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Abstract

Vision-Language Models (VLMs) have emerged as the state-of-the-art represen-
tation learning solution, with myriads of downstream applications such as im-
age classification, retrieval and generation. A natural question is whether these
models memorize their training data, which also has implications for generaliza-
tion. We propose a new method for measuring memorization in VLMs, which
we call déjà vu memorization. For VLMs trained on image-caption pairs, we
show that the model indeed retains information about individual objects in the
training images beyond what can be inferred from correlations or the image cap-
tion. We evaluate déjà vu memorization at both sample and population level, and
show that it is significant for OpenCLIP trained on as many as 50M image-caption
pairs. Finally, we show that text randomization considerably mitigates memoriza-
tion while only moderately impacting the model’s downstream task performance.
The code is available here: https://github.com/facebookresearch/
VLMDejaVu.

1 Introduction

Vision-Language Models (VLMs) have emerged as the state-of-the-art solution for learning rep-
resentations from images and text data, with a number of downstream applications such as image
generation [Ramesh et al., 2021, 2022, Yu et al., 2022b], retrieval [Wang et al., 2015, Cao et al.,
2016, Zhang et al., 2021, Baldrati et al., 2022], captioning [Mokady et al., 2021], and classifica-
tion. At the same time, large foundation models are known to memorize and retain information
about their training data [Carlini et al., 2019, Meehan et al., 2023, Carlini et al., 2023], and hence,
a natural question is whether these Vision-Language Models memorize as well. If so, this raises
questions about generalizability of these models. We investigate whether Vision-Language Models
retain information about their training data beyond the bounds of generalization.

The main challenge in measuring memorization is designing a measurement technique that can tease
apart memorization from spurious correlations. For example, for an image of a black swan on water,
a representation learning model may learn to predict black swan given the background water if
either: (i) it retains extra information about the training image, or, (ii) if most of the examples in
the training corpus with water also involve black swans. The first kind constitutes as memorization
whereas the second kind is spurious correlation. This uncoupling of memorization from spurious
correlation is particularly complicated for VLMs. Unlike generative models, VLMs as well as other
representation learning models lack decoders that can directly generate images or text; therefore,
what the model learns about its training data has to be detected more subtly.

Prior work has looked into this problem for image-only representation models [Meehan et al., 2023]
by measuring whether the model can predict the foreground of an image (e.g, black swan) beyond
simple correlations based simply on its background (e.g, water). However, such simple solutions do
not apply here. VLMs have two separate modalities – text and image, and the data sets used to train
and evaluate them are considerably more complex than the simple foreground-background structure
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Figure 1: An example where a CLIP [Radford et al., 2021] model trained on a 40M subset of a
Shutterstock data set exhibits déjà vu memorization of objects present in a training image. Public
set is a separate collection of 20M images from Shutterstock that has no overlap with the training set.
The objects annotated in orange are true positives, i.e., the ones present in the target image, and the
objects annotated in blue are false positives. Our test recovers significantly more memorized objects
for the target VLM (trained on the target image) compared to the reference VLM (not trained on the
target image). Additional qualitative examples can be found in Figure 11 in the appendix.

of ImageNet (see Figure 6 for an example). A consequence is that the image and text modalities
can interact and transfer information in these models in subtly complex ways, making measurement
significantly more challenging.

In this work, we propose a new method for measuring memorization in VLMs (depicted in Figure 1).
Given a target image caption, we use the VLM to encode the caption and retrieve relevant image
samples from a public set of images. Our test is based on the key insight that if an image-text pair is
memorized by a VLM, then the retrieved images would resemble the training image to a significantly
higher amount of detail than what is predictable from either the text caption or simple correlation.
Formally, given a text-image pair, we retrieve an image from the model based on an embedding of
its text description, and we measure what fraction of ground-truth objects in the original image also
co-occur in the retrieved image. Then, to determine whether this happens simply due to correlation,
we measure how this compares with the same statistic obtained from a similar VLM which does not
have this image-text pair in its training data. Combining these two steps gives us a measurement
method that we call VL-Déjà-Vu.

We evaluate our test on CLIP [Radford et al., 2021] models trained on subsets of Shutterstock and a
filtered version of LAION (filtered LAION) with varying number of training samples. We find that
even at training data set sizes where CLIP generalizes well, there is a significant degree of model
memorization as depicted by our metrics (see Section 4). Finally, we explore mitigation measures
that reduce information leakage in Section 5. We find that text masking significantly mitigates déjà
vu memorization at a marginal cost to the model utility. We note that there could be other effective
mitigations but were not explored due to the computational limitations.

Contributions. Our main contributions are as follows.

• We propose VL-Déjà-Vu—a new way of measuring memorization in VLMs by measuring what
fraction of ground-truth objects in an image can be predicted from its text description for a training
image-text pair.

• Based on this measurement technique, we propose both (a) an individual sample-level test to
detect memorization for individual text-image pairs and (b) an aggregate population-level test for
a Vision-Language Model.
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• We use our VL-Déjà-Vu test to evaluate memorization in CLIP, and show that memorization does
occur for VLMs trained using a number of different training set sizes and regularization parameter
values, even for settings where the model generalizes well.

• Finally, we explore mitigation measures, and demonstrate that among a number of different ways
to train CLIP, random masking of text serves to significantly reduce déjà vu memorization.

2 Background

Vision-Language models [Radford et al., 2021, Li et al., 2022, Yu et al., 2022a, Li et al., 2023, Xu
et al., 2023] are multi-modal models whose core function is to map image-text pairs into a pair of
representations that are semantically relevant. These embeddings can then be used for downstream
tasks such as image classification, captioning, retrieval and generation. VLMs are composed of a
vision block, consisting of a convolutional network or a vision transformer, and a text block, con-
sisting of a transformer, that produce image and text embeddings respectively from input image-text
pairs. Given a trained vision-language model f , and an image-text pair z = ⟨zimg, ztxt⟩, we denote
the corresponding image and text embeddings as f(zimg) and f(ztxt).

We consider VLMs that involve contrastive pre-training; in other words, during training, the model
learns to minimize the distance between the image and text embeddings of the matching pairs in the
training set Dtr while maximizing the distance of the mismatched pairs. The most commonly used
contrastive loss is the InfoNCE loss [van den Oord et al., 2018] given as follows:

L = − log
exp(f(ziimg)

⊺f(zitxt)/τ)∑
j exp(f(z

i
img)

⊺f(zjtxt)/τ)
(1)

where τ is the temperature and zj ,∀j ̸= i are negative examples to contrast against. In practice, for
each positive example zi, we use all other examples in a training batch as negative examples. The
most popular VLM of this type is CLIP (Contrastive Language-Image Pre-Training; Radford et al.
[2021]), trained on an undisclosed data set, which achieves competitive out-of-the-box performance
across many transfer learning tasks. OpenCLIP [Ilharco et al., 2021] has released an open-source
implementation of CLIP, and showed that training on a filtered LAION dataset [Schuhmann et al.,
2021] can achieve comparable performance to the original CLIP model. Our work investigates
memorization in OpenCLIP.

Memorization in ML models. It is well-known that machine learning models can memorize their
training data in ways that enable data extraction. This phenomenon has been studied for both lan-
guage [Carlini et al., 2019, 2021, Zanella-Béguelin et al., 2020, Jayaraman et al., 2022] and vi-
sion [Somepalli et al., 2023, Carlini et al., 2023, Sablayrolles et al., 2018, Meehan et al., 2023]
models. However, all these works only consider the uni-modal setting, and as such the impact of
this phenomenon is not clear in the multi-modal settings. Moreover, almost all the prior studies
(except Meehan et al. [2023]) focus on generative models – language or vision – where measuring
memorization is easier because of the presence of a decoder.

Similar to Meehan et al. [2023], we investigate the setting of representation learning models, where
we do not have a decoder and instead only have access to an encoder. Although unlike Meehan et al.
[2023], who considered vision models that capture the relationship between representation of the
background of an image (such as water) and the label of its foreground object (such as black swan),
we consider settings where the models are trained on more complex data sets that have multiple
objects in any given image. Such a simple foreground-background measurement does not directly
apply to our setting of Vision Language Models where the two modalities may leak training data
in more subtle and complicated ways. Our work builds upon their test, and extends it to VLMs. A
more detailed background discussion can be found in Appendix B.

3 Déjà vu Memorization for Vision-Language Models

Déjà vu memorization happens when a foundation model retains information about individual train-
ing data points beyond what is expected by simple correlation, and allows the recovery of such
information during inference time. An example is when an image representation learning model
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can confidently predict the foreground of a training image based simply on its background [Meehan
et al., 2023], while similar predictions cannot be made for test images.

In the context of Vision-Language Models, however, measuring déjà vu memorization is not as
simple, due to the presence of multiple modalities as well as the complex nature of the training data.
Compared to ImageNet, VLMs are trained on vastly more semantically rich data sets with many
more objects as well as complicated captions, which may not capture everything in the image – see
Figure 6 for an example. This means that the text and image modalities can interact and transfer
information in subtly complex ways, making measurement significantly more challenging.

To resolve this challenge, we instead propose to measure whether the ground truth objects in an
image can be predicted from the representation of its caption. We rely on the intuition that the
caption of an image typically does not include all its objects, and hence high confidence recovery of
this level of detail implies some form of memorization. If this prediction can be done significantly
more accurately when the image is in the training set of a model than when it is in the test, then the
image-text pair is being memorized by the said model.

Definition 1 (Déjà vu Memorization) A vision-language model f suffers from déjà vu memoriza-
tion if it retains specific information about the individual training images that allows the recovery of
objects present in the training images. In other words, for a target image-text pair z = ⟨zimg, ztxt⟩,
more unique objects can be recovered from zimg given ztxt when z is present in f ’s training set
compared to when it is not.

This is possible due to the model’s ability to encode the individual objects in the image embeddings,
which is in turn reflected in the corresponding text embeddings when the model minimizes the
contrastive loss during training. Next we will discuss how we quantify this phenomenon using two
separate models (a target and a reference) as well as a nearest neighbor test.

3.1 Measurement Methodology

Since VLMs are meant to capture general correlations between images and their text captions,
our goal is to differentiate the recovery of ground-truth objects due to déjà vu memorization from
dataset-level correlations alone. As a motivating example, consider the use of CLIP in a cross-modal
retrieval task, where images are retrieved from a web-scale database given text. We wish to capture
the degree of surprise in the retrieval result when the model memorizes training captions, i.e. how
many objects can the model recover beyond dataset-level correlation? To enable this evaluation for
a given image-text pair z = ⟨zimg, ztxt⟩, we use two separate VLMs fA and fB that are trained
on randomly sampled but disjoint data sets A and B respectively. z lies in the training set of ex-
actly one of these models, and hence by comparing the outputs of the two models, we can infer
whether z was memorized. We do a k-nearest neighbor test using a separate public set of images
as described in Algorithm 1 and find the subset of images that are closest to z in the representation
space. We then decode the objects present in these images. For this we use an object detector to
provide ground-truth annotations for measuring the precision and recall of object recovery. We note
that while there will always be some bias when using object detectors, human or automated, this
bias should not affect our evaluation when considering the gap between the two models. This is
because the object detector is not trained on the same training set as the VLM, hence any incurred
bias should be independent of the trained VLMs.

3.2 Metrics

Our memorization metrics are built bottom-up from our notion of deja vu memorization for VLMs.
We start from fine-grained sample-level metrics to more aggregate population-level metrics. The
k-nearest neighbor test in Algorithm 1 shows how to obtain predictions of the ground-truth objects
given an image; we next use these predictions to develop the population-level and sample-level
memorization metrics. For our evaluation, we adopt the precision, recall and F-score metrics from
the information retrieval literature to quantify the fraction of objects memorized by the models.

Sample-level metrics. At the sample level, we evaluate the fraction of ground-truth objects mem-
orized by the target model from a given training image–text pair z = ⟨zimg, ztxt⟩. To do this, we
run the nearest neighbor test on both the target and reference models, fA and fB , to obtain their
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Algorithm 1 k-Nearest Neighbor Test

Setup Phase
1: Sample two disjoint data sets A and B consisting of image–text pairs of the form z =

⟨zimg, ztxt⟩ and train models fA and fB on the respective data sets.
2: Sample a separate public set of images P that is disjoint from the images in A and B.
3: For each image ziimg ∈ P , obtain the corresponding image embeddings from both the models,

fA(z
i
img) and fB(z

i
img).

Testing Phase
4: Sample a record from A set, z = ⟨zimg, ztxt⟩ ∈ A, and obtain the corresponding text embed-

dings from both the models, fA(ztxt) and fB(ztxt).
5: Obtain k public images NA ⊆ P and NB ⊆ P closest to ztxt in the embedding space for fA

and fB respectively.
6: Evaluate the gap between the fraction of ground-truth objects detected in the sets NA and NB .

respective neighbor sets NA and NB as per Algorithm 1. We then calculate the precision, recall
and F-score values when identifying the ground truth objects present in zimg using NA and NB

and report the gap between the respective values for both the models. A positive gap corresponds
to the target model memorizing the training sample and the magnitude of the gap indicates the de-
gree of memorization. The precision, prec, and recall, recall, are given by the following equations
(∀i ∈ {A,B}):

prec(z, fi) =
# unique objects in Ni ∩ zimg

# unique objects in Ni
, recall(z, fi) =

# unique objects in Ni ∩ zimg

# unique objects in zimg
.

(2)
F-score is the harmonic mean of precision and recall.

Population-level metrics measure what fraction of the training data is memorized by a model.
For proper measurement, we propose three metrics: population precision gap (PPG), population
recall gap (PRG) and AUC gap (AUCG). Given the notations defined in Algorithm 1, the population
precision gap is the the fraction of data points from A where fA has a higher precision in identifying
the ground truth objects than fB minus the fraction of data points where fB has a higher precision in
identifying the ground truth objects than fA. If no memorization occurs, models fA and fB should
be interchangeable and hence this gap is zero. Formally,

PPG =
1

|A|

(
|{z ∈ A : prec(z, fA) > prec(z, fB)}| − |{z ∈ A : prec(z, fA) < prec(z, fB)}|

)
,

(3)
where |A| denotes the size of the set A and prec(z, fA) measures the precision of object prediction
on z given the model fA as defined in Equation 2. We define the population recall gap similarly:

PRG =
1

|A|

(
|{z ∈ A : recall(z, fA) > recall(z, fB)}| − |{z ∈ A : recall(z, fA) < recall(z, fB)}|

)
.

(4)

We also visualize the fine-grained cumulative recall distribution of both the models over the training
set as shown in Figure 3. This gives us a better understanding of what fraction of objects are recov-
ered overall. We then measure the difference between the two distributions (i.e., for fA and fB) to
simplify this information into a single quantity we call AUC gap.

While both the population-level and sample-level metrics rely on the precision and recall functions,
they have subtle differences. First, population-level metrics measure the aggregate memorization
over the entire training set whereas sample-level metrics measure the memorization in individual
training samples. Second, population-level metrics rely on binary tests to differentiate between the
target and reference models and as such do not capture the magnitude of the gap between the models
as is done by the sample-level metrics. We define both sets of metrics to capture the memorization
at different granular levels and to be actionable in a meaningful way, thereby allowing the model
developers to fine-tune the models to mitigate the memorization risk.
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Figure 2: Utility and déjà vu memorization of ViT-B-32 CLIP models with varying training set sizes.
Model utility is quantified in terms of ImageNet zero-shot accuracy. Population-level memorization
of models is measured using the metrics defined in Section 3.2 over various public sets (a): training
set sampled from filtered LAION and ImageNet is used as public set. (b): training set sampled
from filtered LAION and a holdout filtered LAION-50M set is used as public set. (c): training set
sampled from Shutterstock and a holdout SS-20M set is used as public set. For the memorization
metrics, we report the mean ± std values (std ≤ 0.003) over 100 repetitions of randomly sampling
10% of records with replacement.
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Figure 3: Object recall distribution of target and reference models trained on filtered LAION data
set for 200 epochs with different training sizes. ImageNet is used as the public set for kNN test.

4 Evaluating Déjà vu Memorization

We next apply the metrics designed in Section 3.1 to determine if CLIP memorizes training data.
Specifically, we seek to answer the following two research questions:

1. How does déjà vu memorization vary with training set size and number of training epochs?

2. Are all training data points memorized uniformly?

Models and datasets. We train OpenCLIP from scratch on different datasets, including Shutter-
stock (a privately licensed data set of 239M image-captions pairs) and ⟨filtered LAION [Radenovic
et al., 2023] + COCO [Lin et al., 2014]⟩. We sample up to 50M image-text pairs from the data sets
and train OpenCLIP models with ViT-B-32 architecture. For Shutterstock experiments, we consider
a separate set of 20M samples from Shutterstock (called SS-20M), with no overlap with the training
sets, as public set. For the filtered LAION experiments, we consider two public sets: (a) a separate
subset of 50M samples from filtered LAION (called filtered LAION-50M) with no overlap with
the training sets, and (b) the entire ImageNet training set [Deng et al., 2009]. More details on the
experiment setup and how we obtain data subsets can be found in Appendix C.

Model utility. As mentioned above (and also discussed in detail in Appendix C), we trained mod-
els with different training set sizes consisting of 1M/10M/50M image-text pairs from filtered LAION
and 1M/10M/40M image-text pairs from Shutterstock. We use zero-shot performance on ImageNet
to evaluate the utility of these models. Figure 2 shows the zero-shot accuracy on ImageNet. Addi-
tional utility benchmarks across various ARO (Attribution, Relation, and Order) tasks [Yuksekgonul
et al., 2023] can be found in Figure 7 in the appendix.
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(b) Records are sorted w.r.t. the decreasing number of correct object predictions for target model.

Figure 4: Sample-level memorization gap between target and reference models when predicting
top-10 objects for different top-L records. Models are trained on disjoint 10M subsets of filtered
LAION data set for 200 epochs and ImageNet public set is used for the KNN test. The model
exhibits very strong déjà vu memorization on a small subset of samples, as indicated by the large
precision/recall/F-score gaps when L is small.

4.1 Measuring Population-Level Memorization

For quantifying population-level memorization, we measure the gap between the object recall dis-
tributions for the target and reference models. If there were no memorization, we would observe
virtually no gap between the two distributions, i.e. AUCG = 0. Figure 3 shows the object recall dis-
tribution gap between the target and reference models trained on filtered LAION for varying training
set sizes when ImageNet is used as the public set. When the training set size is small (e.g. 1M as
shown in the left-most figure), there is a higher déjà vu memorization due to the models overfitting
on the training set. The gap decreases as the training set size increase from 1M up to 50M, con-
firming that the models begin to generalize better. Note that the memorization is still significant for
models trained on 10M data set. We consider this setting for further experiments as this is a typical
training set size for many foundation models in practice [Ilharco et al., 2021]. For instance, it is
common to train CLIP models on the 12M Conceptual Captions data set [Sharma et al., 2018] or the
15M subset of the YFCC data set [Thomee et al., 2016].

Apart from the AUCG (AUC gap) metric, we also quantify the gap in terms of the PPG (population
precision gap) and PRG (population recall gap) metrics. Recall that a positive value for these metrics
indicates memorization and the magnitude indicates the degree of memorization. Figure 2 shows
the PPG, PRG and AUCG metric values for models trained on filtered LAION and Shutterstock
with different training set sizes; using ImageNet and filtered LAION-50M public sets for the filtered
LAION models and SS-20M public set for the Shutterstock models. Recall that the public sets have
no overlap with the model training sets. While the absolute metric values are different for different
public sets, the trend remains the same: memorization decreases with increasing training set size as
the models begin to generalize better. In Section 5, we explore various approaches to reduce this
memorization.

4.2 Measuring Sample-Level Memorization

While the population-level metrics like AUCG, PPG and PRG show evidence of memorization, they
do not pinpoint which training images are more vulnerable. We sort the training data in decreasing
order of memorization to show the subset of most vulnerable records. To do this, we explore several
sorting metrics. The most straightforward metric is the distance between the training text embed-
ding and the nearest neighbour public image embeddings obtained using Algorithm 1. The records
for which the public image embeddings are the closest are more easily memorized by the model.

7



20 80 140 200
Training Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
et

ri
c 

Sc
or

e 0.236 0.242 0.246 0.252
Zero-Shot Accuracy

0.082
0.103

0.084 0.091
PPG0.058

0.080 0.080 0.092

PRG
0.021 0.030 0.030 0.034

AUCG

*

**

*

(a) Early Stopping

25 100 200
Temperature (T)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.217
0.252 0.248

Zero-Shot Accuracy

0.137
0.091 0.092

PPG

0.155

0.092 0.092
PRG

0.061
0.034 0.034

AUCG

*

**

*

(b) Temperature

0.03 0.1 0.3
Weight Decay (wd)

0.00

0.05

0.10

0.15

0.20

0.25

0.30
0.235

0.252
0.303

Zero-Shot Accuracy

0.094
0.091

0.085PPG
0.097

0.092

0.088PRG

0.036 0.034 0.032
AUCG

*

**

*

(c) Weight Decay

0.0 0.3 0.5
Masking Ratio (mr)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.252 0.241
0.203

Zero-Shot Accuracy

0.091

0.034
0.030PPG

0.092

0.038
0.019

PRG
0.034

0.013 0.007AUCG

*

**

*

(d) Text Masking

Figure 5: Effect of mitigation on ViT-B-32 OpenCLIP models trained on 10M subset of filtered
LAION. Memorization evaluation is done using ImageNet as public set. Default setting is high-
lighted with asterisk. For the memorization metrics, we report the mean ± std values (std ≤ 0.003)
over 100 repetitions of randomly sampling 10% of records with replacement. Among these mitiga-
tions, text masking has the best trade-off that reduces memorization without sacrificing utility.

Compared to the population-level memorization, where we keep the experiments parameter-free to
the best extent, at the sample-level we want to focus on more fine-grained leakage so we choose
top-10 object labels to measure the gap instead of predicting all the objects.

Figure 4a shows the precision, recall and F-score gaps between the target and reference models
for varying top-k records sorted with respect to this distance metric where ImageNet is used as the
public set. As shown, the gaps can be greater than 0.3 for top-1 and top-10 records. We also tried
sorting the records in the decreasing order of the number of objects correctly identified using the
target model with the nearest neighbor test. Figure 4b shows the precision, recall and F-score gaps
for the records sorted using this metric. We see that the gap can become very significant for the top-1
and top-10 records. Although this metric requires access to the ground truth labels, this is still useful
to visualize the worst case examples. Results for sample-level memorization with filtered LAION-
50M public set show a similar trend and can be found in Section D.1. Sample-level memorization
results for Shutterstock experiments can be found in Appendix E.

Key Observations. We show déjà vu memorization at both population and sample levels. At
the population-level, where we measure the aggregate memorization of model over the training
set, we find that the memorization decreases with an increase in the training set size. This could be
attributed to improved model generalization. At the sample-level, we note that the model memorizes
disproportionately—a subset of training image-text pairs are memorized more than the others.

5 Mitigation

How can we mitigate déjà vu memorization in VLMs? Since it presumably happens due to the
model overfitting on training data, it is likely that regularization techniques may be able to mitigate
it. We investigate the impact of four regularization techniques on déjà vu memorization.

1. Early stopping is a common technique for regularizing neural networks where model training
is ended prematurely. It is effective due to the observation that models begin to overfit on the
training set when they are trained for more epochs.

2. Temperature is the contrastive loss parameter that controls how close the text and image embed-
dings can get during the model training. Changing the temperature parameter has a regularization
effect for SSL as observed by Meehan et al. [2023].

3. Weight decay, also known as L2 regularization, is a standard ML regularization technique.
4. To reduce overfitting along the text and image modalities in VLMs, we look at additional regular-

ization through text randomization, where we randomly mask a fraction of the text tokens during
training. We control the fraction of text tokens masked using a masking ratio parameter.

In the following we present results when ImageNet is used as the public set for the nearest neighbor
test. Results for the filtered LAION-50M public set can be found in Section D.2. Since Shutterstock
memorization trends are similar to those of filtered LAION, we only explore filtered LAION settings
for mitigation.
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5.1 Early Stopping

It is widely believed that deep learning models begin to overfit on the training data as the number
of training epochs increases. It is thus a good practice to early stop the training as soon as the
model utility on a hold-out test set stagnates or begins to drop. However this is often not the case
for SSL models. It is not uncommon to observe that the zero-shot accuracy of SSL models keeps
improving as the models are trained for longer [Meehan et al., 2023]. Regardless, we still explore
early stopping as a mitigation mechanism. As shown in Figure 5, training the CLIP model for more
epochs leads to better zero-shot accuracy, but at the same time, déjà vu memorization also increases.
This is in line with our hypothesis above. Even when we early stop the model at 20 epochs (10%
of the default parameter value of 200 epochs), the memorization risk is not completely mitigated
although the absolute values are lower.

5.2 Temperature Scaling

Temperature, or logit scale, controls how close the text and image embeddings can get during train-
ing. Smaller values allow for the multi-modal embeddings to get closer, and as a consequence the
CLIP contrastive loss drops quickly, whereas larger values regularize the loss but may lead to train-
ing instability as noted by Radford et al. [2021]. The default value in OpenCLIP implementation
is set to 100. We vary this value between 25, 100 and 200. As shown in Figure 5, decreasing
the temperature (T ) from 100 to 25 decreases the model’s zero-shot classification accuracy on Im-
ageNet from 25.2% to 21.7% and also increases the memorization as indicated by the increase in
the PPG, PRG and AUCG metrics. This is due to the decrease in the distance between the text and
image embeddings for the training data which could potentially lead to model overfitting. Increas-
ing the temperature to 200 moderately impacts the model’s zero-shot classification accuracy and the
memorization leakage remains more or less the same.

5.3 Weight Decay

Weight decay directly controls the model overfitting, with larger values corresponding to stronger
regularization. The default value is set to 0.1 and we vary it between 0.03, 0.1 and 0.3. As expected,
decreasing the weight decay wd from 0.1 to 0.03 decreases the model’s zero-shot classification
accuracy and also worsens the leakage due to memorization as shown in Figure 5. Interestingly,
increasing the weight decay to 0.3 significantly improves the model’s zero-shot accuracy. We believe
that the default value of 0.1 is not optimal for the 10M training set size as it was set based on the
model training for larger data sizes (possibly on the entire filtered LAION data set). With 0.3 weight
decay, we observe a consistent decrease in the population memorization leakage, as shown by the
PPG, PRG and AUCG values for wd = 0.3 in Figure 5, but the values are still significantly high.
We also explored setting weight decay to 0.01 and 1.0, but they either adversely impacted the model
utility or severely increased memorization. Thus while tuning wd does not completely mitigate
memorization, we can get a reasonable trade-off in the neighbourhood of wd = 0.3.

5.4 Text Randomization

During model training, the CLIP models increase the cosine similarity between the matching image-
caption pairs while simultaneously decreasing the cosine similarity between mismatched pairs to
reduce the contrastive loss. While it is common to augment the training images to reduce overfitting,
the text captions are not randomized. This could lead to the model overfitting on the text captions
when minimizing the contrastive loss. To avoid this, we propose text randomization as a defense. For
COCO subset of the training set, we randomly choose one out of the five captions for each image
per epoch during training. For filtered LAION subset, we randomly mask a fraction of caption
tokens since only a single caption is available per image in the filtered LAION data set. We vary the
masking ratio between 0 (no masking), 0.3 and 0.5 (randomly mask half of the tokens).

We find this defense to work the best in mitigating déjà vu memorization but at the cost of ImageNet
zero-shot accuracy. As shown in Figure 5, using a masking ratio of 0.3 reduces the ImageNet zero-
shot accuracy from 25.2% (in the default case when mr = 0.0) to 24.1%, but at the same time
this significantly reduces memorization. The PPG metric reduces from 9.1% to 3.4%, and the PRG
metric reduces from 9.2% to 3.8%. Moreover, the recall CDF gap (AUCG) also reduces from 0.034
to 0.013. Further increasing the masking ratio to 0.5 mitigates the risk even more. PPG reduces to
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3.0%, PRG reduces to 1.9%, and AUCG reduces to only 0.007. However, we note that text masking
has a positive impact on ARO benchmark utility as shown in Figure 7. This is because masking
avoids overfitting on specific text tokens making the models less likely to behave like bag-of-words.
Thus text masking achieves the best utility trade-offs. We would expect a significant drop in the
model utility if we further increase mr since the captions would have considerably less information.

Key Observations. We study the impact of tuning four regularization parameters: number of
training epochs, temperature, weight decay and masking ratio. We find that early stopping reduces
memorization but at the cost of model utility. Increasing the temperature increases the model zero-
shot accuracy and decreases memorization up to a certain threshold, beyond which the model utility
begins to decrease. Surprisingly, we find that the default value of 100 already gives the optimal
results. Similar to temperature, increasing the weight decay increases the model utility and decreases
the memorization up to a certain threshold. We find 0.3 weight decay to achieve the best results for
a model trained over 10M data. We observe a sharp decrease in model utility beyond this value.
Text masking seems to be most effective in mitigating memorization. Increasing the masking ratio
decreases memorization and also decreases the model utility. Masking ratio of 0.3 achieves a good
trade-off by significantly reducing memorization while only moderately impacting the model utility.

6 Discussion

Prior works have mainly shown memorization in the uni-modal setting: either for the language
models [Carlini et al., 2019] or for vision models [Meehan et al., 2023]. We have demonstrated that
even in the complex multi-modal setting, ML models suffer from memorization. Moreover, while
prior works have only evaluated memorization for small training data sizes (typically on the scale
of 1 million or less), we show memorization on a wide scale, from 1 million to 50 million training
set size. Our experiments show that while the population-level memorization metrics decrease with
increase in the training set size, there remain strongly memorized examples as exemplified by the
sample-level memorization where the model disproportionately memorizes a subset of records.

Careful tuning of right hyper-parameters can, however, mitigate this memorization risk. We propose
a suite of metrics to quantify déjà vu memorization in hope of guiding ML practitioners to train mod-
els in a safe way. These metrics not only quantify the risk in a meaningful and interpretable manner,
but are also sensitive to the tuning of the mitigation parameters, thereby aiding the practitioners in
choosing the right model hyper-parameter values that achieve a good utility-risk trade-off.

Below we discuss some detailed discussions and limitations of our work.

Not applicable to out-of-box models. Since our tests require access to two models, target and
reference, along with the underlying training set, we note that this can not be directly applied to
measure memorization in out-of-the-box pre-trained models as there is no reference model for such
cases. We leave this case as a future work.

Distinguishing memorization from learning. A model can memorize and generalize (or learn) at
the same time. This can happen at a sub-population level, where the model memorizes rare concepts
and generalizes to common concepts, or even at a sample level, where memorization is required for
learning rare concepts as theorized in Feldman [2020]. Déjà vu memorization is meant to go beyond
this, and instead examine when a model that is trained on an image with a generic caption (i.e., they
do not describe the image in high detail), memorizes many small details about the associated image
(i.e., what objects are present in the image) when given the caption. In other words, we define déjà
vu memorization as what can be inferred about the training image from its caption beyond simple
correlations, which can happen through both learning and memorization in the traditional sense.

Extending beyond objects. While our approach is also applicable to annotations that go beyond
objects, this is not in the scope of this work. Even in this setting, the prior state-of-art approach [Mee-
han et al., 2023] only considers a single object label per image (ImageNet) and none of the prior
works consider a. multimodal setting, b. large training size sizes, and c. multiple objects per image.

Relation to Overfitting. Déjà vu memorization measures overfitting at a more granular level—
instead of a binary decision, it measures to what degree the model overfits a training sample.
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A License of the assets

A.1 License for the code

The licensing information for OpenCLIP [Ilharco et al., 2021] can be found at https:
//github.com/mlfoundations/open_clip/blob/main/LICENSE. We use the
code from Meehan et al. [2023] for memorization quantification, the licensing infor-
mation can be found at https://github.com/facebookresearch/DejaVu?tab=
License-1-ov-file#readme. For object annotations, we use Detic [Zhou et al., 2022], the li-
censing information can be found at https://github.com/facebookresearch/Detic/
blob/main/LICENSE.

A.2 License for the data sets

We use ImageNet [Yang et al., 2022] for which the license can be found at https://www.
image-net.org/download.php. We use a filtered version of LAION [Radenovic et al.,
2023] (which we call filtered LAION) for which licensing information can be found at https:
//github.com/facebookresearch/diht/blob/main/LICENSE. The licensing infor-
mation for the MS COCO data set [Lin et al., 2014] that we use can be found at https:
//cocodataset.org/#termsofuse. We also use Shutterstock data set which is a private
licensed data set consisting of 239M image-caption pairs.

B Background and Related Work

Foundation models, such as large language models, have been long known to memorize their training
data in ways that enable easy extraction. For example, a line of work [Carlini et al., 2019, 2021,
Zanella-Béguelin et al., 2020, Jayaraman et al., 2022] has shown that large language models exactly
memorize sequences of text tokens from the training data, and these text tokens can be extracted.
Somepalli et al. [2023], Carlini et al. [2023] showed that diffusion models can generate images that
are semantically and stylistically similar to training images or even their near-exact copies under
certain circumstances. However, almost all prior studies that demonstrate this kind of memorization
focus on generative models – language or vision – where measuring memorization is easier because
of the presence of a decoder. In contrast, our work is concerned with representation learning models,
where we simply have an encoder.

Sablayrolles et al. [2018] study déjà vu 1 memorization in neural networks and show that it is pos-
sible to infer whether an image or a subset of images was used in model training. Our work is also
closely related to Meehan et al. [2023], which measures déjà vu memorization in image represen-
tation models. They show that given the representation of the background of an image, (such as
water), the label of its foreground object (such as black swan) can be predicted reliably. Moreover,
this prediction is significantly more accurate for images in the training set of a model, thus showing
that the models memorize their training data beyond the bounds of spurious correlation. However,
such a simple foreground-background measurement does not directly apply to the more complex,
multi-modal Vision Language Models where the two modalities may leak training data in more
subtle and complicated ways. Our work builds upon their test, and extends it to VLMs.

Finally, there has been a body of work on empirical measurement of privacy, and broadly speaking,
there are three main kinds of attacks. In membership inference [Shokri et al., 2017], the goal is to
determine if a specific data point was used to train a model. In attribute inference [Yeom et al., 2018],
the goal is to infer unknown features or attributes of a data point based on a model trained on this or
similar points. Finally, training data reconstruction attacks [Fredrikson et al., 2015] aim to recover
one or more training data points given a model and some auxiliary information. Our work falls
within the purview of attribute inference. However, unlike most attribute inference attacks which

1We note that many prior works have used the term “déjà vu” in different contexts. Dhamija and Perrig
[2000] use this to refer to the ability of humans to recognize images, and they use it as a proxy for password-
based authentication. Sablayrolles et al. [2018] denote déjà vu to essentially mean membership inference,
where they test if a model remembers if an image was used in training. Meehan et al. [2023] refer to déjà vu as
the ability of inferring foreground objects from vision models given a background patch of pixels. We use this
term to refer to a vision–language model’s ability to recall the individual objects in the training images.
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were shown to be forms of statistical imputation [Jayaraman and Evans, 2022], our tests directly
measure how much more effective attribute inference can be when a data point is in the training set
of a model.

C Detailed Experiment Setup

For our experiments we use OpenCLIP [Ilharco et al., 2021] to train the models. For filtered LAION
experiments, we train models over subsets of filtered LAION [Radenovic et al., 2023] and MS-
COCO [Lin et al., 2014] data sets. For Shutterstock experiments, we train models over various
subsets of Shutterstock data set, a privately licensed dataset of 239M image-captions pairs.

Obtaining Data Splits. As discussed in Algorithm 1, our test requires disjoint training sets A and
B to train the models fA and fB respectively, and additionally we require a public set P , that has
no overlap with A and B, for our nearest neighbor search. Moreover, for our tests to be meaningful
we need to remove duplicate image–caption pairs otherwise the kNN test becomes trivial if the
same sample is also present in the public set and as a result we would overestimate memorization.
Conversely, if the same sample is present in both A and B sets, then it is harded to distinguish
the outputs of two models and we would underestimate memorization. This type of duplication
is common in internet-scraped data sets such as filtered LAION and Shutterstock. We perform
semantic deduplication over filtered LAION data set using the procedure of Abbas et al. [2023]
to obtain 220M deduplicated image–caption pairs. The Shutterstock data set has different type of
duplicates— multiple images are present with same verbatim captions. So we do a simpler yet
effective deduplication by considering only one unique image per caption. This reduces the overall
data set size to around 103M image-caption pairs.

- For filtered LAION experiments: To obtain the two non-overlapping training sets for filtered
LAION experiments, we sample 40K image–text pairs from COCO data set and 1M/10M/50M
image–text pairs from filtered LAION data set to form A set. We do the same from the remaining
pool of data to obtain the B set. Since the COCO part of the A and B sets is insignificant compared to
the filtered LAION portion of the sets, we only count the filtered LAION portion size for simplicity
when we say we sample 1M/10M/50M training sets. To obtain the filtered LAION-50M public set,
we sample 50M pairs from the remaining pool of deduplicated filtered LAION which has 120M
pairs (after removing the largest A and B sets from the original 220M data set). We include most
of the results on this public set in Appendix D. Since this data set may contain human faces, we
perform face-blurring on all the sets. We also take the 1.28M images from ImageNet data set [Deng
et al., 2009] and perform face-blurring to form our ImageNet public set.

- For Shutterstock experiments: We take the caption-level deduplicated data set consisting of
103M image–caption pairs and randomly split it into 40M + 40M + 20M sets. The first two 40M
sets are used to obtain the 1M/10M/40M A and B sets respectively. The last 20M set is used as the
public set. A small portion of the remaining 3M data is used as a hold-out set for hyper-parameter
tuning during model training.

Model Hyper-Parameter Settings. We use the ViT-B-32 CLIP model architecture consisting of
around 151M trainable parameters and train the models for 200 epochs using Adam [Kingma and
Ba, 2017] optimizer with cosine learning rate scheduler and a learning rate of 0.0005. For filtered
LAION experiments, we use 256 Nvidia Quadro GP100 GPUs with 16GB VRAM to train the
models in parallel with an effective batch size of 16 384. We set the weight decay to 0.1 and use
1000 warmup steps for the learning rate scheduler. For Shutterstock experiments, we use 32 Nvidia
A100 GPUs with 80GB VRAM to train the models in parallel with an effective batch size of 32 768.
We set the weight decay to 0.2 and warmup to 2000 steps. All the model training runs use 512GB
RAM and the training time scales with the data size: training on 10M data size takes around 2 days
and training on 50M data size takes around 10 days to complete. All other hyper-parameters are set
to the default value as used in OpenCLIP; we do an ablation study on the impact of temperature and
weight decay in Section 5.

Obtaining Object Annotations. For quantitative evaluation of our nearest neighbor tests, we re-
quire detailed object annotations for the A, B and P sets. Both Shutterstock and filtered LAION
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(a) ImageNet Sample.

Label:
Orchard Oriole.

(b) COCO Sample.

Caption:
Several kitchen workers making dishes
in commercial kitchen.
Labels:
Catsup Bottle, Pot, Hat, Plate, Dinner
Napkin, Finger Bowl, Soda Can, Bottle,
Dripping Pan, Cup, Work Shirt, Bowl,
Apron, Person, Belt, Pan.

Figure 6: Comparing images from ImageNet and COCO data sets. The ImageNet images only
have single label per image but COCO images have complex scenes with multiple object labels.
Additionally, COCO images have accompanying text captions. Label annotations with bounding
boxes are highlighted in blue for both the images.

data sets only have image captions and no object annotations. ImageNet originally has only one
object annotation per image, as shown in Figure 6. Hence, we use an open-source annotation tool,
called Detic [Zhou et al., 2022], to obtain multiple fine-grained object annotations per image for all
our data sets. This tool can annotate all the 21K ImageNet objects. Detic uses a default threshold
of 0.5 to identify object bounding boxes (i.e., any bounding box that has more than 0.5 confidence
is considered for annotation). For Shutterstock we use 0.3 threshold as the 0.5 threshold results in
nearly 17% images with no annotations. For all other data sets, we use the default value of 0.5.
Even though COCO has multiple object annotations, its class label space is small (i.e., only 80
unique classes). Hence we use Detic on COCO to extend its annotations and to make the label an-
notations consistent across all the data sets we use. Figure 1 shows the sample images with multiple
object annotations obtained using Detic.

Limitations in Experimental Evaluation. We find that the object annotation tool, Detic [Zhou
et al., 2022], is not always accurate. For instance, the tool often classifies a ‘polar bear’ as
‘jaguarundi’. However, our experiments rely on the relative gap in the object detection between
the target and reference models and as such are robust to these inaccuracies as long as the annota-
tions are consistent across the images. For instance, if the ‘polar bear’ is classified as ‘jaguarundi’
across all the public set images, the gap between the ‘polar bear’ detection accuracy of target and
reference models, based on our nearest neighbor test, will remain consistent. While the absolute
numbers in our quantitative tests may vary based on the object annotation tool used, our experimen-
tal observations would not change.

D Additional Results with filtered LAION-50M

In Section 4, we discussed the memorization results considering the ImageNet as the public set for
our nearest neighbor test. Here we discuss the results with a much larger filtered LAION-50M data
set as the public set. While the overall trend remains the same as with the ImageNet, with a richer
public set, we are able to achieve a larger memorization gap for our models.

D.1 Sample-Level Memorization

Similar to the sample-level evaluation for ImageNet public set in Section 4.2, we evaluate the gap
in precision, recall and F-scores of top-k records sorted with respect to the minimum embedding
distance when considering filtered LAION-50M as the public set for the nearest neighbor test. Fig-
ure 8a shows the memorization gap of the top-k records. We note a greater precision gap with top-1
nearest neighbor when compared to the case where ImageNet was used as a public set (see Fig-
ure 4a). However, the recall gap is lower with this public set. These variations could be due to the
nature of the public set— many filtered LAION images have few or no annotations. This does not
mean that the sample-level memorization risk is lower. As shown in Figure 8b, the memorization
gap is much higher for this public set when we sort the records in the decreasing order of the number
of correct predictions made by the target model using the nearest neighbor test. This corroborates
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Figure 7: ARO benchmark accuracy comparison for various models. Top figure compares the accu-
racy of various baseline models on three compositional reasoning tasks: Visual Genome Attribution,
Visual Genome Relation and COCO Order. The pretrained CLIP models are trained on 400M pri-
vate dataset, whereas our LAION and Shutterstock models are trained on smaller subsets of the
respective datasets. Our models are comparable to the pretrained CLIP models in VG Relation and
Attribution Tasks. The middle figures show the impact of temperature (left) and weight decay (right)
on the ARO accuracy for our models trained on 10M subset of filtered LAION dataset. As shown,
the default parameter values (shown by asterisk) achieve the best values for most cases. The bottom
figures show the impact of text masking on ARO accuracy for our models trained on 10M subsets
of filtered LAION (left) and Shutterstock (right) datasets. Our text masking does not deteriorate the
model utility, and in fact further boosts ARO accuracy for COCO ordering task. This is because text
masking avoids overfitting on specific text tokens. Thus, unlike the unmitigated CLIP models, the
mitigated models are less likely to behave like bag-of-words.

our population-level memorization results in Figure 2 where we find a higher memorization gap with
filtered LAION-50M public set.

D.2 Mitigation

We observe similar trends for mitigation with different regularization parameters as with the Im-
ageNet case. Figure 9 shows the impact of different parameters on the memorization. Since the
filtered LAION-50M public set is much larger than the ImageNet public set, the overall memo-
rization values are higher due to the public set nearest neighbors being more representative of the
target image, and thus capturing more objects. However, the trend remains the same. Increasing
the temperature decreases the memorization, but the default value of 100 is close to optimal as the
trade-off between memorization and model utility is the best. Increasing the weight decay improves

17



100 102 104 106

Top-L Records

0.00

0.25

0.50

0.75

1.00

Pr
ec

is
io

n 
G

ap

100 102 104 106

Top-L Records

0.00

0.25

0.50

0.75

1.00

R
ec

al
l G

ap

100 102 104 106

Top-L Records

0.00

0.25

0.50

0.75

1.00

F-
Sc

or
e 

G
ap

Top-1 NNs Top-5 NNs Top-10 NNs

(a) Records are sorted w.r.t. the minimum embedding distance between target caption and public images.
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(b) Records are sorted w.r.t. the decreasing number of correct object predictions for target model.

Figure 8: Sample-level memorization gap between target and reference models when predicting top-
10 objects for different top-L records. Models are trained on disjoint 10M subsets of filtered LAION
data set for 200 epochs and filtered LAION-50M public set is used for the KNN test.
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 (c) Text Masking

Figure 9: Effect of parameter tuning on ViT-B-32 CLIP models trained on 10M subset of filtered
LAION for 200 epochs. Memorization evaluation is done using filtered LAION-50M as public set.
Default setting is highlighted with asterisk. For the memorization metrics, we report the mean ± std
values (std ≤ 0.003) over 100 repetitions of randomly sampling 10% of records with replacement.

the model utility (indicated by the zero-shot accuracy) and decreases memorization. Weight decay
of 0.3 gives near optimal trade-offs. Further increasing wd to 1.0 results in a drastic decrease in
model utility, and thus we do not include the results. Increasing the masking ratio from 0 to 0.5
significantly reduces the memorization but at the cost of model utility. While the optimal value of
mr would depend on the application and how much tolerance on the model utility loss is acceptable,
we find that mr = 0.3 achieves a significant reduction in memorization while only moderately im-
pacting the zero-shot accuracy, as shown in Figure 9. Any further increase in mr beyond 0.5 would
greatly sacrifice the model utility and thus is not recommended.

E Additional Results with Shutterstock

Similar to the sample-level evaluation for models trained on filtered LAION data set in Section 4.2,
we evaluate the gap in precision, recall and F-scores of top-k records sorted with respect to the
minimum embedding distance for models trained on Shutterstock data set when considering SS-
20M as the public set for the nearest neighbor test. Figure 10a shows the memorization gap of
the top-k records. We note smaller precision and recall gaps for this data set. This is due to two
reasons: (a) nature of the data set— Shutterstock data set has many similar images even after we
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(a) Records are sorted w.r.t. the minimum embedding distance between target caption and public images.
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(b) Records are sorted w.r.t. the decreasing number of correct object predictions for target model.

Figure 10: Sample-level memorization gap between target and reference models when predicting
top-10 objects for different top-L records. Models are trained on disjoint 10M subsets of Shutter-
stock data set for 200 epochs and SS-20M public set is used for the KNN test.

do the caption-level deduplication (see Appendix C) so even the referece model performs well on
this data set, and (b) the model hyper-parameter settings for this training set size is possibly sub-
optimal— the model zero-shot accuracy on ImageNet seems to be the highest at 20 epochs (18.16%)
and it slightly decreases till 200 epochs (17.49%) when trained on 10M subset of Shutterstock data.
Figure 10b shows the memorization gap when we sort the records in the decreasing order of the
number of correct predictions made by the target model using the nearest neighbor test. As expected
this gap is much higher than the previous case. Overall, the trends are similar to the filtered LAION
experiments.
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Caption: A clean 
bathroom scene is 

pictured in this 
image.

k-NNs of model 
trained with T:

Detected: 11/14
Precision: 0.31
Recall: 0.79

k-NNs of model 
trained w/o T:

Detected: 6/14 
Precision: 0.18
Recall: 0.43

Target Image T

Caption: A 
sandwich is shown 
with corn chips on 

the side.

k-NNs of model 
trained with T:

Detected: 13/16
Precision: 0.26
Recall: 0.81

k-NNs of model 
trained w/o T:

Detected: 7/16 
Precision: 0.21
Recall: 0.44

Target Image T

Caption: A group of 
birds sitting on a 
wooden platform.

k-NNs of model 
trained with T:

Detected: 7/11
Precision: 0.25
Recall: 0.64

k-NNs of model 
trained w/o T:

Detected: 1/11 
Precision: 0.04
Recall: 0.09

Target Image T

Caption: a blue 
chair is in front of a 

desk

k-NNs of model 
trained with T:

Detected: 12/16
Precision: 0.32
Recall: 0.75

k-NNs of model 
trained w/o T:

Detected: 4/16 
Precision: 0.12
Recall: 0.25

Target Image T

Figure 11: Additional examples showing déjà vu memorization. Target images are from COCO
training set and the public images are from ImageNet data set. The objects annotated in orange are
true positives, i.e., the ones present in the target image, and the objects annotated in blue are false
positives.
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Caption: 100 
recreational 

activities icons set in 
simple style for any 
design illustration

k-NNs of model 
trained with T:

Detected: 47/63
Precision: 0.26
Recall: 0.75

k-NNs of model 
trained w/o T:

Detected: 13/63 
Precision: 0.43
Recall: 0.21

Target Image T

Caption: Business 
Team Concept 

UPLOAD

k-NNs of model 
trained with T:

Detected: 34/34
Precision: 0.83
Recall: 1.00

k-NNs of model 
trained w/o T:

Detected: 5/34 
Precision: 0.08
Recall: 0.15

Target Image T

Caption: People 
with drinks while 

sitting at the dining 
table

k-NNs of model 
trained with T:

Detected: 35/64
Precision: 0.20
Recall: 0.55

k-NNs of model 
trained w/o T:

Detected: 8/64 
Precision: 0.09
Recall: 0.12

Target Image T

Caption: , making 
Christmas advent 

calendar with sweets 
and activities for 

kids, DIY

k-NNs of model 
trained with T:

Detected: 51/53
Precision: 0.47
Recall: 0.96

k-NNs of model 
trained w/o T:

Detected: 17/53 
Precision: 0.17
Recall: 0.32

Target Image T

Figure 12: Additional examples showing déjà vu memorization. Target images are from Shutterstock
training set and the public images are from SS-20M public set. The objects annotated in orange are
true positives, i.e., the ones present in the target image, and the objects annotated in blue are false
positives.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction about the deja vu
memorization for VLMs are accurately reflected in the paper’s contributions. Namely,
this is the first memorization study in the VLM space and that we propose a novel way to
quantify this memorization. We also explore various mitigations and show which ones work
and which do not, although we note the fact that there could be other effective mitigations
but were not explored due to the computational limitations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mention the limitations about the number of possible mitigation strategies
explored in the work in Section 1. We also discuss the experimental limitations of our work
due to the usage of automatic object detection tool in Appendix C. Finally, in Section 6 we
mention that our work can not be directly applied to quantify memorization in out-of-box
pre-trained models as our work requires access to a reference model.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: There are no theoretical results in the paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We discuss all the model hyper-parameter settings and how we obtain the dif-
ferent data set splits for our experiments in detail in Appendix C, along with a discussion
of what computational resources were used for the experiments. We also describe how we
obtain the object annotations for all the images. We point out to which opensource repos-
itory we use for training our models. We also describe which data sets were used in our
experiments and we cite the relevant sources where possible. We made the memorization
quantification code publicly available.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.

23



(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: While the code is publicly available, the data sets used cannot be made public
due to the licensing and general nature of the data. We do cite all the relevant data sources
wherever possible so the readers can refer to those sources. Moreover, we provide all the
necessary parameter settings to replicate the results of the paper, possibly on some publicly
available licensed data sets.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We explain all the necessary training details in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
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7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For our population-level memorization metrics, we report the mean and stan-
dard deviation values over 100 repetitions of randomly sampling 10% of records with re-
placement. However, since the standard deviation is less than 0.003, these error bars are
not visible in the plots, such as Figure 2, Figure 5, and Figure 9.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We discuss all the computational resources and time taken to train the models
in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We ensure NeurIPS Code of Ethics are followed, especially with the usage
of data sets. For public data sets that contain human faces, such as filtered LAION, COCO
and ImageNet, we blur all the faces prior to training the models or for any other analysis.
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Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We demonstrate that multi-modal models can memorize the objects present in
the training images. While our intent is to make this risk more transparent to aid researchers
get a deeper understanding of the memorization issue inherent in representation learning
models, an adversary could potentially use this to launch attacks on CLIP-style models.
Although such an adversary would need non-trivial amount of background information for
a successful attack. For instance, the adversary would need at least access to two models
such that exactly one of the two is trained on a target image-text pair. They would also need
access to the underlying training data for the target model. We discuss the approaches that
are effective at mitigating this risk.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: All our models are trained from scratch and we do not release these models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original code base of OpenCLIP and Detic that we use for training
the models and object annotation respectively. We also include the licensing information
for all the code and data sets we use in Appendix A. We included the same in our code that
is publicly released.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: We released the code base which is well documented. We do not release
models or data sets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: Crowdsourcing was not used.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.
• Including this information in the supplemental material is fine, but if the main contri-

bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects were used so this is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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