmost column of Table 1, namely, min,
shows the final feature subset of this case where f1 and
f2 are selected, with a joint entropy of 1.252. In this case,
there are three groups {p1} = (A,A), {p2} = (B,A), and
{p3, p4, p5, p6} = (A,B) that are discriminable to each
other. In other words, patterns p3, p4, p5, and p6 are indis-
criminable to each other. Next, the rightmost column max
of Table 1 shows the final feature subset S = {f3, f4} ob-
tained by maximizing H(S), with a joint entropy of 2.585.
In this case, there are six discriminable groups {p1} =
(A,A), {p2} = (B,A), {p3} = (C,A), {p4} = (A,B),
{p5} = (B,B), and {p6} = (C,B).

Our example shows that the strategy of maximizing H(S)
will lead to the selection of features that make discrim-
inable groups as much as possible until all the patterns in
the dataset become discriminable, i.e., a maximum pattern
discrimination power is reached. The concept of maximiz-
ing H(S) can be used to build an effective taxonomy of a
system because it can reduce the number of discriminators
in the system, and hence accelerate the retrieval time.

3.2 SCORE FUNCTION

Let W ∈ R|F | be the original dataset with |F | features
F = {f1, f2, · · · , f|F |} and the goal of the UFS is to iden-
tify a feature subset S consisting of n features with the
optimal pattern discrimination power where n is the number
of features to be selected. Because there are 2|F | possible
feature subsets, it is impractical to identify the optimal fea-
ture subset by searching all possible feature subsets, i.e.,
the exhaustive search. To achieve this, UFS methods often
employed an incremental search strategy to effectively in-
stantiate candidate feature subsets. The incremental search
starts with an empty set and iteratively adds a new feature
to the subset of features until |S| reaches n.

Owing to the monotonicity of entropy, the original feature
set F should have the largest entropy H(F ) or pattern dis-
crimination power. However, because only n≪ |F | features
can be included in S, the original pattern discrimination
power will be damaged after the FS process. To maintain
the pattern discrimination power as much as possible, the
difference between H(F ) and H(S) should be minimized.
Thus, the objective function can be written as

argmin
S

(H(F )−H(S)) . (1)

Because H(F ) is constant, Equation (1) can be rewritten as

argmin
S
{H(F )−H(S)} ∝ argmin

S
−H(S)

= argmax
S

H(S).
(2)

Based on the incremental search strategy, the algorithm
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must identify a new feature f+ from F \ S that maximally
increases the entropy of feature subset S. Thus, the objective
function J can be represented as

J = argmax
f+∈F\S

H(S, f+). (3)

Because H(S, f+) can be a high-dimensional joint en-
tropy term due to S, an accurate estimation may not be
achieved in practice because of an insufficient number of
patterns. To circumvent this issue, in this work, we estimate
H(S, f+) by using low-order joint entropy terms involving
only k ≪ |S| features, which is a frequently-used strategy in
the field of information-theoretic FS. For brevity, we define
k-cardinality entropy [Lee and Kim, 2015] as Definition 1.

Definition 1. Sum of the k-cardinality entropy.

Uk(X) =
∑

Y ∈X
′
k

H(Y ), (4)

where X
′

is the power set of X and X
′

k = {e|e ∈ X
′
, |e| =

k}.

Based on the Definition 1, the upper bound of Han’s inequal-
ity [Han, 1978] can be rewritten as Proposition 1.

Proposition 1. k-cardinality representation of Han’s in-
equality

H(X) ≤ 1

n− 1
Un−1(X

′), (5)

where n is the number of variables in X . Based on the
Proposition 1, we get Lemma 1 by applying the upper bound
to its subsequent joint entropy terms.

Lemma 1. Let Uk(S
′) be the k-cardinality entropy of given

variable sets S. Then the lower bound and the upper bound
of Uk(S

′) can be defined as

1

k − 1

(
kUk(S

′)−
(
n− 1

k − 1

)
U1(S

′)

)
≤ Uk(S

′)

≤
(
n− k + 1

k − 1

)
Uk−1(S

′).

(6)

Proof. The detailed proof is provided in the work of Lee
and Kim [2015].

Lemma 1 indicates that the upper bound of Uk(S
′) is deter-

mined by the (k − 1)-cardinality entropy term. Thus, by re-
cursively applying Lemma 1, we can obtain the k-cardinality
approximation of the high-dimensional joint entropy H(X),
as stated in Theorem 1.

Theorem 1. Upper bound of the H(X) with k-cardinality
entropy is

H(X) ≤

(
b∏

i=1

i

n− i

)
Uk(X

′), (7)

where b = min(n− k, k − 1).

Proof. The detailed proof is provided in the work of Seo
et al. [2019].

Theorem 1 indicates that the upper bound becomes tighter
when k in Equation (7) is set to a large value, and hence a
better estimation of H(X) can be obtained. From the Theo-
rem 1, H(S, f+) can be approximated based on the sum of
the k-cardinality entropy if the upper bound is accepted as
the estimator. In our experiments, we set k to two because it
is the minimum value for the score function being a multi-
variate feature filter2, which is the main focus of this work.
As a result, the objective function J is approximated as

J ≈ argmax
f+

b∑
i=1

i

|S|+ 1− i
U2({S′, f+}′)

= argmax
f+

1

|S|
U2({S′, f+}′),

(8)

where b = min(|S|+ 1− 2, 2− 1) = 1. Because elements
of the power set {S, f+}′ can be divided into two parts,
whether the element contains f+ or not, Equation (8) can
be rewritten as

J ≈ argmax
f+

1

|S|
(
U2(S

′) + U2(f
+ × S′)

)
, (9)

where × denotes the Cartesian product between two sets.
Because the U2(S

′) is constant to f+, Equation (9) can be
rewritten as

J ≈ argmax
f+

U2(f
+ × S′). (10)

Finally, J can be approximated as

J ≈ argmax
f+

∑
f∈S

H(f+, f). (11)

In the case of the S = {∅} where none of the features are
selected yet, Equation (11) can be represented as

J ≈ argmax
f+

H(f+). (12)

It is worth noting that Equation (12) is the k-cardinality
entropy where k is 1. However, the algorithm may start with
the optimal feature pairs (Please refer to Section 4.2.)

2If k is set to one, then a score function for univariate feature
filter is instantiated because the maximum number of features to be
considered is one when k = 1, thereby the relation among features,
for example, feature pairs, cannot be considered.
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Algorithm 1 Incremental Search for the Proposed Method

1: f+ ← argmaxf+∈F H(f+)
2: S ← {f+}
3: while |S| < n do
4: f+ ← argmaxf+∈F−S

∑
f∈S H(f+, f)

5: S ← S ∪ {f+}
6: end while

3.3 INCREMENTAL SEARCH

The proposed method is designed as a model-free,
non-parametric measure that only requires calculating
information-theoretic quantities based on joint entropy cal-
culation. Specifically, the proposed method incrementally
selects a new feature f+ from the F \ S and adds it to the
subset of features S. The Algorithm 1 depicts the incre-
mental search process of the proposed method. First, f+ is
selected by Equation (12) and the S is initialized as {f+}
(Lines 1–2). Then, the algorithm iteratively selects the new
feature f+ from the F \ S and adds it to the S by select-
ing the new feature f+ that is determined by Equation (11)
(Lines 3–6). The algorithm is terminated when the number
of already selected features |S| is equal to the number of
features n, which is the maximum number of features to be
selected, defined by the user. The computational complexity
of the Algorithm 1 is O(n + n2) = O(n2) because n and
n2 unit times are consumed for calculating entropy values
of single features and that of feature pairs f+ and f ∈ S.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETTINGS

To validate the performance of the proposed method, we em-
ployed 30 public datasets from two sources: UCI Machine
Learning Repository and Kaggle website. The datasets were
selected to represent a wide range of domains, including
biology, image, game, and audio, and to include various data
types, such as numerical and nominal data. Table 2 repre-
sents details of employed datasets used in the experiments.
The table includes the number of instances |W |, original
features |F |, preprocessed features |F ′|, and the domain
of each dataset. A preprocessing step was applied to each
dataset, and each nominal feature in the original feature set
F that has more than two categories is converted into the
binary features of F ′ by the one-hot encoding.

Four state-of-the-art UFS methods were selected for per-
formance comparison: EGC [Zhang et al., 2020], U2 [Villa
et al., 2021], VCSD [Karami et al., 2023], and FMI [Yuan
et al., 2021b]. We detailed the parameter settings for each
compared method as follows.

• EGC incorporates the between-class scatter matrix and

Table 2: Summary of the datasets used in the experiments

Dataset |W | |F | |F ′| Domain

ALLAML 72 7,129 7,129 Biology
Alzheimer 174 450 450 Biology
Arcene 100 9,920 9,920 Biology
Audiology 226 71 93 Biology
Ba 1,404 320 320 Image
Chess 3,196 37 38 Game
CLL_SUB_111 111 11,340 11,340 Biology
Coil20 1,440 1,024 1,024 Image
Colon 62 2,001 5,994 Biology
Leukemia 72 7,070 7,070 Biology
LSVT 126 310 310 Biology
Lung 203 3,312 3,312 Biology
Lymphoma 96 4,026 4,026 Biology
Madelon 2,600 500 500 Artificial
Mushrooms 8,124 23 98 Biology
Nci9 60 9,712 9,712 Biology
Nursery 12,960 9 26 Biology
Pdspeech 756 752 752 Audio
Promoters 105 58 228 Biology
Prostate_GE 102 5,966 5,966 Biology
SCADI 70 206 206 Biology
Semeion 1,593 256 256 Image
SPECT 265 22 23 Biology
Splice 3,190 61 287 Biology
Tox171 171 5,748 5,748 Biology
Tic-Tac-Toe 958 10 27 Game
Umist 575 644 644 Image
WarpAR10P 130 2,400 2,400 Image
WarpPIE10P 210 2,420 2,420 Image
Yaleb 2,414 1,024 1,024 Image

an adaptive graph structure into the traditional UFS
framework. It requires two hyperparameters, α and λ,
which were set to 0.001 and 0.1, respectively.

• U2 uses a radial basis kernel function to address non-
linearity within the conventional UFS framework and
does not require any hyperparameters.

• VCSD introduces a variance-covariance subspace dis-
tance to leverage feature correlations, requiring a hyper-
parameter ρ to adjust a term in the objective function,
which was set to 100.

• FMI integrates fuzzy mutual information into the UFS
framework and requires a hyperparameter λ for fuzzy-
based entropy calculations, set to 0.1.

Because the proposed method is based on the entropy calcu-
lation that requires the discrete probability distribution of the
features, all numerical features are discretized. Specifically,
the discretization process is conducted by the equal-width
binning method [Talukdar et al., 2018] where the number of
bins is set to ten. The maximum number of selected features
was set to 300 regarding to conventional UFS setting [Lim

5



Table 3: Comparison results of five UFS methods in terms of Entropy, PDP , and the minimum number of features that
can ensure all patterns are discriminable.

Dataset Entropy PDP Minimum Number of features
Proposed EGC U2 VCSD FMI Proposed EGC U2 VCSD FMI Proposed EGC U2 VCSD FMI

ALLAML 6.17 6.06 6.09 6.11 6.17 1.00 0.94 0.96 0.97 1.00 4 5 6 5 4
Alzheimer 7.43 2.59 7.44 7.40 7.40 0.99 0.22 1.00 0.98 0.98 18 71 10 95 23
Arcene 6.64 4.97 5.60 0.48 6.56 1.00 0.54 0.66 0.07 0.96 5 26 20 78 10
Audiology 7.11 4.85 4.05 6.49 6.39 0.72 0.26 0.17 0.56 0.54 – – – – –
Ba 10.23 7.03 6.92 8.66 7.98 0.90 0.25 0.20 0.49 0.40 – – – – –
Chess 11.63 11.49 11.54 11.64 11.63 1.00 0.92 0.95 1.00 1.00 38 38 37 36 38
CLL_SUB_111 6.79 6.74 6.78 6.74 6.79 1.00 0.97 0.99 0.97 1.00 5 7 7 8 5
Coil20 10.49 4.89 10.38 10.49 10.49 1.00 0.30 0.97 1.00 1.00 87 – 119 107 100
Colon 5.95 5.72 5.08 4.57 4.03 1.00 0.89 0.65 0.65 0.42 10 17 23 176 –
Leukemia 6.17 5.98 6.09 6.11 6.11 1.00 0.90 0.96 0.97 0.97 7 11 20 8 8
LSVT 6.98 2.10 3.24 6.13 6.91 1.00 0.09 0.31 0.67 0.97 5 27 42 12 6
Lung 7.67 5.52 7.67 7.60 7.67 1.00 0.48 1.00 0.97 1.00 5 14 5 7 5
Lymphoma 6.58 6.43 6.45 6.52 6.42 1.00 0.93 0.94 0.97 0.93 8 11 16 11 14
Madelon 11.34 11.19 11.34 11.34 11.34 1.00 0.93 1.00 1.00 1.00 10 14 10 12 9
Mushrooms 8.49 5.42 5.42 7.26 5.22 0.09 0.01 0.01 0.03 0.01 – – – – –
Nci9 5.91 5.74 5.81 5.59 5.73 1.00 0.92 0.95 0.85 0.92 7 10 9 9 12
Nursery 12.71 13.66 12.08 13.66 12.26 0.60 1.00 0.33 1.00 0.40 25 23 25 23 25
Pdspeech 9.56 0.89 9.55 9.56 9.56 1.00 0.05 0.99 1.00 1.00 – – – – –
Promoters 6.71 6.68 6.55 6.68 6.65 1.00 0.98 0.92 0.98 0.97 17 22 29 23 33
Prostate_GE 6.67 6.37 4.80 5.91 6.44 1.00 0.85 0.54 0.74 0.89 4 8 12 44 9
SCADI 6.13 5.89 5.09 5.22 5.19 1.00 0.89 0.59 0.71 0.64 51 98 124 85 116
Semeion 10.64 10.63 10.51 10.63 10.60 1.00 1.00 0.95 1.00 0.98 51 71 123 82 97
SPECT 7.33 6.96 6.96 7.15 7.18 0.79 0.72 0.72 0.74 0.76 – – – – –
Splice 11.13 9.97 7.75 11.09 11.08 0.79 0.46 0.08 0.78 0.78 – – – – –
Tox171 9.90 8.46 8.46 9.90 9.90 1.00 0.45 0.45 1.00 1.00 17 23 23 17 17
Tic-Tac-Toe 7.42 7.34 7.29 7.35 7.37 1.00 0.96 0.95 0.96 0.98 4 7 5 5 5
Umist 9.12 8.86 9.10 9.11 9.13 0.98 0.88 0.97 0.97 0.98 – – – – –
WarpAR10P 7.02 6.78 6.76 6.45 6.84 1.00 0.91 0.88 0.78 0.94 5 10 49 26 122
WarpPIE10P 7.71 7.29 6.89 7.52 7.71 1.00 0.85 0.77 0.94 1.00 10 27 66 84 10
Yaleb 11.12 8.54 8.72 10.55 11.06 0.97 0.70 0.71 0.88 0.96 – – – – –

Avg. Rank 1.20 3.87 3.90 2.80 2.50 1.20 3.87 3.90 2.77 2.43 1.20 2.67 2.80 2.53 2.27

and Kim, 2021].

To validate the superiority of UFS methods, three evalua-
tion measures are considered. We measured the entropy of
the feature subsets selected by the proposed method and
compared methods (Entropy), which can be represented as

Entropy = H(S). (13)

Next, We employed the pattern discrimination power test
(PDP ) that measures the portion of the discriminable data
patterns in the dataset based on the feature subset. The PDP
can be represented as

PDP (W ) =
1

|W |
·
|W |∑
i=1

ti−1∑
j=1

q
wi = wj

y
 = 0

|

, (14)

where W is the dataset comprised of the feature subset S, wi

is the i-th pattern, and
q
·
y

yields one if the proposition stated
in the brackets is true and returns zero otherwise. The range
of the PDP is from 1

|W | to 1, where each value means that
all data patterns are indiscriminable/discriminable, respec-
tively. Both PDP and Entropy measures exhibit mono-
tonic increases with the inclusion of additional features [Art-
stein et al., 2004]. In particular, the relationship between

the PDP and Entropy is illustrated in the supplementary
material to show the correlation between the two measures.
Finally, the minimum number of features that all patterns be-
come discriminable is measured based on the feature subsets
selected by the proposed and compared methods.

4.2 EXPERIMENTAL RESULTS

Table 3 presents experimental results on 30 datasets in terms
of Entropy, PDP , and the minimum number of features
required to make all patterns discriminable. Because the
maximum number of selected features was set to 300, if
all patterns within a dataset remain indiscriminable with
more than 300 selected features, the corresponding entries
in the table are filled with "–" due to the exhaustive time
consumption. Subsequently, each entry for Entropy and
PDP represents the result corresponding to the smallest
number of features required to make all patterns discrim-
inable among all UFS methods. For the datasets where all
UFS methods failed to discriminate all patterns with fewer
than 300 features, the results for Entropy and PDP are
reported when the number of selected features is 17, reflect-
ing the average of the smallest number of features required
among the other datasets. In the table, the best results are
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Figure 1: Comparison results of PDP performance according to the number of features selected by the five UFS methods.
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Table 4: Comparison results of Entropy and PDP perfor-
mance based on maximization/minimization of H(S).

Dataset Entropy PDP
max min max min

ALLAML 6.17 0.32 1.00 0.06
Alzheimer 7.44 2.18 1.00 0.18
Arcene 6.62 0.08 0.99 0.02
CLL_SUB_111 6.79 0.37 1.00 0.05
Coil20 10.49 3.67 1.00 0.25
Colon 5.95 1.81 1.00 0.19
Leukemia 6.17 0.73 1.00 0.11
LSVT 6.96 0.13 0.99 0.02
Lung 7.67 1.20 1.00 0.14
Nci9 5.91 0.37 1.00 0.07
Nursery 13.66 12.66 1.00 0.50
Prostate_GE 6.67 0.08 1.00 0.02
Tic-Tac-Toe 7.42 4.52 1.00 0.26
WarpAR10P 7.02 2.96 1.00 0.31
WarpPIE10P 7.70 3.67 0.99 0.28

Avg. Rank 1.00 2.00 1.00 2.00

highlighted in bold, and we reported the average rank (Avg.
Rank) of the proposed and compared methods in the last
row of the table.

Experimental results demonstrate that the proposed method
outperforms the compared methods in terms of Entropy
on 25 out of 30 datasets. These results indicate that the
incremental search for the proposed method, along with
its derived objective function, effectively selects a feature
subset that can maximize the entropy of the datasets with
selected features. Consequently, the selected features by the
proposed method contain more information content com-
pared to those selected by other methods. Next, the pro-
posed method outperforms the compared methods in terms
of PDP on 25 out of 30 datasets, indicating the superiority
of the proposed method against the compared methods. In
the experiments based on the minimum number of features
that can ensure all patterns are discriminable, the superior-
ity of the proposed method is observed again because the
proposed method outputs a significantly compact feature
subset compared to other methods. Notably, on average,
the proposed method selects 31% fewer features than the
second-best method on datasets where the proposed method
outperforms the compared methods. Overall, the proposed
method outperforms compared methods in terms of three
pattern discrimination power-related measures: Entropy,
PDP , and the minimum number of features.

Figure 1 illustrates the comparison results of PDP perfor-
mance as the number of selected features increases until all
patterns are discriminable, with a maximum of 17 as same
experimental setting in Table 3. Experimental results of 28
out of 30 datasets are represented as line plots where the x-

Table 5: Comparison results of Entropy and PDP per-
formance based on different initial settings, H(f+) and
H(f+, f), for the proposed method.

Dataset Entropy PDP
H(f+) H(f+, f) H(f+) H(f+, f)

ALLAML 6.17 6.17 1.00 1.00
Alzheimer 7.44 7.44 1.00 1.00
Arcene 6.62 6.64 0.99 1.00
Audiology 7.11 7.11 0.72 0.72
Ba 10.23 10.23 0.90 0.90
Chess 11.64 11.64 1.00 1.00
CLL_SUB_111 6.79 6.79 1.00 1.00
Coil20 10.49 10.49 1.00 1.00
Colon 5.95 5.92 1.00 0.98
Leukemia 6.17 6.14 1.00 0.99
LSVT 6.96 6.98 0.99 1.00
Lung 7.67 7.67 1.00 1.00
Lymphoma 6.58 6.58 1.00 1.00
Madelon 11.34 11.34 1.00 1.00
Mushrooms 8.49 8.49 0.09 0.09
Nci9 5.91 5.91 1.00 1.00
Nursery 13.66 13.66 1.00 1.00
Pdspeech 9.56 9.56 1.00 1.00
Promoters 6.71 6.71 1.00 1.00
Prostate_GE 6.67 6.67 1.00 1.00
SCADI 6.13 6.13 1.00 1.00
Semeion 10.64 10.64 1.00 1.00
SPECT 7.33 7.33 0.79 0.79
Splice 11.13 11.13 0.79 0.79
Tox171 9.90 9.90 1.00 1.00
Tic-Tac-Toe 7.42 7.42 1.00 1.00
Umist 9.12 9.12 0.98 0.98
WarpAR10P 7.02 7.02 1.00 1.00
WarpPIE10P 7.70 7.71 0.99 1.00
Yaleb 11.12 11.11 0.97 0.97

Avg. Rank 1.20 1.10 1.17 1.13

and y-axis represent the number of features and the PDP
performance, respectively. Figure 1 shows that the proposed
method consistently outperformed the compared methods
on most of the datasets. Specifically, on Arcene, Audiology,
and Coil20 datasets, the proposed method demonstrated
superior performance regardless of the number of selected
features. Moreover, on SCADI, Semeion, and Lsvt datasets,
the PDP performance of the proposed method rapidly in-
creased compared to other methods, indicating the compact-
ness of the feature subset selected by the proposed method.

The proposed method selects a feature that maximizes the
entropy, which can be viewed as an opposite concept to the
conventional information-theoretic UFS methods. To inves-
tigate this aspect, we conducted additional experiments on
the maximization and the minimization of the entropy. In
contrast to Algorithm 1, the minimization approach starts
with a feature with the smallest entropy and then adds a new
feature that preserves the entropy of S. Table 4 represents
the comparison results on the ten datasets. Experimental
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results indicate that the two approaches lead to significantly
different results. For example, in the case of the Coil20
dataset, the feature subset based on the maximization ap-
proach yields a 1.00 PDP value, indicating that all patterns
are discriminable. In contrast, 75% of patterns are indiscrim-
inable when the minimization approach is applied because
the corresponding PDP value is 0.25.

In Section 3.2, we explained that the algorithm may start
with either maximizing H(f+) or H(f+, f) where f ∈
F \ f+. To clarify whether there is a significant difference
according to the initial setting, we conducted additional ex-
periments because it affects the entire subsequent iterations.
Table 5 shows the experimental results of different initial
settings in terms of Entropy and PDP . Overall, the re-
sults for H(f+) and H(f+, f) are largely consistent with
one another, indicating that the initial setting affects the FS
process insignificantly in terms of Entropy and PDP .

Finally, we evaluate the classification accuracy and the MI
based on the feature subset because it was frequently used
in traditional UFS studies. The experimental results show
that the feature subset identified by the proposed method
can yield better classification results. In addition, we visu-
alize the entropy value according to the number of features
selected by the proposed and compared methods. Detailed
experimental results are provided in the supplementary ma-
terial.

5 CONCLUSION

In this work, we proposed a UFS method based on maxi-
mizing entropy. This approach aims to produce a subset of
features that maximizes the discriminability among patterns,
thus serving the need for identifying novel patterns. With
a simple example demonstrating the consequences of the
minimization and maximization approaches, we provided
a rigorous formulation of the score function based on theo-
retical derivation. The experimental results showed that the
proposed method outperforms compared methods in terms
of pattern discrimination power-related measures.

Future work can explore the potential for real-world appli-
cations of the proposed method, including but not limited to,
real-time recommendation systems, search engines, and dy-
namic content optimization. Moreover, the proposed method
could be extended to handle different types of data and com-
putational frameworks, providing a more universal solution
to the challenges of high-dimensional data.
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A RELATIONSHIP BETWEEN PDP AND Entropy MEASURES

In this section, we provide a theoretical proof to establish the relationship between the Entropy, the joint entropy of a
feature subset, and the PDP measure. PDP is defined as

PDP (W ) =
1

|W |
·
|W |∑
i=1

ti−1∑
j=1

q
wi = wj

y
 = 0

|

, (15)

where W is the dataset comprised of the feature subset S, wi is the i-th pattern, and
q
·
y

yields one if the proposition stated
in the brackets is true and returns zero otherwise.

We first provide a proposition to establish the relationship between the joint entropy of a feature subset and the PDP
measure.

Proposition 2. The joint entropy H(S) is maximized when all patterns in the dataset W are discriminable.

Proof. The joint entropy H(S) of the dataset quantifies the level of uncertainty within the feature subset S. It is defined as
H(S) = −

∑|W |
i=1 P (wi) logP (wi), where P (wi) represents the probability of the i-th pattern occurring in the dataset. To

simplify, let P (wi) = yi, transforming our expression to function terms as f(y) = −y log y with y = P (wi).

Considering the concavity of the function f(y) = −y log y, we can employ Jensen’s Inequality [Jensen, 1906] to establish
an upper bound for the sum

∑|W |
i=1 f(yi), which is essential for our entropy calculation as

|W |∑
i=1

f(P (wi)) =

|W |∑
i=1

−P (wi) logP (wi) ≤ |W | · f
(

1

|W |

)
. (16)

This formulation bounds the joint entropy as

−
|W |∑
i=1

P (wi) logP (wi) ≤ log |W |. (17)

When all patterns in W are discriminable, this condition indicates a uniform distribution of occurrences, with P (wi) =
1

|W |
for all i, thereby transforming our inequality into the equality as

H(S) = log |W |. (18)
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Thus, when all patterns in the dataset W are discriminable, the joint entropy H(S) of the dataset is maximized.

Because the proposed score function aims to maximize H(S), a theoretical proof is provided to establish the relationship
between the entropy of a feature subset and PDP , showing that a decrease in PDP leads to a decrease in the upper bound
of H(S). First, let m = (1− PDP (W )) · |W |. For instance, consider m = 4 and |W | = 10 with a PDP value of 0.6. In
this case, at least five patterns are indiscriminable from each other, as illustrated by the sequence {1, 2, 3, 4, 5, 6, 6, 6, 6, 6},
where the last five patterns are indiscriminable. Conversely, the situation with a maximum of eight indiscriminable patterns
within the dataset could be exemplified by {1, 2, 3, 3, 4, 4, 5, 5, 6, 6}. Based on the example, the upper bound of H(S) can
be represented by the following lemma.

Lemma 2. The upper bound joint entropy H(S) of a dataset W is bounded as

H(S) ≤ −|W | − 2m

|W |
· log 1

|W |
− 2m

|W |
· log 2

|W |
, (19)

where m = (1− PDP (W )) · |W |.

Proof. The number of indiscriminable patterns in W ranges from m+1 to 2m, as illustrated in the provided example. Thus,
the entropy of |W |−2m discriminable patterns,− |W |−2m

|W | · log 1
|W | , is constant. Considering the remaining 2m patterns, the

entropy is maximized when the patterns are uniformly distributed, as mentioned in Proposition 2. This condition is achieved
when there are m pairs of patterns, with each pair being identical, yielding − 2m

|W | · log
2

|W | . Equation (19) represents the
upper bound of the joint entropy H(S).

According to Lemma 2, the relationship between the PDP and the joint entropy H(S) can be established, demonstrating
that a decrease in PDP , which corresponds to an increase in m, leads to a decrease in the upper bound of H(S) Given the
uncertainty regarding the precise number of indiscriminable patterns as m increases, we construct our proof by focusing on
the upper bounds of H(S) for both m and m+ 1.

Theorem 2. The upper bound of H(S) for m is greater than the upper bound of H(S) for m+ 1.

Proof. By applying Lemma 2, the upper bound of H(S) for m+ 1 represents as follows:

−|W | − 2(m+ 1)

|W |
· log 1

|W |
− 2(m+ 1)

|W |
· log 2

|W |
(20)

Subtracting the upper bound of H(S) for m+1 from the upper bound of H(S) for m, as detailed in Equation 19, we obtain

− |W | − 2m

|W |
· log 1

|W |
− 2m

|W |
· log 2

|W |

−
(
−|W | − 2(m+ 1)

|W |
· log 1

|W |
− 2(m+ 1)

|W |
· log 2

|W |

)
=

2

|W |
≥ 0.

(21)

Because the PDP and the upper bound of H(S) are both decreasing functions of m, Theorem 2 indicates that the proposed
method, which aims to maximize H(S), can effectively select a feature subset that maximizes the pattern discrimination
power.

B ADDITIONAL EXPERIMENTAL RESULTS

In Table 6, we present a comparative analysis of the execution times and MI for the conducted UFS methods. The best
performance is highlighted in bold, and the average rank is presented at the bottom of the table. Execution times are
reported in seconds, reflecting the computational effort required to process each dataset. In particular, the experiments were
conducted on a system equipped with a 13th Generation Intel® Core™ i9-13900K processor, clocked at 3.00 GHz. As a
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Table 6: Comparsion results of execution time and MI performance.

Dataset Execution Time in Seconds MI
Proposed EGC U2 VCSD FMI Proposed EGC U2 VCSD FMI

ALLAML 375.65 221.69 5978.10 1138.32 1486.96 0.93 0.46 0.54 0.04 0.50
Alzheimer 1165.01 662.63 23696.24 3816.60 5357.24 0.97 0.03 0.08 0.34 0.71
Arcene 303.85 149.41 4204.49 741.45 1587.23 0.95 0.34 0.22 0.06 0.17
Audiology 0.18 0.01 1.96 0.46 0.74 3.04 1.32 2.08 2.03 2.01
Ba 0.06 0.06 1.05 0.04 0.17 4.17 1.60 1.41 2.97 3.14
Chess 2.28 0.10 7.33 3.87 13.82 0.58 0.32 0.26 0.26 0.22
CLL_SUB_111 775.53 440.78 15112.69 2839.68 3555.26 1.37 0.93 0.87 0.41 1.37
Coil20 0.08 0.07 0.07 0.27 4.89 4.32 0.57 2.87 4.32 4.27
Colon 7.83 3.59 16.22 6.59 650.64 0.94 0.87 0.81 0.66 0.41
Leukemia 0.20 27.34 9.36 12.26 514.60 0.93 0.93 0.93 0.88 0.76
Lsvt 92.26 4.93 49.98 20.90 8496.83 0.89 0.05 0.05 0.41 0.13
Lung 266.99 136.40 3663.49 768.40 911.85 1.49 1.38 1.49 1.49 1.49
Lymphoma 388.49 218.35 5872.40 1102.46 1600.35 2.45 2.45 2.45 2.45 2.45
Madelon 0.99 0.15 6.03 2.46 4.38 0.35 0.00 0.23 0.01 0.24
Mushrooms 162.93 22.47 569.18 166.40 1085.49 0.93 0.76 0.76 0.67 0.86
Nci9 148.46 40.09 954.09 263.30 660.76 3.08 2.64 3.08 0.58 2.98
Nursery 34.69 21.69 60.47 19.09 12031.08 1.13 0.17 0.38 1.06 1.11
Pdspeech 2.06 32.62 28.36 52.79 5279.50 0.65 0.01 0.09 0.10 0.14
Promoters 659.48 441.33 16076.21 2555.64 3328.74 1.00 0.71 0.41 0.97 0.96
Prostate_GE 0.40 1389.47 184.80 194.09 22083.95 0.98 0.71 0.86 0.15 0.20
SCADI 18.67 1.17 19.37 10.07 712.49 2.18 1.66 1.62 1.63 1.54
Semeion 0.51 0.03 3.97 1.28 1.85 2.62 1.94 0.82 1.29 2.13
SPECT 5.58 3.64 11.89 5.70 992.32 0.40 0.37 0.37 0.42 0.39
Splice 14.00 29.64 55.27 21.94 7801.44 1.32 0.03 0.02 1.27 1.31
Tox171 426.87 120.82 3212.45 637.41 2417.68 2.00 1.97 2.00 1.90 2.00
TTTgame 0.04 0.66 1.16 0.68 5.77 0.93 0.19 0.19 0.62 0.93
Umist 16.96 0.59 14.52 7.02 479.49 4.28 4.27 4.28 4.28 4.28
WarpAR10P 68.45 7.59 191.55 78.93 264.45 3.32 3.25 3.17 3.18 3.20
WarpPIE10P 99.19 7.64 207.88 80.65 491.89 3.32 3.32 3.02 3.14 3.32
Yaleb 185.28 18.93 127.98 31.47 35409.53 5.24 5.18 4.30 5.13 5.23

Avg. Rank 2.20 1.47 4.07 2.70 4.57 1.03 3.47 3.33 3.33 2.60

result, our proposed method ranks as the second-fastest method on average, following EGC, which highlights its efficiency
and potential applicability to a wide range of datasets. Furthermore, for algorithms such as EGC, which rely on specific
parameter settings, it is important to note that the time to achieve optimal results can vary significantly depending on the
number of parameters adjusted. In such contexts, the execution time can increase substantially based on the complexity of
the parameter space being navigated.

Subsequently, in traditional UFS studies, the superiority of devised methods was validated by measuring the MI between
selected feature subset and class variable or directly using classifiers such as naïve Bayes or decision tree. Although this
kind of validation is only possible when the dataset contains the class variable C, it is reasonable from the viewpoint
of information theory because the increment of MI between input features and class variable leads to the reduction of
naïve Bayes error owing to the Fano’s inequality and k-cardinality approximation of MI between S and C when k = 1
leads to the unsupervised score function [Seo et al., 2019], i.e., maximizing H(S) can contribute to the increment of MI
M(S,C) = H(S) +H(C)−H(S,C). Here, we report the performance of the proposed and compared methods in terms
of MI and classification accuracy.

In Table 6, the proposed method achieved the best performance on 29 of the 30 datasets, with an average rank of 1.03. These
results suggest that the proposed method could potentially improve classification performance more effectively than the
compared methods. To verify this, experiments regarding the classification accuracy were performed using the features
selected by the proposed and compared methods.
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Table 7: Comparison results of classification accuracy performance based on the feature subsets selected by the five UFS
methods.

Dataset Naïve Bayes Decision Tree
Proposed EGC U2 VCSD FMI Proposed EGC U2 VCSD FMI

ALLAML 0.57 ± 0.22 0.72 ± 0.20 0.67 ± 0.11 0.65 ± 0.24 0.71 ± 0.10 0.56 ± 0.23 0.68 ± 0.21 0.61 ± 0.13 0.65 ± 0.24 0.59 ± 0.19
Alzheimer 0.76 ± 0.12 0.41 ± 0.08 0.52 ± 0.14 0.71 ± 0.09 0.68 ± 0.13 0.75 ± 0.09 0.42 ± 0.09 0.45 ± 0.13 0.65 ± 0.08 0.69 ± 0.12
Arcene 0.60 ± 0.14 0.45 ± 0.16 0.62 ± 0.15 0.56 ± 0.14 0.58 ± 0.12 0.58 ± 0.08 0.49 ± 0.09 0.56 ± 0.15 0.55 ± 0.14 0.60 ± 0.12
Audiology 0.63 ± 0.14 0.52 ± 0.10 0.50 ± 0.10 0.35 ± 0.12 0.30 ± 0.12 0.66 ± 0.10 0.52 ± 0.11 0.49 ± 0.10 0.33 ± 0.11 0.38 ± 0.12
Ba 0.25 ± 0.03 0.07 ± 0.02 0.07 ± 0.03 0.21 ± 0.03 0.24 ± 0.05 0.21 ± 0.04 0.08 ± 0.02 0.08 ± 0.02 0.21 ± 0.03 0.25 ± 0.03
Chess 0.75 ± 0.03 0.71 ± 0.02 0.67 ± 0.01 0.63 ± 0.02 0.62 ± 0.03 0.82 ± 0.02 0.73 ± 0.02 0.70 ± 0.02 0.67 ± 0.01 0.66 ± 0.02
CLL_SUB_111 0.62 ± 0.19 0.32 ± 0.12 0.46 ± 0.12 0.57 ± 0.16 0.65 ± 0.16 0.56 ± 0.18 0.38 ± 0.14 0.33 ± 0.15 0.59 ± 0.12 0.49 ± 0.13
Coil20 0.85 ± 0.03 0.10 ± 0.02 0.36 ± 0.05 0.78 ± 0.04 0.82 ± 0.04 0.81 ± 0.04 0.10 ± 0.02 0.45 ± 0.03 0.79 ± 0.03 0.81 ± 0.04
Colon 0.57 ± 0.20 0.53 ± 0.22 0.66 ± 0.22 0.59 ± 0.15 0.53 ± 0.22 0.42 ± 0.15 0.50 ± 0.24 0.44 ± 0.21 0.32 ± 0.10 0.60 ± 0.13
Leukemia 0.80 ± 0.15 0.54 ± 0.17 0.67 ± 0.19 0.65 ± 0.14 0.69 ± 0.15 0.44 ± 0.04 0.13 ± 0.02 0.28 ± 0.03 0.29 ± 0.04 0.47 ± 0.04
LSVT 0.77 ± 0.06 0.66 ± 0.15 0.66 ± 0.15 0.70 ± 0.12 0.60 ± 0.10 0.73 ± 0.13 0.48 ± 0.22 0.63 ± 0.19 0.69 ± 0.12 0.67 ± 0.16
Lung 0.80 ± 0.07 0.74 ± 0.08 0.75 ± 0.08 0.80 ± 0.08 0.86 ± 0.06 0.69 ± 0.11 0.66 ± 0.15 0.67 ± 0.15 0.79 ± 0.07 0.60 ± 0.13
Lymphoma 0.58 ± 0.18 0.51 ± 0.22 0.43 ± 0.11 0.75 ± 0.15 0.80 ± 0.13 0.80 ± 0.12 0.66 ± 0.10 0.62 ± 0.09 0.76 ± 0.07 0.83 ± 0.08
Madelon 0.56 ± 0.02 0.47 ± 0.02 0.49 ± 0.02 0.47 ± 0.02 0.62 ± 0.03 0.50 ± 0.17 0.47 ± 0.22 0.48 ± 0.16 0.58 ± 0.16 0.64 ± 0.13
Mushrooms 0.89 ± 0.01 0.93 ± 0.01 0.93 ± 0.01 0.80 ± 0.02 0.90 ± 0.03 0.54 ± 0.02 0.47 ± 0.02 0.51 ± 0.03 0.47 ± 0.02 0.69 ± 0.03
Nci9 0.17 ± 0.16 0.07 ± 0.09 0.17 ± 0.14 0.10 ± 0.09 0.17 ± 0.16 0.98 ± 0.00 0.94 ± 0.01 0.94 ± 0.01 0.86 ± 0.01 0.96 ± 0.01
Nursery 0.76 ± 0.01 0.42 ± 0.01 0.51 ± 0.01 0.76 ± 0.01 0.76 ± 0.01 0.18 ± 0.12 0.10 ± 0.12 0.20 ± 0.15 0.15 ± 0.12 0.13 ± 0.17
Pdspeech 0.75 ± 0.03 0.75 ± 0.03 0.74 ± 0.03 0.74 ± 0.04 0.69 ± 0.06 0.79 ± 0.01 0.41 ± 0.01 0.54 ± 0.01 0.76 ± 0.01 0.78 ± 0.01
Promoters 0.93 ± 0.11 0.67 ± 0.19 0.48 ± 0.16 0.92 ± 0.13 0.88 ± 0.13 0.37 ± 0.07 0.36 ± 0.05 0.15 ± 0.07 0.35 ± 0.08 0.45 ± 0.06
Prostate_GE 0.74 ± 0.10 0.79 ± 0.14 0.64 ± 0.13 0.57 ± 0.15 0.57 ± 0.24 0.70 ± 0.08 0.75 ± 0.03 0.74 ± 0.03 0.75 ± 0.03 0.79 ± 0.04
SCADI 0.80 ± 0.17 0.66 ± 0.14 0.80 ± 0.15 0.74 ± 0.11 0.73 ± 0.16 0.90 ± 0.13 0.72 ± 0.13 0.53 ± 0.12 0.88 ± 0.11 0.86 ± 0.13
Semeion 0.50 ± 0.03 0.53 ± 0.07 0.28 ± 0.03 0.27 ± 0.04 0.54 ± 0.04 0.72 ± 0.13 0.79 ± 0.13 0.54 ± 0.17 0.61 ± 0.13 0.55 ± 0.20
SPECT 0.81 ± 0.06 0.76 ± 0.06 0.76 ± 0.06 0.81 ± 0.05 0.80 ± 0.07 0.80 ± 0.15 0.73 ± 0.18 0.80 ± 0.15 0.76 ± 0.17 0.77 ± 0.10
Splice 0.93 ± 0.02 0.52 ± 0.02 0.52 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.53 ± 0.05 0.54 ± 0.07 0.31 ± 0.04 0.28 ± 0.03 0.56 ± 0.05
Tox171 0.45 ± 0.15 0.30 ± 0.08 0.46 ± 0.11 0.51 ± 0.15 0.47 ± 0.08 0.81 ± 0.08 0.80 ± 0.08 0.80 ± 0.08 0.84 ± 0.08 0.81 ± 0.07
Tic-Tac-Toe 0.72 ± 0.06 0.65 ± 0.04 0.65 ± 0.04 0.69 ± 0.05 0.72 ± 0.05 0.93 ± 0.02 0.52 ± 0.02 0.52 ± 0.02 0.93 ± 0.01 0.93 ± 0.01
Umist 0.63 ± 0.08 0.69 ± 0.06 0.83 ± 0.03 0.60 ± 0.07 0.83 ± 0.07 0.52 ± 0.12 0.36 ± 0.11 0.44 ± 0.13 0.40 ± 0.06 0.48 ± 0.11
WarpAR10P 0.40 ± 0.14 0.18 ± 0.09 0.27 ± 0.15 0.26 ± 0.17 0.46 ± 0.15 0.94 ± 0.02 0.69 ± 0.04 0.69 ± 0.04 0.82 ± 0.04 0.95 ± 0.02
WarpPIE10P 0.49 ± 0.11 0.31 ± 0.06 0.45 ± 0.10 0.24 ± 0.09 0.37 ± 0.10 0.64 ± 0.10 0.69 ± 0.03 0.80 ± 0.07 0.67 ± 0.05 0.77 ± 0.08
Yaleb 0.08 ± 0.02 0.09 ± 0.02 0.06 ± 0.01 0.07 ± 0.02 0.07 ± 0.01 0.38 ± 0.08 0.20 ± 0.07 0.33 ± 0.13 0.41 ± 0.19 0.47 ± 0.09

Avg. Rank 1.97 3.70 3.17 3.30 2.57 2.09 3.73 3.61 3.09 2.27
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Figure 2: Comparison results of classification accuracy performance according to the number of features selected by the
five UFS methods

Table 7 summarizes the classification accuracy of features selected by both the proposed and compared methods, evaluated
using naïve Bayes and decision tree classifiers. Specifically, the classification accuracy is measured by the 10-fold cross-
validation with the naïve Bayes classifier and the decision tree classifier, which were trained by the data composed of the
selected features. In the case of the naïve Bayes classifier, the proposed method achieved superior classification accuracy
on 14 out of 30 datasets, with an average rank of 1.97. This performance outperformed that of the next most effective
method, FMI, which garnered an average rank of 2.57. For the decision tree classifier, the proposed method also led the
field, securing the highest classification accuracy on 9 out of the 30 datasets and an average rank of 2.09. This surpassed the
second-best method, EGC, which obtained an average rank of 2.27.
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Figure 3: Comparison results of entropy performance according to the number of features selected by the five UFS methods
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(a) Entropy Minimization S = {f7, f13, f55}

(b) Entropy Maximization S = {f90, f11, f76}

Figure 4: Taxonomic trees constructed by selected features from the proposed method (Entropy Maximization) and the
entropy minimization method.

Figure 2 illustrates the classification accuracy achieved by the proposed and compared methods across varying feature sizes
on the Alzheimer, Audiology, Chess, and SCADI datasets. In the figure, the blue line symbolizes the proposed method,
while the black line represents the comparative methods. Notably, the classification accuracy of the proposed method
surpassed that of the compared methods across all four datasets as the feature size increased. This superior performance can
be attributed to the feature subset that is optimized towards pattern discrimination power, thereby contributing to improved
classification accuracy.

Figure 3 shows the comparison result of entropy performance according to the number of features selected by the five UFS
methods. Although it is a trivial result because the proposed method directly maximizes the entropy of the feature subset,
whereas compared methods do not, we observed that the proposed method outperforms the compared method significantly
in terms of entropy.

C APPLICATION: TAXONOMIC TREE CONSTRUCTION

The motivation behind maximizing entropy is to fully utilize the discrimination power of patterns, leading to improved
information retrieval [Zhong et al., 2011], such as enhancing the process of taxonomy construction for each pattern. This
method aligns with information theory principles by selecting features that offer maximal informational value, thereby
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Algorithm 2 Incremental Search for the Proposed Method when k = 3

1: f+ ← argmaxf+∈F H(f+) ▷ Select the first feature
2: S ← {f+}
3: f+ ← argmaxf+∈F−S

∑
f∈S H(f+, f) ▷ Select the second feature

4: S ← {f+}
5: while |S| < n do
6: f+ ← argmaxf+∈F−S

∑
fi∈S

∑
fj∈S H(f+, fi, fj)

7: S ← S ∪ {f+}
8: end while

improving pattern discrimination power. Specifically, constructing the taxonomic tree [Reiman et al., 2020] starting from the
root node and distributing patterns into the tree based on prioritized features with the highest entropy enables a significant
reduction in the maximum depth of the tree. This effectiveness arises because features selected in order of descending
entropy are arranged from the root node downwards, allowing the values of each pattern associated with these features to
be evenly distributed across the tree. Such an organization ensures that the tree expands in a balanced manner, simplifies
analytical processes by making the data structure more compact, and enhances the clarity and efficiency of data interpretation.
The proposed method selects features iteratively based on their scores from the score function that maximizes the entropy of
the feature subset. Considering that the highest entropy is observed in a uniform distribution when patterns are distributed
using the selected features in a tree structure, this strategy enables the construction of a tree that closely approximates a
balanced tree.

We conducted experiments on the binary Mushrooms dataset to assess the effectiveness of taxonomic trees constructed via
the proposed entropy maximization method compared to the conventional entropy minimization approach. For the entropy
minimization method, features were selected using the same algorithm as the proposed method, except the objective was to
minimize entropy within the feature subset. Both strategies selected three features from the dataset and constructed the trees
starting from the root node in the selection order, resulting in trees with a depth of three levels. Patterns were then assigned
to each node based on their feature values.

Figure 4 depicts the constructed taxonomic trees. The numbers in nodes indicate the number of assigned patterns at each
node, whereas the circles highlight the feature at each division. To visually represent the quantity of patterns per node, the
width of each node was adjusted logarithmically in proportion to the number of patterns it contains. The tree derived from
the entropy minimization method revealed a significantly skewed structure, with the majority of patterns assigned in the
leftmost node. In contrast, the tree resulting from the proposed entropy maximization method exhibited a more balanced
structure, approximating a uniform distribution of patterns across the nodes. Given the skewed nature of the tree resulting
from the entropy minimization method, which may frequently require additional comparisons to locate a novel pattern, the
proposed entropy maximization method presents itself as a potentially more efficient solution, such as information retrieval
systems.

D SCORE FUNCTION VARYING k-CARDINALITY

We provide a detailed explanation of the implications of using values of k larger than 2 by giving a concrete example by
introducing a newly instantiated score function when k = 3. First, the score function when k = 3 for the proposed method
can be rewritten as

J ≈ argmax
f+

(
b∑

i=1

i

|S|+ 1− i

)
U3({S′, f+}′)

= argmax
f+

1

|S| · (|S| − 1)
U3({S′, f+}′),

(22)

where b = min(|S|+ 1− 3, 3− 1) = 2. Equation (22) can be rewritten as

J ≈ argmax
f+

∑
fi∈S

∑
fj∈S

H(f+, fi, fj), (23)
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by the identical process when k = 2. Because the newly instantiated score function requires at least two features in S, the
first and second features are selected based on the score functions when k = 2.

Algorithm 2 depicts the incremental search process of the proposed method when k = 3. The computational complexity
of the proposed method expands to O(n+ n2 + n3) = O(n3) due to the n, n2, and n3 unit times required for calculating
entropy values. With k = 3, the proposed method demands additional computational resources to calculate the entropy
values, as Equation (23) involves joint entropies among three features. This new score function captures more complex
relationships among features by calculating joint entropies of candidate features with all pairs of selected features. However,
this results in a significant increase in computational complexity compared to the k = 2 method, which has a complexity
of O(n2). Furthermore, estimating the joint entropy between high-dimensional features often requires a large number of
patterns to achieve reliable approximations [Lee and Kim, 2015].
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