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ABSTRACT

Auto-vectorization is a powerful optimization that significantly improves the per-
formance of tensor programs on modern instruction set architectures. Trans-
forming tensor programs into high performance vectorized programs is in high
demand. However, traditional compilers often overlook opportunities to vector-
ization. Meanwhile, hand-crafting vectorized optimization using specialized in-
structions remains a complicated and error-prone endeavor that requires in-depth
knowledge of specific instruction set architectures and compilers. In this paper,
we introduce RISCompiler, a compiler designed to generate vectorized tensor pro-
grams with auto-vectorization tailored for the RISC-V target with vector exten-
sion. The main concept involves transforming the tensor program exploration task
into generation task exploiting an instruction language model (ILM). To facili-
tate this, we create an instruction sentence representation suitable for ILM, which
includes transformation details to accurately represent vectorized RISC-V tensor
programs. RISCompiler uses an innovative, parameter-efficient fine-tuning mech-
anism to enhance domain adaptation by strategically concentrating on vectorized
components, thereby boosting both fine-tuning and inference efficiency. During
the compilation, the ILM incorporates insights from offline learning and prior
transformations to make optimal optimizations within the current design space.
Experimental results demonstrate that RISCompiler, which are capable of gen-
erating high-performance vectorized programs automatically, surpasses existing
state-of-the-art compilers and scalar versions by a substantial margin.

1 INTRODUCTION

In recent years, the enhancement of parallel computing capabilities has emerged as a crucial trend in
improving the computational efficiency of high-performance computing (HPC) and artificial intel-
ligence (Al) applications. This trend is particularly prominent in the realm of emerging instruction
set architecture (ISA), where the open-source RISC-V ISA has been garnering increasing attention.
RISC-V introduces a flexible vector extension (RVV) that supports single instruction, multiple data
(SIMD) parallel computing. Notably, the vectorized instructions in RISC-V have been shown to
significantly boost the performance of both floating-point and integer computations. By enabling
operations to be executed on multiple cores or processing elements concurrently, vectorized instruc-
tions significantly enhance processing speed compared to unvectorized ones which handle opera-
tions sequentially and iteratively.

To enable programmers to directly exploit vectorization features, the RISC-V vector (RVV) exten-
sion introduces a collection of compiler intrinsics that enable the invocation of SIMD instructions
at the assembly level directly from C source code. For instance, the instruction vle32_v_f32ml
allows for loading a vector of 32-bit floating-point elements from memory into a vector register.
The instruction vfmacc_vv_£32ml performs an element-wise multiplication of two input vector
registers and accumulates the results into a third vector register. While vse32_v_f32ml enables
to store a vector of 32-bit floating-point elements from a vector register back to memory. Given the
complex semantics involved in these operations, the task of writing such programs is complicated,
error-prone, and primarily the domain of experienced programmers. Therefore, significant research
efforts have been devoted to automatic vectorization over several decades.
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Figure 1: (a) The workflow of search-based tensor compilers with a learned performance model for
vectorized programs. (b) Our proposed generation-based tensor compiler with three different stages
for the automatic optimization of vectorized RISC-V programs.

However, for search-based tensor compilers, which are the majority of the present, their auto-
vectorization performance is often hampered by the inherent inaccuracy of static analysis. One
of major reasons lies in that the vectorization process relies on data dependency analysis, a task
which is difficult to perform accurately due to the intricate nature of the code. All the factors, such
as complex control flow patterns, aliasing issues, and discontinuous memory access patterns, need
to be considered in the optimization process. Moreover, learned performance models, which are
widely adopted by compilers to determine the outcomes of vectorization, often leads to suboptimal
optimization decisions due to their limited versatility.

Our Goal Recent advances in LLMs have demonstrated the potential to generate and transform
code based on natural language instructions (Chen et al. (2021); Roziere et al. (2020). Motivated by
these progress, we ask the following question to democratize the generation of vectorized RISC-V
programs by non-experts: Can we build a dedicated instruction language model to automatically
optimize scalar RISC-V tensor programs into semantic equivalent vectorized versions?

Challenges To design our generation-based RISC-V auto vectorization compiler utilizing instruction
language model (ILM), we summarize the challenging aspects introduced by new design paradigm
as follows: Sufficient Transformation Space. Instead of building a new transformation space for
the RISC-V instruction specializations with search-based compilers, we need to create a language-
model-friendly instruction representation that record transformation to represent vectorized pro-
grams, bridging the gap between specialized instructions and language models. Vectorized Instruc-
tion Generation. Given instruction sentences, the ILM should be able to determine the most suitable
transformation for the RISC-V target, with the aim of producing valid vectorized programs within
the transformation space. Efficient Fine-Tuning for Language Model. We need to propose an opti-
mal fine-tuning strategy that can yield enhanced ILM performance while achieving efficiency with
a minimized trainable parameter size.

Our Solution We design and implement RISCompiler, an end-to-end compilation framework to
generate RISC-V tensor programs with auto-vectorization, overcoming three challenges mentioned
above. We evaluate RISCompiler on standard deep learning benchmarks, including both single
operator and end-to-end network against state-of-the-art compilers. Experiment results show that
RISCompiler improves the execution performance of workloads across single operator to end-to-
end network by up to 1.65x and 1.38X, respectively. The contribution can be summarized as
follows: (1) We exploit an instruction language model to assist auto-generating high-performance
vectorized RISC-V programs, transforming the program exploration task into generation task. (2)
We construct instruction sentences for language model to understand instruction information and
vectorized transformation. (3) We design a novel fine-tuning algorithm that features an asymmetric
structure with a shared part for all tensor programs and distinct parts for each vectorized instruction.

2 BACKGROUND AND RELATED WORK

Search-based Tensor Compilers Figure [I[a) shows the general workflow of a search-based com-
piler with a learned performance model. This paradigm is used by plenty of recent tensor compilers
such as TVM, Halide and XLA Chen et al.|(2018)); Ragan-Kelley et al. (2012); XLA Team (2017).
The compiler adopts a high-level mathematical expression to represent the operator as input and
employs a search algorithm Baghdadi et al.| (2021); |[Zheng et al. (2020a); |/Adams et al.| (2019) to
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find the optimal tensor program. The primary search spaces formed by derivation rules include loop
optimizations (e.g., tiling, parallelization, unrolling, fusion), which typically target general-purpose
processor ISAs. During the search, the compiler generates promising candidates and evaluates their
performance—either via a performance model or hardware execution. Given the large search space
and time-consuming on-device measurements, a learned performance model is often used to guide
the search, whose effectiveness critically determines the search’s efficiency and quality.

Auto-vectorization with Compilation The RISC-V vector (RVV) extension is a set of architectural
extensions to the basic RISC-V ISA that provides support for vector processing. Vector processing
is a technique that enables the simultaneous execution of the same operation on multiple data el-
ements, which can significantly improve the performance of the workloads. RVV defines a set of
vector registers and a set of vector instructions that can operate on these registers. Meanwhile, the
RVYV is designed to be highly flexible and configurable, allowing programmers to choose the vector
length and the supported data types based on the specific requirements of their application domain.
TVM |Chen et al.| (2018)), a search-based compiler, provides an extensible interface for SIMD in-
struction support. However, it requires programmers to manually adapt programs to match the
behavior of target instructions and predefine lowering rules for specializations prior to compilation.
To generate optimized LLVM IR [Lattner & Adve (2004), TVM aligns computations and replaces
program segments with ISA-specific code snippets. This process demands significant engineering
effort, involving modifications across multiple layers of the intermediate representation (IR), as well
as iterative passes and transformations. Finally, code generation is delegated to LLVM’s backend.

Parameter-efficient Fine-tuning LLMs are extremely powerful in language processing tasks, yet
their compatibility to one specific task heavily relies on fine-tuning technique, which typically
demands substantial computation resources. This need catalyzes the investigation of parameter-
efficient fine-tuning (PEFT) techniques, which aim to reduce the computational and storage require-
ments during model adaptation. Among the prominent PEFT methodologies are adapters [Houlsby
et al.| (2019); [Rebuffi et al.| (2017), which incorporate new trainable dense layers within the ex-
tant model architecture, while preserving the original parameters in a frozen state. The adapter
paradigm has demonstrated efficacy across a multitude of domains [Pfeiffer et al. (2020); Stickland
& Murray| (2019); [Sung et al. (2022); |Zhou et al.| (2024). Enhancements in adapter compactness
are pursued through the construction of parameter matrices via the Kronecker product of low-rank
matrices [Karimi Mahabadi et al. (2021). An alternative PEFT strategy involves the direct manipu-
lation of activations utilizing learned vectors, achievable via concatenation |Liu et al.| (2024); |L1 &
Liang (2021); Lester et al. (2021)), multiplication IA3 Liu et al.[(2022), or addition BitFit/Zaken et al.
(2021). Notable examples such as prefix-tuning |Li & Liang (2021)) and prompt-tuning |Lester et al.
(2021) fine-tune continuous prompts as opposed to crafting discrete ones. Intriguingly, numerous
PEFT methods can be conceptualized as variants of adapters, offering a cohesive framework|He et al.
(2021). Beyond the mere augmentation of parameters or the alteration of the computation graph,
scholarly efforts are also directed towards sparse \Guo et al.|(2020); |Sung et al. (2021) or low-rank
updates such as LoRA Hu et al. (2021).

3 DESIGN OVERVIEW OF RISCOMPILER

RISCompiler is an end-to-end compilation flow that leverages language models to perform auto-
vectorization for RISC-V programs with vector extension. The compilation process begins with
a prompt from programmers in natural language, which contains vectorized optimization request
for a RISC-V hardware specification. Besides, a fundamental scalar tensor program snippet is also
provided as the transformation target. Upon receiving these inputs, RISCompiler processes the
request and subsequently generates the corresponding RVV instructions, utilizing ILM to generate
complete RISC-V programs with auto-vectorization. Figure [I(b) and Figure [2] show the workflow
of the RISCompiler which has three important stages: i) offline learning stage that constructs a
transformation space and samples diverse vectorized RISC-V programs from it; ii) efficient fine-
tuning stage that fine-tunes the ILM with the performance of sampled vectorized RISC-V programs
and an efficient learning strategy; iii) code generation stage that generates high-performance RISC-
V programs for the input operators with auto-vectorization.

Offline Learning Stage One of the primary challenges that RISCompiler has to address is making
a comprehensive dataset for the fine-tuning of the ILM. We build an expansive transformation space
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Figure 2: Three important stages in RISCompiler. During the offline learning stage, the language
model-friendly instruction sentences that represent vectorized RISC-V programs are designed for
the offline learning. During the efficient fine-tuning stage, an asymmetric LoRA structure first adap-
tively identifies and initializes multiple vectorized optimization components. Subsequently, it uti-
lizes a trainable MoE router that considers each vectorized component as an expert to autonomously
partition training samples for the ILM fine-tuning. During the code generation stage, [ILM dynam-
ically and flexibly merges multiple expert adapters through a trained router. Finally, the vectorized
RISC-V programs are generated.

and design the language-model friendly instruction sentences that record transformations to repre-
sent vectorized RISC-V programs. During the compilation, ILM combines knowledge from offline
learning and previously made transformations to sample the best decision in the current space.

Efficient Fine-tuning Stage Because the performance of ILM with only pre-trained weights may
not be able to stay perfect all the time, we fine-tune ILM efficiently with the online dataset in the
second stage. An asymmetric LoRA architecture is introduced to perform PEFT iteratively. Parts of
ILM are selectively activated by a gating mechanism in response to different operator configurations
with instruction sentences at each iteration. Meanwhile, ILM handles each vectorized instruction-
dependent components as expert adapters to ensure computational efficiency throughout the fine-
tuning.

Code Generation Stage During the code generation, ILM merges expert adapters by enabling rout-
ing computation based on the input operator and instruction sentences. It flexibly and dynamically
merges multiple vectorized expert adapters through the router with Mixture-of-Experts (MoE) man-
ner|Shazeer et al.| (2017).

4 OFFLINE LEARNING STAGE

Vectorized Transformation Space Figure|2|shows the three important stages of RISCompiler. The
offline learning stage has three steps. The goal of step (1) is to create a large space for RISC-V pro-
grams with vectorized optimizations to ensure high-performance. This space encompasses a range
of potential optimizations, both unvectorized and vectorized, which entail tasks such as determin-
ing tiling sizes for loop axes, specifying unroll steps, choosing computation locations for operators,
planning parallelization strategies, defining vector width, determining the number of registers uti-
lized, and so forth. Therefore, the transformation space for the input operator can be formulated as

follows:
R = {r(")

where 7(9) indicates the scalar programs of the input operator and ¢; denotes a random optimization
from the space 7;. The number of transformation combinations can be defined as:

IR| = |T1| % T3] % ... % ||

(D

r( = Transform (r(ifl),ti) ;
Vt,eT;,1<i<n ’

The options for each optimization create an optimization space, and all optimization combinations
form the transformation space. The primary objective of the transformation space is to find an
optimization combination that improves the execution of the programs.

We draw inspiration from the previous search-based tensor compiler [Zheng et al. (2020a;b); [Shao
et al.[ (2022)); |Bai et al.|(2023); Zhai et al. (2024) to construct the vectorized transformation space.
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This is necessary because the existing space for scalar programs, particularly those not utilizing the
RVV specifications, is already sufficiently large. Expanding upon the prior transformation space, we
introduce specific optimizations tailored for RVV. These optimizations primarily encompass vector
width, the count of registers, vector element count, vector instruction combinations, vector memory
access patterns, vector scheduling, and vector precision.

Instruction Sentences The objective of step
(2 is to delineate vectorized RISC-V pro-
grams selected from the transformation space.
As elucidated in Section 4} vectorized RISC-

po pl matmul p2 @0a625a8 1024 512 1024 512 1024 512

riscv -keys=cpu -mcpu=rvé4gcv -model=rv64 SP 2 © 1024 32 1 4
SP 24512 814 1SP 281024 1624 1 RE 2041582693
FSP 400 2FSP4312RE4031425CA243
vector_width$8,16,32,64

vector_reg_count$16,32,64

Vector_element_count$4,8,16

1
7

PNV A WN R

V programs (") comprises the initial pro-
gram 7(9) of the operator and transforma-
tions t1,ts, ..., t,. Each transformation ¢; is
stochastically chosen from the space T}, fo-
cusing on optimizations related to RVV. Di-
rectly generating RISC-V assembly programs
with language models inherently poses chal-
lenges. The length of RISC-V assembly programs typically exceeds ten thousand tokens, and strict
adherence to syntactic rules is required. Crafting such extensive and syntactically correct RISC-
V assembly programs is nearly unfeasible. Hence, rather than striving for the direct end-to-end
generation of assembly programs, we take advantage of the scalar version of tensor programs that
represent the input operator and language models to assist in transformation-making. To facilitate
this, we design instruction sentences which is amenable to language models, enabling the recording
of transformation to represent vectorized RISC-V programs.

vector_instr_combo$vadd+vmul,vle+vse, ...

9 vector_mem_access$continuous,noncontinuous
10 vector_sched$static,dynamic

11 vector_precision$int8,int16,float32

12 auto_unroll_max_step$® ESC

Figure 3: The sample of instruction sentence de-
signed for ILM including input operator and vector-
ized optimizations.

Figure[3]showcases a sample of instruction sentence designed for vectorized RISC-V programs. The
red portion signifies the names of operators and the dimensions of their corresponding inputs pg 1
and outputs py, while the black section pertains to instruction specializations tailored for RISC-V.
The green and blue segments correspond to the transformations for the vectorized optimization. For
instance, the dynamic adjustment of the vector width is achieved using the vsetvl instruction to
align with the computational requirements of each operation, efficiently utilizing the available vector
registers. The optimization of register count is also paramount, meticulously managing the utiliza-
tion of the ample vector registers. Tuning the vector element count is essential to strike a delicate
balance between computational intensity and memory bandwidth constraints. Additionally, the se-
lection of vector instruction combinations, such as fused multiply-add (vadd+vmul, vfmacc)
and other specialized vector instructions, is crucial in optimizing performance by reducing the num-
ber of required operations.

Offline Dataset In step (3), we conduct an extensive random sampling of the transformation space
in order to acquire an offline dataset from which the ILM can derive knowledge. This process
serves the following objectives: Firstly, ensuring that the samples from the dataset align with the
distribution in the transformation space; Secondly, expanding the vocabulary comprehensively to
encompass all vectorized transformation possibilities, such as “vector width” or “vector register
count” which are tokenized into distinct tokens. The operators sampled for ILM draw inspira-
tion from TenSet [Zheng et al. (2021). These operators are sourced from PyTorch Image Models
(timm) [Wightman|(2019) and Huggingface’s Transformer Models Wolf et al. (2020), covering tasks
in both computer vision and natural language processing. We modify the input shape to create a
diverse range of operators with small batch sizes for constructing the offline dataset. The dataset
comprises 86 workloads and around 1.8K operators, with 0.5 million instruction sentences encom-
passing vectorized optimizations. It takes about 8.5 hours to collect dataset with a 16-core server.

5 INSTRUCTION GENERATION

Taking into consideration both learning capabilities and resource constraints, ILM adopts the model
architecture of Llama-3.2-3B [lla. We fine-tune ILM in a supervised manner with the offline dataset.
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Figure 4: (a) The LoRA structure encompasses a low rank matrix Aand B. (b) LoRA is partitioned
into numerous smaller A and B matrices with an equivalent parameter count to avoid training inter-
ference. (c) Our design exhibits an asymmetric structure featuring a shared A matrix and multiple
B matrices.

5.1 EFFICIENT FINE-TUNING STAGE

LoRA |Hu et al. (2021) attains performance levels comparable to fine-tuning across numerous bench-
marks by maintaining the pre-trained language model WO in a static state and integrating trainable
low-rank decomposition matrices, A and B, within each layer. The forward computation is ex-
pressed as follows:

g1 =+ Ay = Woi + BAz, )
where y € R represents the output and 2 € R¥ denotes the input. The matrices B € R and
A € R™%F are defined with r < min(d, k). Typically, matrix B is initialized with zeroes, while
matrix A via the Kaiming Uniform [He et al. (2015) to ensure that Ay = 0 at the outset.

As for ILM, we aim for a PEFT approach that strikes a better balance between maximizing the
learning capability for vectorized programs and minimizing the computation. A promising approach
involves partitioning LoRA into multi-structured variants, characterized by a central and shared

matrix A coupled with multiple distinct matrices B, which facilitates a synergy of shared knowledge
for the tensor programs and vectorized transformation. The asymmetric LoRA structure shown in
Figure[d|(c) can be formulated as:

N
W:W()-FAW:WO%—ZLUZ'-B}A‘. 3)

i=1

The matrices B; € R*" and shared A € R™**. The hyperparameter /N denotes the number of
B matrices. The term w; modulates these contribution weights for head B;. In order to achieve a
unified approach to the distinct forward processes of multiple B matrices, we define a set of exports

denoted as (El, F?g, - ,EN) to learn the updated matrix AW for the vectorized transformation.
Based on this design, the forward process of our proposed method is expressed as:

N
y=Woi+ Y wEAf, (MoE) (4)

i=1
where N denotes the number of experts. We introduce a gate function commonly consisting of a

dense layer with trainable weights Wg € R™N followed by a softmax function which takes an
intermediate token representation & as input and combines the output of each expert based on the
gating scores (w1, ..., wWN):

w; = softmax(l/f/;;r z). (Router) 5)

During the fine-tuning, the weights of ILM remain frozen, while the experts and router layers are
trained from scratch.

5.2 CODE GENERATION STAGE

The RISCompiler utilizes the ILM for transformation-making in the generation of vectorized RISC-
V programs. Upon applying a transformation, the ILM assesses its compatibility within the space.
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Should the transformation be deemed invalid, the ILM discards the programs and commences the
regeneration. Given that the transformations are acquired via sampling, the subsequent generation
may explore alternative decisions, thereby averting persistent failures in the regeneration.

Figure [9] illustrates the process of vectorized optimization along a specific axis for a matrix mul-
tiplication on the RISC-V target. Initially, the instruction sentence encompasses the input op-
erator, vectorized RISC-V instruction specifications, and the representation of ¢ = 1024, in-
dicating the length of a specific axis within the operator. These components are consolidated
to serve as the input prompt for the ILM. The ILM utilizes the prompt information to prob-
abilistically generate the next token. For instance, in the context of “vector width” optimiza-
tion, it may generate “7.0 = 327, indicating the instruction to set the vector width to 32 bits.
The subsequent step involves combining

the prompt with the token predicted in E Prompt
the previous step regarding vector width. ~Ji= 1004t [ [0 = 32]
Thls combined 1nf9rmat19n forms a new N R e e e
input prompt that is fed into the ILM to - T —— S|
T - Ji= 1024 o [0 = 32[ e i1 = 1 Emenin = 4

make predictions for the next token. Suc- -
cessively optimizing different aspects of = 1004 to [ [i.0 = 32 Ji2 = 4] /s> |
vectorized RISC-V optimizations, such Input Tokens
as the number of “vector registers” with | Instruction Language Model (ILM) |
% 1 13 E3) 2 2 - 2

i.1 = 17", and the .VeCtOI: elirpent cognt. [i0=32][i1=1][i2=4] - [</s>]|Generate Next Token
for parallel processing with “2.2 = 47, is ! —
carried out to optimize the specific axis of <> Prompt with Output Response
the operator. This iterative process con- - [i= 1024 ] to [ 5o i.0 = 32[ =i 1 = 1] Tementi o = 4] [ </s> |

tinues, enabling the comprehensive opti-

mization of the entire operator. Figure 5: [llustration of generating instruction sentences

with vectorized optimizations.

It is worth noting that the ILM does not

directly take the entire operator and specific vectorized RISC-V specifications as input to generate
all transformation in one go. Instead, to enhance the stability and usability of the ILM, we focus
solely on optimizing one subset of transformations along the specific axis of the operator at a time
which efficiently sieves out invalid optimization.

6 EVALUATION

Experiments are conducted on a server Table 1: GEMV/GEMM Configuration.
equipped with a 16-core, 24-thread Intel

i9-12900K CPU (hyper-threading) along [ Category [ M N K [#Test Cases|
with two 4090D GPUs (48GB), operating H %ggi H %gg{ [25[;, ég% 6 ig

on Ubuntu LTS 22.04.. Fme-tumng the Onerat (257.1024]  [1.256]  [L.65536] 5
ILM for 4 epochs typically requires ap- perators | 1557, 1024] [257,65536] [1. 65536] 59
proximately 35 hours to complete. RISC- [1025,8192]  [1,256]  [1,65536] 33

V toolchain is constructed via LLVM (1025, 8192] [257,8192] [1,65536] 64

Clang [llv|(b). Our experiments are con-

ducted using a specific version of LLVM as indicated by commit|llv|(a), and our evaluation pertains
to the auto-vectorization for RVV version 1.0. To conduct a performance assessment of RISCom-
piler in comparison to the state-of-art compilers, we employ the LLVM Clang (LLVM-Vectorizer),
which is integrated into the GNU toolchain comprising libgcc, the GNU linker, and C libraries.
Additionally, we utilize GCC-Loops version 12.2.0. The results obtained from GCC-Loops are
compiled using Clang and then linked using riscv64-unknown-elf-1d. All experimental results are
validated using the QEMU emulator Bellard (2005) with the RISC-V Vector Extensions. The base-
line methodology incorporates the Claude-3-Haiku with Poe [poe without any fine-tuning technique
as its central component to generate programs with vectorized programs. We use floating point 32
as the data type and set the number of experts at 8 during efficient fine-tuning stage.

6.1 SINGLE OPERATOR BENCHMARK

Workloads We begin by evaluating RISCompiler on a range of common deep learning operators,
using a suite of standard machine learning workloads, encompassing one-dimensional (Conv-1D),



Table 3: Comparative performance of fine-tuning strategies.

‘ Perf. ‘ LoRAHuetal. (2021) AdaLoRA|Zhang et al. (2023) LoRA-Hub|Huang et al.| LoRA-MoE Dou et al. (2023}  Ours

Top-1 0.7233 0.7564 0.7975 0.8412 0.8857
Top-5 0.9134 0.9228 0.9255 0.9261 0.9416

two-dimensional (Conv-2D), depth-wise (DEP) convolution operators, general matrix multiplica-
tion (GEMM), and general matrix-vector multiplication (GEMV). Table [I] and Table [2] present the
benchmarks for these operators. Each test case is characterized by a unique shape size, and the range
of values is denoted as [min, max]. For matrix operations, we consider a total of 733 test cases de-
rived from real-world applications, specifically Transformer-based models such as BERT Devlin
et al. (2018)), DistilBERT [Sanh et al.[|(2019), RoBERTa |L1u et al. (2019)), Llama2-7B [Touvron et al.
(2023)), GPT-2 and ViT-B/16 Dosovitskiy et al.| (2021). For each operator, a selection of specific
shape configurations is undertaken for analysis, and these configurations are evaluated across three
distinct batch sizes: 1, 8, and 16.

Performance Results As shown in Figure [0}  Table 2: Convolution/Depthwise Configuration.
RISCompiler performs the best in all single op-

erators and batch size settings. RISCompiler [ Category |[Fmap Size Filter Size [#Test Cases |
outperforms existing state-of-the-art compil- [280,568]  3x3 40

ers with auto-vectorization optimizations such U-Net [5[2* égf] fi? ‘3“2‘

as GCC-Loops and LLVM-Vectorizer by'up [56, 120] Ix1 40

to 1.65x and 1.24x. The performance im- ResNet-50 [32, 80] 3%x3 60
provements of RISCompiler come from both th ;18} ;Xé ;g
E . : 2 %

its instruction 'language mpdel and effective RetinaNet D8] TXi/3:3] 49759
parameter-efficient fine-tuning strategy. For MobileNet-V2 | [14. 112] 33 3

most operators, we find that the best vectorized
tensor programs generated by RISCompiler is outside the decision space of existing language model
Claude-3-Haiku because the ILM of RISCompiler is able to explore more vectorized optimization
combinations with efficient fine-tuning algorithm. For instance, Claude-3-Haiku can only achieve a
1.34x improvement compared to the standard scalar versions within these operators while the ILM
of RISCompiler can achieve a 2.99x enhancement.

Ablation Study We run four variants on Conv-2D operators and report the performance. We pick
the last convolution operator in ResNet-50 with batch size 8 as the test case. In Table f] each
setting corresponds to different variants. Setting#(d) uses all our introduced methods. Setting#(a)
means the direct utilization of the standard scalar version of the RISC-V programs implemented
with corresponding operators, without involving any vectorized optimizations or the intervention
of language models. Setting#(b) represents solely utilizing an offline dataset to train a LlaMA-3.2-
1B language |lla] model with the standard LoRA fine-tuning in offline learning stage, specifically
for optimizing the RISC-V Vector Extension. The primary distinction between Setting#(c) and
Setting#(b) lies in the utilization of the LlaMA-3.2-3B as the instruction language model. Overall,
when combining our proposed efficient fine-tuning algorithm with the corresponding instruction
language model through offline dataset, good final performance can be achieved.

6.2 END-TO-END NETWORK BENCHMARK

Workloads We conduct a comprehensive benchmark of the end-to-end performance of various
DNNS5s with batch size 1, which encompass ResNet-50, VGG-16, MobileNet-v2|Sandler et al. (2018)),
DenseNet|Huang et al. (2017) for image classification, as well as BERT-based and Bert-Tiny [Devlin
et al.[(2018) for language understanding.

Quality As for the fine-tuning quality, we hold out a test set that consists of four DNNs: U-Net,
ResNet-50, MobileNet-V2 and Bert-Base with batch size 1. Divide all the remaining data into
training and validation sets at a ratio of 8:2. We use the Top-k score as evaluation metric which
Do 2os min_cyclen, s X weight,,
Do 2 Min (cyclen, s.i) X weight,,
mingycle represents the minimum simulated cycle for operator s in DNN m, weight,, s denotes
the frequency of occurrences of operator s in DNN m, and cycle,, s ; indicates the simulated cycles

can be represented as: top — k = ,1 <4 < k. Specifically,
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Figure 6: Speedup of single operator performance normalized by the standard scalar version.
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Figure 7: End-to-end performance comparison of different baselines.

corresponding to the i—th largest value of the output score generated by the ILM for operator s
in DNN m. Our proposed asymmetric LoRA structure outperforms the baseline LoRA fine-tuning
(LoRA), Lora-Hub learning, multi-LoRA tuning with MoE inference, and AdaLLoRA algorithms
based on the Top-1 and Top-5 scores as evaluation metrics. Further details are available in Table[3]

Performance Results Figure [7| shows the normalized performance. For each end-to-end test case,
we normalize the performance to the standard scalar version of the tensor programs. RISCompiler
outperforms the best in all test cases and outperforms existing state-of-the-art compilers such as
GCC-Loops and LLVM-Vectorizer by up to 1.36x and 1.15X%, respectively. In comparison to the
common Claude-3-Haiku language model, RISCompiler can achieve a maximum acceleration of up
to 1.38x on these DNN benchmarks.

6.3 DISCUSSION

One limitation of RISCompiler is Table 4: Ablation study on a convolution operator.
the necessity to employ various
performance-oriented and vectorized Setting RISCompiler
programs during the fine-tuning stage. i @ (b) © @@
Therefore, the sampling of high-quality Offline Dataset v v v

. . . Instruction Language Model v v
programs is particularly crucial. An- Efficient Fine-Tuning v
other limitation is that RISCompiler Perf. 1.00x 1.71x 2.04x 2.36x%

prioritizes efficiency during the pre-

compilation phase. The substantial time commitment required for fine-tuning the ILM, which could
span over numerous hours, should not be underestimated. If the goal is limited to compiling a single
model or a small set of operators, the ILM may not be the most cost-effective choice. However, it is
more suitable for compiling a diverse range of models with vectorized optimizations.

7 CONCLUSION

We present RISCompiler, an innovative compilation flow that incorporates an instruction language
model with a parameter-efficient fine-tuning strategy for generating vectorized RISC-V programs.
RISCompiler is notable for its pioneering integration of language models into the compilation do-
main, providing auto-vectorization support for the RISC-V target. By harnessing the combined
strengths of offline dataset learning and efficient fine-tuning, RISCompiler demonstrates robust ca-
pabilities in generating vectorized RISC-V tensor programs on modern deep learning benchmarks.
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