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Abstract

Detecting out-of-distribution (OOD) instances
is crucial for NLP models in practical appli-
cations. Although numerous OOD detection
methods exist, most of them are empirical.
Backed by theoretical analysis, this paper advo-
cates for the measurement of the “OOD-ness”
of a test case x through the likelihood ratio be-
tween out-distribution Pout and in-distribution
Pin. We argue that the state-of-the-art (SOTA)
feature-based OOD detection methods, such as
Maha (Lee et al., 2018) and KNN (Sun et al.,
2022), are suboptimal since they only estimate
in-distribution density pin(x). To address this
issue, we propose FLatS, a principled solution
for OOD detection based on likelihood ratio.
Moreover, we demonstrate that FLatS can serve
as a general framework capable of enhancing
other OOD detection methods by incorporating
out-distribution density pout(x) estimation. Ex-
periments show that FLatS establishes a new
SOTA on popular benchmarks.1

1 Introduction

Natural language processing systems deployed in
real-world scenarios frequently encounter out-of-
distribution (OOD) instances that fall outside the
training corpus distribution. For instance, it is hard
to cover all potential user intents during the train-
ing of a task-oriented dialogue model. Therefore,
it becomes crucial for practical systems to detect
these OOD intents or classes during the testing
phase. The ability to detect OOD instances enables
appropriate future handling, including additional
labeling and utilization for system updates, ensur-
ing the system’s continued improvement (Ke et al.,
2022, 2023).

A rich line of work has been proposed to tackle
OOD detection. Among them, the best-performing
methods exploit the information of feature / hidden

∗Corresponding author.
1Our code is publicly available at https://github.com/

linhaowei1/FLatS.
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Figure 1: The framework of OOD detection with feature-
based likelihood ratio score (FLatS). The model extracts
the feature of input text, and then outputs the OOD score
SFLatS(x) that takes the form of likelihood ratio between
out-distribution Pout and in-distribution Pin.

representation h(x; θ) of test case x encoded by
the tested NLP model. For example, Maha (Lee
et al., 2018) estimates the Mahalanobis distance
between h(x; θ) to the in-distribution (IND), while
KNN (Sun et al., 2022) estimates the distance to
the k-nearest IND neighbor. These techniques have
demonstrated remarkable performance in recent
benchmark studies (Yang et al., 2022; Zhang et al.,
2023).

However, these methods were proposed without
principled guidance. To address this, our paper first
formulates OOD detection as a binary hypothesis
test problem and derives that the principled solution
towards OOD detection is to estimate the likelihood
ratio pout(x)/pin(x). Under this framework, we
show that Maha and KNN only estimates IND den-
sity pin(x) and assumes OOD distribution Pout to
be uniform distribution, which is sub-optimal. This
paper then proposes a principled solution for OOD
detection with feature-based likelihood ratio score,
namely FLatS. In FLatS, the IND density pin(x)
is also estimated with KNN on the training corpus,
while the OOD density pout(x) is estimated with
KNN on OOD data. Though we are not access to
the real OOD data, we leverage public corpus (e.g.,
Wiki, BookCorpus) as auxiliary OOD data. Apart
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from KNN, we further demonstrate that the idea of
FLatS to incorporate OOD distribution information
is applicable to other OOD detection techniques.
Experiments demonstrate the effectiveness of the
proposed FLatS.

2 Background

This paper focuses on supervised multi-class classi-
fication, a widely studied setting in OOD detection.
The formal definition is given as follows:

Definition 1 (OOD detection) Given an input
space X ⊂ Rd and a label space Y = {1, ...,K},
PXY is a joint in-distribution (IND) over X × Y .
Given a training set D = {(xj , yj)}nj=1 drawn
i.i.d. from PXY , OOD detection aims to decide
whether a test case x ∈ X is drawn from the IND
data distribution Pin (the marginal IND distribu-
tion on X ) or some OOD data distribution Pout.

OOD detection has been studied extensively. For
example, using the maximum softmax probability
(MSP) (Hendrycks and Gimpel, 2016) to measure
IND-ness is popular in literature. There are more
advanced methods like maximum logit (Hendrycks
et al., 2019) and energy score (Liu et al., 2020).

Among the existing OOD detection methods,
distance-based Mahalanobis (Maha) score and K-
nearest neighbor (KNN) score achieve remarkable
performance on common OOD detection bench-
marks. These methods first extract latent feature
z = h(x; θ) of test case x with the pre-trained lan-
guage model θ. For Maha and KNN, the OOD-ness
of x are measured by the two scores2:

SMaha(x) = min
c∈Y

(z − µc)
TΣ−1(z − µc), (1)

SKNN(x;D) = ||z∗ − kNN(z∗;D∗)||2. (2)

In Equation (1), µc is the class centroid for class
c and Σ is the global covariance matrix, which
are estimated on IND training corpus D. In Equa-
tion (2), || · ||2 is Euclidean norm, z∗ = z/||z||2
denotes the normalized feature z, and D∗ denotes
the set of normalized features from training set D.
kNN(z∗;D∗) denotes the k-nearest neighbor of z∗

in set D∗. More details are given in Appendix B.

2Note that S(x) in this paper measures OOD-ness of x,
which means OOD sample will have high S(x). Many litera-
ture define S(x) to measure the IND-ness of x.

3 Method

3.1 A Principled Solution for OOD Detection

In his seminal work, Bishop (1994) framed OOD
detection as a selection problem between the in-
distribution Pin and an out-of-distribution Pood.
From a frequentist perspective, the objective of
OOD detection can be formulated as a binary hy-
pothesis test (Zhang and Wischik, 2022):

H0 : x ∼ Pout v.s. H1 : x ∼ Pin (3)

By leveraging the Neyman-Pearson lemma (Ney-
man and Pearson, 1933), Theorem 1 demonstrates
that likelihood ratio is a principled solution for
OOD detection (the proof is given in Appendix A):

Theorem 1 A test with rejection region R defined
as follows is a unique uniformly most powerful
(UMP) test for the test problem defined in Equa-
tion (3):

R := {x : pout(x)/pin(x) < λ0},

where λ0 is a threshold that can be chosen to obtain
a specified significance level.

Theorem 1 highlights the importance of detect-
ing OOD samples based on both low IND den-
sity pin(x) and high OOD density pout(x). How-
ever, most distance-based OOD detectors are ba-
sically probability density estimators that only es-
timate IND density pin(x) with training data, and
assume OOD distribution Pout as uniform distribu-
tion (see Appendix B for justifications).

Assuming a uniform OOD distribution Pout may
lead to potential risks. For instance, consider a sce-
nario where Pout = N (0, 0.01) and Pin = N (0, 1).
It is apparent that 0 has higher IND density than
1: pin(0) > pin(1), but 0 is indeed more OOD-like
than 1: 10 = pout(0)/pin(0) > pout(1)/pin(1) =
10 · e−49.5. This toy case illustrates that OOD de-
tection cannot be based solely on IND density but
should incorporate both IND and OOD densities.

Although we derive the principled solution for
OOD detection with likelihood ratio, it is notewor-
thy that we typically have no access to genuine
OOD data in real application, thus the OOD den-
sity pout(x) is hard to estimate. To address this, we
follow recent works (Xu et al., 2021) to make use
of a public corpus (e.g., Wiki, BookCorpus (Zhu
et al., 2015)) to serve as auxiliary OOD data.



3.2 Feature-based Likelihood Ratio Score

This subsection designs an OOD score based on
the likelihood ratio pout(x)/pin(x) as motivated
by Theorem 1. Since it is challenging to directly
estimate the raw data distribution within the high-
dimensional text space, we consider estimation in
the low-dimensional feature space. As Appendix B
suggests, SMaha(x) and SKNN(x) defined in Equa-
tion (1) and Equation (2) essentially function as
density estimators that estimate the IND distribu-
tion Pin in the feature space. We will also exploit
them to estimate OOD distribution Pout in our pro-
posed method.

To connect the normalized probability densi-
ties with unnormalized OOD scores, we lever-
age energy-based models (EBMs) to parameter-
ize Pin and Pout: Given a test case x, it has
density pin(x) = exp{−Ein(x)}/Z1 in Pin, and
density pood(x) = exp{−Eout(x)}/Z2 in Pout,
where Z1, Z2 are noramlizing constants that en-
sure the integral of densities pin(x) and pout(x)
equal 1, and Ein(·), Eout(·) are called energy func-
tions. Then we can derive the OOD scores in
the form of likelihood ratio with energy func-
tions: S(x) = log(pout(x)/pin(x)) = Ein(x) −
Eout(x)+ log(Z2/Z1). Since log(Z2/Z1) is a con-
stant, it can be omitted in the OOD score definition:

SFLatS(x) = Ein(x)− Eout(x). (4)

Since the energy function Ein(·) and Eout(·) do
not need to be normalized, we can estimate them
with OOD scores. For IND energy Eind(x), we
simply adopt the OOD score SKNN(x). For OOD
energy Eout(x), we replace the training corpus D
in Equation (2) with an auxiliary OOD corpus Daux:

SFLatS(x) = SKNN(x;D)− α · SKNN(x;Daux).
(5)

Since SKNN(x;D) and SKNN(x;Daux) may be in
different scales, α is a scaling hyper-parameter to
make the two scores comparable. To the best of
our knowledge, this is the first feature-based OOD
score that follows the principled likelihood ratio so-
lution. Also, KNN in Equation (5) is only an exam-
ple, which can be replaced by other feature-based
OOD scores such as SMaha(x) (see Section 4.3 for
ablation studies on different estimation methods).

4 Experimental Setup

4.1 Datasets and Baselines

Datasets. We utilize 4 intent classification datasets
CLINC150 (Larson et al., 2019), ROSTD (Gangal
et al., 2020), Banking77 (Casanueva et al., 2020),
and Snips (Coucke et al., 2018) for our experiments,
which are commonly used in OOD detection litera-
ture. For each dataset, we use some classes as IND
and the remaining classes as OOD classes. More
details can be found in Appendix C.

Choice of auxiliary OOD corpus Daux. We
adopt English Wikipedia,3 which is the source used
in common by RoBERTa for pre-training.

Baselines. We compare the proposed FLatS
with 9 popular OOD detection methods. (1) For
confidence-based methods that leverages output
probabilities of classifiers trained on IND data
to detect OOD samples, we evaluate MSP (Lee
et al., 2018), energy score (Liu et al., 2020),
ODIN (Liang et al., 2017), D2U (Chen et al., 2023),
MLS (Hendrycks et al., 2019); (2) For distance-
based methods, we test LOF (Breunig et al., 2000),
Maha (Lee et al., 2018), KNN (Sun et al., 2022),
and GNOME (Chen et al., 2023).

Evaluation Metrics. We adopt two widely-
used metrics AUROC and FPR@95 following prior
works (Yang et al., 2022). Higher AUROC and
lower FPR@95 indicate better performance.

4.2 Implementation Details

Architecture. We adopt RoBERTaBASE as our
backbone model. The model is fine-tuned on IND
training datasets before OOD detection evaluation.
The fine-tuning follows the standard practice (Ken-
ton and Toutanova, 2019), where we pass the final
layer </s> token representation to a feed-forward
classifier with softmax output for label prediction,
together trained with cross-entropy loss.

Hyperparameters. We use k = 10 for
KNN following (Chen et al., 2023). Searching
from {0.1, 0.2, 0.5, 1.0, 2.0}, we adopt α = 0.5
for Equation (5). We use Adam optimizer with
a learning rate of 2e − 5, a batch size of 16 and
5 fine-tuning epochs. We evaluate the model on
IND validation set after every epoch and choose the
best checkpoint with the highest IND classification
accuracy.

3https://dumps.wikimedia.org



CLINC150 ROSTD Banking77 Snips
AUROC ↑ FPR@95 ↓ AUROC ↑ FPR@95 ↓ AUROC ↑ FPR@95 ↓ AUROC ↑ FPR@95 ↓

MSP 95.72±0.18 19.08±0.55 75.42±0.05 51.24±0.21 83.35±0.10 56.20±0.32 79.17±0.22 56.15±0.66

Energy 96.18±0.12 15.76±0.43 76.52±0.10 52.53±0.32 82.64±0.22 51.02±0.58 75.10±0.32 40.64±0.63

ODIN 96.20±0.11 15.90±0.42 75.71±0.09 52.15±0.33 83.05±0.24 50.74±0.59 80.65±0.31 51.34±0.61

D2U 96.26±0.15 15.66±0.45 75.72±0.11 52.14±0.39 83.08±0.21 50.19±0.55 80.65±0.36 51.33±0.66

MLS 96.36±0.13 16.40±0.44 76.54±0.11 52.35±0.33 82.62±0.22 50.65±0.58 75.11±0.32 40.65±0.64

LOF 97.17±0.10 14.58±0.45 97.49±0.05 4.69±0.23 92.73±0.12 41.49±0.25 94.13±0.21 13.37±0.54

Maha 97.57±0.09 12.26±0.43 99.66±0.04 1.06±0.21 92.64±0.15 41.54±0.31 94.33±0.18 13.82±0.58

KNN 97.53±0.11 13.50±0.45 99.67±0.03 0.71±0.18 92.74±0.15 42.04±0.22 94.44±0.19 13.38±0.54

GNOME 96.84±0.14 14.94±0.65 99.63±0.10 1.47±0.28 91.43±0.09 44.23±0.24 92.58±0.25 14.45±0.66

FLatS 97.80±0.12 9.90±0.65 99.83±0.02 0.21±0.03 93.85±0.10 40.02±0.23 97.98±0.17 9.62±0.63

Table 1: OOD detection performance (higher AUROC ↑ and lower FPR@95 ↓ is better) on the 4 benchmark datasets.
All values are percentages averaged over 5 different random seeds, and the best results are highlighted in bold.
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Figure 2: Ablation Setting 1: Average FPR@95 (%)
for baselines on CLINC150 with (w/) or without (w/o)
incorporation of OOD density estimation.

4.3 Ablation Settings
Note that SFLatS(x) in Equation (5) is only an il-
lustrative method based on KNN. The concept of
principled likelihood ratio can be extended within
a broader framework to develop more OOD scores.
To comprehensively assess the potential of this idea,
we conduct two additional ablation studies:

Setting 1: In this setting, we aim to enhance
the existing baselines by incorporating OOD den-
sity estimation. We replace Ein(x) in Equation (4)
with baseline OOD scores. Meanwhile, we main-
tain Eout(x) as SKNN(x;Daux), thus exploring the
impact of incorporating OOD density estimation
on performance improvement.

Setting 2: In this setting, we aim to study the ef-
fects of different estimation methods for both OOD
density pout(x) and IND density pin(x). Specif-
ically, we replace Ein(x) and Eout(x) in Equa-
tion (4) with Suniform(x) ≡ const., SMaha(x), and
SKNN(x).

5 Results and Analysis

FLatS establishes a new SOTA. As shown in Ta-
ble 1, FLatS achieves the best performance on the
four benchmark datasets. The second best methods
are KNN and Maha, whose average FPR@95 are
17.71% and 17.41%. They are higher than the aver-
age FPR@95 of FLatS (14.94%), which confirms
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Figure 3: Ablation Setting 2: Average FPR@95 (%)
for baselines on CLINC150 with different IND / OOD
density estimation methods (uniform, Maha, KNN).

the superiority of our proposed FLatS.
FLatS enhances other baselines. Figure 2

shows the FPR@95 results on CLINC150 under
ablation setting 1. We observe that all the baselines
achieve lower FPR@95 results by incorporating
OOD density estimation. Therefore, FLatS is not
only a single method, but can serve as a general
framework to improve other SOTA OOD methods.

FLatS can adopt different Ein and Eout. Fig-
ure 3 shows the FPR@95 results on CLINC150
with different ways (uniform, Maha, KNN) to es-
timate Pin and Pout. The results reveal that the
incorporation of OOD distribution estimation (no
matter KNN or Maha) is beneficial compared to
assuming Pout as a uniform distribution.

6 Related Work

OOD detection is crucial for NLP applica-
tions (Ryu et al., 2018; Borjali et al., 2021). In test
time, the key difference of OOD detection methods
is the OOD score design, which can be roughly
categorized into two branches: confidence-based
methods (Hendrycks and Gimpel, 2016; Liu et al.,
2020; Hendrycks et al., 2019), and distance-based
methods (Lee et al., 2018; Sun et al., 2022; Bre-
unig et al., 2000). Some textual OOD detection
methods (Arora et al., 2021) also exploit perplexity
of auto-regressive language models (Arora et al.,



2021). Leveraging auxiliary OOD data (collected
public corpus or synthesized OOD data) for train-
ing has been considered in literature (Xu et al.,
2021; Wang et al., 2022). However, none of the
works use auxiliary OOD data to estimate OOD dis-
tribution Pout, which is a key novelty of our paper.
More related work can be found in this excellent
survey (Lang et al., 2023).

There are also some previous works (Ren et al.,
2019; Xiao et al., 2020) that use “likelihood ra-
tio” to detect OOD samples. However, our FLatS
framework is very different from these works in the
following aspects: (1) They used probabilistic gen-
erative models, e.g., VAEs (Kingma and Welling,
2013), to estimate likelihood, which is hard to train
and difficult to scale up (in visual domains), and
less effective in OOD detection. (2) The “likeli-
hood ratio” they used is not between Pout and Pin,
and thus neither of them is a principled OOD de-
tection method. For example, Ren et al. (2019)
exploits a “background generative model” trained
using random perturbation and Xiao et al. (2020)
leverages a variational posterior distribution for test
samples. They can also be viewed as special cases
of FLatS which are estimated with different proxy
distributions.

7 Discussion

In the derivation of our FLatS framework, We ex-
ploit the energy-based models (EBMs) for param-
eterization. EBMs are known for their flexibility
with sacrifice to their tractability. But in our case,
we leverage their flexibility to derive principled
OOD scores (following Theorem 1) while keep
the tractability via approximation with traditional
OOD scores (e.g., KNN) in real-world applications.
The detailed explanation is shown as follows.

Flexibility: Since Theorem 1 suggests that
we should design OOD scores under the form
of likelihood ratio between Pout and Pin, we
adopt EBMs to model the two probability distri-
butions Pout and Pin due to the flexibility of EBMs.
Thanks to EBMs, we transform the computation of
likelihood-ratio into two unnormalized energy func-
tions Eout(x) and Ein(x) as shown in Section 3.2.

Tractability: Contrary to the traditional works
that directly optimize EBMs via MCMC (Grath-
wohl et al., 2019; Lafon et al., 2023) which may
face the problem of computational inefficiency, we
approximate the energy functions using traditional
feature-based OOD scores (KNN or Maha). The

efficiency of KNN in real-world applications has
been proved in previous works (Ming et al., 2022;
Yang et al., 2022). Therefore, our method FLatS
that adopts KNN is scalable and efficient in real-
world applications.

Also, though we use public corpus for the estima-
tion of Pout in the experiments, FLatS is compatible
with any desired OOD data when they are available.
As FLatS does not require model re-training, it
has great potential in test-time adaptation to tackle
distribution shifting in real-world scenarios.

8 Conclusion

This paper proposes to solve OOD detection with
feature-based likelihood ratio score, which is princi-
pled (justified by Theorem 1). The proposed FLatS
is simple and effective, which not only establishes
a new SOTA, but can serve as a general framework
to improve other OOD detection methods.

Limitations

We list two limitations of this work. First, this
paper mainly focuses on the post-hoc OOD detec-
tion approaches. Post-hoc OOD detection meth-
ods compute the OOD score without any special
training-time regularization for models. Although
a large group of OOD detection methods are post-
hoc, there are also some regularized fine-tuning
schemes to improve the OOD detection capability
of NLP models. Since FLatS can enhance other
post-hoc OOD detection baselines as shown in Sec-
tion 5, it is exciting to see if our FLatS can also
improve those training-time techniques in the fu-
ture work. Second, our proposed FLatS is based
on the existing OOD score (KNN), and we do not
propose any new score with novel estimation tech-
niques. The main contribution of this paper is to
solve OOD detection with principled likelihood
ratio, and we will see if better scores can be devel-
oped to further improve the likelihood ratio estima-
tion in the future.

Ethics Statement

Since this research involves only classification of
the existing datasets which are downloaded from
the public domain, we do not see any direct ethi-
cal issue of this work. In this work, we provide a
theoretically principled framework to solve OOD
detection in NLP, and we believe this study will
lead to intellectual merits that benefit from a reli-
able application of NLU models.
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A Theoretical Analysis of Theorem 1

A.1 Preliminary
Definition 2 (Statistical hypothesis testing)
Consider testing a null hypothesis H0 : θ ∈ Θ0

against an alternative hypothesis H1 : θ ∈ Θ1,
where Θ0 and Θ1 are subsets of the parameter
space Θ and Θ0 ∩Θ1 = ∅. A test consists of a test

statistic T (X), which is a function of the data x,
and a rejection region R, which is a subset of the
range of T . If the observed value t of T falls in R,
we reject H0.

Definition 3 (UMP test) Denote the power func-
tion βR(θ) = Pθ(T (x) ∈ R), where Pθ denotes
the probability measure when θ is the true parame-
ter. A test with a test statistic T and rejection region
R is called a uniformly most powerful (UMP) test
at significance level α if it satisfies two conditions:

1. supθ∈Θ0
βR(θ) ≤ α.

2. ∀θ ∈ Θ1, βR(θ) ≥ βR′(θ) for every other
test T ′ with rejection region R′ satisfying the
first condition.

A.2 Proof of Theorem 1
Lemma 1 (Neyman and Pearson, 1933) Let
{X1, X2, ..., Xn} be a random sample with like-
lihood function L(θ). The UMP test of the simple
hypothesis H0 : θ = θ0 against the simple hypo-
thetis Ha : θ = θa at level α has a rejection region
of the form:

L(θ0)

L(θa)
< k

where k is chosen so that the probability of a type
I error is α.

Now the proof of Theorem 1 is straightforward.
From Lemma 1, the UMP test for Equation (3) has
a rejection region of the form:

pout(x)

pin(x)
< λ0

where λ0 is is chosen so that the probability of a
type I error is α.

A.3 UMP test achieves optimal AUROC
In this section, we show that the UMP test for Equa-
tion (3) also achieves the optimal AUROC, which
is a popular metric used in OOD detection. From
the definition of AUROC, we have:

AUROC =

∫ 1

0
1− FPR d(TPR)

=

∫ 1

0
βR(θin)d(1− βR(θout))

=

∫ 1

0
βR(θin)d(βR(θout)),

where FPR and TPR are false positive rate and
true positive rate. Therefore, an optimal AUROC
requires UMP test of any given level α = βR(θout)
except on a null set.



B Distance-Based OOD Detectors are
IND Density Estimators

In this section, we will show that SMaha(x) and
SKNN(x) defined in Equation (1) and Equation (2)
are IND density estimators under different as-
sumptions. Assume we have a feature encoder
ϕ : X → Rm, and in training time we empirically
observe n IND samples {ϕ(x1), ϕ(x2)...ϕ(xn)}.

Analysis of Maha score. Denote Σ to be the
covariance matrix of ϕ(x). The final feature we
extract from data z is:

z(x) = A−1ϕ(x)

where AAT = Σ. Note that the covariance of z is
I.

Given a class label c, we assume the distribution
z(x|c) follows a gaussian N (A−1µc, I). Immedi-
ately we have µc to be the class centroid for class
c under the maximum likelihood estimation. We
can now clearly address the relation between Maha
score and IND density:

SMaha(x) = −2max
c∈Y

(ln pin(x|c))−m ln 2π

Analysis of KNN score. We use normalized fea-
ture z(x) = ϕ(x)/||ϕ(x)||2 for OOD detection.
The probability function can be attained by:

pin(z) = lim
r→0

p(z′ ∈ B(z, r))

|B(z, r)|

where B(z, r) = {z′ : ||z′−z||2 ≤ r∧||z′|| = 1}
Assuming each sample z(xi) is i.i.d with a

probability mass 1/n, the density can be esti-
mated by k-NN distance. Specifically, r =
||z − kNN(z)||2, p(z′ ∈ B(z, r)) = k/n and

|B(z, r)| = π(m−1)/2

Γ(m−1
2 + 1)

rm−1 + o(rm−1), where

Γ is Euler’s gamma function. When n is large and
k/n is small, we have the following equations:

pin(x) ≈
kΓ(m−1

2 + 1)

π(m−1)/2nrm−1

SKNN(x) ≈ (
kΓ(m−1

2 + 1)

π(m−1)/2n
)

1
m−1 (pin(x))

− 1
m−1

C Datasets Details

We use four publicly available intent classification
datasets as benchmark datasets:

CLINC150 (Larson et al., 2019) is a dataset
specifically designed for OOD intent detection. It
comprises 150 individual intent classes from di-
verse domains. The dataset contains a total of
22,500 IND queries and 1,200 OOD queries. The
IND data is split into three subsets: 15,000 for
training, 3,000 for validation, and 4,500 for testing.
Additionally, the dataset includes 1,000 carefully
curated OOD test data for evaluating performance
on out-of-domain queries.

ROSTD (Gangal et al., 2020) is a large-scale in-
tent classification dataset comprising 43,000 intents
distributed across 13 intent classes. The dataset
also includes carefully curated OOD intents. Fol-
lowing the dataset split, we obtain 30,521 samples
for IND training, 4,181 samples for IND validation,
8,621 samples for IND testing, and 3,090 samples
for OOD testing.

Banking77 (Casanueva et al., 2020) is a fine-
grained intent classification dataset focused on the
banking domain. It consists of 9,003 user queries
in the training set, 1,000 queries in the validation
set, and 3,080 queries in the test set. The dataset
encompasses 77 intent classes, of which 50 classes
are used as IND classes, while the remaining 22
classes are designated as OOD classes.

Snips (Coucke et al., 2018) is a dataset con-
taining annotated utterances gathered from diverse
domains. Each utterance is assigned an intent la-
bel such as "Rate Book", "Play Music", or "Get
Weather." The dataset encompasses 7 intent classes,
of which 5 classes are used as IND classes, and the
remaining 2 classes are used as OOD classes. After
splitting the dataset, we obtain 9,361 IND training
samples, 500 IND validation samples, 513 IND test
samples, and 187 OOD test samples.

D Hardware and Software

We run all the experiments on NVIDIA GeForce
RTX-2080Ti GPU. Our implementations are based
on Ubuntu Linux 16.04 with Python 3.6.


