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Abstract—This paper presents a human-exoskeleton coupling
model for estimating the human-exoskeleton coupling force.
Specifically, to enhance the model’s ability to characterize
the complex mechanical characteristics of human-exoskeleton
coupling, the fractional-order differential term is introduced.
Moreover, the coupling model adopts a segmented form to
characterize the different mechanical characteristics of front-side
and back-side compression in the human-exoskeleton coupling.
Using experimental data measured by the self-developed human-
exoskeleton coupling measurement platform, the corresponding
model parameters for 10 adult male and 10 adult female
volunteers (Age: 23.65 ± 4.03 years, Height: 165.60 ± 8.32 cm,
Weight: 62.35 ± 14.09 kg) were identified via Neighborhood Field
Optimization (NFO) and Least Squares (LS) methods. Based on
the analysis of the estimated root mean square error (RMSE)
of the coupling force, it was verified that the coupling force can
be estimated accurately based on the proposed fractional-order
human-exoskeleton coupling model with the segmented form.

Index Terms—Human-exoskeleton coupling model, Fractional-
order differential term, Segmented form, Model parameter iden-
tification

I. INTRODUCTION

The exoskeleton is employed to facilitate human reha-
bilitation, strength augmentation, or locomotion assistance,
combining human wisdom and robotic strength. Since 2000,
exoskeleton technology has experienced rapid development,
with several notable exoskeleton prototypes being designed,
such as C-ALEX [1] and LOPES [2] for rehabilitation, HULC
[3] and BLEEX [4] for strength augmentation, and ReWalk [5]
and HAL [6] for locomotion assistance. The control mode of
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an exoskeleton can generally be classified into two groups:
passive mode and active mode. An exoskeleton with passive
mode drives the wearer to track the pre-generated desired
trajectories [7], which are obtained from measurements of a
healthy subject or designed by a professional sports planner.
In active mode, the actual trajectory of the exoskeleton is
adjusted in accordance with the wearer’s motion intention
[8]. Specifically for the position control of the exoskeleton, a
variety of control algorithms are currently being studied, such
as proportional-integral-derivative, fuzzy, adaptive, sliding-
mode controllers [9]–[11].

To ensure the performance of human-exoskeleton coupling
motion, it is necessary to investigate the motion characteristics
of the human body. In recent years, some research has been
conducted on the mechanical characteristic of human limbs in
motion, including upper and lower limbs [12], [13]. Ma et al.
[14] proposed an estimation model for the endpoint stiffness
of the human arm from electromyographic signal (sEMG) and
elbow angle. Liu et al. [15] combined muscle activation and
muscle contraction dynamics to identify upper limb stiffness.
For the limb-connected exoskeleton, to accurately perceive
or estimate the wearer’s motion intention, it is necessary
to establish an accurate human-exoskeleton coupling model
and identify its parameters. Yan et al. [16], [17] proposed
a simple linear damping-spring human-exoskeleton coupling
model, and the model parameters were identified through
physical coupling experiments. Huang et al. [18] proposed a
complex nonlinear human-exoskeleton coupling model for pre-
dicting human-exoskeleton coupling forces. This study aims
to introduce the fractional-order differential term to enhance
the capability to characterize the mechanical characteristic
of human-exoskeleton coupling, and to utilize the segmented
form for the asymmetry of human-exoskeleton coupling. The



fractional order calculus has been successfully utilized in
modeling viscoelastic materials [19]. Specifically, Aydin et
al. [20] proposed a fractional order admittance controller for
physical human-robot interaction motion.

The current human-exoskeleton coupling model has issues
with low accuracy or a complex form. Hence, a fractional-
order human-exoskeleton coupling model with the segmented
form is proposed. The main contributions of this study are as
follows:

(1) In the proposed human-exoskeleton coupling model,
the fractional-order differential term is introduced to enhance
the capability to characterize the mechanical characteristics of
human-exoskeleton coupling. Additionally, a segmented form
is employed to characterize the mechanical characteristics in
different human-exoskeleton coupling states (front-side and
back-side compression).

(2) A human-exoskeleton coupling model parameter iden-
tification method based on the NFO and LS methods is
introduced. The coupling model parameters of 20 volunteers
were identified under different coupling positions and levels
of looseness. To verify the accuracy of the proposed human-
exoskeleton coupling model and the effectiveness of the pa-
rameter identification method, the RMSE of the coupling force
was analyzed.

Since human body motion primarily occurs in the sagit-
tal plane, and this study focuses on the human-exoskeleton
coupling normal force caused by the lateral compression of
the soft human-exoskeleton coupling (deformation and com-
pression of human soft tissue caused by the lateral pulling
of belt), only the human-exoskeleton coupling model along
the X-axis is considered. Therefore, the coupling force and
relative displacement mentioned in the following text refer
specifically to the components along the X-axis (see Fig. 1).

The remainder of this paper is structured as follows. Section
II introduces the self-developed human-exoskeleton coupling
measurement platform and fractional order calculus. Section
III describes the fractional-order human-exoskeleton coupling
model with the segmented form and outlines the model param-
eter identification method. Section IV presents the results of
the model parameter identification for 20 volunteers. Finally,
conclusions are drawn in Section V.

II. PLANT AND PRELIMINARY

A. Human-exoskeleton Coupling Measurement Platform

For the purpose of identifying the parameters of the human-
exoskeleton coupling model, it is imperative to accurately
collect and record the motion displacement of human and
coupling force during the human-exoskeleton coupling motion.
Hence, we developed the human-exoskeleton coupling mea-
surement platform shown in Figs. 2-3. The main structure of
the device is a stainless steel rigid frame, which is considered
an analog for the lower limb exoskeleton. A three-dimensional
(3D) force sensor (LH-SZ-02-100) and two laser displacement
sensors (ILD1420-200) are used, and the measured data are
recorded at a sampling frequency of 15625 Hz and transferred
to NI-DAQ Express using the NI USB-6210 device. Then, the

(a) (b)

Fractional-order 
differential term

Stiffness term
Damping term

Y

X
O

Fig. 1. Schematic diagram of human-exoskeleton coupling motion:(a) relative
displacement ∆ and coupling force F at the coupling point, (b) the fractional-
order human-exoskeleton coupling model with the segmented form
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Fig. 2. Mechanical structure of the human-exoskeleton coupling measurement
platform: (a) the photo, (b) the 3D design

actual measured data is filtered using a Butterworth lowpass
filter (cutoff frequency:10 Hz) to remove measurement noise.
Additionally, the position of these sensors can be adjusted
by moving the designed sliders, allowing for adaptation to
different volunteers. For instance, Sliders C and D facilitate the
adjustment of the force sensor along the Y - and X-directions,
while the laser sensors can be moved along the Y - and Z-
directions by adjusting Sliders A and B, respectively.

B. Fractional Order Calculus

Fractional order calculus is a generalization of integer order
calculus, which allows integration and differentiation of non-
integer orders. Several definitions exist for the fractional-
order differintegral operator, including the Grunwald-Letnikov,
Riemann-Liouville, and Caputo definitions.

In this study, we use the Simulink module from the
FOMCON toolbox in Matlab/Simulink to perform fractional
order derivative calculations. Then, a fractional-order human-
exoskeleton coupling model with the segmented form is pro-
posed to characterize the coupling characteristics between the
human and exoskeleton.

III. METHODS

A. Human-exoskeleton Coupling Model

In the human-exoskeleton coupling collaborative task, the
operator’s lower limbs and the exoskeleton are bundled and
connected using belts or other devices. The rigid exoskeleton,
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Fig. 3. Schematic diagram of the human-exoskeleton coupling measure-
ment platform:(a) actual experimental scene, (b) sensors, data collection and
analysis system, (c) calculation and measurement methods for the human-
exoskeleton coupling relative displacement ∆ and the coupling force F

constructed from metal or composite materials, is a typical
rigid body. Similarly, the human skeleton, with an elasticity
modulus ranging from 12 to 20 GPa [21], can also be regard-
ed as a rigid body. The human-exoskeleton relative motion
leads to compression of the soft human-exoskeleton coupling,
including belt, skin, muscle, and fat, resulting in the human-
exoskeleton coupling force. Therefore, to accurately infer or
estimate the operator’s motion intention based on the real-
time coupling force, it is necessary to construct a sufficiently
accurate human-exoskeleton coupling model.

As depicted in Fig. 1-(a), the relative motion between the
coupling points P on the exoskeleton and C on the human
leg results in the generation of the coupling force F . A simple
stiffness-damping model for F is expressed as

F = bsd∆̇ + ksd∆, (1)

where ∆̇ and ∆ are the relative velocity and displacement at
the human-exoskeleton coupling point, and bsd and ksd are
the coupling damping and stiffness.

However, based on the following two considerations, it
is challenging to accurately characterize the actual human-
exoskeleton coupling characteristics using (1).

1) Complex mechanical characteristics of human-
exoskeleton coupling: The human-exoskeleton coupling is
composed of textile fabrics, including belt and pants, as well
as human soft tissues, such as the fat layer, muscle, and skin
of the human lower limb. As a result, it exhibits complex
mechanical characteristics, such as viscoelasticity.

2) Asymmetry of human-exoskeleton coupling: The relative
motion between the human lower limb and the exoskeleton
results in the generation of human-exoskeleton coupling force,
which is attributed to human-exoskeleton coupling compres-
sion. There is a distinct difference in the soft tissue on
the front and back sides of the human leg, such as muscle
distribution (see Fig. 4-(a)) and fat thickness. Therefore, there
is a significant difference in the mechanical characteristics of
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Fig. 4. (a) Anterior and posterior muscle distribution of the human lower limb,
(b) Top view of the coupling position between the human and the exoskeleton
in three states: front-side compression, human-exoskeleton synchronization,
and back-side compression

human-exoskeleton coupling between the two cases of front-
side compression and back-side compression. In summary,
there is a notable asymmetry in the mechanical characteristics
of human-exoskeleton coupling.

Based on the aforementioned analysis, a fractional-order
human-exoskeleton coupling model with the segmented form
(see Fig. 1-(b)) is constructed, which is expressed as follows:

F =

{
bsfd−p∆̇ + csfd−pDα∆ + ksfd−p∆, ∆ > 0

bsfd−n∆̇ + csfd−nDα∆ + ksfd−n∆, ∆ ≤ 0
, (2)

where bsfd−i and ksfd−i (i = n, p) are the coupling damping
and stiffness, Dα∆ is the fractional derivative of ∆ with order
α ∈ (0, 1), and csfd−i (i = n, p) is the coefficient of Dα∆.
Generally, α is a pre-set parameter, and it is set to 0.5 for the
actual model parameter identification in this study.

Compared to the stiffness-damping model (1), the proposed
coupling model (2) employs a segmented form, using two sets
of model parameters (bsfd−i, ksfd−i, csfd−i, i = n, p) to
characterize the mechanical characteristics in different human-
exoskeleton coupling states (front-side compression ∆ ≤ 0
and back-side compression ∆ > 0), where human-exoskeleton
synchronization is treated as a special state of front-side com-
pression. Additionally, the fractional-order differential term
csfd−iDα∆ (i = n, p) is introduced to enhance the capa-
bility to characterize the mechanical characteristics of human-
exoskeleton coupling.

B. Parameter Identification of Coupling Model

During the human-exoskeleton coupling motion experiment,
the volunteers were secured to the human-exoskeleton cou-
pling measurement platform, yielding relative movement and
coupling force. Furthermore, due to the elasticity of human-
exoskeleton coupling, there exists local tissue deformation
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Fig. 5. Parameter identification flow chart of the fractional-order human-
exoskeleton coupling model with the segmented form (2)

at the coupling point, which implies that the horizontal dis-
placement of the coupling point cannot be directly measured.
As shown in Fig. 3-(c), two independent laser sensors are
employed to measure the horizontal displacements xa(t) and
xb(t) of the measurement points A and B, respectively. An in-
direct method is adopted to calculate the relative displacement
∆(t), which can be expressed as

∆(t) = x(t)− x0, x(t) =
xb(t)da + xa(t)db

da + db
, (3)

where x(t) is the horizontal displacement between the cou-
pling point and the connection line of the dual laser sensors,
and x0 is the constant displacement for zero coupling force in
the human-exoskeleton stationary state.

Actually, volunteers vary in leg shape, and their standing
positions also differ across group experiments. Even within a
single group experiment, the standing position of volunteers
may slightly change. Hence, accurately measuring x0 is dif-
ficult. In this study, x0 is also considered a parameter to be
identified, similar to bsfd−i, ksfd−i, and csfd−i (i = n, p).

During the experiment, a series of data regarding the vari-
ables x and F were obtained, as follows:{

xk = x(k ×∆t), k = 1, 2, 3, . . . , kmax

Fk = F (k ×∆t), k = 1, 2, 3, . . . , kmax

, (4)

where ∆t is the actual sampling period, and kmax is the
number of data points. To balance accuracy and computational
efficiency, the original data sequence was uniformly sampled
at a ratio of 1 : 10 before parameter identification. Thus,
the actual values of ∆t and kmax are 2

3125 s and 93125.
The relative velocity ẋk used in parameter identification was
approximately obtained by the backward difference method.

As shown in Fig. 5, during the process of parameter
identification, the NFO algorithm is employed to optimize x0,
where NFO is a heuristic algorithm inspired by the attraction
and repulsion between natural particles and their neighbors. In
the NFO algorithm, when an individual adopts the value x̄0
in the optimization process (where •̄ represents the temporary
value of • for an individual in a particular process), the corre-
sponding fractional differential term Dα∆̄k = Dα∆̄(k ×∆t)
(k = 1, 2, 3, . . . , kmax) is calculated using Matlab/Simulink.
Then, to ensure the used data points of fractional differential
term series reach steady state, the first kmin = 19999 data
points in all data series are ignored, and the data points
Dα∆̄k, ∆̄k, ∆̇k, and Fk (k = kmin + 1, kmin + 2, . . . , kmax)
are used for parameter identification, where ∆̄k = xk − x̄0
and ∆̇k = ẋk. Based on the value of ∆̄k (∆̄k ≤ 0 or
∆̄k > 0), the data are divided into two groups to identify
model parameters b̄sfd−i, k̄sfd−i, and c̄sfd−i (i = n, p) using
the LS method. The corresponding estimated coupling force
F̄ fit
k is calculated according to (2). The optimization object

of NFO is to minimize the estimated RMSE of the coupling
force. The RMSE is defined as

RMSE =

√√√√ 1

kmax − kmin

kmax∑
k=kmin+1

(F̄ fit
k − Fk)2. (5)

When the NFO algorithm reaches the termination condition,
the optimization value of x0 and the corresponding parameters
bsfd−i, ksfd−i, and csfd−i (i = n, p) are the parameter
identification results.

C. Coupling Position and Looseness
For this study, a total of 20 adult volunteers, consisting

of 10 males and 10 females with varying body types (Age:
23.65 ± 4.03 years, Height: 165.60 ± 8.32 cm, Weight: 62.35
± 14.09 kg), were recruited. The volunteers operated the
platform with the human-exoskeleton coupling position and
tightness as control variables.

As shown in Fig. 4-(a), considering differences in leg length
among volunteers, a length ratio lp is used to represent the
coupling position and is defined as

lp =
lc
ls
× 100%, (6)

where lc is the vertical distance from the proximal end of each
segment to the coupling position, and ls is the segment length.

Similarly, leg circumference at the same coupling position
varies significantly among volunteers. As shown in Fig. 4, the
canvas belt has evenly distributed teeth with an interval of
lb = 3.53 mm, and the coupling tightness can be adjusted by
maneuvering and securing the box-frame buckle into place.

For the initial test of each volunteer, the belt was tightened
to the maximum extent that the volunteer could tolerate.
Subsequently, for every subsequent test, the coupling was
loosened by 2 teeth. Therefore, the releasing length of the belt
is used to quantify the degree of looseness, and the looseness
Llooseness is defined as

Llooseness = lbns, (7)
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Fig. 6. The RMSE values of the human-exoskeleton coupling force based on stiffness-damping model (1) and the fractional-order human-exoskeleton coupling
model with the segmented form (2) are shown. The level of looseness indicated on the horizontal axis is represented by the number of belt slots loosened by
the buckle, ns.

0 2 4 6 8 10 120 2 4 6 8 10 120 2 4 6 8 10 120 2 4 6 8 10 120 2 4 6 8 10 12

0 2 4 6 8 10 12 14 160 2 4 6 8 10 12 14 160 2 4 6 8 10 12 14 160 2 4 6 8 10 12 14 160 4 8 12 162 6 10 140

0.5

1

1.5

2

2.5

3

0
1
2
3
4
5
6
7
8

Th
ig

h 
St

iff
ne

ss
Sh

an
k 

St
iff

ne
ss

[N/mm] [N/mm]

Number of loosened buckle slots

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

0 2 4 6 8 10 120 2 4 6 8 10 120 2 4 6 8 10 120 2 4 6 8 10 120 2 4 6 8 10 12

0 2 4 6 8 10 12 14 160 2 4 6 8 10 12 14 160 2 4 6 8 10 12 14 160 2 4 6 8 10 12 14 160 4 8 12 162 6 10 140

5

10

15

Th
ig

h 
R

M
SE

0
2
4
6
8

10
12
14
16
18
20

Sh
an

k 
R

M
SE

Stiffness-damping Dynamic Model Fractional-order Coupling  Dynamic Model with Segmented FormEq.(3) Eq.(4)

Number of loosened buckle slots

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

Fig. 7. The human-exoskeleton coupling stiffness parameters ksfd−n and ksfd−p are shown. The level of looseness indicated on the horizontal axis is
represented by the number of belt slots loosened by the buckle, ns.

where ns is the number of buckle slots to be loosened.

IV. RESULTS AND DISCUSSION

For each volunteer, the belt was gradually loosened to 9 and
7 levels of tightness in the thigh and shank, respectively. At
each loosened level, the coupling parameters were identified
for lp = 30%, 40%, 50%, 60%, and 70%. This resulted in
45 and 35 groups of data for identifying thigh- and shank-
exoskeleton coupling model parameters for each volunteer,
with the fractional order α = 0.5.

In this section, the boxplot is adopted to illustrate the
statistical results, where outliers are identified as data points

that lie beyond 1.5 times the interquartile range from the
median. The interquartile range is defined as the range between
the 25th and 75th percentiles of the data. For the stiffness-
damping model (1), the corresponding model parameters (bsd,
ksd, x0) were also identified using NFO and LS methods, and
the identification process is similar to the one proposed in
this study. As shown in Fig. 6, based on the stiffness-damping
model (1) and the fractional-order coupling model with the
segmented form (2), each boxplot indicates the distribution
of RMSE, calculated from the final parameter identification
results using (5), of the force-fitted among 20 volunteers at
a particular coupling position lp and with the same level of



coupling looseness. For comparison, the estimation of human-
exoskeleton coupling force by the proposed fractional-order
coupling model with the segmented form (2) exhibits better
accuracy and a more concentrated distribution.

Given that stiffness is the most prominent mechanical
characteristic of human-exoskeleton coupling, we specifical-
ly analyzed the identified stiffness coefficients ksfd−n and
ksfd−p. Fig. 7 shows the influence of coupling looseness on
stiffness in two human-exoskeleton coupling states (∆ ≤ 0 or
∆ > 0), represented by ksfd−n and ksfd−p, across 10 different
coupling positions. Regardless of the coupling position lp, the
values of ksfd−n and ksfd−p generally exhibit a downward
trend as the looseness increases. Because it is more difficult
to maintain balance when the leg leans backward compared
to forward during the experiment, there may be a lack of
data for backward leg leaning in certain experiments for some
volunteers. In rare cases, there may also be a lack of data
for forward leg leaning. Furthermore, under the same lp and
looseness, the value of ksfd−p is generally larger than that of
ksfd−n in most cases. When ∆ > 0, this indicates that there
is a squeeze between the back side of the human leg and the
belt. Conversely, when ∆ ≤ 0, it signifies that the front side
of the human leg is squeezed by the belt. As shown in Fig. 4-
(a), whether in the thigh or shank, the posterior muscle tissue
is typically thicker and more developed than the anterior. In
addition, the muscle tissue of the lower limbs remained active
throughout most of the experiment. Therefore, in general, it is
reasonable to conclude that ksfd−p is larger than ksfd−n.

V. CONCLUSION

This paper proposes a fractional-order human-exoskeleton
coupling model with the segmented form (2) to represent the
relationship between the human-exoskeleton relative motion
and coupling force. Firstly, for the human-exoskeleton cou-
pling, which includes components such as belt and human
soft tissue, the fractional-order differential term is introduced
to enhance the capability to characterize the mechanical
characteristics. In addition, the segmented form is adopted
for the asymmetry of human-exoskeleton coupling. Based
on the experimental data from 20 volunteers in the human-
exoskeleton coupling motion experiment, the coupling model
parameters in (2) were identified using NFO and LS methods.
Then, by analyzing and discussing the results of model pa-
rameter identification, it was verified that the accuracy of the
proposed fractional-order human-exoskeleton coupling model
with the segmented form (2) is generally superior to that of
the stiffness-damping model (1).

In future research, we will use the proposed fractional-
order human-exoskeleton coupling model with the segmented
form (2) to estimate real-time human motion intention through
coupling force and to control a lower limb exoskeleton.
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