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ABSTRACT

Recent advances in Large Language Models (LLMs) show that extending the
length of reasoning chains significantly improves performance on complex tasks.
While revealing these reasoning traces helps users better follow, verify, and learn
from the model’s problem-solving process, it also makes them highly vulnerable
to unauthorized distillation. To mitigate this risk, proprietary model providers
often adopt aggressive protection strategies, such as replacing detailed reasoning
with brief summaries, which deprive users of valuable intermediate information.
To address this trade-off, we propose PART, an information-preserving antidistil-
lation reformulation of reasoning traces. Motivated by the difference between how
humans understand reasoning traces and how LLMs exploit them for supervised
fine-tuning, we design a simple but effective two-step reformulation: removing
self-talk behaviors and reordering sub-conclusions. A small auxiliary model is
trained to perform this reformulation, incurring minimal computational overhead.
Extensive experiments demonstrate that PART consistently disrupts distillation
across student models of different sizes and types on various reasoning bench-
marks. For instance, when training on reformulated traces, even the performance
of a large 32B student model decreases from 54.17 to 46.88 on AIME 2024, cor-
responding to a 13.5% degradation.

Let me start by calculating the 

total cost from the TV ad. There 

are three payments of $29.98. 

So, I should multiply 29.98 by 

3. Let me do that: 29.98 * 3. 

Hmm, let's see.  

……

Let me calculate that. 89.94 + 

9.98. Maybe it's easier to add 

9.98 to 89.94.  Adding the 

dollars first: 89 + 9 = 98. Then 

the cents: 0.94 + 0.98 = 1.92. 

So, total is 98 + 1.92 = 99.92. 

PART ✓
Antidistillation while preserving information

Structure Level:
Reorder sub-conclusions

Token Level:
Remove self-talk behaviors

Original Traces  ✗
Vulnerable to unauthorized distillation

Summary of Traces  ✗
Loss of intermediate information

Figure 1: Overview of PART. Directly exposing original reasoning traces leaves them vulnerable
to unauthorized distillation, whereas providing only summaries deprives users of the information
contained in the reasoning process. PART introduces an information-preserving antidistillation
approach through reformulation at both the token level and the structural level.
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1 INTRODUCTION

Large language models (LLMs) have recently achieved remarkable progress in domains such as
mathematics and programming, largely driven by the use of long reasoning traces under test-time
scaling OpenAI (2024b); DeepSeek-AI et al. (2025). Beyond enhancing performance, these rea-
soning traces also allow users to gain insights into the model’s problem-solving process, thereby
improving interpretability and trustworthiness of LLMs’ response. However, exposing original rea-
soning traces makes them highly vulnerable to unauthorized distillation. It has been shown that
supervised fine-tuning (SFT) on as few as ten of thousands of reasoning traces suffices for student
models to attain comparable reasoning capabilities, leading to intellectual property leakage Huang
et al. (2024).

To mitigate this risk, existing proprietary models providers often adopt restrictive strategies to pro-
tect their reasoning traces. Common practices include either eliminating access to the reasoning
trace or only revealing a condensed summary. While such strategies could prevent distillation, they
hinder users from obtaining valuable information in reasoning traces. Recent works have explored
antidistillation by controlling the sampling process or fine-tuning the teacher model Savani et al.
(2025); Li et al. (2025c). However, these approaches either compromise the performance of the
teacher model or incur training costs for large teacher models.

To address this issue, we introduce PART, a method that defend distillation by rewriting reasoning
traces while preserving their information for human readers. The key insight of PART is that the
way models acquire reasoning ability through SFT differs from how humans comprehend reasoning
processes. Reasoning traces that are interpretable for humans may not be suitable for distillation
Chen et al. (2025). Leveraging this discrepancy, we could defend distillation while preserving in-
formation. Concretely, we reformulate reasoning traces in two steps, modifying them at both the
token level and the structural level, and we further train a small auxiliary model to perform this
reformulation with minimal computational overhead.

At the token level, different tokens contribute unequally to parameter updates during SFT: to-
kens with lower predicted probabilities induce large gradients. Our analysis of student models’
learning dynamics on teacher-generated sequences reveals that these low-probability tokens contain
many self-talk behaviors such as “Hmm,” “Wait,” and “Let’s.” While such expressions do not carry
reasoning-related information, they drive substantial loss reduction during training, acting as the
“useful tokens” discussed in prior studies Lin et al. (2024). Removing these expressions therefore
disrupt distillation without sacrificing informational content.

At the structural level, prior work has shown that the structural perturbations to reasoning traces can
significantly impact distillation Li et al. (2025a). To construct an information-preserving structural
perturbation, we exploit the difference between reasoning understanding and generation. Humans
do not require strict process-then-conclusion order to comprehend reasoning. Instead, it is com-
mon to use conclusion-before-process structures, such as presenting a lemma before its proof in
mathematics. In contrast, limited by single-step computation, it’s hard for LLMs to directly gen-
erate the correct conclusion without intermediate reasoning steps. Based on this difference, we
reorder reasoning traces by placing sub-conclusions ahead of their corresponding reasoning steps.
This reordering perturbs the structural patterns on which distillation relies, thereby weakening its
effectiveness while maintaining human interpretability.

To verify that PART effectively preserves information after reformulation, we evaluate the reformu-
lated reasoning traces produced against the original reasoning traces from three perspectives: lexical
similarity, semantic similarity, and human judgment. For lexical similarity, we segment the original
reasoning traces into fragments and compute the match ratio in the reformulated reasoning traces
using fuzzy matching. Experimental results show that across all similarity thresholds, PART con-
sistently outperforms the summary-based method. For semantic similarity, we employed Qwen3-
Embedding-4B Zhang et al. (2025) to map reasoning traces into embeddings and compute the match
ratio by using the embeddings of the original traces as queries. Results demonstrate that 90.1% of
queries matched the reformulated reasoning traces generated by PART, while only 7.3% matched
those produced by the summary-based method. Furthermore, in a user study on perceived informa-
tiveness, participants generally judged the information in PART reformulations to be comparable to
the originals, while clearly preferring PART over the summary-based method for providing richer
information.
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To evaluate the antidistillation capability of PART, we conducted experiments on student models
of different sizes and types, comparing their performance when distilled with the original reasoning
traces versus the reformulated reasoning traces. Results show that models trained on data reformu-
lated by PART suffer significant degradation across mathematics, coding, and scientific question
answering benchmarks. PART demonstrates stable effectiveness across varying model sizes and
dataset scale. Notably, even a 32B student model exhibited a performance drop from 54.17 to 46.8
on AIME 2024, corresponding to a 13.5% degradation.

The contributions of this paper are summarized as follows:

• We propose PART, a simple but effective reasoning trace reformulation method that dis-
rupts distillation while preserving information. We validate that our approach successfully
retains the information contained in the original reasoning traces from multiple perspec-
tives, including lexical similarity, semantic similarity, and human judgment.

• We conduct extensive distillation experiments and demonstrate that our method effectively
degrades the performance of distilled models across student models up to 32B parameters,
varying amounts of training data, and diverse downstream tasks.

• We will release the code and data to facilitate future research on antidistillation and reason-
ing trace reformulation.

2 METHOD

2.1 PROBLEM FORMULATION

Knowledge distillation aims to leverage a strong teacher model T to guide a lightweight student
model S, transferring the teacher’s capabilities to the student Gou et al. (2021); Xu et al. (2024). A
common approach to distilling large language models is supervised fine-tuning (SFT) on the data
generated by the teacher. The student model is optimized to maximize the log-likelihood of the
teacher’s output y conditioyned on query q:

LSFT(θS) = − 1

T

T∑
t=1

log pθS (yt | y<t, q) (1)

For reasoning models, each output sequence y = (r, a) consists of a reasoning trace r and a final
answer a. To interfere with distillation, we consider a transformation T : r 7→ r′ that rewrites the
reasoning trace. We keep the final answer unchanged, because it conveys the task outcome from
which users extract the final result. Existing proprietary models often adopt restrictive disclosure
strategies to prevent unauthorized distillation by others. For example, they omit the reasoning trace
entirely or present only a high-level summary. However, these ways cause substantial information
loss for users.

Our goal is therefore to design a transformation T that meets the following two objectives:

• Interfere with distillation. Make the distilled model SDT , which is trained on the modified
dataset DT = {(qi, T (ri), ai)}Ni=1, yield degraded downstream performance Perf(SDT ).

• Information Preservation. Ensure that the modified reasoning trace T (ri) remains human-
readable and preserves as much useful information as possible in each ri, so that it stays
interpretable and useful for human readers.

Formally, this trade-off can be posed as the constrained optimization problem:

argmin
T

Perf(SDT )

s.t. Sim(ri, T (ri)) > τ, ∀i
(2)

where Sim(ri, T (ri)) is a similarity measure between the original and rewritten reasoning trace, and
τ is a similarity threshold ensuring that r′ remains sufficiently faithful to r from a human reader’s
perspective.
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Okay , let me try to figure out

this problem . So , we have a

set of consecutive positive integers

starting from 1 , and one number

is erased . The average of the

remaining numbers is 3 5 and 7

/ 1 7 . We need to find out which

number was erased . The options

are from 6 to 9 , or cannot be

determined . Hmm .

First , let ’s parse the problem

step by step . The numbers are

consecutive starting from 1 , so it

’s like 1 , 2 , 3 , ..., n . Then

one number is removed , and the

average of the remaining numbers is

3 5 7 / 1 7 . We need to find

the erased number .

Let me recall that the average

of numbers is the total sum divided

by the number of elements . So , if

we can figure out the original sum

, the sum after removal , and how

many numbers there were originally

, we can maybe find the erased

number .

Let me denote the original set

of numbers as from 1 to n . So

the original number of terms is n

. Then one number is erased , so

the remaining numbers are n -

1 . The average of the remaining

numbers is given as 3 5 7 / 1

7 , which is a mixed number . Let

me convert that to an improper

fraction to make calculations easier

. 3 5 is the whole number , and

7 / 1 7 is the fraction . So , 3 5

* 1 7 = 5 9 5 , plus 7 is 6

0 2 . So the average is 6 0 2 /

1 7 . Let me check that : 3 5 *

1 7 = 5 9 5 , 5 9 5 + 7 =

6 0 2 , so yes , 6 0 2 / 1 7 .

So the average is 6 0 2 / 1 7 .

Therefore , the total sum of the

remaining numbers is ( n - 1 )

* ( 6 0 2 / 1 7 ). Let me write

that down :

Sum after removal = ( n - 1 )

* ( 6 0 2 / 1 7 ).

The original sum of numbers from

1 to n is the formula n (n +

1 )/ 2 . So the original sum is n

(n + 1 )/ 2 . Then , when we

remove a number x , the new sum

is n (n + 1 )/ 2 - x . Therefore

, we can set up the equation :

n (n + 1 )/ 2 - x = ( n -

1 )*( 6 0 2 / 1 7 )

Our goal is to find x , but we

need to find n first because we don

’t know how many numbers there

were originally .

So we have two variables here :

n and x . But x is a number

between 1 and n , so once

we know n , x can be found .

Therefore , we need to find n such

that both sides of the equation are

integers , since the sum of integers

must be an integer .

Let me write the equation again

:

n (n + 1 )/ 2 - x = ( n -

1 )*( 6 0 2 / 1 7 )

Let me rearr ange this equation

to solve for x :

x = n (n + 1 )/ 2 - ( n -

1 )*( 6 0 2 / 1 7 )

Hmm . Since x must be an integer

, the right -hand side must be an

integer . Therefore , the term (

n - 1 )*( 6 0 2 / 1 7 ) must

differ from n (n + 1 )/ 2 by an

integer . Let ’s see . So 6 0 2 /

1 7 is 3 5 . 4 1 1 ..., which is

a fractional number . Therefore , (

n - 1 )*( 6 0 2 / 1 7 ) must be

such that when subtract ed from n

(n + 1 )/ 2 , we get an integer

x .

Alternatively , we can multiply

both sides by 1 7 to eliminate the

denominator . Let ’s try that .

Multiply both sides by 1 7 :

1 7 x = ( 1 7 / 2 )n (n + 1

) - 6 0 2 (n - 1 )

But 1 7 / 2 n (n + 1 ) must

be an integer because the left side

is 1 7 x , which is an integer .

Therefore , n (n + 1 ) must be

even so that when multiplied by 1

7 / 2 , it gives an integer . Which

makes sense because n (n + 1 )/

2 is always an integer , since either

n or n + 1 is even . So yes , that

term is an integer . Therefore , 1

7 times x is equal to that integer

minus 6 0 2 (n - 1 ). So :

1 7 x = [ n (n + 1 )/ 2 *

1 7 ] - 6 0 2 (n - 1 )

Wait , maybe that ’s more

complicated . Let me step back

.

Original equation :

n (n + 1 )/ 2 - x = ( n -

1 )*( 6 0 2 / 1 7 )

Multiply both sides by 1 7 to

eliminate denomin ators :

1 7 *( n (n + 1 )/ 2 ) - 1

7 x = 6 0 2 *( n - 1 )

Let me compute 1 7 *( n (n

+ 1 )/ 2 ) as ( 1 7 n (n + 1

))/ 2 . So :

( 1 7 n (n + 1 ))/ 2 - 1 7

x = 6 0 2 (n - 1 )

Then , rearr anged :

1 7 x = ( 1 7 n (n + 1 ))/

2 - 6 0 2 (n - 1 )

Since the left side is 1 7 x ,

which is an integer , the right side

must also be an integer . Let ’s

look at the right -hand side .

First term : ( 1 7 n (n + 1

))/ 2 . Since n and n + 1 are

consecutive integers , one of them

is even , so n (n + 1 ) is even

, so 1 7 n (n + 1 )/ 2 is an

integer .

Second term : 6 0 2 (n - 1

). 6 0 2 is 1 7 * 3 5 + 7 ,

since 1 7 * 3 5 = 5 9 5 , 5 9

5 + 7 = 6 0 2 . Wait , 1 7 *

3 5 = 5 9 5 , so 6 0 2 is 5 9

5 + 7 , which is 1 7 * 3 5 +

7 . So 6 0 2 is not divisible by

1 7 . Let me check : 1 7 * 3

5 = 5 9 5 , 6 0 2 - 5 9 5 =

7 , so yes , 6 0 2 = 1 7 * 3 5

+ 7 . Therefore , 6 0 2 is not

a multiple of 1 7 . Therefore ,

6 0 2 (n - 1 ) is not necessarily

a multiple of 1 7 . Therefore ,

when we subtract 6 0 2 (n - 1 )

from ( 1 7 n (n + 1 ))/ 2 , the

result must be a multiple of 1 7

, because 1 7 x is 1 7 times an

integer .

Therefore , the right -hand side

must be divisible by 1 7 . Let me

write that :

( 1 7 n (n + 1 ))/ 2 - 6 0 2

(n - 1 ) â̄ı ¡ 0 mod 1 7

Let ’s compute this modulo 1

7 . First , 1 7 n (n + 1 )/ 2 â̄ı

¡ 0 mod 1 7 , because 1 7 is

a factor . So that term is 0 mod

1 7 . Then , the second term is

6 0 2 (n - 1 ). But 6 0 2 mod

1 7 : let ’s compute 1 7 * 3 5

= 5 9 5 , so 6 0 2 - 5 9 5 =

7 , so 6 0 2 â̄ı ¡ 7 mod 1 7 .

Therefore , 6 0 2 (n - 1 ) â̄ı ¡ 7

(n - 1 ) mod 1 7 . Therefore , the

entire right -hand side modulo 1 7

is 0 - 7 (n - 1 ) â̄ı ¡ - 7 (n - 1

) mod 1 7 . Since the right -hand

side must be â̄ı ¡ 0 mod 1 7 , we

have :

- 7 (n - 1 ) â̄ı ¡ 0 mod 1 7 ẫıĴ

7 (n - 1 ) â̄ı ¡ 0 mod 1 7 ẫıĴ 7

(n - 1 ) â̄ı ¡ 0 mod 1 7

Since 7 and 1 7 are cop r ime ,

this implies that ( n - 1 ) â̄ı ¡ 0

mod 1 7 ẫıĴ n - 1 â̄ı ¡ 0 mod 1 7

ẫıĴ n â̄ı ¡ 1 mod 1 7 . Therefore

, n must be congr uent to 1

modulo 1 7 , which means n = 1

7 k + 1 for some integer k .

Therefore , n is of the form 1

7 k + 1 . So possible values of n

are 1 , 1 8 , 3 5 , 5 2 ,...

But let ’s think about the original

problem . The average after

removing a number is 3 5 7

/ 1 7 , which is approximately

3 5 . 4 1 . The original average

of numbers from 1 to n is ( n

+ 1 )/ 2 . Since after removing a

number , the average is 3 5 . 4 1

, the original average must be close

to that . So ( n + 1 )/ 2 â̄ı Ī 3

5 . 4 1 . Therefore , n + 1 â̄ı Ī

7 0 . 8 2 , so n â̄ı̄I 6 9 . 8 2 .

So n is approximately 7 0 . But

since n must be of the form 1 7

k + 1 , the closest numbers would

be 1 7 * 4 + 1 = 6 9 , 1 7

* 5 + 1 = 8 6 . Wait , 1 7 *

4 = 6 8 , 6 8 + 1 = 6 9 , 1

7 * 5 = 8 5 , 8 5 + 1 = 8 6

. Hmm , 6 9 is 1 7 * 4 + 1 ,

which is 6 9 , and 8 6 is 1 7

* 5 + 1 . But our approximate n

is around 7 0 . So n = 6 9 or n

= 8 6 . But let ’s check .

Wait , let ’s compute ( n + 1

)/ 2 â̄ı Ī 3 5 . 4 1 . Therefore ,

n â̄ı̄I 3 5 . 4 1 * 2 - 1 â̄ı̄I 7 0

. 8 2 - 1 â̄ı̄I 6 9 . 8 2 . So n is

approximately 7 0 . Since n must

be 1 7 k + 1 , 6 9 is 1 7 *

4 + 1 = 6 9 , and 8 6 is 1 7

* 5 + 1 = 8 6 . So 6 9 is closer

to 7 0 . So possible candidates

are 6 9 and 8 6 . Let ’s check

both .

First , let ’s test n = 6 9 . If

n = 6 9 , then the original sum is

6 9 * 7 0 / 2 = 6 9 * 3 5 =

2 4 1 5 . Then , after removing a

number x , the sum becomes 2 4

1 5 - x , and the number of terms

is 6 8 . The average is ( 2 4 1 5

- x )/ 6 8 = 3 5 7 / 1 7 . Let

’s compute 3 5 7 / 1 7 as a

fraction : 3 5 * 1 7 + 7 = 5 9

5 + 7 = 6 0 2 . So 6 0 2 / 1

7 . Therefore , ( 2 4 1 5 - x )/ 6

8 = 6 0 2 / 1 7 . Multiply both

sides by 6 8 :

2 4 1 5 - x = 6 0 2 / 1 7 *

6 8 = 6 0 2 * 4 = 2 4 0 8

Therefore , 2 4 1 5 - x = 2 4

0 8 ẫıĴ x = 2 4 1 5 - 2 4 0 8 =

7 . So x = 7 . Hmm , 7 is one

of the options , option B . So that

’s a possible answer .

Wait , but let ’s check if n =

8 6 also gives an integer x . Let ’s

see . If n = 8 6 , original sum is

8 6 * 8 7 / 2 = 8 6 * 4 3 . 5

= 3 7 4 1 . Then , after removing

x , the number of terms is 8 5

. The average is 6 0 2 / 1 7 .

Therefore , ( 3 7 4 1 - x )/ 8 5

= 6 0 2 / 1 7 . Multiply both

sides by 8 5 :

3 7 4 1 - x = 6 0 2 / 1 7 *

8 5 = 6 0 2 * 5 = 3 0 1 0

Therefore , 3 7 4 1 - x = 3 0

1 0 ẫıĴ x = 3 7 4 1 - 3 0 1 0

= 7 3 1 . But 7 3 1 is way

larger than 8 6 , which is the

original maximum number . Since

the numbers are from 1 to 8 6

, x can ’t be 7 3 1 . So that ’s

impossible . Therefore , n = 8 6 is

invalid . Thus , the only possible

n is 6 9 , and x = 7 . So the

answer is B ) 7 .

Wait , but let me verify this again

. Let ’s check with n = 6 9 .

Original numbers 1 to 6 9 .

Remove 7 . Then the sum is 2

4 1 5 - 7 = 2 4 0 8 . Number of

terms is 6 8 . So average is 2 4

0 8 / 6 8 . Let ’s compute that

. 2 4 0 8 Ã · 6 8 . Let ’s

divide numerator and denominator

by 4 : 2 4 0 8 Ã · 4 = 6 0 2

, 6 8 Ã · 4 = 1 7 . So 6 0 2

/ 1 7 = 3 5 . 4 1 1 ..., which is

3 5 7 / 1 7 . So that ’s correct .

Therefore , the answer is 7 .

So option B .

But wait , let me check if there

are any other possible n . The next

one after 8 6 is 1 7 * 6 + 1

= 1 0 3 . Let ’s check n = 1 0

3 . Original sum 1 0 3 * 1 0 4

/ 2 = 1 0 3 * 5 2 = 5 3 5 6 .

After removing x , number of terms

= 1 0 2 . So average is ( 5 3 5

6 - x )/ 1 0 2 = 6 0 2 / 1 7 .

Multiply both sides by 1 0 2 :

5 3 5 6 - x = 6 0 2 / 1 7 *

1 0 2 = 6 0 2 * 6 = 3 6 1 2

Thus , 5 3 5 6 - x = 3 6 1

2 ẫıĴ x = 5 3 5 6 - 3 6 1 2 =

1 7 4 4 . Again , x = 1 7 4 4

, which is way larger than 1 0

3 . Impossible . So n = 1 0 3 is

invalid . Similarly , higher n will

result in even larger x , which is

impossible . So the only valid n is

6 9 , giving x = 7 .

Therefore , the answer is 7 .

Option B .

But just to be thorough , let ’s

make sure that n = 1 7 k + 1 is

the only possible form . Earlier ,

we concluded that n â̄ı ¡ 1 mod

1 7 . So n = 1 7 k + 1 . So

possible n ’s are 1 , 1 8 , 3 5 ,

5 2 , 6 9 , 8 6 ,...

But n = 1 : If n = 1 , then we

have only the number 1 . If we

erase it , there are zero numbers

left , which can ’t have an average

. So invalid .

n = 1 8 : Let ’s check n = 1

8 . Original sum 1 8 * 1 9 / 2

= 1 7 1 . After removing x , sum

is 1 7 1 - x , number of terms

is 1 7 . The average is ( 1 7 1

- x )/ 1 7 = 3 5 7 / 1 7 = 6

0 2 / 1 7 â̄ı̄I 3 5 . 4 1 1 . Let

’s compute ( 1 7 1 - x )/ 1 7

= 6 0 2 / 1 7 . Multiply both

sides by 1 7 : 1 7 1 - x = 6 0

2 ẫıĴ x = 1 7 1 - 6 0 2 = - 4

3 1 . Negative number , which is

impossible . So invalid .

n = 3 5 : Let ’s check n = 3

5 . Original sum 3 5 * 3 6 / 2

= 6 3 0 . After removing x , sum

is 6 3 0 - x , number of terms

= 3 4 . Average is ( 6 3 0 - x

)/ 3 4 = 6 0 2 / 1 7 . Multiply

both sides by 3 4 : 6 3 0 - x =

6 0 2 * 2 = 1 2 0 4 ẫıĴ x = 6 3

0 - 1 2 0 4 = - 5 7 4 . Again ,

negative . Impossible .

n = 5 2 : Original sum 5 2

* 5 3 / 2 = 1 3 7 8 . After

removing x , number of terms =

5 1 . Average ( 1 3 7 8 - x )/ 5

1 = 6 0 2 / 1 7 . Multiply both

sides by 5 1 : 1 3 7 8 - x = 6

0 2 * 3 = 1 8 0 6 ẫıĴ x = 1 3 7

8 - 1 8 0 6 = - 4 2 8 . Negative

. Not possible .

So n = 6 9 is the first valid one .

Hence , the answer is 7 . So the

erased number is 7 , option B .

** Final Answer **
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Figure 2: Predicted probabilities of the student model on teacher-generated reasoning traces. (a)
Visualization of token-level predicted probabilities, where deeper red indicates lower probabilities.
Teacher-generated traces exhibit frequent self-talk behaviors, which conveys little reasoning con-
tent yet receives low probabilities. (b) Tracking the probabilities of self-talk-behavior tokens across
training stages reveals that they remain persistently lower than the average probabilities, suggesting
that these semantically uninformative expressions exert disproportionate influence on gradient up-
dates.

2.2 REASONING TRACE REFORMULATION

To construct an information-preserving antidistillation reformulation method, the key lies in identi-
fying the differences between how LLMs learn reasoning through SFT and how humans comprehend
reasoning traces. Prior studies have shown that reasoning traces that are easily understood by hu-
mans are not necessarily suitable for distillation; in fact, manually annotated chain-of-thought data
sometimes perform poorly in distillation Chen et al. (2025). Leveraging this discrepancy, we design
a reformulation method from two complementary perspectives: the token level and the structural
level.

1. Removing self-talk behaviors

At the token level, we first analyze how different tokens contribute to the SFT from the gradient
perspective. For a single time step t, yt denotes the ground-truth token at position t, and define the
logits vector is denoted as z(t) ∈ RV over the vocabulary of size V . The token-level loss is

L(t)(θ) = − log p(t)yt
= − log(

ez
(t)
i∑V

j=1 e
z
(t)
j

). (3)

The gradient of this loss with respect to the logits is

∇z(t)L(t) = p(t) − eyt , (4)

where eyt is the one-hot indicator vector for the target token.

The squared ℓ2-norm of the gradient vector is∥∥∇z(t)L(t)
∥∥2
2
=

V∑
i=1

(
p
(t)
i − eyt,i

)2

=

V∑
i=1

(p
(t)
i )2 + 1− 2p(t)yt

(5)

This expression reveals a direct dependence on the predicted probability of the correct token p
(t)
yt .

When p
(t)
yt → 1, the gradient approaches zero. When p

(t)
yt is small, the gradient norm grows and

signals a strong update. This indicates that tokens that the model already predicts with high confi-
dence contribute negligible gradients and quickly fade from influencing optimization. In contrast,
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low-probability (i.e., poorly predicted) tokens dominate the effective training signal, guiding the
model to adjust its parameters toward correcting these mistakes.

Based on the analysis, we examine the predicted probabilities of the student model on teacher-
generated reasoning traces. Figure 2(a) visualizes the predicted probabilities on a segment of
a teacher-generated trace, where deeper red indicates lower probabilities. We observe that low-
probability tokens contain many self-talk behaviors, a phenomenon where the model often speaks in
the first person and employs colloquial expressions such as “hmm” and “wait”. These expressions
contain little information relevant to reasoning. However, the student model assigns low probabili-
ties to such tokens, which results in large gradient.

We further track the predicted probabilities of representative tokens like “Hmm” and “Wait” across
different training stages. As shown in Figure 2(b), these tokens exhibit persistently lower probabil-
ities than the average token, which implies that such semantically uninformative expressions exert
disproportionate influence during parameter updates. Previous studies have also explored the dif-
ferent influence of tokens during training. Lin et al. (2024) identified distinct loss patterns across
tokens in pretraining: some tokens consistently maintain high or low loss, while only a subset ex-
hibits significant loss reduction and are regarded as useful tokens. Tokens associated with self-talk
behaviors demonstrate a similar pattern, indicating their impact on training.

To leverage this, we rewrite the reasoning traces to remove self-talk behaviors. This modification
incurs negligible information loss, while deliberately perturbing the gradients associated with low-
probability tokens, thereby affecting the distillation process.

2. Reordering the sub-conclusions

At the sequence level, LLMs learn to imitate the overall logical structure of reasoning traces in
order to perform reasoning. Li et al. (2025a) demonstrates that structural perturbations to reasoning
traces have a substantial impact on the performance of distilled models. However, their methods
focused on operations such as randomly shuffling or deleting steps, or inserting irrelevant steps,
which severely compromise human readability.

To design a form of structural perturbation that preserves readability for humans, we exploit the
difference between generating a reasoning process and understanding a reasoning process. During
reasoning, generation proceeds in a strictly sequential manner: the model must first produce in-
termediate steps before reaching the conclusion. In contrast, comprehension does not require this
order; humans often prefer presenting the conclusion first, followed by the supporting process. For
example, in mathematical reasoning, lemmas are often stated prior to their proofs, and in academic
writing, abstracts precede detailed methods and results. This conclusion-before-process structure
can even enhance human understanding of reasoning.

For LLMs, since the computational capacity per step is bounded, LLMs without chain-of-thought
can only solve problems of limited complexity Li et al. (2024). This limitation makes it difficult for
an LLM to distill reasoning traces with conclusion-before-process order, which breaks the chain-of-
thought structure and makes the model struggle to directly generate correct conclusions.

Leveraging this asymmetry, we rewrite reasoning traces by reordering them into a conclusion-
before-process structure. Specifically, we prompt GPT-4o OpenAI (2024a) to reformulate reasoning
traces in a chain-of-thought style, where sub-conclusions are first summarized and then placed be-
fore their associated reasoning steps.

2.3 TRAINING A COMPACT REFORMULATION MODEL

In practical applications, it is desirable to minimize the cost of reformulation so as to mitigating its
impact on the inference service.. To this end, we train a compact model for reformulation. Each orig-
inal reasoning trace is divided into multiple segments, which are reformulated individually and then
concatenated back into a complete trace. We fine-tune Qwen2.5-1.5B-Instruct Qwen et al. (2025)
using paired data consisting of original reasoning traces and their rewritten counterparts generated
by GPT-4o. Compared with advanced reasoning models such as DeepSeek-R1, the reformulation
model introduces less than 1% additional parameters and incurs only about 4% extra computational
overhead.
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Figure 3: (a) Match ratios under different lexical similarity score thresholds. PART achieves sig-
nificant higher match ratios than the summary-based method at both step and sentence levels. (b)
Human judgment about informativeness. Compared to original reasoning traces, PART is judged
similarly informative; compared to the summary-based reformulation, PART is clearly preferred in
terms of the informativeness.

Appendix E is an example of reformulation generated by our compact reformulation model. Despite
its relatively small size, the model effectively accomplishes the reformulation task, successfully
performing removal and reordering while preserving the information. In Section 4.3, we present a
quantitative evaluation of the reformulation model, demonstrating its ability to achieve both antidis-
tillation with information preservation.

3 QUALITY OF REFORMULATED REASONING TRACES

When reformulating reasoning traces to defend distillation, it is necessary not only to ensure the
impact on the performance of distilled models but also to maintain the quality of the reformulated
traces. In extreme cases, completely nonsensical reasoning traces would indeed prevent successful
distillation, but they would also be unreadable to users and thus fail to convey any useful information.
To this end, we evaluate the quality of reformulated reasoning traces using three complementary
approaches: lexical similarity, semantic similarity, and human judgment. We compare the quality of
traces reformulated by PART with that of the original traces and segment-level summaries. These
methods verify that our reformulations can disrupt distillation while still preserving the essential
information of the original reasoning traces, thereby ensuring usability for users.

3.1 LEXICAL SIMILARITY

A straightforward way to compare the lexical similarity between the original and reformulated rea-
soning traces is to perform fuzzy matching at the segment level. Specifically, we split the original
reasoning trace into sentences or steps and check whether they can be successfully matched within
the reformulated reasoning trace. We employ the partial ratio alignment function from
the RapidFuzz library to calculate the similarity score, which first performs substring matching
and then computes the normalized Indel similarity based on edit distance.

As shown in Figure 3(a), we compute the match ratio under different similarity score thresholds.
Whether the matching is conducted at the step or sentence level, PART exhibits a remarkably high
match ratio, substantially surpassing summary-based approaches across different thresholds. Exam-
ples of matched text pairs under different thresholds are shown in Appendix F. At a threshold of 0.7,
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PART achieved a match ratio of 91%, whereas the summary-based method achieved only 18%. This
indicates that PART is able to interfere with distillation through only minimal textual modifications.

3.2 SEMANTIC SIMILARITY

To compare the semantic similarity of reasoning traces, we employed Qwen3-Embedding-4B Zhang
et al. (2025) to map reasoning traces into text embedding, under the assumption that semantically
closer reasoning traces should yield higher embedding similarity. We treated the original reasoning
traces as queries, and the reformulated reasoning traces produced by PART and the summary-based
approach as candidate documents.

Experimental results show that 97.4% of queries successfully matched their corresponding reformu-
lated reasoning traces. Specifically, 90.1% of queries matched the reasoning traces reformulated by
PART, whereas only 7.3% matched those reformulated by the summary-based method. Moreover,
the average cosine similarity between the original reasoning traces and those reformulated by PART
reached 0.950, compared to 0.889 for the summary-based method. These results demonstrate that
PART achieves superior semantic similarity to the original reasoning traces.

3.3 HUMAN JUDGMENT

To assess user perceptions of reformulated reasoning traces, we conducted a questionnaire study
on their perceived informativeness. We sampled 50 original reasoning traces, each paired with
two reformulated versions: one generated by PART and one by a summary-based method. Each
participant evaluated four pairs of traces, indicating their preference (“A is better,” “B is better,” or
“Tie”). Two pairs compared original traces with those reformulated by PART, and the other two
compared summary-based reformulations with those from PART.

We collected 31 completed questionnaires, from which we obtained 124 comparisons. As shown
in Figure 3(b), when comparing reasoning traces produced by PART with the original traces, most
participants judged the information content to be comparable. In contrast, when comparing PART
with the summary-based method, participants showed a clear preference for PART in terms of the
richness of information provided.

4 EXPERIMENTS

4.1 SETUP

To assess the impact of our reasoning trace reformulation method on the effectiveness of distillation,
we distill student models using both the original reasoning traces and the rewritten reasoning traces,
and compare their performance.

Training Setup. We experiment with student models of different sizes and families. Specifically,
we follow DeepSeek-R1 DeepSeek-AI et al. (2025) in selecting the base models: Qwen2.5-Math-
1.5B, Qwen2.5-Math-7B Yang et al. (2024), Qwen2.5-14B, Qwen2.5-32B Qwen et al. (2025). In
addition, we also examine distillation with an instruct model as the student model, for which we use
Qwen2.5-7B-Instruct. Since the Qwen2.5-Math models only support a maximum context length of
4K tokens, we extend their context window by setting the rope theta parameter to 1,000,000
following Liu et al. (2025). For distillation data, we use the Bespoke-Stratos-17k Labs (2025) and
OpenThoughts-114k datasets Guha et al. (2025). We adopt the Llama-Factory Zheng et al. (2024)
framework to perform SFT.

Evaluation Setup. For evaluation, we evaluate the distilled models on MATH-500 Hendrycks
et al. (2021); Lightman et al. (2023), AIME 2024 MAA (2024), LiveCodeBench v2 Jain et al. (2024),
and GPQA-Diamond Rein et al. (2023), covering tasks in mathematical reasoning, code generation,
and scientific question answering. To obtain more reliable estimates of pass@1 accuracy, we sample
multiple responses per query, thereby reducing variance in the results.
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Table 1: Performance of distilled models on various benchmarks. “MATH500” refers to MATH-500,
“AIME24” to AIME 2024, “LCBv2” to LiveCodeBench v2, and “GPQA-D” to GPQA-Diamond.
More negative values of ∆ indicate stronger antidistillation effects.

Student Model Data MATH500 AIME24 LCBv2 GPQA-D Average

Training Data: Bespoke-Stratos-17k

Qwen2.5-Math-1.5B original 72.55 15.00 12.23 29.80 32.40
PART 59.05 8.75 9.88 25.88 25.89
∆ -13.50 -6.25 -2.35 -3.92 -6.51

Qwen2.5-Math-7B original 88.95 32.71 34.88 43.18 49.93
PART 80.00 22.08 28.96 38.00 42.26
∆ -8.95 -10.63 -5.92 -5.18 -7.67

Qwen2.5-14B original 90.60 43.75 55.58 53.28 60.80
PART 82.25 25.83 43.98 46.97 49.76
∆ -8.35 -17.92 -11.60 -6.31 -11.05

Qwen2.5-32B original 92.65 54.17 70.99 61.24 69.76
PART 89.65 46.88 62.38 55.68 63.65
∆ -3.00 -7.29 -8.61 -5.56 -6.12

Qwen2.5-7B-Instruct original 83.05 21.04 36.64 43.31 46.01
PART 70.85 12.29 27.84 32.32 35.83
∆ -12.20 -8.75 -8.80 -10.99 -10.19

Training Data: OpenThoughts-114k
Qwen2.5-Math-7B original 90.40 46.67 41.98 45.20 56.06

PART 78.50 28.54 30.87 36.49 43.60
∆ -11.90 -18.13 -11.11 -8.71 -12.46

4.2 RESULTS

Table 1 reports the performance of distilled models across different benchmarks. It shows that,
regardless of student model size or benchmark, PART consistently leads to a significant degradation
in the performance of distilled models, thereby providing an effective defense against distillation.
For example, even the performance of a large 32B student model decreases from 54.17 to 46.88 on
AIME 2024, corresponding to a 13.5% degradation.

For the student model in reasoning distillation, some studies adopt a base model DeepSeek-AI et al.
(2025); Liu et al. (2025), while others use an instruct model Labs (2025). We conduct experiments
on both choices of student models. When using Qwen2.5-Math-7B as the student model, the average
score decreases by 7.67. When using Qwen2.5-7B-Instruct as the student model, the score decreases
by 10.19. This demonstrates that PART is effective against different types of student models.

4.3 EFFECTIVENESS OF THE REFORMULATION MODEL

To evaluate the generalization capability of the reformulation model, We trained a 1.5B reformula-
tion model on reformulated data generated by GPT-4o using the Bespoke-Stratos-17k dataset and
applied it to reformulate OpenThoughts-114k. As shown in Table 1, the reasoning traces produced
by this small reformulation model also effectively defend against distillation: student models dis-
tilled on the reformulated data exhibit significant performance degradation.

We further evaluated the quality of traces generated by the reformulation model. For lexical sim-
ilarity, the match ratio reached 88% under a threshold of 0.7. For semantic similarity, the average
cosine similarity was 0.94. These similarity metrics are close to those obtained with GPT-4o refor-
mulations and substantially higher than those of the summary-based method. This demonstrates that
our reformulation model is also effective in preserving information during reformulation.
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Figure 4: Performance comparison (a) across different student model sizes and (b) across different
data scales of distilled models trained on original versus reformulated traces. Across both factors,
PART leads to consistent performance degradation of the distilled models, demonstrating its effec-
tiveness as an antidistillation approach.

4.4 DETECTABILITY

An additional property of PART is detectability. Similar to LLM watermarking, models distilled
on PART-reformulated data can be readily distinguished from those trained on original reasoning
traces. Due to the removal of self-talk behaviors, the distributional patterns of the data undergo sig-
nificant changes. We computed the term frequency of keywords related to self-talk behaviors: in the
original traces, the average frequency of such keywords reached 2.9%, whereas in the reformulated
traces it dropped to only 0.4%. Leveraging this substantial discrepancy, even a simple classifier
based on a term-frequency threshold is sufficient to achieve separation, yielding an F1 score of 0.93
and a true-positive rate of 88.3% at a 1% false-positive rate (TPR@FPR).

4.5 ROBUSTNESS TO DATA SCALE

To evaluate the effectiveness of PART under varying amounts of training data, we sampled subsets
of different sizes from the OpenThoughts-114K dataset and its corresponding reformulated traces.
As shown in Figure 4(b), PART consistently led to a significant degradation in distilled model
performance across different data scales. Notably, models trained on a large number of reformulated
traces still underperformed compared to those trained on only a smaller number of original traces.
This finding indicates that it is costly to collect more data to offset the impact of PART.

5 CONCLUSION

We presented PART, an information-preserving reformulation of reasoning traces for antidistil-
lation. Leveraging the difference between how humans comprehend reasoning process and how
LLMs acquire reasoning ability via supervised fine-tuning, PART applies two simple but effec-
tive steps: removing self-talk tokens and reorder sub-conclusions before their supporting process.
Across lexical, semantic, and human-judgment evaluations, PART retains the information of origi-
nal traces, substantially outperforming summary-based method. Distillation experiments show con-
sistent degradation for student models trained on reformulated traces across various benchmarks,
robust to model size and data scale. Overall, PART offers a practical method to balance inter-
pretability with protection of model intellectual property.
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6 ETHICS STATEMENT

This study involved the collection of human responses through questionnaires. All participants
provided data voluntarily, and no personally identifiable or sensitive information was collected. The
survey was designed to ensure anonymity and privacy, and all responses were analyzed in aggregate
form only.

7 REPRODUCIBILITY STATEMENT

To help with reproducibility, we introduce our training and evaluation setup in Section 4.1 and
hyperparameters in Appendix D. Prompts used in experiments are shown in Appendix C. We commit
to release our code and data soon after the conference.
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A THE USE OF LARGE LANGUAGE MODELS

In paper writing, we use Large Language Models to polish writing. In experiments, we use Large
Language Models both as our research subjects and as tools to generate training data.

B RELATED WORK

Reasoning Distillation With the success of test-time scaling OpenAI (2024b); DeepSeek-AI et al.
(2025); Team (2025), an increasing number of studies have focused on distilling reasoning ability
into smaller models. O1 Journey demonstrates that a base model fine-tuned on only tens of thousands
of reasoning traces can outperform O1-preview Huang et al. (2024). DeepSeek-R1 adopts reinforce-
ment learning for training, followed by distillation to obtain efficient smaller models DeepSeek-AI
et al. (2025). In addition, several datasets have collected large-scale reasoning traces from advanced
reasoning models—ranging from tens of thousands to millions—which have been used to train
strong distilled models Labs (2025); Guha et al. (2025); Zhao et al. (2025).

LLM Watermarking LLM watermarking focuses on tracking the text generated by LLMs and
identifying whether a given piece of text was produced by a particular LLM. Common approaches
achieve this by manipulating the sampling distribution during generation, ensuring detectability
without compromising readability or fluency Kirchenbauer et al. (2023); Dathathri et al. (2024).
Pan et al. (2025) further explores whether the watermark can still be detected when a student model
is distilled using outputs from a protected LLM. While LLM watermarking is also related to model
intellectual property detection, its primary emphasis is on post-hoc detection rather than proactively
interfering with distillation.

Unlearnable Data Unlearnable data focuses on perturbing training data to degrade model per-
formance Li et al. (2025b). Li & Liu (2023) introduces hints into the input text, such as inserting
class-wise symbols. RegText treats low-frequency, task-representative tokens as spurious words and
randomly inserts these spurious words into the text. These approaches emphasize modifications to
the input data, inducing models to rely on shortcuts Java et al. (2025). However, they are unsuit-
able for antidistillation, since we cannot alter the prompts used by the attacker. Moreover, such
methods are typically limited to classification tasks. In contrast, our approach modifies the model’s
generation and does not rely on task-specific designs.

Antidistillation Recent work has also begun to explore antidistillation for reasoning models. An-
tidistillation Sampling poisons reasoning traces by modifying a model’s next-token probability dis-
tribution during sampling Savani et al. (2025). This method requires two auxiliary models: a proxy
student model, and a variant of the proxy model obtained by performing a single step of gradient
ascent on the downstream loss. At each reasoning step, the difference between the logits of these
two models is computed to form a perturbation vector. Another method DOGe defends against dis-
tillation by fine-tuning the teacher model itself, jointly minimizing the SFT loss while maximizing
the KL divergence between the teacher model and the proxy student model Li et al. (2025c). Both
approaches interfere with the teacher model—either by altering its sampling distribution or mod-
ifying its parameters. Moreover, their effectiveness has only been demonstrated on small student
models (< 4B parameters). By contrast, PART introduces reasoning traces reformulation that do
not affect the teacher model’s ability to generate correct answers, and has been validated as effective
across student models up to 32B in scale.
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C PROMPTS

Removing Self-talk Behaviors

Rewrite the given text, which is a part of a complete reasoning process. Convert only the
parts expressed in a self-talk style into a declarative format. Avoid using first-person expres-
sions such as ’I’, ’me’, ’we’, or ’let’s’. Do not alter any parts that are not self-talk; keep
them exactly as in the original text.
Do not add any extra information. Do not include any introductory phrases.
Text:

Reordering the Sub-conclusions

You will process the given text in two steps. The given text is a part of a complete reasoning
process.
Step 1: Extract and list the most important sub-conclusions in the given reasoning process.
Keep the number of sub-conclusions small and focused.
Wrap the sub-conclusions in the tags <SUB> and </SUB> for easy extraction.
Step 2: Move the sentences corresponding to these sub-conclusions to appear *before* their
respective reasoning processes. Keep the sub-conclusions unnumbered and naturally inte-
grated into the context. Do not modify any other parts of the original text.
Wrap the entire transformed text in the tags <REWRITTEN> and </REWRITTEN> for easy
extraction.
Text:

D HYPERPARAMETER

Table 2: Hyperparameters used in training. We use larger learning rate
for smaller model.

Hyperparameter Default 1.5B Model
Cutoff length 16,384
Batch size 128
Learning rate 3.0e-5 1.0e-4
Epochs 3
LR scheduler Cosine
Warmup ratio 0.1

Table 3: Hyperparameters used in evaluation. For AIME24, we in-
crease the number of responses per query due to the small number of
problems.

Hyperparameter Default AIME24
Temperature 0.6
Top-p 0.95
Maximum number of tokens to generate 32,768
Number of responses per query 4 16
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E EXAMPLE OF REFORMULATED REASONING TRACE

Original Traces

Okay, let’s see. I need to solve this
problem where three people (Chef, head
server, sous-chef) have transceivers that
can communicate directly if within R
meters. If not, but there’s a third per-
son acting as a bridge, then they can still
communicate. The goal is to check if all
three can communicate with each other,
possibly through the third.
Hmm. So for each test case, given R
and three points, determine if the three
form a connected graph where each pair
is either directly connected (distance ≤
R) or connected via the third.
Wait, but how exactly? Let’s think. The
communication can go through one in-
termediary. So all three must be in
a chain where each consecutive pair is
within R, or perhaps any two are con-
nected via a path through the third.

Reformulated Traces

The goal is to check if all three can
communicate with each other, possibly
through the third. The problem involves
three people (Chef, head server, sous-
chef) who have transceivers that can
communicate directly if within R me-
ters. If not, but there’s a third person act-
ing as a bridge, then they can still com-
municate.
For each test case, given R and three
points, it is necessary to determine if
the three form a connected graph where
each pair is either directly connected
(distance ≤ R) or connected via the
third.
The condition is that all three can
communicate with each other, possibly
through one another. The communica-
tion can go through one intermediary.
Therefore, all three must be in a chain
where each consecutive pair is within
R, or any two are connected via a path
through the third.

F LEXICAL SIMILARITY

Similarity: 0.63

Original Step:
But wait, let me verify this again to be sure. Because sometimes with clock angle problems,
there can be another instance where the angle is 110 degrees, but depending on the direction
(whether the minute hand is ahead or behind the hour hand). Let me think.

Matched Part of Reformulated Trace:
Verification is necessary to ensure accuracy, as there can be another instance where the angle
is 110 degrees, depending on the direction of the hands. The formula |30H - 5.5M| provides
the absolute angle between the two hands.

Similarity: 0.75

Original Step:
Okay, let me try to figure out this problem. So, we have a set of consecutive positive integers
starting from 1, and one number is erased. The average of the remaining numbers is 35 and
7/17. We need to find out which number was erased. The options are from 6 to 9, or cannot
be determined. Hmm.

Matched Part of Reformulated Trace:
The problem involves a set of consecutive positive integers starting from 1, with one number
erased. The average of the remaining numbers is 35 and 7/17. The objective is to identify
the erased number. The options range from 6 to 9, or indicate that the number cannot be
determined.
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Similarity: 0.81

Original Step:
Wait, just to be thorough, let’s make sure none of the other options could work. Let’s check
option E: y = 10ˆx. If we take x = 0, then y = 1, which would correspond to the rotated point
(0,1), which is correct. But let’s take another point. If x = -1, y = 10ˆ(-1) = 0.1, but according
to G’, when x = -1, y should be 10. But according to option E, y = 10ˆ(-1) = 0.1, which is
wrong. So E is out. Option D, as we saw, gives y = 10ˆ1 = 10 when x = -1, which is correct.

Matched Part of Reformulated Trace:
Check option E: y = 10ˆx. Taking x = 0, then y = 1, which would correspond to the rotated
point (0,1), which is correct. However, taking another point: if x = -1, y = 10ˆ(-1) = 0.1,
but according to G’, when x = -1, y should be 10. According to option E, y = 10ˆ(-1) = 0.1,
which is wrong. Thus, E is out. Option D gives y = 10ˆ1 = 10 when x = -1, which is correct.

Similarity: 0.96

Original Step:
So Thuy is 21, Kareem 22. So Kareem is indeed higher than Thuy, and Jose is the lowest of
the three. Wait, but Thuy is 21, Jose is 20, Kareem 22. So the order from highest to lowest
is Kareem, Thuy, Jose. So the largest is Kareem. Therefore, answer C.

Matched Part of Reformulated Trace:
So Thuy is 21, Kareem 22. So Kareem is indeed higher than Thuy, and Jose is the lowest of
the three. Thuy is 21, Jose is 20, Kareem 22. So the order from highest to lowest is Kareem,
Thuy, Jose. So the largest is Kareem. Therefore, answer C.
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