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Towards a Theoretical Understanding of
Semi-Supervised Learning Under Class

Distribution Mismatch
Pan Du , Suyun Zhao , Puhui Tan , Zisen Sheng , Zeyu Gan , Hong Chen , and Cuiping Li

Abstract—Semi-supervised learning (SSL) confronts a for-
midable challenge under class distribution mismatch, wherein un-
labeled data contain numerous categories absent in the labeled
dataset. Traditional SSL methods undergo performance deterio-
ration in such mismatch scenarios due to the invasion of those
instances from unknown categories. Despite some technical efforts
to enhance SSL by mitigating the invasion, the profound theoretical
analysis of SSL under class distribution mismatch is still under
study. Accordingly, in this work, we propose Bi-Objective Opti-
mization Mechanism (BOOM) to theoretically analyze the excess
risk between the empirical optimal solution and the population-
level optimal solution. Specifically, BOOM reveals that the SSL
error is the essential contributor behind excess risk, resulting from
both the pseudo-labeling error and invasion error. Meanwhile,
BOOM unveils that the optimization objectives of SSL under mis-
match are binary: high-quality pseudo-labels and adaptive weights
on the unlabeled instances, which contribute to alleviating the
pseudo-labeling error and the invasion error, respectively. More-
over, BOOM explicitly discovers the fundamental factors crucial
for optimizing the bi-objectives, guided by which an approach
is then proposed as a strong baseline for SSL under mismatch.
Extensive experiments on benchmark and real datasets confirm
the effectiveness of our proposed algorithm.

Index Terms—Semi-supervised learning, class distribution
mismatch, excess risk, contrastive learning.
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I. INTRODUCTION

D EEP neural networks (DNNs) have achieved remarkable
success in fully-supervised learning tasks. However, suf-

ficient labeled data are usually unavailable in real applications
due to the expensive annotation cost or even domain-specific
knowledge required [1], [2]. To overcome the scarcity of labeled
data, semi-supervised learning (SSL) is studied by leveraging
an abundance of unlabeled data on the fundamental assump-
tion that both unlabeled and labeled data share the same label
space [3], [4], [5], [6]. Lots of theoretical analyses [2], [7],
[8], [9] have claimed that unlabeled data can be beneficial for
learning, provided that both labeled and unlabeled ones derive
from the identical joint distribution, denoted as P (X,Y ). Note
that X and Y are bounded random variables over input space
X and label space Y respectively. Under such assumption,
empirical evidence [4], [5], [6], [10] suggests that unlabeled data
substantially enhance the performance of the target classifier.

Yet, a large number of SSL’s real scenarios contradict the
same-joint-distribution assumption, as the unlabeled data, col-
lected in the open environment may contain numerous cate-
gories absent in the labeled data. For example, in the case
of searching fruit images from the internet by keywords like
“apple” and “cherry” (target categories), the collected images
may include instances irrelevant to the target fruits, such as
products associated with the Apple company (e.g., iPhone,
Apple Watch), or products containing the word “cherry” (e.g.,
flowering cherry trees, Cheerwine Soft Drink). All these images
are considered from unknown categories, as illustrated in Fig. 1.
Similar occurrences are also observed in medical diagnoses [1]
and the annotation of houses in remote-sensing images [11].
Obviously, the problems in such scenarios, commonly called
class distribution mismatch, exhibit mismatched label space
between labeled and unlabeled data. As a result, the joint dis-
tribution of unlabeled data diverges from that of the labeled
data. Traditional SSL methods, unaware that the unlabeled data
violates the same-joint-distribution assumption, proceed to learn
the labeling function P (Y |X;θ) parameterized by θ, based
on the biased joint distribution to mimic the latent input-label
relationship between X and Y , resulting in severe performance
deterioration and performing even worse than when using only
labeled data [12], [13].

Recent efforts on SSL under mismatch have been directed
towards aligning the joint distribution between labeled and
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Fig. 1. Example of class distribution mismatch. The unlabeled data contains
categories that are unseen in labeled ones.

unlabeled data by refining the data under class distribution
mismatch into matched settings [12], [13], [14], [15], [16], [17].
However, the adjusted joint distribution is susceptible due to
its heavy reliance on the detection mechanism for unknown
categories. Once a set number of instances with unknown
categories infiltrate the training process, the learned labeling
function P (Y |X;θ) becomes unreliable, and the performance
of SSL declines sharply. Empirically, some methods [12], [13],
[15], [16], which detect those unknown categories by lever-
aging the target classifier, already exhibit comparable or even
worse performance compared to the ones trained with limited
labeled data. To mitigate such agnostic risks, it’s crucial to
conduct a theoretical analysis that systematically evaluates the
bias between the learned labeling function P (Y |X;θ) under
class distribution mismatch and the optimal labeling function
P (Y |X;θ∗) that parameterized by θ∗. Such analysis should
also be beneficial in discovering the fundamental factors crucial
to align the joint distribution between labeled and unlabeled
data.

To bridge the theoretical gap of SSL under mismatch, we
explore the excess risk between the empirical optimal solution
on the polluted data and the population-level optimal solution
on the population data [18]. It is impossible to substitute the
empirical solution into the expected error formula because the
two solutions exist in distinct data spaces. Accordingly, we
propose a Bi-Objective Optimization Mechanism (BOOM),
which decouples the SSL error, the predominant component of
excess risk, into dual objectives and then unveils the fundamental
factors crucial for tightening its upper bound. BOOM mainly
comprises three theorems. First and most important, BOOM
reveals that the essence of excess risk [19] under mismatch lies
in the SSL error. Then, as depicted in Theorem 1, the SSL error
is decoupled into the pseudo-labeling error and the invasion
error. To alleviate these two errors, BOOM advocates the dual
optimization objectives by Theorem 2: enhancing pseudo-label
quality as well as adaptively assigning weights to unlabeled
instances. Last but not least, Theorem 3 in BOOM unveils
the fundamental factors to optimize these objectives, provid-
ing some valuable insights for algorithmic design. Guided by
the theoretical results of BOOM, we propose an SSL method

to tighten the SSL error bound, thereby establishing a strong
baseline of SSL under mismatch.

The main contributions can be summarized as follows.
i) We propose the Bi-Objective Optimization Mechanism

(BOOM), which analyzes excess risk from empirical,
sampling bias-free, and prior-free perspectives. To our
knowledge, this is the first comprehensive theoretical
framework specifically tailored to SSL under class distri-
bution mismatch.

ii) Guided by BOOM, we propose an SSL method under
mismatch to optimize both annotation and weights on
the unlabeled data. This method may serve as a strong
baseline supported by theoretical analysis under class
distribution mismatch.

iii) Extensive experiments on four benchmark datasets and
one real dataset validate the proposed theoretical frame-
work, BOOM, and demonstrate the effectiveness of our
method.

This study is a follow-up to the ICCV2023 publication [20],
providing three notable advancements compared to its prede-
cessor. i) Compared to the conference version, where only
the empirical perspective of population risk is concerned, this
study develops a comprehensive theoretical framework named
BOOM, as presented in the supplementary Section III. BOOM
systematically and comprehensively investigates the excess risk
of SSL under class distribution mismatch from empirical, sam-
pling bias-free, and prior-free perspectives. Specifically, it ana-
lyzes the version space in fully supervised, semi-supervised and
mismatched semi-supervised manners and then establishes three
distinct upper bounds for SSL error. This framework provides
profound insights into potential agnostic risks and then offers a
strict theoretical foundation for SSL algorithms under class dis-
tribution mismatch. ii) In light of the third theorem of BOOM, we
reformat the proposed method WAD in the conference version,
as detailed in Section IV. This enhancement confirms WAD’s
strong theoretical foundations, qualifying it as a solid baseline
for SSL under class distribution mismatch. iii) Our experimental
evaluation has been extended to encompass a broader range of
mismatch proportions, from 0% to 100%, along with additional
datasets (including Tiny-Imagenet and a realistic controlled
noise dataset), further comparisons with the latest methods, and
enhanced visualizations, as detailed in Section V. Besides, the
whole paper—particularly the introduction and conclusion—has
undergone a thorough revision aimed at a better understanding
of BOOM.

The remainder of this paper is structured as follows. We begin
by reviewing previous related works in Section II. Following
this, Section III introduces the notations and presents the theoret-
ical framework, BOOM. Additionally, a BOOM-guided method
is provided in Section IV. Section V continues by exhibiting the
extensive experimental results, while Section VI serves as the
conclusion of the paper.

II. RELATED WORK

This section reviews SSL methods in both class distribution
match and mismatch scenarios, along with existing theoretical
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analyses. For insights on contrastive learning and a comprehen-
sive overview of each SSL method’s strengths and limitations,
please refer to Appendix I, available online.

A. Traditional SSL Methods

Semi-supervised learning (SSL) aims to leverage both labeled
and unlabeled data for model training. Traditional SSL strategies
include entropy minimization, consistency regularization, and
pseudo-labeling. Entropy minimization [4] incorporates unla-
beled data in supervised learning by minimizing the entropy
of the predictions for unlabeled instances. It encourages the
model to make low-entropy predictions for unlabeled data,
thereby preventing the decision boundary from passing through
regions of high data density. Another SSL technique, consistency
regularization [5], [6], [10], aims to ensure that the model’s pre-
dictions remain stable and robust across different perturbations
or views of the same instance. For example, the Π-Model [10],
with the goal of minimizing the prediction discrepancy between
the original instance and its perturbed counterpart, introduces
stochastic perturbations to instances by employing data aug-
mentation and dropout. As it depends on a single prediction
from the target classifier, the Π-model suffers from instability.
In contrast, Temporal Ensembling [5] concentrates on main-
taining consistency between the Exponential Moving Average
(EMA) of past predictions and current predictions. Furthermore,
Virtual Adversarial Training (VAT) [21] generates adversarial
perturbations that significantly alter the model’s predictions
and then minimizes the discrepancy between the perturbed and
original predictions. As for the third SSL techniques, Pseudo-
labeling-based approaches [22], [23], [24], [25] mainly expand
the labeled dataset by assigning pseudo labels to unlabeled
instances. A pioneering method named Pseudo-Labeling [24]
assigns high-confidence prediction labels as pseudo labels to
unlabeled data. As a powerful SSL technique, FixMatch [25]
first generates pseudo-labels based on the model’s predictions
on weakly augmented unlabeled images. If the pseudo-label
is highly confident, it is aligned with the strongly augmented
version of the same image using a cross-entropy loss function.
We encourage interested readers to consult [26] for a detailed
survey.

These conventional SSL methods perform well in match
scenarios; however, they expose some intrinsic limitations when
tackling unlabeled data with unknown categories.

B. SSL Under Class Distribution Mismatch

To address the challenge of class distribution mismatch, most
mismatched SSL methods [12], [13], [14], [15], [16], [27] adopt
the detect-weight-SSL paradigm, as depicted in Fig. 2. This
paradigm concentrates on the detection of instances associated
with unknown categories, followed by filtering them through
weights, thereby facilitating the SSL labeling techniques in
handling mismatch issues.

Some methods [12], [13], [15], [16], following the detect-
weight-SSL paradigm, leverage the target classifier to identify
instances from unknown categories. For example, Deep Safe
Semi-Supervised Learning (DS3L) [12] leverages the target

Fig. 2. The Detect-Weight-SSL paradigm of SSL methods under class distri-
bution mismatch.

classifier to compute the prediction consistency loss between
two augmented views of an unlabeled instance regarding in-
stances with large discrepancies as unknown. Uncertainty Aware
Self-Distillation (UASD) [13] filters out unknown categories
by applying a confidence threshold to the averaged predictions
of the temporally ensembled target classifier. With increased
vulnerability, Class-aware Contrastive Semi-Supervised Learn-
ing (CCSSL) [15] and Simple but Strong Baseline (SSB) [16]
directly apply a threshold to the maximum probability output of
the target classifier to detect instances with unknown categories.
However, a commendable aspect is that they further leverage
instances with low weights to enhance the representation space
in CCSSL [15] or to train an independent one-versus-all de-
tector in SSB [16], improving the utility of the instances with
unknown categories. After identifying the unknown categories,
UASD [13] and SSB [16] generate pseudo-labels based on the
output of the target classifier [24] to leverage instances with
target categories, while DS3L [12] and CCSSL [15] achieve
this through consistency regularization strategies. Obviously,
the detection performance is highly influenced by the classifier’s
effectiveness.

Unlike the aforementioned detection techniques, Trash to
Treasure (T2T) [14] eliminates the dependency on the target
classifier’s output by introducing an additional cross-modal
matching model. This model infers whether the embedding
of the input image matches an assigned pseudo-label, thereby
identifying instances associated with unknown categories. Sub-
sequently, those large-weight instances are incorporated into
training by leveraging consistency regularization. To improve
T2T, OOD Semantic Pruning (OSP) [27] introduces a supple-
mentary step to eliminate those pixels associated with unknown
categories from target features. This is achieved by regularizing
features from both target and unknown categories to be orthogo-
nal. Although this approach further mitigates the negative effects
of unknown categories at the pixel level, it may compromise the
robustness of the learned model. Evidently, these SSL methods
under mismatch are heavily reliant on the detection tasks, which
may jeopardize rather than improve the performance of the target
classifier. Should this detection fail, the learned target classifier
breaks down. Therefore, it is crucial to uncover the underlying
mechanism of SSL under mismatch to mitigate this agnostic
risk.

Besides the detect-weight-SSL approaches, some meth-
ods [17], [28], [29] modify the fully connected layer of the target
classifier, transforming the K-way classifier into a K + 1-way
model. In this setting, instances from unknown categories are

Authorized licensed use limited to: Renmin University. Downloaded on August 20,2025 at 01:49:00 UTC from IEEE Xplore.  Restrictions apply. 



4856 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 47, NO. 6, JUNE 2025

TABLE I
LIST OF NOTATIONS

treated as a distinct new class, with K representing the number
of target categories. For example, a prototype network-based
approach [17] adopts a distance-based function to identify in-
stances associated with unknown categories, thereby generating
new prototypes for these instances. Similarly, Simplifying Open-
Set Semi-Supervised Learning with Joint Inliers and Outliers
Utilization (IOMatch) [28] employs a group of one-versus-all
classifiers to detect instances from unknown categories and in
combination with the standard closed-set classifier to establish
K + 1-way classification targets accordingly. Additionally, the
open-world method with uncertainty-based adaptive margin
(ORCA) [29] assumes a known [30] or estimable [31] number
of categories in the unlabeled data. It then learns a K +M -way
target classifier using the proposed softmax function with an
uncertainty-adaptive margin mechanism, where M denotes the
number of unknown categories.

C. Theory of SSL

Theoretical advancements in SSL have primarily concen-
trated on investigating the potential role of unlabeled data [7],
[8], [9], [32]. From a critical perspective, Ben-David et al. [32]
argue that SSL fails to guarantee the substantial benefits from
unlabeled data without prior knowledge of label distribution.
Therefore, researchers in the field of SSL consistently presume
that either the cluster assumption or the manifold assumptions
are intrinsic in unlabeled data. Under the clustering assumption,
where the target function is thought locally smooth in the feature
space [8], Rigollet et al. [7] establishes a tight upper bound
on the generalization error in SSL classification. Moreover,
under manifold assumption, where the target function is sup-
posed on a low-dimensional manifold [8], Daniel Sanz-Alonso
et al. [9] deduce that the unlabeled data are beneficial when
utilizing graph-based methods in a Bayesian setting. However,
these theoretical analyses lack sufficient guidance for practical
algorithm design. As insightful results, Jia et al. [33] reveal that

distribution discrepancies between labeled and unlabeled data
stem from pseudo-label predictions and target predictions. To
address this issue, one type of pseudo-labeling and weighting
strategy is then proposed. Unfortunately, it just considers the
covariate shift. Consequently, it is still promising to develop
theoretical analysis in mismatch scenarios.

III. BI-OBJECTIVE OPTIMIZATION MECHANISM

To explore the class distribution mismatch problem in SSL,
this section introduces the proposed theoretical framework,
BOOM. It begins with the preliminaries and problem defini-
tion in Section III-A, followed by a comprehensive analysis
of excess risk in Section III-B. Sections III-C, III-D, and III-E
further examine the theoretical results and practical guidelines
for alleviating SSL errors. To make it easier to follow, Table I
includes an abbreviated list of the main notations.

A. Preliminaries and Problem Defination

Preliminaries: Let ρ denote a population distribution defined
over X × Y , where X and Y represent the input and output
spaces, respectively, with Y ⊆ R

K . Suppose H is a hypothesis
space, consisting of labeling functions h : X → Y , i.e., param-
eterized classifiers, effectively mapping instances to labeling
vectors in Y , defined as H = {h|y = hθ(x),θ ∈ Θ}, where
x ∈ X , y ∈ Y , and θ represents the parameters governing the
labeling function h, confined within the parameter space Θ. To
measure the success of a prediction, we employ a loss function
� : Y × Y → R to measure the dissimilarity between two ele-
ments within the output space Y . Various loss functions satisfy
the above definition, such as the cross-entropy and mean squared
error (MSE). Given a noise-free dataset T = {(xi,yi)}|T |

i=1 that
is drawn independently and identically distributed (i.i.d.) from
a distribution ρ with a size of |T |, the objective of supervised
learning is to derive a hypothesis h ∈ H that exhibits strong
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Fig. 3. The relations among data setsDL,DU ,S,U ,P . Note thatP �= S ∪ U
due to the instances with target categories inDU are assigned with pseudo-labels
while not the ground-truth ones in S.

generalization performance to the ρ based on the dataset T ,
achieved by optimizing the empirical loss L̂(h) as (1).

L̂(h) = 1

|T |
|T |∑
i=1

�(h(xi),yi), (1)

where the model that minimizes the empirical loss L̂(h) is
referred to as the empirical optimal solution.

Additionally, the corresponding expected loss is defined
as (2).

L(h) = E(x,y)∼ρ[�(h(x),y)], (2)

where the model that minimizes the expected loss L(h) is
referred to as the population-level optimal solution, denoted by
h∗.

Then, the version space induced by T is defined as the subset
of hypotheses space H where each hypothesis correctly predicts
the labels of all instances in T . Formally, it is represented as
{h ∈ H | ∀(x,y) ∈ T, h(x) = y} [34]. Since the hypotheses
in the version space perfectly fit the training data, any hypothesis
within this space is an empirical optimal solution.

Problem Definition: This study primarily investigates the
problem of SSL under class distribution mismatch. Our ultimate
goal is to develop a classifier for a K-class classification task
that generalizes well to the instances from the distribution ρ.
The training data comprises the limited number of labeled data
DL = {(xi,yi)}mi=1 that are i.i.d. sampled from distribution ρ
with size of m and abundant unlabeled ones DU = {xi}ni=m+1

are i.i.d. drawn according to the marginal distribution ρX overX
and an unknown marginal distribution ρXu

over Xu with size of
n−m, typically m 
 n−m. Importantly, it should be noted
that the input spacesX andXu contain instances associated with
distinct semantic categories.

To leverage the unlabeled instances, this study adopts a
pseudo-label-based SSL approach. Each instance in DU is as-
signed a pseudo-label, thereby forming the dataset P with a
size of n when combined with the labeled dataset DL. For
convenience, we denoteS = {(xi,yi)}si=1 as the instances inP ,
which are sampled from the marginal distribution ρX with their
ground-truth labels, whileU represents the set of instances inP ,
sampled from an unknown marginal distribution ρXu

, with their
pseudo-labels. To explicitly delineate the relationships among
P , S, U , DL, and DU , their relations are visually represented
in Fig. 3. It is apparent that the dataset S is purely composed
of instances from target categories. In contrast, the dataset P is
potentially contaminated by incorrect pseudo-labels and invaded
by instances from an unknown marginal distribution ρXu

.

B. Excess Risk Analysis

Excess risk refers to the gap between the population risk of a
model trained on available data and that of the optimal model,
which minimizes risk across the entire data distribution. To probe
the essence of excess risk, we explore the relationships between
the population-level optimal solution h∗ on ρ and the empirical
optimal solutions in supervised learning, SSL, and SSL under
class distribution mismatch, as depicted in Fig. 4, respectively.

In supervised learning, the hypotheses that minimize the loss
function (1) on the target distribution ρ and the labeled available
dataset DL form the population version space and supervised
version space, respectively, as depicted in the red and blue
regions in Fig. 4(a). Any hypothesis contained in the population
version space corresponds to a population-level optimal solu-
tion, while the one in the supervised version space corresponds to
the empirical optimal solution. As the scale of labeled noise-free
data DL increases, the supervised version space shrinks and
eventually converges to the population version space, i.e., the
blue region shrinks to the red one. Hence, the empirical optimal
solution may approach the population-level optimal solution in
the case of abundant noise-free labeled data.

In traditional SSL, the empirical optimal solution is trained
on labeled data and pseudo-labeled instances, i.e., P\U . In such
cases, the version space shrinks to the SSL version space on
P\U , depicted as the orange region Fig. 4(b). Once errors occur
in pseudo-labels, the orange region will not contain the red
region. This shows that, although SSL may reduce the version
space, it is susceptible to erroneous pseudo-labels, preventing it
from converging to the population-level optimal solution.

In the mismatched scenario, incorporating unknown instances
into the training process further shrinks the version space to the
mismatched SSL version space, depicted as the green region
in Fig. 4(c). However, due to the invasion of these unknown
instances, the green region heavily drifts from the red region,
indicating a significant deviation of the mismatched SSL version
space from the population version space. Therefore, under class
distribution mismatch, leveraging uniform weights such as 1

|T | ,
as shown in (1), may cause the learned target classifier to deviate
from the optimal model. This assertion is supported by the
theoretical analysis in i) and iv) of Corollary 1, as well as by
the experiments presented in Section V-C.

To tackle the challenge of class distribution mismatch, it is
imperative to calibrate the mismatched SSL version space to the
population version space, thereby aligning the empirical optimal
solution with the population-level optimal solution h∗. Such
calibration will significantly enhance the model’s generalization
capability. Therefore, we optimize the weights w together with
θ to get an empirical optimal solution in mismatched SSL
scenarios, and the general objective is defined as:

min
w∈W

min
h∈H

L̂(h;w) =
1

|P |
∑

(xi,yi)∈P
wi�(h(xi),yi), (3)

where w = [w1, . . . , w|P |] is the vector of weights, and wi

remains constant at ε for the labeled instances; W is the pa-
rameter space for w. In our framework, we relax the constraint∑

(xi,yi)∈P wi/|P | = 1 on w, thereby expanding the feasibility
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Fig. 4. Illustration of the relationship between the population-level optimal solution h∗ on ρ and the empirical optimal solutions in supervised learning, SSL,
and SSL under class distribution mismatch, respectively.

range. Each element wi can take any value under the assump-
tion that the weights of instances from ρX and ρXu

follow
the distribution ωt with expectation μt and variance σ2

t , and
the distribution ωu with expectation μu and variance σ2

u, and
restricted to τt and τu, respectively.

Then, the empirical optimal model ĥ, which is trained on the
dataset P using SSL methods specifically designed for class
distribution mismatch, and the population-level optimal model
h∗, on ρ, are formulated in (4) and (5), respectively. Here, w̃
represents a vector of weights where each element is a constant
ε.

ĥ = argmin
w∈W,h∈H,(x,y)∈P

L̂(h;w), (4)

h∗ = argmin
h∈H,(x,y)∼ρ

L(h; w̃), (5)

which is equivalent to h∗ = argminh∈H L(h), as shown in (2).
The population risk of a model is defined as:

L(h; w̃) = E(x,y)∼ρ[ε�(h(x),y)].

Subsequently, the excess risk between the empirical optimal so-
lution on a polluted dataP and the population-level optimal solu-
tion on pure population data is defined as L(ĥ; w̃)− L(h∗; w̃).
A challenge arises because these solutions exist in distinct data
spaces, rendering it impossible to substitute the empirical solu-
tion into the expected error formula. To overcome this challenge,
we decompose the excess risk into three distinct components:
the generalization gap of ĥ, the concentration error, and the SSL
error, as shown in (6). For an in-depth derivation process, please
refer to the Appendix IV-A, available online.

L(ĥ; w̃)− L(h∗; w̃)

≤
∣∣∣L(ĥ; w̃)− L̂P (ĥ;w)

∣∣∣︸ ︷︷ ︸
Generalizationgap

+
∣∣∣L̂S(h

∗; w̃)− L(h∗; w̃)
∣∣∣︸ ︷︷ ︸

Concentrationerror

+
∣∣∣L̂P (ĥ;w)− L̂S(h

∗; w̃)
∣∣∣︸ ︷︷ ︸

SSLerror

, (6)

where L̂P and L̂S indicate the empirical loss on the datasets P
and S, respectively.

Generalization gap: The generalization gap refers to the
discrepancy between a learning model’s performance on the
available training data (P ) and its performance on the population
data drawn from the target distribution ρ. A smaller general-
ization gap indicates better generalization. Numerous theoret-
ical studies have shown that the generalization gap of DNNs,
which are employed in our work, can be effectively bounded
[35], [36].

Concentration error: The concentration error indicates the
deviation of the random variable L̂S(h

∗; w̃) from its expectation
L(h∗; w̃) [37]. As the size of the set S approaches infinity,
L̂S(h

∗; w̃) naturally concentrates around its expected value,
minimizing the concentration error. Considering that the size
of the set S is independent of the learning optimization, we
need not delve into concentration error here. For more details
about the concentration error, please refer to the Appendix IV-B,
available online.

SSL error: Unlike the generalization gap, the SSL error
highlights discrepancies in model’s performance between the
contaminated training dataset P and the labeled pure one S.
Undoubtedly, SSL error plays a critical role in contributing to
the excess risk in SSL under class distribution mismatch.

C. Empirical Upper Bound for SSL Error

This subsection analyzes the upper bound of the SSL error
at the empirical level and decouples it into the pseudo-labeling
error and the invasion error, as stated in Theorem 1.

Theorem 1 (Empirical upper bound for SSL error): Let U =
{(x,y)|(x,y) ∈ P,x ∈ Xu} denote a set of instances with size
n− s, where xi is sampled from ρXu

and follows the empirical
distribution ρ̃Xu

. Similarly, let ε̂ = n
s ε, where ε is a constant

and J represent the set {(xi,yi, ŷi)}si=1 with (xi, ŷi) ∈ P\U ,
(xi,yi) ∈ S, and xi ∈ X , i.e., xi is sampled from ρX and
follows the empirical distribution ρ̃X . Assume the loss function
�(·,y) is Lipschitz continuous with a constant λl for all y, h∗,
and ĥ, and bounded by H for all Y × Y . Given these assump-
tions, we can set the constant κ to 2, leading to the following
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result:∣∣∣L̂P (ĥ;w)− L̂S(h
∗; w̃)

∣∣∣
≤ 1

s

∑
(xi,yi,ŷi)∈J

[
wiκλl‖ŷi − yi‖2 + ‖(wi − ε̂)H‖2

]
︸ ︷︷ ︸

Pseudo-labeling error

+
κ

n− s

∑
(xi,ŷi)∈U

wiH

︸ ︷︷ ︸
Invasion error

. (7)

Corollary 1: Under the same conditions as established in
Theorem 1, we deduce the following consequences:

i) If the weight of each instance in J equals ε̂:
If ŷi = yi, for all instances in J :

1

s

∑
(xi,yi,ŷi)∈J

[
wiκλl‖ŷi − yi‖2 + ‖(wi − ε̂)H‖2

]
= 0,

while if ŷi �= yi, for all instances in J :

1

s

∑
(xi,yi,ŷi)∈J

[
wiκλl‖ŷi − yi‖2 + ‖(wi − ε̂)H‖2

]

=
1

s

∑
(xi,yi,ŷi)∈J

ε̂κλl‖ŷi − yi‖2.

ii) If the weight of each instance in J equals 0, then:

1

s

∑
(xi,yi,ŷi)∈J

[
wiκλl‖ŷi − yi‖2 + ‖(wi − ε̂)H‖2

]
= ε̂H.

iii) If the weight of each instance in U equals 0, then:
κ

n− s

∑
(xi,ŷi)∈U

wiH = 0.

iv) If the weight of each instance in U equals ε̂, then:
κ

n− s

∑
(xi,ŷi)∈U

wiH = ε̂κH.

Remark 1: Theorem 1 estimates the upper bound of the SSL
error by leveraging the empirical distributions ρ̃X and ρ̃Xu

of
the instances sampled from the true distributions ρX and ρXu

,
respectively. For a detailed proof of Theorem 1, please kindly
refer to the Appendix IV-C, available online.

i) Pseudo-labeling error: In Theorem 1, the pseudo-labeling
error is defined on the empirical marginal distribution ρ̃X .
It quantifies the errors resulting from both incorrect pseudo-
labeling and low participation in training. Concretely, it assesses
the disparity between ground-truth labels and pseudo-labels by
the term‖ŷi − yi‖2. Meanwhile, the term‖(wi − ε̂)H‖2 in SSL
error penalizes the instances with lower weights. This is because
the instances in J , from empirical distribution ρ̃X , benefit to
improve the target classifier. Provided that they are assigned
too low weights to make them contribute less for training, a
large penalty should be imposed to increase the pseudo-labeling
error. Just as inferred from i) of Corollary 1, both incorrect
pseudo-labels and those instances with low participation jointly

contribute to the pseudo-labeling error. In addition, (b) and (c) of
Fig. 5 illustrate that the decision boundaries are prone to fluctuate
with the incorrect pseudo-labels as well as they are sensitive to
the instances with tiny weights. Consequently, to alleviate the
pseudo-labeling error, the pseudo-labels are supposed to align
with their corresponding ground-truth labels. In the meanwhile,
the weights of the unlabeled instances from the target empirical
marginal distribution ρ̃X are supposed to approach ε̂ = n

s ε, to
ensure their contributions for training.

ii) Invasion error: The invasion error arises in case that
the instances from the empirical distribution ρ̃Xu

infiltrate the
training process of the target classifier. As illustrated in (d) of
Fig. 5, this error may cause an erroneous decision boundary.
According to Theorem 1 and iii) & iv) of Corollary 1, we reveal
that the invasion error is controlled by the weights assigned to
the instances from the empirical distribution ρ̃Xu

. Therefore,
reducing the weights assigned to such instances with unknown
categories may mitigate the invasion error, as depicted in (e) of
Fig. 5.

iii) SSL error: The SSL error is twofold: the pseudo-labeling
error and the invasion error. To effectively mitigate it un-
der mismatch, there is a dual objective. One is to enhance
the quality of pseudo-labels assigned to unlabeled instances
from ρ̃X , thereby alleviating the pseudo-labeling error. The
other sub-objective concentrates on weight assignment to un-
labeled instances. As shown in i) and iv) of Corollary 1,
if instances from unknown categories are assigned a weight
of zero, distinct from the weight ε̂ assigned to instances
from target categories, then the upper bound of the SSL er-
ror decreases from 1

s

∑
(xi,yi,ŷi)∈J ε̂κλl‖ŷi − yi‖2 + ε̂κH to

1
s

∑
(xi,yi,ŷi)∈J ε̂κλl‖ŷi − yi‖2. Therefore, to mitigate the SSL

error, we should assign tiny weights to instances from ρ̃Xu
and

large weights to instances from ρ̃X rather than uniform weights
assigned to all unlabeled instances.

Summary of Theorem 1: Theorem 1 states the empirical upper
bound of the SSL error established on the empirical distributions
ρ̃X and ρ̃Xu

. It provides a fundamental theoretical analysis of
SSL under class distribution mismatch. However, this empir-
ical bound overlooks the sampling bias, where the empirical
distribution of the sampled data deviates from the true sample
distribution. Certainly, the sampling bias is attributed to the lim-
ited scale of target data. Noteworthy that the random deviation
on unknown categories contributes even more to this bias, as the
distribution of unknown categories in an open environment is
hard to be retrieved from the sampled unlabeled data at hand.

D. Sampling Bias-Free Upper Bound for SSL Error

Building on Theorem 1, this subsection establishes a sampling
bias-free upper bound for SSL error in Theorem 2. Two support-
ing lemmas used in Theorem 2 are also presented; for detailed
proofs, please refer to Appendix IV-D & IV-E, available online.

Lemma 1: Let Φ(x) : X → R
K denote a labeling function

that is λμ-Lipschitz continuous over the input space X and
ηk(x) = p(ϕ(y) = k|x) be a class-specific regression function
that is λη-Lipschitz continuous for all k where ϕ(y) : Y → R

and k ∈ R. Additionally, given an instance sampled from ρX ,
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Fig. 5. The decision boundaries under various scenarios. • and • represent the instances with target categories, while � and � denote the instances with unknown
categories. (a) illustrates the true decision boundary. (b) represents the decision boundary in the case that the instances sampled from ρX are incorrectly annotated.
(c) illustrates the decision boundary in the case that some instances from ρX are assigned with tiny weights. (d) displays the decision boundary if some instances
with unknown categories invade. (e) depicts the decision boundary in the case that all instances with unknown categories are filtered out.

there exists a labeled one in its proximity such that their eu-
clidean distance is bounded by D. Assuming for any yi and yj

within Y , their euclidean distance remains bounded by L, we
obtain that:

Eϕ(yi)∼η(xi)

[‖ŷi − yi‖22
] ≤ D2

[
λμ + ληL2K

]
. (8)

Lemma 2: Let ω̃ denote a weight distribution with expecta-
tion μ and variance σ2, and M be a constant. For any wi ∼ ω̃,
the following holds:

Ewi∼ω̃(‖(wi − ε̂)M‖2) ≤ M
√
(μ− ε̂)2 + σ2, (9)

Ewi∼ω̃(‖wiM‖2) ≤ Mμ. (10)

In the following theorem, we investigate the upper bound of
SSL error by leveraging the statistical properties of the true
marginal distributions ρX and ρXu

, instead of the empirical
marginals ρ̃X and ρ̃Xu

used in Theorem 1.
Theorem 2 (Sampling bias-free upper bound for SSL error):

Suppose that ‖wi − ε̂‖2 is bounded by R, where wi ∼ ωt. Un-
der the same assumptions as presented in Lemmas 1, 2, and
Theorem 1, with a probability of at least 1− δ(δ > 0), we can
establish the following inequality:∣∣∣L̂P (ĥ;w)− L̂S(h

∗; w̃)
∣∣∣ ≤

λlκD
√

(μ2
t + σ2

t )(λ
μ + ληL2K)+H

√
(μt − ε̂)2+σ2

t +Rp︸ ︷︷ ︸
Pseudo-labeling error

+ κHμu +Ri︸ ︷︷ ︸
Invasion error

,

(11)
wherein,

Rp =

√
(λlτtκL+HR)2 log 2

δ

2s
,Ri =

√
(τuκH)2 log 2

δ

2(n− s)
.

Remark 2: By leveraging the expectations of ‖ŷi − yi‖22
and w, as shown in Lemmas 1 and 2, Theorem 2 establishes a
sampling bias-free upper bound for SSL error. This bound holds
for any set of instances sampled from the true target distribution
ρX and the true unknown distribution ρXu

, thereby it is robust
for sampling. As the component of SSL error, the bounds of the
pseudo-labeling error and the invasion error, are free from the

Fig. 6. An illustrative example depicting the weight distribution of instances
from ρX and ρXu .

sampling bias. For a detailed proof of Theorem 2, please refer
to the Appendix IV-F, available online.

i) Sampling Bias-Free Upper Bound for Pseudo-labeling Er-
ror: Theorem 2 states that the sampling bias-free upper bound
of the pseudo-labeling error is dominated by the parameters D,
μt, and σt, where D portrays the risk of incorrect annotation,
and the others represent the numerical characters of the weight
distribution of the instances from ρX . Specifically, D denotes
the euclidean distance bound between a labeled instance and
an unlabeled one, both obeying the distribution ρX . A reduced
D implies a closer proximity between labeled and unlabeled
instances in euclidean space. This proximity, as shown in (8),
results in a declined expected squared error between the pseudo-
label ŷi and the ground-truth label yi. Consequently, a smaller
D, which means less risk for incorrect pseudo-labeling, may
mitigate the pseudo-labeling error.

Unlike the parameter D, the paired parameters μt and σt

characterize the weight distribution of the instances following
the distribution ρX . As the expectation of weightsμt approaches
ε̂ and its standard deviation σt shrinks to zero in the meantime,
the term H(

√
(μt − ε̂)2 + σ2

t ) diminishes. A tighter bound for
the pseudo-labeling error is then achieved. Therefore, to mitigate
the pseudo-labeling error, it is imperative to align the weights
of all instances from the distribution ρX , i.e., for any wi ∼ ωt,
with those of the labeled instances, as depicted in Fig. 6.

ii) Sampling Bias-Free Upper bound for Invasion Error:
Theorem 2 presents a sampling bias-free upper bound for the
invasion error, which manifests the significance of the weights of
the instances from the distribution ρXu

. As demonstrated in (11),
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the invasion error is controlled by the expectation of the weights,
i.e., μu. As μu tends toward zero, its corresponding variance
always converges to zero, owing to wi ≥ 0 for any wi ∼ ωu.
In the case that both the expectation and the variance approach
zeros, all the weights on instances from ρXu

approximate zeros,
thereby effectively mitigating the invasion of unknown cate-
gories.

Summary of Theorem 2: Theorem 2 unveils that the SSL
error, including the pseudo-labeling error and the invasion error,
is dominant by pseudo-labeling and weight assignment on the
basis of the true marginal distributions ρX and ρXu

, instead of
the empirical marginal distributions ρ̃X and ρ̃Xu

. Accordingly,
the dual objectives to mitigate the SSL error are pinpointed as
improving the pseudo-label quality for the instances from ρX
and assigning adaptive weights on all unlabeled instances from
both ρX and ρXu

. Yet, Theorem 2, together with Theorem 1, is
built based on the prior knowledge that the unlabeled instances
from ρX and the ones from ρXu

are discernible and divided.
However, in the real scenarios, it is impractical to distinguish
the unlabeled instances according to their categories, which
makes it infeasible to calculate the parameters μt, σt, and μu.
Thus, though the bounds in Theorems 1 & 2 are reasonable
and explainable, they fail to provide practical guidance for
SSL’s algorithm design. To address these problems, we present
Theorem 3, which considers the unlabeled instances with no
prior knowledge.

E. Prior-Free Upper Bound for SSL Error

This subsection establishes an upper bound for the SSL error
in Theorem 3, without requiring prior knowledge of the input
spaces X or Xu. To accomplish this, we begin by strengthening
the assumptions related to the labeling function, which were
previously utilized in Lemma 1, so that they are applicable to
the combined input space X ∪ Xu, as depicted in Assumption 1.

Assumption 1 (Strengthened Assumptions for Lemma 1):
Suppose that Φ(x) : X ∪ Xu → R

K represent a labeling func-
tion that exhibits λμ-Lipschitz continuity across the input
space X ∪ Xu. Additionally, let ηk(x) = p(ϕ(y) = k|x) de-
note a class-specific regression function that demonstrates λη-
Lipschitz continuity for all k, where ϕ(y) : X ∪ Xu → R, k ≤
K, and k ∈ R. Additionally, for any instance in X ∪ Xu, there
exists a labeled one in its proximity such that their euclidean
distance is bounded by D.

Theorem 3 (Prior-free upper bound for SSL error): Consider
a Lipschitz continuous regression functionΛ(x) : X ∪ Xu → R

with constants λw on spacesX ∪ Xu. For any unlabeled instance
xi ∈ X ∪ Xu, there exist labeled instances xk and x′

j within its

proximity, bounded by D̂ and D̂ − ξ respectively (yk �= y′
j , ξ ≥

0). Under the same assumptions of Assumption 1 and Theorem 2,
with a probability of at least 1− δ(δ > 0), the following holds:∣∣∣L̂P (ĥ;w)− L̂S(h

∗; w̃)
∣∣∣

≤ (λlκD
√

λμ + ληL2K + 3H)︸ ︷︷ ︸
Pseudo-labeling quality

(λw(D̂ − ξ) + ε̂)︸ ︷︷ ︸
Adaptive weight

+Rp +Ri.

(12)

Fig. 7. A toy example for interpreting Theorem 3. Labeled instances with
target categories are represented by • and •, while unlabeled instances with
target or unknown categories are denoted by • and �, respectively.

Remark 3: Theorems 1 & 2 unveil the dual objective, i.e.,
improving the pseudo labels and assigning adaptive weights
on unlabeled instances, to mitigate the SSL error. However,
these results are impractical for SSL algorithm design, as they
rely heavily on the prior knowledge of discernible unlabeled
instances from unknown categories. To achieve bi-objective
optimization, Theorem 3 establishes a prior-free upper bound for
the SSL error and outlines several fundamental factors crucial to
the quality of pseudo-labeling and adaptive weight assignments.
The detailed proof is presented in Appendix IV-G, available
online.

As stated in Theorem 3, there are two fundamental factors,
D and D̂ − ξ, decisive to the upper bound of the SSL error.
They provide strategies practical to optimize the bi-objective:
the quality of pseudo-labeling and adaptive weights.

i) Pseudo-label Quality: Theorem 3 underscores the impor-
tance of the parameter D in evaluating the quality of pseudo-
labels. Here, D represents the bound for the euclidean distance
between an unlabeled instance xi ∈ X ∪ Xu and a labeled one
xj . Among the distances of every unlabeled instance xi to its
nearest labeled neighbor xi,st, denoted by Di,st, the maximum
is assigned to D. Then the presence of a labeled point within the
boundary of D for each unlabeled one is ensured, and D reaches
its minimum simultaneously. Then the euclidean distance Di,st

may serve as a practical estimator for assessing the pseudo-label
quality of each instance. The smaller Di,st, the more stringent
the penalization on the fundamental factorD, leading to a tighter
bound on SSL error.

ii) Adaptive Weights: Theorem 3 unveils that the term D̂ − ξ
is a fundamental factor on the adaptive weight assignments. A
smaller D̂ − ξ is conducive to a tighter SSL error bound. To
facilitate the following discussion, we visualize the parameters,
such as Di,st, Di,nd, and ξi,st, in Fig. 7.

Obviously, a smaller D̂ contributes to a more stringent penal-
ization on the quality D̂ − ξ, where D̂ signifies the euclidean
distance bound between an unlabeled instance xi and a la-
beled one xk with distinct ground-truth labels from xj , just
as illustrated in Fig. 7. Considering xi,nd as the closest labeled
instance to xi meeting the condition yi,nd �= yi,st, and Di,nd
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as the euclidean distance between xi and xi,nd, the inequality
Di,nd ≤ D̂ holds for allxi. Thus, assigning the maximum value
among theDi,nd of all instances inX ∪ Xu to D̂ becomes crucial
to significantly enhance weight adaptability. This guarantees
the presence of two labeled instances with distinct ground-truth
labels within the boundary defined by D̂ for each unlabeled
instance, in the meanwhile D̂ reaches its minimum. Upon the
above discussion, the euclidean distance Di,nd is positively
correlated with D̂, thereby feasible to guide the assignment of
weights. Accordingly, Di,nd may serve as a robust estimator for
assessing weights in a practical manner.

Contrary to parameter D̂, a larger ξ benefits a more rigorous
penalty on the quality D̂ − ξ, where ξ represents the width of the
annulus centered at xi with radii D̂ and D̂ − ξ. For each unla-
beled instance xi, we equate D̂ − ξi,st to Di,st, where ξi,st ≥ ξ
holds for all xi. This guarantees there must be a labeled instance
bounded within the D̂ − ξi,st boundary for the corresponding
unlabeled instance. To achieve this for the D̂ − ξ boundary and
maximize ξ, it becomes essential to set ξ as the minimum among
ξi,st for any xi in X ∪ Xu. Moreover, we conclude that ξi,st is
negatively correlated with Di,st due to ξi,st = D̂ −Di,st. To
sum up, ξi,st joint with Di,st may serve as estimators for each
instance’s weight.

Summary of Theorem 3: Theorem 3 establishes a prior-free
upper bound for SSL error and discovers the fundamental factors
crucial for improving the quality of pseudo-labels and assigning
adaptive weights. Specifically, parameter Di,st may serve as an
estimator for pseudo-label quality, while Di,nd, ξi,st, and Di,st

could serve as estimators for weight assignments. Smaller values
of Di,st, and larger values of Di,nd and ξi,st may enhance both
pseudo-label quality and weight adaptability. Obviously, these
insights benefit specific design strategies on pseudo-labels and
adaptive weights.

Summary of BOOM: BOOM comprises three theorems on the
upper bound of the SSL error, presented in Sections III-C, III-D,
and III-E. Theorem 1, from an empirical perspective, decouples
the SSL error into the pseudo-labeling error and the invasion
error and proposes an empirical upper bound. Considering the
sampling bias of empirical distribution, Theorem 2 establishes
a sampling bias-free upper bound for the SSL error on the true
distribution. Both Theorems 1 and 2 manifest the dual objec-
tives to alleviate the SSL error: high-quality pseudo-labels and
adaptive weights. To optimize these bi-objectives, Theorem 3
discovers the fundamental factors that can work as estimators
to guide the SSL algorithm design. In a word, by Theorems 1
& 2, BOOM reveals the essence of excess risk of SSL under
mismatch, which is explainable and human-understandable. By
Theorem 3, BOOM provides practical guiding principles for
algorithmic design in SSL under class distribution mismatch.

IV. APPLICATION

By leveraging the estimators unveiled in Theorem 3, we
propose the application of BOOM to improve SSL under class
distribution mismatch.

Pseudo-label Learning: According to Theorem 3, Di,st may
work as an estimator on the quality of the pseudo-labels by

measuring the euclidean distance between an unlabeled instance
and its nearest labeled counterpart. To achieve a smaller pseudo-
labeling error, a smaller Di,st is preferred. Consequently, we
assign the ground-truth label of the nearest labeled instance to
the corresponding unlabeled one, as delineated in (13).

ŷi,u = argmax
k

f(zi,u, z
k
i,st),

(13)

where f(zi,u, z
k
i,st) = (2−D2

i,st)/2 and Di,st = ‖zi,u −
zk
i,st‖2.
Here, zi,u represents the feature learned by contrastive learn-

ing for the unlabeled instance, and zk
i,st denotes the feature

of the nearest labeled one with ground-truth label k, where
‖zi,u‖2 = 1. Equation (13) quantifies the likeness between the
two feature vectors, aiming to identify the ground-truth label k
that maximizes this similarity. Note that the unlabeled instances
with unknown categories are assigned pseudo-labels by (13)
since they cannot be identified with target categories. Additionly,
f(zi,u, z

k
i,st) is equivalent to cos < zi,u, z

k
i,st > here.

Adaptive Weighting: As suggested by Theorem 3, the esti-
mator on weight adaptability involves Di,nd, ξi,st, and Di,st.
Considering the negative correlation between ξi,st and theDi,st,
it is feasible to substitute ξi,st with Di,st. To alleviate the
pseudo-labeling error, instances from target categories need
larger weights, leading to a preference for a smaller Di,st and
a larger Di,nd. Conversely, instances from unknown categories
are supposed to have smaller weights, resulting in a preference
for a larger Di,st and a smaller Di,nd, so as to diminish the
invasion error. Therefore, the weights are designed as presented
in (14).

wi,u = g1
(
f(zi,u, z

k
i,st)

)× g2

(
1− f(zi,u, z

v
i,nd)

f(zi,u, zk
i,st)

)
,

(14)

where g1(·) and g2(·) represent two monotonically increas-
ing functions, zv

i,nd denotes the feature of instance xi,nd,
f(zi,u, z

v
i,nd) = (2−D2

i,nd)/2, Di,nd = ‖zi,u − zv
i,nd‖2, and

v �= k.
As depicted in (14), g1(·) exhibits a negative correlation with

Di,st. A larger weight would be assigned to the instance in
case its value of g1(·) is larger (i.e., Di,st is smaller). This
guarantees that the instances with aligned pseudo-labels and
ground-truth labels are assigned to larger weights. Moreover,
g2(·) is proportional to Di,nd. A small weight is assigned to
the instance when its value of g2(·) is smaller (i.e., Di,nd is
smaller). This ensures that a smaller weight is assigned to the
instance from the unknown marginal distribution ρXu

. In a word,
the weighting technique depicted in (14), works as a filter for
the instances with unknown categories and those incorrectly
annotated. Meanwhile, it encourages instances with high-quality
pseudo-labels to sufficiently participate in training.

Updating Pseudo-Labels and Weights: To progressively up-
date the pseudo-labels and weights of unlabeled instances, we
select some reliable instances to add to the labeled data. By
leveraging the dissimilarity between the output of the target
classifier and the pseudo-label, we evaluate the reliability of
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the instance, as formulated in (15).

πi,u(ĥθt
) = �(ĥθt

(xi,u), ŷi,u) (15)

where �(·, ·) represents the cross-entropy function, and θt de-
notes the parameters of the target classifier at the t-th iteration.

If πi,u, as depicted in (15), takes a lower value, then xi,u is
considered more reliable. According to this finding, we choose
the top α% reliable instances from the unlabeled data and
incorporate them into the labeled data. In the meantime, these
selected instances are removed from the unlabeled pool. Ad-
ditionally, we adopt the polynomial decay [38] to dynamically
adjust α to prevent the gradually increasing negative influence
from unknown categories with the iteration. The details are
shown in Appendix II-A, available online. As a consequence,
the updated pseudo-labels and weights progressively improve
the target classifier by (3).

Concisely, guided by BOOM, we exploit pseudo-labeling and
adaptive weight to mitigate the SSL error. A detailed depiction
of this process is outlined in Appendix II-B, available online.

V. EXPERIMENTS

Section V-B presents the comparison results between BOOM
and eight state-of-the-art SSL approaches, as well as one stan-
dard baseline. Furthermore, an ablation study is conducted in
Section V-C, while sensitivity analyses and visualization are
carried out in Appendix III-A and Appendix III-B, respectively,
available online. Additionally, the experimental results on a
realistic dataset are shown in Section V-D.

A. Experimental Setups

Datasets: Our experiments are conducted on four datasets,
including three benchmark datasets, CIFAR10 [39], CI-
FAR100 [39], and Tiny-Imagenet [40], along with an artificial
cross-dataset. The CIFAR10 and CIFAR100 dataset comprises
50,000 training and 10,000 testing images of 10 and 100 cate-
gories, respectively. Tiny-Imagenet contains 100,000 training
and 10,000 testing images across 200 categories. Moreover,
the cross-dataset comprises subsamples from CIFAR10, CI-
FAR100, Flowers [41], Food-101 [42], and Places-365 [43]. It
consists of 138,000 unlabeled instances from 674 categories.
All images within these datasets are uniformly resized to 32×
32pixels. For further details, please refer to Appendix III-D,
available online.

Settings: i) The proportion of the instances with unknown
categories in unlabeled data, named as mismatch proportion, are
set as 0%, 20%, 40%, 60%, 80%, and 100% in this work. For
example, at a 60% mismatch proportion, the unlabeled data com-
prises 4,000 instances with target categories and 6,000 instances
with unknown categories, while at 0% mismatch proportion, the
unlabeled data exclusively contains 4,000 instances with target
categories. ii) Labeled data is constructed by randomly sampling
8% instances from the training dataset that belong to target cat-
egories. The remaining 92% of instances with target categories
and some instances with unknown categories are composed of
unlabeled data according to the mismatch proportion. Notably,
for a 100% mismatch proportion, all unlabeled instances are

TABLE II
TRAINING DETAILS OF BOOM AND COMPARED METHODS

from unknown categories. For detailed instance counts in labeled
or unlabeled data, please refer to the Appendix III-D, available
online.

Training Details: We summarize the training details of
BOOM and the compared methods, including the backbone
and parameters, in Table II. Both the feature encoder and the
target classifier are trained from scratch. The feature encoder
is trained using SimCLR [44], adhering to all implementation
details of SimCLR. Additionally, global contrast normaliza-
tion and ZCA normalization—techniques commonly used in
pre-treatment [12], [13]—are applied to the CIFAR10 dataset.
These configurations are consistently applied across all methods
and datasets, unless otherwise stated, with other parameters in
the compared methods remaining as reported in the original
studies. Each approach is evaluated on each dataset with three
independent runs, and mean accuracy and standard deviation are
reported.

Compared Methods: BOOM is compared against eight state-
of-the-art approaches, which encompass two traditional SSL
methods (Pseudo-Labeling [24] and FixMatch [25]) and six
methods specifically designed to address class distribution mis-
match. These methods are DS3L [12], T2T [14], CCSSL [15],
UASD [13], ORCA [29], and the latest method from the same
period, IOMatch [28]. Although FixMatch [25] is designed for
class distribution matching, it can also be applied to mismatched
scenarios due to its filtering mechanism, which leverages a
threshold to filter out pseudo-labeled samples with low con-
fidence. To better demonstrate the role of filtering in SSL, a
variant, “FixMatch w \ o fil.”, which excludes the filtering mech-
anism from FixMatch, is compared. Additionally, we establish
a standard supervised learning baseline, denoted as “Labeled
Only”, which is trained exclusively on limited labeled data using
cross-entropy loss. A comparison with this baseline reveals the
performance gains that SSL methods achieve from unlabeled
data under mismatched scenarios.

Furthermore, T2T and ORCA are performed without pretrain-
ing tasks for fairness, denoted as “T2T w \ o pre.” and “ORCA w
\ o pre.”. For detailed information on these compared methods,
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Fig. 8. Experimental results on CIFAR10, CIFAR100, and Tiny-Imagenet under different mismatch proportions, where T2T is not applicable to the binary
classification task; thus, accuracy is not reported in (a).

Fig. 9. Results on cross-dataset.

please refer to Section II. Please note that this work does not
aim to propose a state-of-the-art method but to provide insights
into the compared methods’ outstanding or failures in theoretical
aspects, and build a strong baseline guided by BOOM.

B. Experimental Results

This subsection presents the experimental results from clas-
sification tasks conducted across CIFAR10, CIFAR100, Tiny-
Imagenet, and a composite cross-dataset, as illustrated in (a),
(b), and (c) of Figs. 8 and 9, respectively. The tables containing
specific accuracy values are also reported in Appendix III-C,
available online. In CIFAR10, two classes are designated as
target categories, while eight remain unknown. The challenge
grows significantly in CIFAR100, involving twenty target cat-
egories and a substantial eighty unknown categories. Adding
to the intricacy, in Tiny-Imagenet, a notable 180 categories fall
under the unknown categories, while merely twenty categories
are considered targets. Further amplifying the challenge, a cross-
dataset is meticulously built, comprising five datasets. In this
cross-dataset, six classes from CIFAR10 are specifically chosen
as target categories, while an extensive 668 categories from four
external datasets are categorically unknown.

Results of mismatched SSL methods: From Figs. 8 and 9, we
have five findings as follows.

i) BOOM demonstrates a significant reduction in both pseudo-
labeling error and invasion error. For example, at a 0% mismatch
proportion, BOOM (red solid line) shows significant improve-
ments over the “Labeled Only” (black dotted line) across CI-
FAR10, CIFAR100, Tiny-ImageNet, and the cross-dataset. This
highlights the pseudo labeling quality of BOOM. Furthermore,

at a 100% mismatch proportion, the accuracy of BOOM sur-
passes that of “Labeled Only” in most cases. This underscores
the effectiveness of the adaptive weight in preventing severe
invasion by instances with unknown categories. The moderate
increase in performance can be primarily attributed to certain
instances with unknown categories yet similarities to the target
ones actively contributing to the training process, as indicated
in Appendix III-B, available online. Due to the increasing dis-
crepancy between unknown categories and target ones in the
cross-dataset, there is a marginal decrease in performance under
a 100% mismatch proportion.

ii) BOOM demonstrates its superior performance as a strong
baseline, outperforming six compared methods and “Labeled
Only” across CIFAR10, CIFAR100, Tiny-Imagenet, and cross-
dataset, even when confronted with varying mismatch propor-
tions. In the cross-dataset, although BOOM’s accuracy is slightly
lower than that of T2T under a 0% mismatch proportion, it
outperforms “T2T w \ o pre.”. This suggests that T2T’s superior
performance is, to some extent, attributed to its pretraining
mechanism.

iii) Compared to the robust baseline BOOM, IOMatch demon-
strates an unstable ability to mitigate pseudo-labeling error,
although it performs better in addressing invasion error. For
instance, at 0% mismatch proportions across various datasets,
we observe that the accuracy of IOMatch (gray solid line) is
lower than that of BOOM on CIFAR100 and Tiny-Imagenet.
This instability is attributed to the mechanism for constructing
pseudo-labels, i.e., FixMatch, which is sensitive to the count
of labeled instances, whereas the mechanism for filtering in-
stances with unknown categories is not. Thus, to enhance SSL
performance under class distribution mismatch, it is crucial to
explore stable mechanisms to mitigate both pseudo-labeling and
invasion errors, as indicated in BOOM.

iv) Some methods show performance decline below the “La-
beled Only” under 0% to 100% mismatch proportions. This
may be attributed to two factors. First, the invasion error is
responsible. It is observed that, in (c) of Fig. 8, UASD (cyan solid
line) performs better than the “Labeled Only” at 0% mismatch
proportion but declines at non-zero mismatch proportion due
to the invasion of instances with unknown categories. Second,
the pseudo-labeling error contributes to the decline. We observe
that the methods, such as DS3L (brown solid line), CCSSL (olive
solid line), and ORCA (yellow solid line), perform lower than
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Fig. 10. Results on realistic dataset.

the “Labeled Only”, even at 0% mismatch proportion. Thus,
to enhance the target classifier, it is crucial to address both
the pseudo-labeling error and the invasion error simultaneously
under class distribution mismatch.

v) Based on the results in Figs. 8 and 9, it is evident that
BOOM exhibits excellent robustness to the scale of unknown
categories. For instance, in Tiny-Imagenet and the cross-dataset,
BOOM surpasses the “Labeled Only” performance even un-
der an 80% mismatch proportion. It is noteworthy that in the
Tiny-Imagenet, the unlabeled data comprises 36,800 instances
across 180 unknown categories, while in the cross-dataset, it
encompasses a more extensive 110,400 instances spanning 668
unknown categories.

Results of traditional SSL methods under class distribution
mismatch: Moreover, we have two observations about traditional
SSL methods as follows. i) From (a) and (c) of Fig. 8, we
observe that the accuracy of traditional SSL methods, such as
Pseudo-Labeling (green solid line) and FixMatch (purple solid
line), decreases as the mismatch proportion increases, eventually
falling below the performance of “Labeled Only” at high mis-
match proportions. This decline is attributed to contamination
from instances of unknown categories, leading to high invasion
error. ii) As shown in (a), (b), and (c) of Fig. 8, with mis-
match proportions between 20% and 80%, both traditional SSL
methods—Pseudo-Labeling and FixMatch—demonstrate lower
accuracy than BOOM. This indicates that BOOM effectively
mitigates the invasion from unknown categories.

C. Ablation Studies

We conducted ablation studies on the CIFAR10 dataset using
various models: “+Pse.” (trained with labeled data and unla-
beled instances with non-updated pseudo-labels), “+Pse.&W.”
(trained with non-updated pseudo labels and non-updated
weights), and the BOOM model (trained with all components).
Additionally, we investigated the individual impact of each com-
ponent within the weight function and explored various choices
for g(·), including identical mapping, gi(·), and the function
g̃i(·) = exp(·)− 1.

Effects of pseudo labels: From Fig. 11, we have three findings
about the pseudo-labels. i) “+Pse.” (green solid line) consistently
outperforms the “Labeled Only” (black dotted line) across 0%
to 80% mismatch proportions. This underscores the efficacy of
the pseudo-labeling mechanism within BOOM. ii) At a 100%
mismatch proportion, “+Pse.” falls below the “Labeled Only” as

Fig. 11. Ablation studies.

expected. This occurs because all unlabeled instances originate
from the unknown marginal distribution ρXu

and are assigned
pseudo-labels from target categories, resulting in an invasion of
the target classifier. iii) “+Pse.” exhibts the comparable perfor-
mance between 0% and 20% mismatch proportion. The reason is
that the unlabeled dataset contain fewer instances with unknown
categories under 20% mismatch proportion.

Effects of weights: According to Fig. 11, we observe two find-
ings about weights. i) At a 0% mismatch proportion, “+Pse.&W”
(orange solid line) achieves comparable accuracy to “+Pse.”
but demonstrates a reduced standard deviation. This indicates
the limited influence of the non-updated weight mechanism
in low mismatch proportions. However, its role in improving
the target classifier’s stability is notable due to it mitigating
the impact of potentially incorrect pseudo-labeled instances.
ii) At a 100% mismatch proportion, “+Pse.&W” remarkably
surpasses “+Pse.”. This highlights the crucial role of weight
in mitigating the negative effects of instances with unknown
categories, particularly at a high mismatch proportion. Thus,
under class distribution mismatch, target instances with correct
pseudo-labels should be assigned larger weights, while instances
from unknown categories or those with incorrect pseudo-labels
should have weights close to zero.

Effects of updating pseudo-labels and weights: We have two
findings about the updating mechanism according to Fig. 11.
i) The accuracy of BOOM notabely surpasses “+Pse.&W” un-
der various mismatch proportions. This indicates that updating
pseudo-labels and weights plays important roles in BOOM. ii)
BOOM, training with all components, shows its outstanding
performance compared to the ones removing other parts. This
demonstrates that the aggregation of all the proposed parts could
achieve significant improvement.

Effects of g1(·) and g2(·) within weight: From Fig. 11, we
have the following four findings. i) Both “w \ o g1(·)” (purple
solid line) and “w \ o g2(·)” (brown solid line) perform worse
than BOOM, highlighting their significance for BOOM. ii)“w
\ o g1(·)” exhibits a slightly lower performance than “w \ o
g2(·)” at 0% and 20% mismatch proportions. This suggests that
when assigned incorrect pseudo-labels to the instances from the
marginal distribution ρX , g1(·) demonstrates a greater capacity
to alleviate the negative impact than g2(·). iii) However, at 100%
mismatch proportion, the performance of “w \ o g1(·)” notably
surpasses that of “w \ o g2(·)”. This emphasizes the stronger
ability of g2(·) to alleviate the adverse effects of instances with
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unknown categories, illustrating its performance superiority
over g1(·) in such situations. iv) The combination g̃1(·)× g2(·)
emphasizes the role of g1(·), whereas g1(·)× g̃2(·) highlights
the contribution of g2(·). We observe that g̃1(·)× g2(·) (cyan
solid line) outperforms g1(·)× g̃2(·) (gray solid line) at 0%
mismatch proportion, and conversely at 100% mismatch propor-
tion. This further validates the importance of g1(·) in mitigating
the adverse effects of instances with incorrect pseudo-labels
from the marginal distribution ρX while demonstrating that
g2(·) excels in filtering instances from unknown categories, as
illustrated in iii).

D. Evaluation on Realistic Controlled Noise Dataset

Instead of a synthetic noisy dataset, we evaluate BOOM
on a realistic controlled noise dataset, as displayed in Fig. 6
of Appendix III-D, available online. The Red Mini-ImageNet-
V2 [1] subset comprises images retrieved from Google Images
by Jiang et al. [48], totaling 13,801 instances across 100
categories from Mini-ImageNet. Specifically, five categories
(“Triceratops”, “Gordon setter”, “Alaskan malamute”, “New-
foundland dog”, “American robin”), each consisting of 600
images, are considered as the targets. For 20% class mismatch
proportion, the invaded dataset consists of noise data from these
target categories. However, for 40% to 100% class mismatch
proportions, the invaded data comprises 100 categories due to
insufficient data availability. Moreover, 8% of instances are ran-
domly sampled from the pure instances within target categories
to establish the labeled dataset. More details are presented in
Appendix III-D, available online.

From Fig. 10, we have the following two findings. i) Even on
realistic datasets, BOOM significantly outperforms the super-
vised baseline (“Labeled Only”) across mismatch proportions
ranging from 0% to 80%, and achieves comparable perfor-
mance for a 100% mismatch proportion. This underscores its
effectiveness as a strong baseline. ii) BOOM outperforms the
six compared methods due to the slight improvement of T2T
over BOOM under a 0% mismatch proportion attributed to the
pretraining mechanism. This is evident that BOOM surpasses
T2T “w\o pre.”. Consequently, BOOM demonstrates success
even on a realistic dataset, and the theoretical analysis proves
effective in the real world.

VI. CONCLUSION

SSL, as a powerful tool to address the problem of label
scarcity, has achieved tremendous progress in applications.
However, the conventional SSL methods, assumed on the close-
set, typically fall short in overcoming the challenges posed by
real-world scenarios, such as class distribution mismatch. Al-
though some SSL approaches have been improved to mismatch
settings, the theoretical investigation on generalization analysis
of SSL with mismatched class distributions is still under study.

This paper proposes a pioneering theoretical framework for
SSL under class distribution mismatch, named BOOM, to eval-
uate its excess risk. BOOM, composed of three main theorems,
reveals that under class distribution mismatch the SSL error pre-
dominantly contributes to the excess risk. The first two theorems

of BOOM decouple the SSL error into the invasion error and the
pseudo-labeling error, and they pinpoint the dual objective (i.e.,
improving the pseudo-labeling and assigning adaptive weights
to unlabeled instances) to mitigate the SSL error. Evidently,
these two theorems reveal the essence of the excess risk of
SSL under mismatch and they are explainable. To optimize the
bi-objectives, Theorem 3 in BOOM profoundly explores the SSL
error without any prior knowledge and then discovers several
fundamental factors beneficial for SSL algorithm design under
mismatch. Guided by the results of BOOM, we propose an SSL
method under mismatch which might serve as a strong baseline.
Extensive experiments in this paper demonstrate its superior
performance. In summary, BOOM bridges the theoretical gap by
theoretically interpreting the rationale of SSL under mismatch
and provides practical guidelines, such as fundamental factors
for bi-objective optimization, for algorithm design to effectively
mitigate the SSL error in mismatch settings.

Limitations: In cases that instances with unknown categories
share some common features with those target ones, BOOM may
struggle to differentiate them within euclidean space. Indeed,
this is a problem faced by all SSL methods under mismatch.

Broader Impact: BOOM provides theoretical guidance for
SSL algorithms in mismatched scenarios. More importantly,
it constructs a theoretical framework for excess risk in semi-
supervised settings, offering a reference for generalization anal-
ysis in weakly supervised learning manners.
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