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ABSTRACT

The development of large language models (LLMs) has been instrumental in ad-
vancing state-of-the-art natural language processing applications. Training LLMs
with billions of parameters and trillions of tokens require sophisticated distributed
systems that enable composing and comparing several state-of-the-art techniques
in order to efficiently scale across thousands of accelerators. However, existing
solutions are complex, scattered across multiple libraries/repositories, lack inter-
operability, and are cumbersome to maintain. Thus, curating and empirically com-
paring training recipes require non-trivial engineering effort.
This paper introduces LEGOSCALE, an open-source, PyTorch-native distributed
training system that unifies and advances state-of-the-art techniques, streamlining
integration and reducing engineering overhead. LEGOSCALE enables seamless
application of 3D parallelism in a modular and composable manner, while featur-
ing elastic scaling to adapt to changing computational requirements. The system
provides comprehensive logging, efficient checkpointing, and debugging tools,
ensuring production-ready training. Moreover, LEGOSCALE incorporates inno-
vative hardware-software co-designed solutions, leveraging cutting-edge features
like Float8 training and SymmetricMemory to maximize hardware utilization. As
a flexible experimental test bed, LEGOSCALE facilitates the curation and compar-
ison of custom recipes for diverse training contexts. By leveraging LEGOSCALE,
we developed optimized training recipes for the Llama 3.1 family and provide ac-
tionable guidance on selecting and combining distributed training techniques to
maximize training efficiency, based on our hands-on experiences.
We thoroughly assess LEGOSCALE on the Llama 3.1 family of LLMs, spanning
8 billion to 405 billion parameters, and showcase its exceptional performance,
modular composability, and elastic scalability. By stacking training optimizations,
we demonstrate accelerations ranging from 65.08% on Llama 3.1 8B at 128 GPU
scale (1D), 12.59% on Llama 3.1 70B at 256 GPU scale (2D), to 30% on Llama 3.1
405B at 512 GPU scale (3D) on NVIDIA H100 GPUs over optimized baselines.

1 INTRODUCTION

LLMs are at the forefront of NLP advancement. Large Language Models (LLMs) (Devlin, 2018;
Liu et al., 2019; Radford et al., 2019; Chowdhery et al., 2023; Anil et al., 2023; Achiam et al.,
2023; Dubey et al., 2024; Jiang et al., 2024; Abdin et al., 2024) have been driving force behind
the advancement of natural language processing (NLP) applications spanning language translation,
content/code generation, conversational AI, text data analysis, creative writing and art, education
and research etc.

LLMs require billions of parameters and training over trillion tokens to achieve state-of-the-
art performance. Achieving state-of-the-art LLM performance requires massive scale, exemplified
by top-performing models like Llama 3.1 (405B parameters, 15T tokens, 30.84M GPU hours, 16K
H100 GPUs) (Dubey et al., 2024) and Google’s PaLM (540B parameters, 0.8T tokens, 9.4M TPU
hours, 6144 TPUv4 chips) (Chowdhery et al., 2023). These models demonstrate exceptional nat-
ural language understanding and generation capabilities, but necessitate substantial computational
resources, memory, and time to train, highlighting the significant investment required to advance
natural language processing.
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LLM training challenges are being tackled from all sides. Training large language models
(LLMs) at scale is a daunting task that requires a delicate balance of parallelism, computation,
and communication, all while navigating intricate memory and computation tradeoffs. The massive
resources required for training make it prone to GPU failures, underscoring the need for efficient
recovery mechanisms and checkpointing strategies to minimize downtime (Eisenman et al., 2022;
Wang et al., 2023; Gupta et al., 2024; Maurya et al., 2024; Wan et al., 2024). To optimize resource
utilization and achieve elastic scalability, it is crucial to combine multiple parallelism techniques,
including Data Parallel (Li et al., 2020; Rajbhandari et al., 2020; Zhang et al., 2022; Zhao et al.,
2023), Tensor Parallel (Narayanan et al., 2021; Wang et al., 2022; Korthikanti et al., 2023), Context
Parallel (Liu et al., 2023; Liu & Abbeel, 2024; NVIDIA, 2023; Fang & Zhao, 2024), and Pipeline
Parallel (Huang et al., 2019; Narayanan et al., 2019; 2021; Tang et al., 2024). By stacking these
parallelisms with memory and computation optimization techniques, such as activation recomputa-
tion (Chen et al., 2016; Korthikanti et al., 2023; He & Yu, 2023), mixed precision training (Micike-
vicius et al., 2018; 2022), and deep learning compilers (Bradbury et al., 2018; Yu et al., 2023; Li
et al., 2024; Ansel et al., 2024), it is possible to maximize hardware utilization.

Limitations of existing systems incorporating state-of-the-art techniques. While state-of-the-art
distributed training techniques have significantly advanced the field, existing systems that incorpo-
rate them still fall short in addressing critical challenges that hinder their usability, adoption and
effectiveness for researchers and industry practitioners.

1. Non-composable: Existing systems struggle to combine and stack various parallelism tech-
niques, limiting the exploration of multi-dimensional parallelism. Further integrating them
with memory and computation optimizations is challenging, hindering training efficiency.

2. Inflexible and monolithic architecture: Current systems are not modular or extensible, mak-
ing it difficult to integrate and compare new techniques, optimizations, and hardware, and
limiting adaptability to evolving machine learning landscapes.

3. Inefficient hardware utilization: Current systems fail to fully leverage advanced hardware
features, leading to sub-optimal GPU efficiency, and lack customizable activation check-
pointing strategies to navigate memory-computation trade-offs.

4. Insufficient support for production-grade training: Existing systems lack scalable and ef-
ficient distributed checkpointing, making failure recovery and model saving cumbersome,
and often do not provide adequate debugging tools and logging metrics, leading to difficul-
ties in identifying and fixing issues, particularly for those without extensive expertise.

5. Existing systems fall short in harnessing the full potential of frameworks like PyTorch,
missing out on bug fixes, optimized kernels, new features, and compiler support. They also
rely on external dependencies that often lack thorough testing and can become outdated or
incompatible due to inadequate maintenance.

Root cause: Lack of an expressive tensor abstraction. The root cause of non-composability and
inflexibility of a distributed system stems from the lack of using an expressive tensor and device
abstraction as a central component, upon which all of the distributed parallelisms, checkpointing,
and efficiency optimizations can be built.

Design Principle: Unified distributed tensor and device abstractions as building blocks. A
unified device abstraction represents the distributed system as a multi-dimensional array, where
each dimension corresponds to a parallelism technique, managing communication between devices
and handling collective process groups. A complementary tensor abstraction enables tensors to be
sharded across this array, maintaining sharding specifications and supporting automatic sharding
propagation. Together, these abstractions enable seamless composition of parallelism techniques,
ensure correct semantics, and facilitate dispatching of collectives for distributed operations

We address the technical challenge of a unified tensor abstraction by employing PyTorch’s Dis-
tributed Tensor (DTensor) and DeviceMesh (PyTorch Community, 2023a) as the foundational com-
ponents for LEGOSCALE. Through our work with DTensor and DeviceMesh, we identified key
limitations and addressed them. By using and extending DTensor, we develop LEGOSCALE, a
production-ready system that enables composability, modularity, flexibility, and extensibility in dis-
tributed training. LEGOSCALE facilitates the composition of 3D parallelism, training optimizations,
scalable distributed checkpointing, and harnesses the full benefits of the PyTorch ecosystem.
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To develop and evaluate the capabilities of LEGOSCALE, we undertook several key steps, which
represent the core contributions of this work, and are summarized as follows:

1. We advance DTensor by extending its sharding to support n-D parallelism, adding compat-
ibility with torch.compile for compiler optimizations, and enabling efficient check-
pointing of n-D models via state dict support. We also resolve critical bugs to bolster
DTensor’s production readiness

2. We demonstrate how to compose and stack various parallelism techniques, facilitating the
exploration of multi-dimensional parallelism in large language model training (§2.1).

3. We enable novel hardware-software co-designed solutions exploiting advanced hardware
features to increase GPU efficiency, offer customizable activation checkpointing strategies
for navigating memory-computation trade-offs, and utilize torch.compile to further
optimize memory, computation, and communication (§2.2).

4. We offer production grade training by incorporating scalable and efficient distributed
checkpointing to facilitate fast failure recovery, integrating debugging tools like Flight
Recorder to debug crashed/stuck jobs, and providing extensive logging metrics (§2.3).

5. We extensively evaluate LEGOSCALE on Llama 3.1 family of models, stacking 1D to 3D
parallelisms (respectively), at the scale from 8 to 512 GPUs to demonstrate elastic scalabil-
ity while ensuring efficiency, convergence, and accuracy. In summary, we demonstrate
training accelerations ranging from 65.08% on Llama 3.1 8B at 128 GPU scale (1D),
12.59% on Llama3.1 70B at 256 GPU scale (2D), to 30% on Llama3.1 405B at 512 GPU
scale (3D) on latest NVIDIA H100 GPUs over optimized baselines (§3.2).

6. We provide systematic training recipes and guidelines that empower users to navigate the
complexities of distributed training, helping them optimize training efficiency for a range
of model sizes and cluster configurations (§3.3).

7. We show how our modular and extensible architecture allows for seamless integration
and comparison of new techniques, optimizations, and hardware, ensuring adaptability to
evolving machine learning landscapes (§4).

By providing an accessible and extensible platform, LEGOSCALE democratizes large language
model (LLM) pre-training, empowering a wider range of researchers and developers to tap into
the potential of LLMs and accelerate innovation in the field.

2 ELASTICITY THROUGH COMPOSABILITY

Figure 1: Composable and Modular LEGOSCALE initialization workflow.

LEGOSCALE incorporates various parallelism techniques in a modular manner to enable easy, user-
selectable combinations of multi-dimensional parallelisms. This composability enables the tackling
of difficult scaling challenges by enhancing the ease of frontier exploration for optimizing training
efficiencies at scale.

The codebase of LEGOSCALE is organized purposefully to enable composability and extensibility.
We intentionally keep three main components separate and as orthogonal as possible: (1) the model
definition, which is parallelism-agnostic and designed for readability, (2) parallelism helpers, which
apply Data Parallel, Tensor Parallel, and Pipeline Parallel to a particular model, and (3) a generalized
training loop. All these components are configurable via TOML files with command-line overrides,
and it is easy to add new models and parallelism techniques on top of the existing codebase.
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2.1 COMPOSABLE N-D PARALLELISM TRAINING

In this section, we will walk through the entire regime of scaling model training on large clusters,
including meta device initialization and the core composable multi-dimensional parallelisms, to
showcase how these techniques can be composed to train LLMs efficiently at increasing scale in
LEGOSCALE. The corresponding actual code snippets in LEGOSCALE can be found in Appendix A.

2.1.1 LARGE-SCALE MODEL INITIALIZATION USING META DEVICE

Given the exponential increase in model sizes for LLMs, the first scaling issue appears even before
the actual training starts. This is the need to instantiate a large model for sharding across the cluster,
yet without overflowing CPU or GPU memory.

To tackle this, we enabled meta device initialization for models in LEGOSCALE, where the model is
first initialized on a “meta” device type. The meta device tensor only holds the metadata information,
not the actual data, making initialization ultra-fast. After that, we perform model sharding and
transforming the model parameters into Distributed Tensors (DTensors) where each parameter holds
a local shard that lives on the meta device. Finally, we perform parameter initialization based on
the user-defined initialization functions. We leverage Distributed Tensor to properly sync Random
Number Generator (RNG) seeds, and initialize the parameters according to their sharding layouts.
This ensures the parameters start with the same values as if the whole model were initialized on one
device before sharding, and thus facilitating convergence comparisons between different parallelism
configurations.

2.1.2 FULLY SHARDED DATA PARALLEL

The original Fully Sharded Data Parallel (FSDP) (Zhao et al., 2023) is an effective implementation of
ZeRO that offers large model training capability in PyTorch. However, the original implementation
(FSDP1) in PyTorch suffers from various limitations due to its FlatParameter implementation (see
details in Appendix B.1).

Given these limitations, LEGOSCALE integrates a new version of Fully Sharded Data Parallel
(FSDP2), which uses the per-parameter Distributed Tensor sharding representation and thus pro-
vides better composability with model parallelism techniques and other features that require the
manipulation of individual parameters,

LEGOSCALE integrates and leverages FSDP2 as it’s default 1D parallelism, benefiting from the
improved memory management (often 7 percent lower per GPU memory requirement vs FSDP1)
and the slight performance gains (average of 1.5 percent gain vs FSDP1). More details on FSDP2
and usage example are shown in Appendix B.1. LEGOSCALE makes it simple to run with FSDP2
by embedding appropriate defaults, including auto-sharding with your world size automatically.

For scaling to even larger world sizes, LEGOSCALE also integrates Hybrid Sharded Data Parallel
(HSDP) which extends FSDP2 by creating sharding groups. Details are shown in Appendix B.2

2.1.3 TENSOR PARALLEL

Tensor Parallel (TP) (Narayanan et al., 2021), together with Sequence Parallel (SP) (Korthikanti
et al., 2023), is a key model parallelism technique to enable large model training at scale.

TP is implemented in LEGOSCALE using the PyTorch’s RowwiseParallel and
ColwiseParallel APIs, where the model parameters are partitioned to DTensors and
perform sharded computation with it. By leveraging DTensor, the TP implementation does not need
to touch the model code, which allows faster enablement on different models and provides better
composability with other features mentioned in this paper.

Tensor and Sequence Parallel (TP/SP) While TP partitions the most computationally demanding
aspects, Sequence Parallel (SP) perform sharded computation for the normalization or dropout layers
on the sequence dimension, which otherwise generate large replicated activation tensors, and thus
can be challenging to memory constraints per GPU. See Appendix B.3 for more details, illustrations,
and usage for both TP and FSDP + TP.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Because of the synergistic relationship between TP and SP, LEGOSCALE natively bundles these two
together and they are jointly controlled by the TP degree setting.

Loss Parallel When the loss function is computed, the model outputs are usually very large. Since
the model outputs from TP/SP are sharded on the (often huge) vocabulary dimension, naively com-
puting the cross-entropy loss requires gathering all the shards along the TP dimension to make the
outputs be replicated, which incurs large memory usage.

With Loss Parallel, the cross entropy loss can be computed efficiently, without gathering all the
model output shards to every single GPU. This not only significantly reduces the memory consump-
tion, but also improves training speed by reducing communication overhead and doing sharded
computation in parallel. Given these improvements, LEGOSCALE implements loss parallel by de-
fault.

2.1.4 PIPELINE PARALLEL

For pre-training at the largest scales, LEGOSCALE offers Pipeline Parallelism, which becomes es-
sential due to having the lightest amount of communication overhead and leveraging P2P commu-
nications.

Pipeline Parallel (PP) views the model as a sequence of operations, chunking the operations (and
the parameters used by them) into S stages which run on separate groups of devices. In the typi-
cal case, one stage represents a single model layer or a group of N adjacent model layers, but in
theory it could be even be a partial layer. For the forward pass, a stage receives input activations
(except stage 0), performs local computation, and sends output activations (except stage S - 1). The
last stage performs a loss computation, and begins the backward pass, sending gradients in the re-
verse order through the pipeline. To improve efficiency, the input batch is broken into microbatches
and a pipeline schedule overlaps computation on one microbatch with communication for others.
LEGOSCALE enables a variety of pipeline schedules, with their schedules previously described in
other works (Narayanan et al., 2019; Huang et al., 2019; Narayanan et al., 2021; Tang et al., 2024).

The training loop must also account for creation of pipeline stages, and executing a pipeline sched-
ule rather than invoking model.forward() directly. Because the schedule computes loss per
microbatch, the loss computation and any logging code must be updated for PP. In LEGOSCALE, we
propose to define a shared loss_fn to be used by both pipeline and non-pipeline code paths, and
thus minimise divergence in the training loop.

Interactions with data parallelism, such as ensuring that data-parallel reduction happens only after
the last microbatch in the schedule, and scheduling of shard and unshard operations when using
zero-3, are also handled transparently inside the pipeline schedule executor, simplifying the trainer
implementation in LEGOSCALE. For it’s usage in LEGOSCALE, please see Appendix B.4.

2.2 OPTIMIZING TRAINING EFFICIENCIES

2.2.1 NAVIGATING COMPUTE-MEMORY TRADE-OFFS USING ACTIVATION CHECKPOINTING

Activation checkpointing (AC) (Chen et al., 2016) and selective activation checkpointing (SAC) (Ko-
rthikanti et al., 2023) are standard training techniques to reduce peak GPU memory usage, by trading
activation recomputation during the backward pass for memory savings. It is often needed even after
applying multi-dimensional parallelisms.

LEGOSCALE offers flexible AC and SAC options utilizing torch.utils.checkpoint, applied
at the TransformerBlock level. The AC strategies include “full” AC, op-level SAC, and layer-
level SAC.

Within a TransformerBlock, full AC works by recomputing all activation tensors needed during
the backward pass, whereas op-level SAC saves the results from computation-intensive PyTorch
operations and only recomputes others. Layer-level SAC works in similar fashion as full AC, but
the wrapping is applied to every x TransformerBlock (where x is specified by the user) to
implement configurable trade-offs between memory and recompute. (Details are in Appendix B.5.)
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2.2.2 REGIONAL COMPILATION TO EXPLOIT TORCH.COMPILE OPTIMIZATIONS

torch.compile was released in PyTorch 2 (Ansel et al., 2024) with TorchDynamo as the fron-
tend to extract PyTorch operations into an FX graph, and TorchInductor as the backend to compile
the FX graph into fused Triton code to improve the performance.

In LEGOSCALE, we use regional compilation, which applies torch.compile to each individ-
ual TransformerBlock in the Transformer model. This has two main benefits: (1) we get a
full graph (without graph breaks) for each region, compatible with FSDP2 and TP (and more gen-
erally torch.Tensor subclasses such as DTensor) and other PyTorch distributed training tech-
niques; (2) since the Llama model stacks identical TransformerBlock layers one after another,
torch.compile can identify the same structure being repeatedly compiled and only compile
once, thus greatly reducing compilation time.

torch.compile brings efficiency in both throughput and memory (see Section 3.2) via com-
putation fusions and computation-communication reordering, in a model-agnostic way with a
simple user interface. Below we further elaborate how torch.compile composability helps
LEGOSCALE unlock hardware-optimized performance gain with simple user interface, with the in-
tegration of advanced features such as Asynchronous TP and Float8.

2.2.3 ASYNCHRONOUS TENSOR PARALLEL TO MAXIMALLY OVERLAP COMMUNICATION

By default TP incurs blocking communications before/after the sharded computations, causing
computation resources to not be effectively utilized. Asynchronous TP (AsyncTP) (Wang et al.,
2022) achieves computation-communication overlap by fractionalizing the TP matrix multiplica-
tions within the attention and feed-forward modules into smaller chunks, and overlapping com-
munication collectives in between each section. The overlap is achieved by a micro-pipelining
optimization, where results are being communicated at the same time that the other chunks of the
matmul are being computed.

PyTorch AsyncTP is based on a SymmetricMemory abstraction, which creates intra-node buffers
to write faster communication collectives. This is done by allocating an shared memory buffer on
each GPU in order to provide direct P2P access.

With LEGOSCALE’s integration of torch.compile, AsyncTP can be easily configured in
LEGOSCALE to achieve meaningful end-to-end speedups (see Section 3.2 for details) on newer
hardware (H100 or newer GPUs with NVSwitch within a node). Usage details are in Appendix B.6

2.2.4 BOOSTING THROUGHPUT WITH MIXED PRECISION TRAINING AND FLOAT8 SUPPORT

Mixed precision training (Micikevicius et al., 2018) provides both memory and computational sav-
ings while ensuring training stability. FSDP2 has built-in support for mixed precision training with
basic torch.dtype. This covers the popular usage of performing FSDP all-gather and com-
putation in a low precision (e.g. torch.bfloat16), and perform lossless FSDP reduce-scatter
(gradient) in high precision (e.g. torch.float32) for better numerical results. See Appendix
B.7 for usage details.

LEGOSCALE also supports more advanced mixed precision training with Float8 (a derived data type)
on newer hardware like H100, with substantial performance gains (reported in Section 3.2). The
Float8 feature from torchao.float8 supports multiple per-tensor scaling strategies, including
dynamic, delayed, and static (see Micikevicius et al. (2022); PyTorch Community (2023b), Section
4.3 for details), while being composable with other key PyTorch-native systems such as autograd,
torch.compile, FSDP2 and TP (with Float8 all-gather capability).

2.3 PRODUCTION READY TRAINING

To enable production-grade training, LEGOSCALE offers seamless integration with key features out
of the box. These include (1) efficient checkpointing using PyTorch Distributed Checkpointing
(DCP), and (2) debugging stuck or crashed jobs through integration with Flight Recorder.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

2.3.1 SCALABLE AND EFFICIENT DISTRIBUTED CHECKPOINTING

Checkpoints are crucial in training large language models for two reasons: they facilitate model
reuse in applications like inference and evaluation, and they provide a recovery mechanism in case
of failures. An optimal checkpointing workflow should ensure ease of reuse across different par-
allelisms and maintain high performance without slowing down training. There are two typical
checkpointing methods. The first aggregates the state (model parameters and optimizer states) into
an unsharded version that is parallelism-agnostic, facilitating easy reuse but requiring expensive
communication. The second method has each trainer save its local sharded state, which speeds up
the process but complicates reuse due to embedded parallelism information.

DCP addresses these challenges using DTensor, which encapsulates both global and local tensor
information independently of parallelism. DCP converts this information into an internal format
for storage. During loading, DCP matches the stored shards with the current DTensor-based model
parameters and optimizer states, fetching the necessary shard from storage. LEGOSCALE, which
utilizes all native PyTorch parallelisms, effectively uses DCP to balance efficiency and usability.
Furthermore, DCP enhances efficiency through asynchronous checkpointing by processing stor-
age persistence in a separate thread, allowing this operation to overlap with subsequent training
iterations. LEGOSCALE utilizes DCP’s asynchronous checkpointing to reduce the checkpointing
overhead by 5-15x compared to synchronous distributed checkpointing for the Llama 3.1 8B model.

2.3.2 FLIGHT RECORDER TO DEBUG JOB CRASHES

A common failure mode when developing parallelism code, or when running at large scale, is to
observe a NCCL collective timeout and then the need to figure out the root cause. Since communi-
cation kernels are typically asynchronous from the perspective of the CPU, by the time something
times out, it can be very hard to pinpoint which operation failed and why. PyTorch provides a Flight
Recorder for NCCL collectives to help resolve this dilemma. It records the start and end time (on
GPU) as well as the enqueue time (on CPU) for every collective or p2p operation. Additionally, it
logs metadata such as which process group was used, who the source rank is (and destination, for
p2p), tensor sizes, and stack traces.

We find the data contained in the Flight Recorder helps debug collective hangs and p2p hangs caused
by bugs in parallelism code. For PP, there may be schedule bugs that lead to hangs, due to a missing
or improperly ordered send or recv operation. Analysis based on the Flight Recorder data can
pinpoint the latest send or recv that has completed on the GPU. For FSDP or TP, it is possible to
determine whether one or more ranks has not called into a collective, perhaps due to a bug in PP
scheduling or faulty logic in TP.

3 EXPERIMENTATION

In this section, we demonstrate the effectiveness of elastic distributed training using LEGOSCALE,
via experiments on Llama 3.1 8B, 70B, and 405B, from 1D parallelism to 3D parallelism (respec-
tively), at the scale from 8 GPUs to 512 GPUs. We also share the knowledge and experience gained
through LEGOSCALE experimentation. A walkthrough of the codebase on how we apply (up to) 3D
parallelism can be found in Appendix A.

3.1 EXPERIMENTAL SETUP

The experiments are conducted on NVIDIA H100 GPUs1 with 95 GiB memory, where each host
is equipped with 8 GPUs and NVSwitch. Two hosts form a rack connected to a TOR switch. A
backend RDMA network connects the TOR switches. In LEGOSCALE we integrate a checkpointable
data loader and provide built-in support for the C4 dataset (en variant), a colossal, cleaned version of
Common Crawl’s web crawl corpus (Raffel et al., 2020). We use the same dataset for all experiments
in this section. For the tokenizer, we use the official one (tiktoken) released together with Llama 3.1.

1The H100 GPUs used for the experiments are non-standard. They have HBM2e and are limited to a lower
TDP. The actual peak TFLOPs should be between SXM and NVL, and we don’t know the exact value.
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3.2 PERFORMANCE

To showcase the elasticity and scalability of LEGOSCALE, we experiment on a wide range of GPU
scales (from 8 to 512), as the underlying model size increases (8B, 70B, and 405B) with a varying
number of parallelism dimensions (1D, 2D, and 3D, respectively). To demonstrate the effectiveness
of the optimization techniques introduced in Section 2.2, we show how training throughput improves
when adding each individual technique on appropriate baselines. In particular, when training on a
higher dimensional parallelism with new features, the baseline is always updated to include all
previous techniques.

We note that, throughout our experimentation, memory readings are stable across the whole train-
ing process2, whereas throughput numbers (token per second, per GPU) are calculated and logged
every 10 iterations, and always read at the (arbitrarily determined) 90th iteration. We do not re-
port Model FLOPS Utilization (MFU) (Chowdhery et al., 2023) because when Float8 is enabled in
LEGOSCALE, both BFLOAT16 Tensor Core and FP8 Tensor Core are involved in model training,
but they have different peak FLOPS and the definition of MFU under such scenario is not well-
defined. We note that the 1D Llama 3.1 8B model training on 8 or 128 H100 GPUs without Float8
achieves 33% to 42% MFU.

Table 1: 1D parallelism (FSDP) on Llama 3.1 8B model, 8 GPUs. Mixed precision training. Selec-
tive activation checkpointing. Local batch size 2, global batch size 16.

Techniques Throughput (Tok/Sec) Comparison Memory (GiB)
FSDP 6,258 100% 81.9
+ torch.compile 6,674 + 6.64% 77.0
+ torch.compile + Float8 9,409 + 50.35% 76.8

Table 2: 1D parallelism (FSDP) on Llama 3.1 8B model, 128 GPUs. Mixed precision training.
Selective activation checkpointing. Local batch size 2, global batch size 256.

Techniques Throughput (Tok/Sec) Comparison Memory (GiB)
FSDP 5,645 100% 67.0
+ torch.compile 7,168 + 26.97% 62.0
+ torch.compile + Float8 9,319 + 65.08% 61.8

Table 3: 2D parallelism (FSDP + TP) + torch.compile + Float8 on Llama 3.1 70B model, 256
GPUs. Mixed precision training. Full activation checkpointing. FSDP degree 32, TP degree 8.
Local batch size 16, global batch size 512.

Techniques Throughput (Tok/Sec) Comparison Memory (GiB)
2D 897 100% 70.3
+ AsyncTP 1,010 + 12.59% 67.7

Table 4: 3D parallelism (FSDP + TP + PP) + torch.compile + Float8 + AsyncTP on Llama 3.1
405B model, 512 GPUs. Mixed precision training. Full activation checkpointing. FSDP degree 4,
TP degree 8, PP degree 16. Local batch size 32, global batch size 128.

Schedule Throughput (Tok/Sec) Comparison Memory (GiB)
1F1B 100 100% 78.0
Interleaved 1F1B 130 + 30.00% 80.3

2Different PP ranks can have different peak memory usages. We take the maximum across all GPUs.
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3.3 SCALING WITH LEGOSCALE 3D PARALLELISM

The LLM scaling law imposes challenges due to increasingly larger model size and huge amount
of data, which requires applying parallelism strategies on massive number of GPUs. LEGOSCALE
provides the ability to compose different parallelisms to efficiently scale model training to thou-
sands of GPUs. This section discusses the observations and motivations to apply LEGOSCALE 3D
parallelism when training LLMs at large scale. Please note that there could be many 3D paral-
lelism combinations, but we choose to only discuss one combination in this paper, which could be
summarized as the following diagram:

Figure 2: Scaling with 3D Parallelism

3.3.1 SCALING WITH FSDP

FSDP (ZeRO) is a generalized technique which can be applied to any model architecture, making it
a good choice for the first or the only degree of parallelism. As long as the FSDP communication
is faster than the corresponding computation (which is the case for LLMs trained on up to hundreds
of, say 512, GPUs), and there is no need to reduce (effective) per-GPU batch size to be below 1 (for
reasons mentioned below in the TP section), 1D FSDP should be sufficient.

Existing ring-based implementations of NCCL collectives (all-gather, reduce-scatter) will incur a
latency overhead which becomes severe at large scale (e.g. 512 GPUs). FSDP alone will become
less efficient due to the collective latency increasing linearly with the world size, resulting in FSDP
collectives that cannot be hidden by the computation any more. To further scale out, one needs to
consider combining model parallelism solutions such as TP and PP.

3.3.2 2D PARALLELISM: APPLY TP WITH FSDP

Model Parallelism (TP and PP) can help avoid the increased collective latency faced by scaling
FSDP alone. TP can further lower the effective local batch size (to a minimum of 1

TP degree when
the local batch size is set to 1), as TP sharded models on multiple GPUs work jointly to process the
same batch. This can be vital for reducing peak memory usage so that training could fit in GPU
memory (e.g. due to large model size or sequence length), or for strong scaling with fixed desired
global batch size (e.g. due to training efficiency considerations).

In addition, TP performs feature dimension sharding. This can bring more optimized matrix multi-
plication shapes for better FLOP utilization.

As TP introduces extra blocking collectives, in practice TP is only applied within a node that have
fast interconnect (NVLink). AsyncTP could improve the performance by fully overlapping the
communication, but could not scale to multi-node easily, so the TP degree is usually limited to 8.
This means to scale beyond an ultra-large number of GPUs (e.g. more than 4192 GPUs), we need
3D parallelism that combines PP.

3.3.3 3D PARALLELISM: APPLY PP WITH 2D PARALLELISM

Compared to other model parallelisms, PP requires less communication bandwidth by virtue of only
transmitting activations and gradients between stages in a P2P manner. It is especially useful (1) to
further reduce FSDP communication latency when the FSDP world size becomes large again that
FSDP+TP still exposes FSDP collectives; or (2) to train with bandwidth-limited cluster.
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We note that, the performance of PP, and in particular the “bubble” size, could vary by pipeline
schedules being used and the microbatch size, assuming fixed global batch size and the world size.

4 DEMONSTRATING ADAPTABILITY AND EXTENSIBILITY

In this section, we demonstrate the adaptability and extensibility of LEGOSCALE by highlighting on-
going work and external contributions that showcase its ability to seamlessly integrate and compare
new techniques, optimizations, and models.

4.1 ONGOING WORK: 4D PARALLELISM AND ZERO-BUBBLE PIPELINE SCHEDULES

LEGOSCALE’s modular and extensible architecture enables the seamless integration of new tech-
niques and optimizations. For instance, ongoing work includes incorporating Context Parallel (Liu
et al., 2023; Liu & Abbeel, 2024; NVIDIA, 2023) to enable 4D parallelism, and leveraging the
torch.distributed.pipelining package to support zero-bubble schedules (Tang et al.,
2024). This demonstrates LEGOSCALE’s ability to adapt to evolving machine learning landscapes.

4.2 EXTERNAL CONTRIBUTIONS: BUILDING AND EVALUATING CUSTOM INNOVATIONS

LEGOSCALE’s flexible architecture also empowers users to easily integrate and compare new in-
novations. By providing a modular and efficient test bed, LEGOSCALE enables users to rapidly
benchmark new techniques, optimizations, and hardware on their training performance. This has
already led to the refinement of a new production-grade dataloader, improvements in a new ZeRO
implementation, advancements in an Adam-based optimizer, and the training of a top-tier diffusion
model.

5 RELATED WORKS

With the rapidly growing significance of LLMs (Dubey et al., 2024; Achiam et al., 2023), there
is substantial research and industry focus on improving infrastructure for training LLMs of vari-
ous sizes. Since the very nature of these models are large, distributed training support becomes
inevitable. Libraries like Megatron (Narayanan et al., 2021), DeepSpeed (Rasley et al., 2020), and
PyTorch distributed (Pytorch native) (Paszke et al., 2019; Meta Platforms, Inc., 2024a) offer APIs
to build distributed training workflows. NVIDIA NeMo (NVIDIA Corporation, 2024), built on
Megatron-LM, offers a packaged solution for handling complex end-to-end model life-cycle from
data curation to model deployment. Pytorch-native solutions like torchtune (Meta Platforms, Inc.,
2024b) focus on fine-tuning LLMs in a simplified workflow. LEGOSCALE differs from these so-
lutions by focusing on production grade pre-training using PyTorch-native APIs. The library is
designed with elastic composability to accomodate the scale required to pre-train LLMs with mini-
mal external dependencies. This lowers the bar to understand and extend pre-training, while offering
features like async distributed checkpointing for building an end-to-end production workflow.

6 CONCLUSION

LEGOSCALE is a powerful and flexible framework for training LLMs. It offers composability, al-
lowing users to combine various parallelism techniques (FSDP, TP, and PP), memory optimization
methods (Float8 and activation checkpointing), and integration with PyTorch compiler to optimize
training efficiency. LEGOSCALE is highly flexible, adaptable to evolving model architectures and
hardware advancements, and features a modular design with multi-axis metrics that foster innova-
tion and experimentation. LEGOSCALE also prioritizes interpretability, production-grade training,
and PyTorch native capabilities. Additionally, it provides high-performance training with elastic
scalability, comprehensive training recipes and guidelines, and expert guidance on selecting and
combining distributed training techniques. As shown in the experiment sections, LEGOSCALE pro-
vides training accelerations ranging from 65.08% on Llama 3.1 8B at 128 GPU scale (1D), 12.59%
on Llama 3.1 70B at 256 GPU scale (2D) to 30% on Llama 3.1 405B at 512 GPU scale (3D) over
optimized baselines. With its robust features and high efficiency, LEGOSCALE is an ideal one-stop
solution for challenging LLM training tasks.
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A COMPOSABLE 3D PARALLELISM WALKTHROUGH

We have discussed the scaling with LEGOSCALE 3D parallelism and the motivations to apply dif-
ferent parallelisms to scale training to thousands of GPUs. In this section we will walk through the
3D parallelism code in LEGOSCALE.

The first step is to create an instance of the model (e.g. the Transformer for Llama models)
on the meta device. We then apply PP by splitting the model into multiple PP stages according to
the pipeline_parallel_split_points config. Note that for PP with looped schedules,
we may obtain multiple model_parts from PP splitting, where each item in model_parts is
one stage-model-chunk. Next we apply SPMD-style distributed training techniques including TP,
activation checkpointing, torch.compile, FSDP, and mixed precision training for each model part,
before actually initializing the sharded model on GPU.

# meta init
with torch.device("meta"):

model = model_cls.from_model_args(model_config)

# apply PP
pp_schedule, model_parts = models_pipelining_fns[model_name](

model, pp_mesh, parallel_dims, job_config, device, model_config,
loss_fn

)

for m in model_parts:
# apply SPMD-style distributed training techniques
models_parallelize_fns[model_name](m, world_mesh, parallel_dims,

job_config)
# move sharded model to GPU and initialize weights via DTensor
m.to_empty(device="cuda")
m.init_weights()

To apply PP to the model, we run the following code at the high level.
pipeline_llama_manual_split splits the model into multiple stages according to the
manually given pipeline_parallel_split_points config, by removing the unused model
components from a complete model (on the meta device). Then build_pipeline_schedule
make the pipeline schedule with various options from torch.distributed.pipelining,
including 1F1B (Narayanan et al., 2019), GPipe (Huang et al., 2019), interleaved 1F1B (Narayanan
et al., 2021), etc. instructed by the pipeline_parallel_schedule config.
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stages, models = pipeline_llama_manual_split(
model, pp_mesh, parallel_dims, job_config, device, model_config

)
pp_schedule = build_pipeline_schedule(job_config, stages, loss_fn)
return pp_schedule, models

TP and FSDP are applied in the SPMD-style models_parallelize_fns function. To apply
TP, we utilize the DTensor parallelize_module API, by providing a TP “plan” as the in-
struction of how model parameters should be sharded. In the example below, we showcase the
(incomplete) code for sharding the repeated TransformerBlock.

for layer_id, transformer_block in model.layers.items():
layer_tp_plan = {

"attention_norm": SequenceParallel(),
"attention": PrepareModuleInput(

input_layouts=(Shard(1), None),
desired_input_layouts=(Replicate(), None),

),
"attention.wq": ColwiseParallel(),
...

}
parallelize_module(

module=transformer_block,
device_mesh=tp_mesh,
parallelize_plan=layer_tp_plan,

)

Finally, we apply the FSDP by wrapping each individual TransformerBlock and then the whole
model. Note that the FSDP2 implementation in PyTorch comes with mixed precision training sup-
port. By default, we use torch.bfloat16 on parameters all-gather and activation computations,
and use torch.float32 on gradient reduce-scatter communication and optimizer updates.

mp_policy = MixedPrecisionPolicy(param_dtype, reduce_dtype)
fsdp_config = {"mesh": dp_mesh, "mp_policy": mp_policy}

for layer_id, transformer_block in model.layers.items():
# As an optimization, do not reshard_after_forward for the last
# TransformerBlock since FSDP would prefetch it immediately
reshard_after_forward = int(layer_id) < len(model.layers) - 1
fully_shard(

transformer_block,
**fsdp_config,
reshard_after_forward=reshard_after_forward,

)
fully_shard(model, **fsdp_config)

B SUPPLEMENTARY MATERIALS

B.1 FULLY SHARDED DATA PARALLEL

FSDP2 makes improvements over the original FSDP1 FlatParameter grouping. Specifically, pa-
rameters are now represented as DTensors sharded on the tensor dimension 0. This provides better
composability with model parallelism techniques and other features that requires the manipulation
of individual parameters, allowing sharded state dict to be represented by DTensor without any com-
munication, and provides for a simpler meta-device initialization flow via DTensor. For example,
FSDP2 unlocks finer grained tensor level quantization, especially Float8 tensor quantization, which
we will showcase in the results section.
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As part of the rewrite from FSDP1 to FSDP2, FSDP2 implements an improved memory management
system by avoiding the use of record stream. This enables deterministic memory release, and as a
result provides lower memory requirements per GPU relative to FSDP1. For example on Llama 2
7B, FSDP2 records an average of 7% lower GPU memory versus FSDP1.

In addition, by writing efficient kernels to perform multi-tensor allgather and reduce scatter, FSDP2
shows on-par performance compare to FSDP1, an there are slight performance gains from FSDP2 -
using the Llama 2 7B, FSDP2 shows an average gain of 1.5% faster throughput.

The performance gains are the result of employing two small performance improvements. First,
only a single division kernel is run for the FP32 reduce scatter (pre-dividing the local FP32 reduce-
scatter gradient by world size, instead of a two step pre and post divide by square root of world size).
Secondly, in LEGOSCALE, FSDP2 is integrated with a default of not sharding the final block in a
transformer layer during the forward pass, since it will be immediately re-gathered at the start of the
backward pass. Thus we can skip a round of communications delay.

Usage: LEGOSCALE has fully integrated FSDP2 as the default parallelism when training, and the
data_parallel_shard_degree is the controlling dimension in the command line or TOML
file. Note that for ease of use, leaving data_parallel_shard_degree as -1, which is the
default, means to simply use all GPU’s available (i.e. no need to spec your actual world size).

B.2 HYBRID SHARDED DATA PARALLEL

Hybrid Sharded Data Parallel (HSDP) is an extension of FSDP (Zhang et al., 2022), which enables a
larger total world size to be used. In FSDP, all devices are part of a single global group across which
all communications are enabled. However, at some point, adding more computation is offset by the
increasing communication overhead due to adding more participants which require equal commu-
nication participation. This is due to the fact that the latency of collective communications have a
direct correlation with the total number of participants. At this saturation point, FSDP throughput
will effectively flat-line even as more computation is added. HSDP obviates this to some degree
by creating smaller sharding groups (islands) within the original global group (ocean), where each
sharding group runs FSDP amongst itself, and gradients are synced across sharding groups at set
frequency during the backward pass to ensure a global gradient is maintained. This ensures speedy
communications as the total participant communication size is now a fraction of the original world
size, and the only global communication is for the gradient all-reduce between the sharding groups.
By using sharding groups, we have seen that HSDP can extend the total world size by 3-6x rela-
tive to FSDP’s communication saturation point (this will vary, depending on the speed of network
interconnects).

LEGOSCALE makes it easy to run HSDP with two user configurable settings for sharding group size
and replication group size, from the command line or TOML file.

Usage: HSDP is enabled in LEGOSCALE by modifying the previously mentioned knob
data_parallel_shard_degree to control the sharding group size. This is effectively the
gpu group count that will run FSDP sharding among its corresponding group members. From there,
we must spec the data_parallel_replicate_degree, which controls how many sharding
groups we are creating. The product of both replicate and shard degree must add up to the total
world size. Example - on a 128 GPU cluster, we may find that sharding over 16 gpus would be
enough for the model size. Therefore, we set the data_parallel_shard_degree to be 16,
and the data_parallel_replicate_degree be 8 correspondingly, meaning we will have 8
groups of 16 GPUs to fill out the total world size of 128.

B.3 TENSOR PARALLEL

TP partitions the attention and feed forward network (MLP) modules of a transformer layer across
multiple devices, where the number of devices used is the TP degree. This allows for multiple GPU’s
to cooperatively process a transformer layer that would otherwise exceed a single GPU’s ability, at
the cost of adding all-reduce/all-gather/reduce-scatter operations to synchronize
intermediates.
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Figure 3: Tensor Parallel in detail (2 GPUs, data moves from left to right).

Due to the additional collectives introduced by TP, it needs to happen on a fast network (i.e NVLink).
When training LLMs, TP is usually combined with FSDP, where TP shards within nodes and FSDP
shards across nodes to create the 2D hierarchical sharding on different DeviceMesh dimensions.

Figure 4: FSDP2 + Tensor Parallel (TP degree 4) sharding layout, with 2 nodes of 4 GPUs.

Usage: Because of the synergistic relationship between TP and SP, LEGOSCALE natively bundles
these two together and they are jointly controlled by the TP degree setting in the command line
or the TOML entry of tensor_parallel_degree. Setting this to 2 for example would mean
that 2 GPUs within the node will share the computational load for each transformer layers attention
and MLP modules via TP, and normalization/dropout layers via Sequence Parallel. Loss Parallel is
implemented via a context manager as it needs to control the loss computation outside of the model’s
forward computation. It can be enabled via enable_loss_parallel.
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B.4 PIPELINE PARALLEL

We expose several parameters to configure PP. pipeline_parallel_degree controls the
number of ranks participating in PP. pipeline_parallel_split_points accepts a list
of strings, representing layer fully-qualified-names before which a split will be performed.
Thus, the total number of pipeline stages V will be determined by the length of this list.
pipeline_parallel_schedule accepts the name of the schedule to be used. If the schedule
is multi-stage, there should be V > 1 stages assigned to each pipeline rank, otherwise V == 1.
pipeline_parallel_microbatches controls the number of microbatches to split a data
batch into.

B.5 ACTIVATION CHECKPOINTING

LEGOSCALE offers two types of Selective Activation Checkpointing which allow for a more nu-
anced tradeoff between memory and recomputation. Specifically, we offer the option to selectively
checkpoint “per layer” or “per operation”. The goal for per operation is to free memory used by op-
erations that are faster to recompute and save intermediates (memory) for operations that are slower
to recompute and thus deliver a more effective throughput/memory trade-off.

Usage: AC is enabled via a two-line setting in the command line or TOML file. Specifically, mode
can be either none, selective, or full. When selective is set, then the next config of
selective_ac_type is used which can be either a positive integer to enable selective layer
checkpointing, or op to enable selective operation checkpointing. Per layer takes an integer input to
guide the checkpointing policy, where 1 = checkpoint every layer (same as full), 2 = checkpoint ev-
ery other layer, 3 = checkpoint every third layer, etc. Per op(eration) is driven by the _save_list
policy in parallelize_llama.pywhich flags high arithmetic intensity operations such as mat-
mul (matrix multiplication) and SPDA (Scaled Dot Product Attention) for saving the intermediate
results, while allowing other lower intensity operations to be recomputed. Note that for balancing
total throughput, only every other matmul is flagged for saving.

B.6 ASYNCTP

The SymmetricMemory collectives used in AsyncTP are faster than standard NCCL collectives
and operate by having each GPU allocate an identical memory buffer in order to provide direct P2P
access. SymmetricMemory relies on having NVSwitch within the node, and is thus generally
only available for H100 or newer GPUs.

Usage: AsyncTP is enabled within the experimental section of the LEGOSCALE TOML config file
and turned on or off via the enable_async_tensor_parallel boolean setting.

B.7 CUSTOMIZING FSDP2 MIXED PRECISION IN LEGOSCALE

Mixed Precision is controlled by the MixedPrecisionPolicy class in the apply_fsdp func-
tion, which is then customized with param_dtype as BF16, and reduce_dtype defaulting to
FP32 by default in LEGOSCALE. The reduce_dtype in FP32 means that the reduce-scatter in
the backwards pass for gradient computation will take place in FP32 to help maximize both stability
and precision of the gradient updates.
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