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Continuous Spinning

Diverse Objects

Figure 1: Top row: Continuous rotation of a pen-like object in hand. Bottom rows: Our policy can generalize
to a diverse set of pen-like objects with different physical properties, using only proprioception as feedback.
More videos are available on our project website.

Abstract: In-hand manipulation of pen-like objects is an important skill in our
daily lives, as many tools such as hammers and screwdrivers are similarly shaped.
However, current learning-based methods struggle with this task due to a lack of
high-quality demonstrations and the significant gap between simulation and the
real world. In this work, we push the boundaries of learning-based in-hand ma-
nipulation systems by demonstrating the capability to spin pen-like objects. We
first use reinforcement learning to train an oracle policy with privileged informa-
tion and generate a high-fidelity trajectory dataset in simulation. This serves two
purposes: 1) pre-training a sensorimotor policy in simulation; 2) conducting open-
loop trajectory replay in the real world. We then fine-tune the sensorimotor policy
using these real-world trajectories to adapt it to the real world dynamics. With less
than 50 trajectories, our policy learns to rotate more than ten pen-like objects with
different physical properties for multiple revolutions. We present a comprehensive
analysis of our design choices and share the lessons learned during development.
Keywords: Dexterous In-Hand Manipulation, Pen Spinning, Sim-to-Real

1 Introduction
Dexterous in-hand manipulation is a foundational skill for various downstream manipulation tasks.
For example, one often needs to reorient a tool in hand before using it. Despite decades of active
research in this area [1, 2, 3, 4], in-hand manipulation remains a significant challenge. Manipulating
pen-like objects, in particular, is considered one of the most challenging and crucial tasks [5, 6].
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This capability is highly practical, as many tools, such as hammers and screwdrivers, have similar
shapes. Moreover, spinning pen-like objects requires dynamic balancing and sophisticated finger
coordination, making it an ideal testbed for advancing dexterous manipulation systems.

Pen spinning has been studied from several perspectives. Classic robotics works demonstrate ro-
tating wooden blocks with open-loop force control [1]. With high-speed cameras and advanced
hardware, agile pen spinning can also be achieved [6]. However, these methods rely on accurate
object models and cannot generalize to unseen objects. On the other hand, learning-based methods
hold the promise of being generalizable with large-scale data. They have indeed achieved significant
progress either with imitation learning [7, 8, 9] or sim-to-real [3, 10, 11, 12]. However, they have
only demonstrated manipulation of regular spherical or cuboid-shaped objects, and none can ex-
tend the capability to pen-like objects. We attribute this to two reasons: For teleoperation-imitation
pipeline, current teleoperation systems fail at collecting complex and dynamic demonstrations; for
sim-to-real, bridging the gap for dynamic tasks becomes substantially difficult.

In this work, we push the boundaries of learning-based in-hand manipulation systems by demon-
strating their capability to spin pen-like objects. Similar to previous approaches [10, 11, 13], we
first learn an oracle policy with privileged information using reinforcement learning in simulation.
However, when attempting to distill it into a sensorimotor policy, we find the sim-to-real gap too
large. While this gap generally exists in previous in-hand manipulation tasks [11, 13], the extreme
difficulty of spinning pen-like objects exposes the gap even further. Fine-tuning the policy with real-
world trajectories can be one way to mitigate this gap, but it is challenging to collect demonstrations
via teleoperation for this dynamic task. Inspired by recent analysis on open-loop controllers [14, 15],
we instead collect a high-fidelity trajectory dataset in simulation and use it as an open-loop con-
troller on the real robot. The successful trajectories in the real world serve as our high-quality
demonstrations. We then bridge the sim-to-real gap by fine-tuning our sensorimotor policy with
these real-world trajectories. With simulation pre-training, our sensorimotor policy has the motion
prior from diverse data and can adapt to real-world physics with fewer than 50 trajectories.

We conduct comprehensive experiments in both simulation and the real world. In simulation, we
identify the key factors that enable the oracle policy to learn the challenging pen-spinning task and
generate realistic trajectories. We then evaluate different methods of obtaining a deployable policy
in the real world. We also conduct ablation experiments showing the importance of pre-training in
simulation. We demonstrate that our policy can adapt to real-world physics with fewer than 50 real-
world trajectories. To the best of our knowledge, this is the first learning-based system to achieve
continuous spinning of pen-like objects in the real world.

2 Related Work
Classic in-hand manipulation. In-hand manipulation has been studied for decades [2, 16]. Clas-
sical methods rely on an accurate model and analytically plan a sequence of motions to control the
object. For example, Han and Trinkle [17] manipulate objects using sliding, rolling, and finger gait-
ing motions, while Bai and Liu [18] studies the collaboration of fingers and the palm. Mordatch et al.
[19] demonstrates object rotation in simulation by trajectories optimization. Li et al. [20] learns a
object-level impedance controller for both grasping and rotating objects. Open-loop manipulation
also shows surprising robustness and dexterous behavior [14, 15]. Sieler and Brock [21] uses lin-
earized feedback-control for in-hand manipulation with a soft hand. State-of-the-art systems in this
category include full SO(3) reorientation using a compliance-enabled hand [22] and an accurate
pose tracker [23]. However, most methods cannot manipulate pen-like objects due to their complex
and dynamic nature. Extrinsic dexterity [24] can also be used to achieve dynamic manipulation,
but a precise model is necessary. In contrast, our method uses human priors to build a simulator
environment but does not rely on an accurate model during deployment.

Learning-based dexterous manipulation. Learning-based methods make fewer assumptions and
hold the promise of being more generalizable as we acquire more data. Recently, significant progress
has been made in this field [3, 4]. The advancement mainly comes from two sources: 1) low-
cost and accessible teleoperation systems [7, 8, 25, 26, 27, 28, 29, 30] combined with imitation
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Figure 2: An overview of our approach. We first train an oracle policy in simulation using reinforcement
learning. This policy provides high-quality trajectory and action datasets. We use this dataset to train a student
policy and as an open-loop controller in the real world to collect successful real-world trajectories. Finally, we
fine-tune the student policy using this real-world dataset.

learning [31, 32]; and 2) reinforcement learning in simulation [33, 34] combined with sim-to-
real [10, 11, 12, 34]. However, both methods have limitations. Current teleoperation cannot support
agile and dynamic tasks such as spinning pens, due to the non-negligible communication latency and
retargeting errors. On the other hand, sim-to-real approaches demonstrate great generalization and
robustness by training policies in randomized environments. They show success in multiple fields
such as in-hand manipulation [13, 35, 36, 37, 38, 39, 40, 41], grasping [42, 43, 44], long-horizon
tasks [45], and bimanual dexterity [46, 47]. However, the gap between simulation and reality is quite
large, and some results are only limited to simulation [48, 49, 50]. Our paper distinguishes itself
from all previous work by leveraging the advantages of both fields. We use reinforcement learn-
ing in simulation to obtain high-quality demonstrations and use real-world trajectories to bridge the
sim-to-real gap.

Our work is also related to several recent works on combining real-world and simulation data. Torne
et al. [51] and Wang et al. [52] augment real-world human demonstrations by creating a simulated
environment, showing this is helpful for policy robustness. Jiang et al. [53] demonstrates that sim-
to-real policies can adapt to real-world complex dynamics with only a few human demonstrations.
Our approach also adapts policies trained in simulation to the real world using demonstrations and
utilizes simulation data to make the policy more generalizable and robust. However, since our task
is more challenging, it is difficult to collect human demonstrations or provide human feedback.
Therefore, we need to generate high-fidelity trajectories by learning a policy in simulation.

Pen spinning. The specific problem of pen spinning has also been studied extensively due to its
challenging nature and practical implications in the real world. Fearing [1] shows an open-loop
force control strategy can achieve robust finger gaiting for manipulating a long wooden block. Ishi-
hara et al. [6] and Nakatani and Yamakawa [5] demonstrate high-speed pen spinning using a high-
speed robot hand and camera. In the machine learning community, Charlesworth and Montana [54]
demonstrate promising results with RL and trajectory optimization. Ma et al. [55] uses a language
model for reward design. However, the results are limited to simulation. Bringing simulation results
to the real world is a substantially harder task. There are works that involve learning to manipulate
long objects using real-world reinforcement learning [56] or augmented with imitation [57], but it
can only do less than half a circle and no finger gaiting. In contrast, we achieve continuous pen
spinning using a learning-based approach and commercially available hardware.

3 Learning to Spin Pens

An overview of our method is shown in Figure 2. Our method consists of three steps. First, we train
an oracle policy with privileged information to generate realistic trajectories in simulation. With
these trajectories, we pre-train a sensorimotor policy in simulation. We then use these trajectories as
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an open-loop controller to generate demonstrations in the real world, which is used to fine-tune the
sensorimotor policy to adapt it to the real-world dynamics.

3.1 Oracle Policy Training

Obtaining high-quality data for pen spinning is itself a challenging task due to the dynamic and
complex movements involved. The current teleoperation system is not suitable due to the non-
negligible latency and imperfect retargeting error between the human hand and the robot hand.
Alternatively, previous work shows that reinforcement learning can synthesize complex behaviors
in simulation [54, 55]. These methods achieve fast and dynamic behavior but may violate real-world
physics and hardware constraints. In contrast, we design our approach to generate high-quality
trajectories that are realistic enough for use as an open-loop controller in the real world. This is
achieved by properly designing the input space, reward function, and initial state distributions.

Observations. The observation ot of the oracle policy f is a combination of the following quanti-
ties: joint positions qt, previous joint position target at−1, binary tactile signals ct, fingertip posi-
tions pt, the pen’s current pose and angular velocity wt, and a point cloud of the pen at the current
state ∈ R100×3. To obtain fine-grained tactile responses, we augment the sensor arrangement in [12]
to include five binary sensors on each fingertip (see Figure 5). The point cloud is obtained by trans-
forming points on the original mesh based on the current ground-truth object pose. We encode the
point cloud using PointNet [58] as in [35, 59, 60]. We stack three historical states of joint positions
and targets as inputs. We also include physical properties such as mass, center of mass, coefficient of
friction, and object size in the input [11]. The dimensions of the inputs are detailed in the appendix.

Actions. At each step, the action provided by the policy network f(ot) is a relative target position.
The position command at = ηf(ot) + at−1, where η is the action scale, is sent to the robot and it
will be converted to torque via a low-level PD controller.

Reward. The goal of the policy is to continuously rotate the pen around the z-axis. Our reward is
defined as a combination of rotation reward and a few energy penalty terms. The reward and penalty
terms follow [11, 12]. However, stable gaits do not emerge solely from this. Motivated by [54], we
propose another reward rz, a penalty regarding the height difference between the highest and the
lowest points on the pen, encouraging the robot hand to keep the pen horizontal during rotation.

In summary, our reward function is (t omitted for simplicity): r = rrot+λzrz+λenergyrenergy, where
rrot rewards the pen’s rotation velocity and renergy penalizes the object’s linear velocity, deviation
from initial joint positions, mechanical work, and torque applied (see appendix for details).

Figure 3: Visualization of canonical grasp. Inspired by
how humans spin pens, we design six canonical initial poses
used to reset the episode. These poses are keyframes where
each finger breaks and re-establishes contact.

Initial state design. Our task fundamen-
tally differs from previous work where the
object is placed on the palm [12, 13], a ta-
ble [10], or fingertip by gravity [11], where
there is natural support in those cases.
Therefore, using randomly sampled poses
does not provide meaningful exploration
in our case. We find that a proper design
of the initial state distribution is critical for
policy training. Designing initial states for
pen rotation is non-trivial because the initial grasp should be stable enough to facilitate learning
subsequent steps of motion. Moreover, exploration can be slow if we repeatedly use the same ini-
tial state upon reset. Thus, inspired by human behavior, we manually design multiple patterns of
grasping that may occur in the cycle of pen rotation (visualized in Figure 3), and then add noise to
generate and filter for a set of stable initial states.

Policy optimization. We use proximal policy optimization (PPO) [61] to train the oracle policy.
Given the state information, we use a Multi-Layer Perceptron (MLP) for both the policy and value
networks. We apply domain randomization to perception inputs, physical parameters, object prop-
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Figure 4: Learning curves for our policy and different baselines. Left: Using a well-designed initial
distribution is critical. Our method samples the initial states from six proposed canonical states with noise,
while Single Canonical Pose only samples near one canonical grasp. This has unstable training performance
and the finger gaiting does not emerge (see Figure 7 C in appendix). Right: The necessity of using visuotactile
information and privileged information during oracle policy training. We train each policy with 3 seeds.

erties, etc. An episode terminates when reset conditions are met or the agent reaches the maximum
number of steps T . We prune unnecessary explorations when the pen falls below a height threshold.

3.2 Sensorimotor Policy Pre-training

The oracle policy mentioned above can learn smooth and dynamic behavior during simulation train-
ing. However, it cannot be deployed because it requires privileged information as input, which is not
accessible in the real world. Previous works typically distill the oracle policy into a sensorimotor
policy using DAgger [62]. However, we find this approach does not work well for our pen-spinning
task. We experimented with either proprioception [11] or adding visuotactile feedback [13, 35].
While the policy with visuotactile feedback can learn reasonable behavior in simulation, the mis-
match between simulation and reality is too large for these two modalities. On the other hand,
proprioceptive feedback is the most similar and reliable sensing method between simulation and the
real world, but the proprioceptive policy cannot converge even in simulation and always drops the
object in the first few steps.

For this reason, we propose an alternative approach: we roll out the oracle policy f in simulation, in
contrast to previous work using DAgger and rolling out the sensorimotor policy [11, 35], and collect
a dataset of proprioception and actions (st,at). This dataset is used to pre-train a proprioceptive
policy in simulation. The goal of this step is to expose the sensorimotor policy to diverse training
data. Although training with such data cannot enable direct transfer to the real world due to inac-
curate dynamics, it can provide a motion prior, allowing the policy to be efficiently fine-tuned with
real-world trajectories.

Following [11], our proprioceptive policy takes 30 steps of joint positions qt−29:t and previous joint
targets at−30:t−1 as input. We use a temporal transformer similar to the one used in [35] to model
sequential features and an MLP for the policy network. Such pre-training allows our proprioceptive
policy to experience a wider range of circumstances, preventing overfitting to specific trajectories.

3.3 Fine-tuning Sensorimotor Policy with Oracle Replay

Due to the large sim-to-real gap of our task, we choose to use real-world trajectories to fine-tune
the pre-trained sensorimotor policy to adapt to real-world dynamics. However, obtaining real-world
trajectories is challenging. Our key observation is that although the oracle policy cannot be directly
distilled and zero-shot transferred to the real world, it does provide motion sequences that are dif-
ficult to generate using teleoperation. Inspired by recent work that highlights the effectiveness of
open-loop controllers for in-hand manipulation [14, 15], we use the trajectories generated by the
oracle policy as an open-loop controller in the real world.

Specifically, after training the oracle policy f , we test it in the simulation environment with different
initial poses. We select 15 trajectories from different initial poses that last longer than 800 timesteps.
We record these actions and replay them on the real robot with three training objects (Figure 6). For
each replay, we randomly select one of the 15 trajectories. If this open-loop controller can rotate
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Figure 6: Training/Test Split of Objects. We use three training objects to collect real-world trajectories. We
evaluate our policy and baselines on both training objects and unseen objects.

Training Objects Unseen Objects

Object Object A Object B Object C Object D Object E Object F Object G Object H Object I Object J

Metric RR.↑ Suc.↑ RR.↑ Suc.↑ RR.↑ Suc.↑ RR.↑ Suc.↑ RR.↑ Suc.↑ RR.↑ Suc.↑ RR.↑ Suc.↑ RR.↑ Suc.↑ RR.↑ Suc.↑ RR.↑ Suc.↑

Replay 2.80 37.62 3.37 54.29 2.65 29.52 3.83 78.21 3.44 67.09 2.47 51.49 2.93 44.35 3.53 41.51 2.65 30.99 2.56 34.38

P. Distill N.A. N.A.

V. Distill 1.85 17.65 1.57 0.00 1.70 8.33 1.57 0.00 1.57 0.00 1.57 0.00 1.57 0.00 1.57 0.00 1.57 0.00 1.57 0.00

Ours 3.43 54.93 3.38 70.00 3.62 57.55 4.10 80.65 3.50 68.18 2.71 53.33 4.47 78.02 4.63 75.79 3.64 46.60 3.49 60.47

Table 1: Comparison with different deployable systems. Oracle Replay achieves reasonable performance
but is still inferior to ours. Distillation to proprioceptive policy (P. Distill) fails to converge even during simu-
lation training. Distillation to vision policy (V. Distill) suffers from a significant sim-to-real gap. Many entries
are recorded as 1.57 for Vision Distillation due to a consistent failure mode: the thumb and index finger can
rotate the object by 90 degrees, but then the object drops. Our method achieves the best performance.

objects more than 2π in this trial, we store this trajectory in the dataset. We repeat this process until
we collect 15 trajectories per object (45 trajectories in total).

Using the learned policy to generate such trajectories has two benefits: First, it naturally provides
smoothness driven by our reward definition; Second, compared to alternative approaches such as
learning from human videos, it provides trajectory data with actions. We use this dataset to fine-tune
our proprioceptive policy π to make it adapt to real-world dynamics. Because the proprioceptive
policy has already been pre-trained in diverse simulation environments, it can adapt to the real world
with fewer than 50 trajectories.

4 Experiments
In this section, we compare our approach for pen spinning to several baselines in both simulation
and the real world. Specifically, we study 1) the critical design choices in obtaining an oracle policy
that can be replayed in the real world; 2) various techniques for sim-to-real deployment.

4.1 Experiment Setup

Figure 5: Touch sen-
sor (blue) arrangement.

Object dataset. In simulation, we only use cylindrical objects with random-
ized physical properties. During real-world behavior cloning training and
testing, we use 3 objects to collect demonstrations and for training, and 7
different objects for evaluation.

Evaluation metrics. In our simulation experiments, we evaluate the Cu-
mulative Rotation Reward and Duration (seconds) [11, 12, 13]. In the real
world, we measure the radians of rotation (RR.) over the z-axis and the suc-
cess rate (Suc.). We define success as the rate at which the policy can rotate
target objects at least 180 degrees, which typically corresponds to the policy completing one circle
of finger gaiting, where each finger completes a break and re-establishes contact.

4.2 Oracle Policy Training

The goal of the oracle policy is to generate realistic trajectories that can be used both for pre-training
the student policy and serving as an open-loop controller in the real world. We compare several
critical factors in achieving this, specifically: 1) without a well-designed initial pose distribution; 2)
without privileged information; 3) without rz .

Q1: How does the initial state distribution help policy training? We study the effect of a well-
designed initial state distribution. The results are shown in Figure 4 left. Single Canonical Pose
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Training Objects Unseen Objects

Object Object A Object B Object C Object D Object E Object F Object G Object H Object I Object J

Metric RR.↑ Suc.↑ RR.↑ Suc.↑ RR.↑ Suc.↑ RR.↑ Suc.↑ RR.↑ Suc.↑ RR.↑ Suc.↑ RR.↑ Suc.↑ RR.↑ Suc.↑ RR.↑ Suc.↑ RR.↑ Suc.↑

Only Pretrain 1.89 15.15 2.44 44.87 1.70 8.11 1.74 6.86 2.13 29.35 1.98 21.05 2.06 19.77 2.11 21.59 2.68 54.08 2.14 22.22

No Pretrain 2.62 53.66 2.34 36.84 2.29 30.00 1.92 16.53 1.88 19.61 1.90 16.42 2.09 23.86 2.15 24.72 2.92 63.22 2.41 33.70

Ours 3.43 54.93 3.38 70.00 3.62 57.55 4.10 80.65 3.50 68.18 2.71 53.33 4.47 78.02 4.63 75.79 3.64 46.60 3.49 60.47

Table 2: The effect of pre-training and fine-tuning for our method. We show both components are critical
for our method. Without pre-training, the policy tends to overfit to the limited amount of real-world trajectories.
With only pre-training, the policy does not work well because of the large sim-to-real gap.

Training Objects Unseen Objects
#Demo Object A Object B Object C Object D Object E Object F

RR.↑ Suc.↑ RR.↑ Suc.↑ RR.↑ Suc.↑ RR.↑ Suc.↑ RR.↑ Suc.↑ RR.↑ Suc.↑

No Pretrain
15 1.80 14.29 1.82 15.79 1.57 0.00 1.75 11.11 1.84 13.04 1.57 0.00
45 2.62 53.66 2.34 36.84 2.29 30.00 1.92 16.53 1.88 19.61 1.90 16.42
75 2.93 76.67 2.78 40.00 2.57 43.33 2.36 26.67 2.09 23.33 1.96 15.00

Ours 45 3.43 54.93 3.38 70.00 3.62 57.55 4.10 80.65 3.50 68.18 2.71 53.33

Table 3: We study whether having more demonstrations could substitute for simulation pre-training.
We find that although the No Pretrain baseline improves as we increase the number of demonstrations from 15
to 75, it still performs worse than our method, especially on unseen objects. This indicates that training with
much more diverse data in simulation is beneficial and can also avoid overfitting to certain objects.

samples states around one canonical hand pose, as used in [11, 35]. In contrast, our method defines
multiple canonical hand poses inspired by how humans spin pens and achieves better performance
compared to using a single canonical pose. We also emphasize that although the curve for single
canonical init does increase over time, the finger gaiting cannot emerge, and this policy cannot
escape from the local minima. We visualize the behavior in Figure 7 (c) in our appendix and find
the finger does not break contact with the object and fails to achieve more than one revolution.

Q2: How does privileged information help policy training? We study the importance of privi-
leged information in Figure 4 right. Unlike [11], the oracle policy cannot be trained only with simple
object properties such as object position. We find that without tactile feedback or a point cloud, the
policy does not achieve good enough performance. The shape of the pen is important as the policy
needs to know when to lift the fingers to spin the pen. Privileged information such as the object’s
physical properties and finger positions is also critical, without which the policy does not converge.

Q3: How does z-reward help policy training? We study the effect of z-reward rz, shown in
Figure 7 (b) in our appendix. Although the trajectories look similar to our approach at first glance,
the object gets tilted at configurations in the third and sixth sub-figure. This can barely succeed in
real-world replay. In contrast, policies trained with the z-reward rotate the pen more stably, keeping
the pen approximately horizontal, which facilitates data collection in real-world replay.

4.3 Sensorimotor Policy Training

Although the oracle policy achieves great performance in simulation, it cannot be directly deployed
in the real world. To address this issue, we use it as an open-loop controller to collect real-world
trajectories. We also pre-train a proprioceptive policy in simulation and fine-tune it using this dataset.
We compare our method with several alternatives in the real world. The results are shown in Table 1.

Q4: Is oracle replay a good enough controller? We design our oracle policy so that it achieves
decent performance in the real world (Oracle Replay). However, it still performs worse than our
method. On Training Objects A/B/C, our method achieves 15%-30% better performance in terms
of success rate. On Unseen Objects D/E/F, which are considered out-of-distribution, our method
achieves a 10% increase in the radius rotated, despite having a similar success rate. Our method also
achieves 15%-30% success rate improvements on objects I/J/K. This result demonstrates that our
method generally achieves a longer radius rotated compared to the oracle replay because it is also
pre-trained in simulation with more diverse data.
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Q5: Does distillation work for pen spinning? Previous approaches demonstrate promising results
by distilling the oracle policy into the sensorimotor policy [11, 35, 13] using DAgger. However,
this approach does not work for our dynamic and contact-rich task (Figure 1). First, we try to use
segmented depth [35] or two endpoints of the pen, and the visuotactile policy can achieve reasonable
performance in simulation. However, the sim-to-real gap is significantly larger compared to previous
works. In our real-world deployment, the objects oscillate a lot, making the image distribution far
removed from the training one. Secondly, proprioceptive feedback does not have this problem, but
using proprioception alone does not achieve good performance in simulation.

Q6: How do pre-training and fine-tuning contribute to the final performance? Our approach is
first pre-trained in simulation and then fine-tuned using real-world data. We study the contribution
of each part in Table 2. With only pre-training, the policy has limited effectiveness in the real
world. It rarely completes finger gaiting on Objects C and D, and the success rate is also low for the
remaining objects. This is mainly because the physics gap between simulation and reality becomes
more significant in our task. With only behavior cloning, the approach also does not perform well.
For this experiment, we use ACT [63] as the architecture, which is one of the best imitation learning
algorithms. It has a 50% lower rotation radius on Training Objects. On out-of-distribution objects,
the success rate drops to less than 20%, indicating that its generalization capability is limited.

Q7: Can simulation pre-training be replaced by more demonstrations? We also study whether
increasing the number of real-world demonstrations can substitute for the advantages gained from
pre-training in simulation. The results are shown in Table 3. We find that although the performance
of the No Pretraining baseline can be improved with more demonstrations, it gradually saturates
when increasing the number of demonstrations from 45 to 75. In addition, the major improvements
come from the training objects (A/B/C), while the performance on unseen objects (D/E/F) is still
far worse compared to our methods. This indicates that solely relying on real-world trajectories is
likely to overfit to certain objects.

4.4 Qualitative Experiments
In addition to the objects we present in the quantitative study, we also try more different objects for
our policy and try to push the limits on objects that are significantly out-of-distribution. Examples
are shown in our Figure 1 and our project website.

5 Conclusion and Lessons
In this paper, we present the first learning-based approach for spinning pen-like objects. Through
our extensive experiments, we share the lessons we learned as follows:

• Simulation training requires extensive design for exploration, such as the proper design of
initial distributions to aid exploration and using privileged information to facilitate policy learning.

• Sim-to-Real does not directly work for such contact-rich and highly dynamic tasks. Even when
isolating touch and vision, the pure physics sim-to-real gap remains significant and cannot be
bridged by extensive domain randomization alone.

• Simulation is still useful for exploring skills. The dynamic skill of spinning pens with a robotic
hand is nearly impossible to achieve with human teleoperation and imitation learning alone. Re-
inforcement learning in simulation is critical for exploring feasible motion.

• Only a few real-world trajectories are needed for fine-tuning. Although a proprioceptive policy
learned purely in simulation does not work directly in the real world, it can be fine-tuned to adapt
to real-world physics using only a few successful trajectories.

Limitations. We have identified several key bottlenecks of using vision and touch during sim-to-
real for this dynamic task. However, we are not stating they should not be used. Humans do not
seem to need vision to spin a pen, but touch feedback seems important. In future work, we will
explore whether using them can help further improve performance. Currently, the system is only
capable of rotating along z-axis, it is also a promising direction to extend it to general multi-axis
rotation. In addition, our work assumes the object is placed at a stable grasp position following
previous work [11, 10]. Incorporating more advanced grasping work [64] or consider chaining
different skills [45] together would make our work more general.
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(A) Our Approach. Stable Fingergaiting Emerges.

(C) Single Initial Pose. No Fingergaiting.

(B) Without z-reward. Objects are tilted at certain configurations.

Tilted Object



 
Unstable in Real

Figure 7: Importance of rz and initial state design. (a) Our policy spins the pen in a smooth and stable
manner, with the pen mostly horizontal. (b) Policies trained without the rz tend to make the pen more tilted
during rotation. This behavior is unstable and cannot be used as an open-loop controller in the real world. (c)
Initializing with a single canonical state lacks exploration and cannot learn finger gaiting.

A Additional Experiments

In Q4 of our experiment section, the initial hand / object configurations are chosen from the initial
configurations of the replay trajectory dataset. This setting brings advantage to the oracle replay
baseline. To comprehensively study the performance, we conduct new real-world experiments where
the objects are initialized at a randomly chosen stable grasp. We choose 10 random grasps, do 5
trials for each. For each random grasp, we generate the oracle replay trajectory by running the
oracle policy in the simulator and select the best trajectory among 1000 simulated environments. In
this setting, our method achieves 22.0% (from 54% to 78.0%) better success rate on object D, 36%
(from 46 to 82) on object E, and 40% (from 34% to 74%) on object F. The reason that our policy
does not drop compared to the number if Table 1 is because it has seen much more diverse data via
simulation pre-training.

B Implementation Details

B.1 Setup

Hardware setup. We use the Allegro Hand for our hardware experiments. The Allegro Hand has
four fingers, each with 4 degrees of freedom. Our neural network outputs the joint position target at
20Hz, which is sent to a low-level PD controller operating at 333Hz.

Simulation setup. We use Isaac Gym [34] for our simulation training. To obtain additional tactile
feedback for oracle policy training, we simulate 20 tactile sensors around the fingertips, with 5 on
each fingertip. We gather the contact signal from each sensor and binarize the measurement based
on a pre-defined threshold [12, 13]. In simulation, the control frequency is 20Hz and the simulation
frequency is 200Hz.
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Hyper-parameters Values

λrot 1.0
λz -1.0
λvel -0.3
λdiff -0.1
λang -0.3
λtorque -0.1
λwork -1.0

Table 4: Hyper-parameters for
the reward function.

Obs Type Dimension

qt R3×16

at−1 R3×16

ct R32

pt R4×3

wt R7

PointCloud R100×3

Table 5: Dimensions of the in-
puts of the oracle policy.

Hyper-parameters Values

# environments 48
# steps 512
# minibatches 4096
# epochs 2000
learning rate 1e-3

Table 6: Hyper-parameters for
training the student policy in
the simulation.

B.2 Training Hyper-parameters

Our reward function is a combination of rrot, rz and renergy. The energy reward consists of
rvel, rdiff , rang, rtorq, and rwork. Here, rvel penalizes the pen’s linear velocity, rdiff discourages
the hand’s pose from deviating much from its initial pose, rang penalizes the pen’s angular velocity
above a pre-defined threshold to encourage stable rotation, rtorq penalizes large torques, and rwork

penalizes the work of the controller. We follow the same definition of reward in [35]. We combine
the above rewards with weights listed in Table 4.

We detail the dimensions of the inputs of our oracle policy in Table 5. We train our oracle policy
with PPO, and the training hyper-parameters are shown in Table 7. Specifically, we train with 8192
parallel environments. Each environment gathers # steps data to train in each epoch of PPO. The data
is split into # minibatches and optimized with PPO loss. γ and λ are used for computing generalized
advantage estimate (GAE) returns. We use the Adam optimizer to train PPO and adopt the gradient
clip to stabilize training. We train 500 million agent steps in total, which takes less than one day on
a single GPU. We train our student policy with Behavior Cloning, and the training hyper-parameters
are shown in Table 6. We collect approximately 50M steps of data in total.

Hyper-parameters Values

# environments 8192
# steps 12
# minibatches 16384
# Agent Steps 500000000
γ 0.99
λ 0.95
learning rate 5e-3
clip range 0.2
entropy coefficient 0.0
kl threshold 0.02
max gradient norm 1.0

Table 7: Hyper-parameters for training the oracle policy.

B.3 Domain Randomization Parameters

The domain randomization parameters are listed in 8.

B.4 System Identification

We tune the P and D gain in the low level controller according to the following two metrics: 1)
Before we do data collection, we first replaying several finger gait trajectory without objects in-
hand. We do this for both sim and real and compare the errors between joint positions. We try to
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Parameter Range

Object Scale x[0.95, 1.05]
Mass [0.01, 0.02] kg
Center of Mass [-0.1, 0.1] cm
Coefficient of Friction (obj and fingertip) [0.3, 3.0]
External Disturbance (0.2, 0.25)
PD Controller Stiffness [2.5, 3.5]
PD Controller Damping [0.09, 0.11]
Observation Noise N(0, 0.02) (rad)
Action Noise N(0, 0.01) (rad)

Table 8: Domain Randomization Parameters. The object scale range is multiplied by the original
scale. Observation and action randomizations follow a Gaussian distribution with the specified
radius. Other randomizations are uniformly sampled from the specified range. Following [3], we
apply a random disturbance force to the object during training whose scale is 0.2m with probability
0.25 where m is the object mass.

minimize the error by tuning the P and D gains simultaneously in sim and real. 2) We also command
the sin and cos waves of each joint and observe the errors between sim and real. We also include
action noises during training so that the policy can be robust to real-world actuator noises.
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