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ABSTRACT

Recent methods in geometric deep learning have introduced various neural net-
works to operate on Riemannian manifolds. These methods are often inspired by
and directly generalize standard Euclidean neural networks. In practice, extend-
ing these is difficult and has only been done for a select few manifolds. In this
work, we examine the residual neural network (ResNet) and show how to extend
this construction to general Riemannian manifolds. Originally introduced to help
solve the vanishing gradient problem, ResNets have become ubiquitous in machine
learning due to their beneficial learning properties, excellent empirical results, and
easy-to-incorporate nature when building varied neural networks. We find that
our Riemannian ResNets mirror these desirable properties and generalize well to
non-Euclidean manifolds (regardless of topology).

1 INTRODUCTION

In machine learning, it is common to represent data as vectors in Euclidean space (i.e. Rn). The
primary reason for such a choice is convenience, as this space has a classical vectorial structure,
a closed-form distance formula, and a simple inner-product computation. Moreover, the myriad
Euclidean neural network constructions allow one to learn efficiently.

Despite the ubiquity and success of Euclidean embeddings, recent research (Nickel & Kiela, 2017) has
brought attention to the fact that several kinds of complex data necessitate manifold considerations.
Such data are various and range from gauge group samples found in lattice quantum field theory
(Boyda et al., 2020) to motion samples on tori found in the context of robotics (Rezende et al., 2020).
However, generalizing Euclidean neural network tools to complex manifold structures such as these
can be quite difficult in practice. Most prior work design network architectures on a specific manifold
(Ganea et al., 2018; Cohen et al., 2018).

In our paper, we address this issue by extending Residual Neural Networks (He et al., 2016) to
Riemannian manifolds. We construct our network by parameterizing vector fields, a strategy that
works generally for smooth manifolds. We compare our work to existing manifold-specific network
designs on hyperbolic space and on the manifold of symmetric positive definite (SPD) matrices,
showing that our network better adheres to the geometry of the underlying data.

2 RELATED WORK

Our work is inspired heavily by existing neural ordinary differential equation (ODE) (Chen et al.,
2018) literature as well a series of papers that have attempted generalization of neural networks to
specific manifolds such as hyperbolic space and the manifold of SPD matrices (Ganea et al., 2018;
Huang & Gool, 2017).

2.1 RESIDUAL NETWORKS AND NEURAL ODES

Residual networks (ResNets) were originally developed to enable training of larger networks, pre-
viously prone to vanishing and exploding gradients (He et al., 2016). Later on, Chen et al. (2018)
discovered that by adding a learned residual, ResNets are similar to Euler’s method. More specifically,
the ResNet represented by ht+1 = ht + f(h, θt) for ht ∈ RD mimics the dynamics of the ODE
defined by dh(t)

dt = f(h(t), t, θ). Similar to our work, Lou et al. (2020); Katsman et al. (2021)
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generalize neural ODEs to Riemannian manifolds. However, instead of using a manifold’s vector
fields to solve a neural ODE, we learn an objective by parameterizing the vector fields directly.

2.2 RIEMANNIAN NEURAL NETWORKS

Neural networks have been extended to non-Euclidean spaces in many cases. For example, Ganea et al.
(2018) extended basic neural network operations to conform with the geometry of hyperbolic space
through gyrovector constructions (Ungar, 2009). Neural network constructs have been extended to
the SPD manifold (Huang & Gool, 2017; Brooks et al., 2019; López et al., 2021) as well. Unlike any
of the manifold-specific work described, our residual network construction can be applied generally
to any smooth manifold.

3 BACKGROUND

In this section, we cover the necessary background for our paper; in particular, we introduce the reader
to the necessary constructs from Riemannian geometry. For a detailed introduction to Riemannian
geometry, we refer the interested reader to textbooks such as Lee (2013); Kobyzev et al. (2020).

3.1 RIEMANNIAN GEOMETRY

A topological manifold (M, g) of dimension n is a locally Euclidean space, meaning there exist
homeomorphic1 charts whose domains both cover the manifold and map from the manifold to Rn

(i.e. the manifold “looks like" Rn locally). A smooth manifold is a topological manifold for which
the charts are not simply homeomorphic, but diffeomorphic, meaning they map to Rn differentiably
and have differentiable inverses. Further still, a Riemannian manifold2 (M, g) is an n-dimensional
smooth manifold with a smooth collection of inner products (gx)x∈M for every tangent space TxM.
The Riemannian metric g induces a distance dg : M×M → R on the manifold.

Riemannian metrics also allow for a natural analogue of gradients on Rn. For a function f : M → R,
we define the Riemannian gradient ∇xf to be the vector on TxM such that gx(∇xf, v) = Dxf(v)
for v ∈ TxM.

3.2 GEODESICS AND THE RIEMANNIAN EXPONENTIAL MAP

Geodesics A geodesic is a smooth curve of minimal length between two points p, q ∈ M, and can be
seen as the generalization of a straight-line in Euclidean space. Although a choice of Riemannian
metric g on M appears to only define geometry locally on M, it induces global distances by
integrating the length (of the “speed" vector in the tangent space) of a shortest path between two
points: d(p, q) = infγ

∫ 1

0

√
gγ(t)(γ′(t), γ′(t)) dt where γ ∈ C∞([0, 1],M) is such that γ(0) = p

and γ(1) = q.

For p ∈ M and v ∈ TpM, there exists a unique geodesic γv where γ(0) = p, γ′(0) = v and the
domain of γ is as large as possible. We call γv the maximal geodesic (Lee, 1997).

Exponential Map The Riemannian exponential map is a way to map TpM to a neighborhood around
p using geodesics. This can be thought of as a local linearization, meaning that we can perform
typical Euclidean operations in the tangent space before projecting to the manifold via the exponential
map. For p ∈ M and v ∈ TpM, the exponential map at p is defined as expp(v) = γv(1).

3.3 VECTOR FIELDS

Let TpM be the tangent space to a manifold M at a point p. Like in Euclidean space, a vector field
assigns to each point p ∈ M a tangent vector Xp ∈ TpM.

Tangent Bundle Consider the disjoint union of the tangent spaces TpM, for all p ∈ M:

TM =
⊔

p∈M
TpM =

⊔
p∈M

{(p, v) | v ∈ TpM}.

1A homeomorphism is a continuous bijection with continuous inverse.
2Note that imposing Riemannian structure does not considerably limit the generality of our method, as any

smooth manifold that is Hausdorff and second countable has a Riemannian metric (Lee, 1997).
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For a smooth manifold M of dimension n, TM is a smooth manifold of dimension 2n and is called
the tangent bundle of M. Over an open subset U of M, the tangent bundle is locally homeomorphic
to the product manifold U × Rn (Lee, 2013).

Smooth Vector Field A smooth vector field assigns a tangent vector Xp ∈ TpM to each point
p ∈ M such that Xp varies smoothly in p. Formally, let U be an open subset of M. A section X of
TM over U is a function X : U → TM such that Xp ∈ TpM for every p ∈ U . A vector field on U
is any section X , and X is a smooth vector field provided it is also a smooth map.

3.4 MODEL SPACES IN RIEMANNIAN GEOMETRY

The three Riemannian model spaces are Euclidean space, Rn, hyperbolic space Hn, and spherical
space Sn, together with their canonical metrics. They are called as such because they encompass all
of the spaces of constant sectional curvature, i.e. Euclidean space has curvature 0, hyperbolic space
has constant negative curvature, and spherical space has constant positive curvature (Lee, 1997).

3.5 SPD MANIFOLD

Let SPD(n) be the manifold of n × n symmetric positive definite (SPD) matrices together with
their canonical metric (Cruceru et al., 2021). We recall from Gallier & Quaintance (2020) that
SPD(n) has Riemannian exponential map equal to the matrix exponential. Note that SPD(n) has
non-constant negative sectional curvature, giving it a considerably less trivial geometry than that
exhibited by the Riemannian model spaces (Bhatia, 2007).

4 METHODOLOGY

In this section, we provide the technical details behind our residual network construction on Rieman-
nian manifolds. Our approach is inspired by the interplay between Neural ODEs and ResNets on
Euclidean space (Chen et al., 2018; He et al., 2016).

4.1 CONSTRUCTION

We define a Riemannian Residual Neural Network (RResNet) on a manifold M to be a function
fnn : M → M defined by

f(x) := x(m), x(0) := x, x(i) := expx(i−1)(ℓi(x
(i−1))) ∀i ∈ [m]

for x ∈ M, where m is the number of layers and ℓi : M → TM is a neural network-parameterized3

vector field over M. In practice, parameterizing a function from an abstract manifold M to its
tangent bundle is very difficult. However, by the Whitney embedding theorem (Lee, 2013), we
can embed M ↪→ RD for some dimension D ≥ dimM. As such, for a standard neural network
ni : RD → RD we can construct ℓi by

ℓi(x) := projTxM(ni(x))

where we note that TxM ⊂ RD is a linear subspace (making the projection operator well defined).
We note that this is the same construction used for defining the vector field flow in Lou et al. (2020).

We also extend our construction to work in settings where the underlying manifold changes from
layer to layer. In particular, for a sequence of manifolds M(0),M(1), . . . ,M(m) with (possibly
learned) maps hi : M(i−1) → M(i), our Riemannian ResNet fnn : M(0) → M(m) is given by

f(x) := x(m), x(0) := x, x(i) := exphi(x(i−1))(ℓi(hi(x
(i−1)))) ∀i ∈ [m]

with functions ℓi : M(i) → TM(i) given as above. In practice, our M(i) will be different dimensions
of the same geometric space (e.g. Hn or Rn for varying n), and the maps hi will either be the standard
inclusions or standard neural networks.

Furthermore, as shown in Appendix C, our model is equivalent to the standard ResNet when the
underlying manifold is Euclidean space.

3We abuse notation, and note we implicitly take ℓi ∈ Γ∞(M, TM), meaning the ℓi maps from points to
vectors in the associated tangent space.
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4.2 COMPARISON WITH OTHER CONSTRUCTIONS

When compared with the hyperbolic neural network (HNN) constructions in Ganea et al. (2018), our
RResNets are more principled since they rely less on the geometry of Euclidean space. In particular,
the main source of non-Euclidean structure in HNNs is the bias term, which is introduced by way of
Möbius addition ⊕ (Ungar, 2009). By comparison, RResNets rely almost fully on the geometry of the
underlying Riemannian manifold. In particular, our only usage of Euclidean space is to parameterize
vector fields (which are inherently Euclidean), but their application to the manifold is through the
non-Euclidean Riemannian exponential map. Furthermore, our method is far more general since it
does not rely on the niceties of hyperbolic space (as does Ganea et al. (2018)).

5 EXPERIMENTS

In this section, we perform a series of experiments to evaluate the effectiveness of RResNets on tasks
arising on different manifolds. In particular, we explore hyperbolic space and the manifold of SPD
matrices. Please see the appendix for full experimental details.

5.1 HYPERBOLIC SPACE

We first perform node classification and link prediction tasks on graph datasets with low Gromov
δ-hyperbolicity (Chami et al., 2019), which means their underlying structure is highly hyperbolic. In
particular, we test on the Airport (Chami et al., 2019) and PubMed (Sen et al., 2008) datasets. For the
baseline, we use the results for Hyperbolic Neural Networks (HNN) (Ganea et al., 2018) reported by
Chami et al. (2019). Table 1 summarizes the performance of RResNet relative to HNN.4

Dataset Airport PubMed
Hyperbolicity δ = 1 δ = 3.5

Task LP NC LP5 NC
HNN 93.0± 0.8 60.9± 0.4 – 69.6± 1.0

RResNet 95.1± 0.1 72.4± 2.4 – 72.5± 1.0

Table 1: The metrics reported are ROC AUC for link prediction (LP) and F1-score for node classifica-
tion (NC). Ten trials were conducted; mean and standard deviation are reported. We compare the
performance of HNN, as implemented by Chami et al. (2019), to RResNet. Note that we considerably
outperform the baseline while using fewer parameters. The best result on each task is bolded.

Aside from Airport node classification for which we could not reproduce the baseline, RResNet
consistently outperforms HNN. Moreover, we manage to do so with 20% – 50% fewer parameters.
See the appendix for the architectural details. This improvement highlights how RResNet is more
natural for learning in hyperbolic space; at the same time, it is a general Riemannian construction.

5.2 SPD MANIFOLD

We compare our RResNet to existing SPD manifold-based models on the AFEW emotion classifica-
tion dataset (Dhall et al., 2011). We experience faster convergence and improved training dynamics.
Please see the appendix for details on these experiments.

6 CONCLUSION

We proposed a general construction of residual neural networks on Riemannian manifolds. Our
introduced approach is a natural geodesically-oriented generalization that can be applied far more
broadly than previous manifold-specific work. We also show that when RResNet is applied to
hyperbolic space it outperforms baselines considerably while being more parameter efficient.

4We could not reproduce the baseline for NC on Airport; Chami et al. (2019) report this value as 80.5± 0.5.
5We had numerical issues with LP on PubMed that prevented us from obtaining stable results across trials.
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Appendix

A VECTOR FIELD DESIGN

Recall from the main paper that we can design a neural network-parameterized vector field ℓi : M →
TM for an embedded manifold M of dimension D, simply by defining a standard neural network
ni : RD → RD and then setting:

ℓi(x) := projTxM(ni(x)).

Though this vector field design is frequently trivial (assuming the manifold has a natural embedding
in Rn), it may be highly inefficient if an easy-to-implement but suboptimal embedding is used. This
is especially the case if manifold structure is underexploited in the construction of such an embedding
(see Section A.2). In this section, we give a natural vector field design for hyperbolic space, and
explore a variety of possible vector field designs for the SPD manifold. In the general setting, note
that obtaining a parsimonious (with respect to either representational dimension or parameter count)
vector field design that is sufficiently expressive is nontrivial.

A.1 VECTOR FIELD DESIGN FOR HYPERBOLIC SPACE

For the hyperbolic vector field design, we apply the general design construction referenced in Section
A above. Note that Hn is an n-dimensional manifold with a trivial Rn+1 embedding given by any
coordinate representation. Thus we need only parameterize a neural network ni : Rn+1 → Rn+1

and set
ℓi(x) = projTxHn(ni(x))

to obtain our neural network-parameterized vector fields. Observe that this vector field design is
efficient and expressive, since TxHn ∼= Rn.

A.2 VECTOR FIELD DESIGN FOR THE SPD MANIFOLD

Let SPD(n) be the manifold of n× n SPD matrices with canonical metric, as in the main paper. We
recall from Gallier & Quaintance (2020) that SPD has a Lie structure with algebra consisting of
n × n symmetric matrices, denoted S(n). The Riemannian exponential map (or equivalently, the
matrix exponential map) is a bijection between S(n) and SPD(n). Recall by Lie symmetry (Gallier
& Quaintance, 2020) that the tangent space at X ∈ SPD(n) is given by:

TXSPD(n) = XS(n) := {Xy | y ∈ S(n)}.

Observe that due to this tangent space structure, instead of utilizing the vector field construction given
in Section A that requires an explicit projection operator, we may opt for more amenable designs
oriented around the SPD manifold’s Lie structure. We develop a variety of constructions below.

A.2.1 Design 1: Naïve

Most naïvely, we can observe that SPD(n) is trivially embedded in Rn2

, and so are its tangent
vectors; we will use this observation to construct a simple vector field parameterization. Let vec :

Rn×n → Rn2

be row-major matrix vectorization and let vec−1 : Rn2 → Rn×n be its inverse. Given
a neural network ni : Rn2 → Rn2

and an X ∈ SPD(n), we may set:

ℓi(X) = XprojS(n)(vec−1(ni(vec(X))))

where projS(n) is the typical matrix symmetrization operation given by:

projS(n)(X) =
X +XT

2
.

Although this vector field representation is expressive, it also provides unneeded flexibility. For
example, the intrinsic dimension of TXSPD(n) ∼= S(n) is n(n+1)

2 , but the ni map to all of Rn2

.
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Based on this observation, we exploit tangent vector structure in the following vector field design to
retain expressiveness while increasing efficiency.

A.2.2 Design 2: Structured

Observe that our tangent spaces satisfy TXSPD(n) ∼= S(n), and moreover that SPD(n) ⊂ S(n).
We know that S(n) has dimension n(n+1)

2 since each symmetric matrix is uniquely determined by

its upper triangular part. Let ι : R
n(n+1)

2 ↪−→ S(n) be the row-major injection of the upper triangular
part into a symmetric matrix and let ι−1 : S(n) ↠ R

n(n+1)
2 be its inverse. Given a neural network

ni : R
n(n+1)

2 → R
n(n+1)

2 and an X ∈ SPD(n), we may set:

ℓi(X) = Xι(ni(ι
−1(X))).

Note that there is no longer any need for a projection to symmetric matrices, since we incorpo-
rate this structure directly into our vector field design. Moreover note that since TXSPD(n) ∼=
S(n) ∼= R

n(n+1)
2 , this vector field design is maximally expressive while being maximally efficient

(representationally).

A.2.3 Design 3: Parsimonious

Although Design 2 is maximally expressive and efficient, in some cases where expressivity is less
of a concern we may want a a reasonable parsimonious vector field design. Our answer to this is to
directly parameterize a symmetric matrix via its upper triangular portion, and thereafter, generate a
vector field via right multiplication. To be explicit, let our vector field be parameterized by euclidean
parameters v ∈ R

n(n+1)
2 and, for X ∈ SPD(n), be given by:

ℓi(X) = Xι(v)

This is a learnable vector field induced by a single tangent vector at the identity. Although highly
efficient, its location-agnosticism makes it highly inexpressive.

A.2.4 Design 4: Parsimonious Spectral

One may also consider exploiting manifold-specific structure in the context of Design 3 to produce a
more expressive vector field that remains fairly efficient parametrically. A vector field design that
accomplishes this is one that allows a map from the spectrum of the local SPD matrix to the spectrum
of the symmetric matrix in the vector field construction. We let spec : SPD(n) → Rn be the spectral
map that takes SPD matrices to a vector of their eigenvalues, sorted in descending order. To be
explicit, let our vector field be parameterized by P ∈ O(n)6, a neural network fi : Rn → Rn, and,
for X ∈ SPD(n), be given by:

ℓi(X) = XPdiag(fi(spec(X)))PT

where diag : Rn → Rn×n is the diagonal injection map. Observe that the spectrum of the symmetric
matrix now depends locally on X , allowing for considerably more expressivity than in Design 3 at the
cost of a low-dimensional neural network map fi : Rn → Rn. Moreover, the orthogonal constraint
on P may be preserved throughout optimization via one of a variety of easy-to-implement methods
(Casado & Martínez-Rubio, 2019; Anil et al., 2019).

Design 1 is naïve, but very inefficient. Design 2 exploits manifold structure to be maximally efficient
while being maximally expressive. Design 3 showcases the other extreme (relative to Design 1) and
gives a maximally parsimonious vector field construction. Design 4 showcases a more flexible version
of Design 3 that allows for considerably greater learning capability7 while still being representationally
efficient. The purpose of describing these designs is to underscore the trade-off between expressivity
and parameter-efficiency in designing parameterized vector fields (Designs 1 and 2 vs. Designs 3
and 4) as well as the need to utilize manifold-specific structure to obtain a maximally expressive and
efficient vector field design (Design 1 vs. Design 2). Additionally, we highlight that expressivity for
parameter-constrained vector field designs can be nontrivially increased with insignificant overhead
via the introduction of manifold-specific dependencies (Design 3 vs. Design 4).

6O(n) is the group of orthogonal matrices.
7Verified empirically.
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B EXPERIMENTAL DETAILS

EXPERIMENTS ON HYPERBOLIC SPACE

B.1 ARCHITECTURAL DETAILS

We use the Poincaré disk model (Nickel & Kiela, 2017) to represent hyperbolic space. To test
RResNet’s performance on hyperbolic space we use a similar setup to Chami et al. (2019). First,
in order to reduce the parameter count, we use a linear layer from the input dimension to a lower
dimension before using RResNet as an encoder. For link-prediction tasks we use a Fermi-Dirac
decoder and for node-classification tasks we use a linear decoder (Chami et al., 2019).

Architecture-related hyperparameters, including hidden dimension and number of layers, were
optimized using a hyperparameter sweep.

B.2 RESULTS

Our models were trained using the Adam optimizer (Kingma & Ba, 2015) for 2000, 5000, and
10000 epochs on Airport link prediction, PubMed node classification, and Airport node classification,
respectively. Training hyperparameters, including learning rate, weight decay, and dropout, were
optimized using a hyperparameter sweep.

Dataset Airport PubMed
Task LP NC LP NC
HNN 480 2628 – 8067

RResNet 376 2343 – 3382

Table 2: Parameter count (lower is better) for HNN baseline (Chami et al., 2019) versus RResNet.

All models have anywhere from 20%− 50% fewer parameters across tasks compared to the HNN
baselines from Chami et al. (2019), as shown in Table 2. To obtain results, we collected metrics from
10 separate trials and reported mean and standard deviation.

EXPERIMENTS ON THE SPD MANIFOLD

B.3 ARCHITECTURAL DETAILS

We apply our model to the task of emotion recognition on the AFEW dataset (Dhall et al., 2011).
Given videos encoded into 400× 400 covariance matrices (which are trivially symmetric positive
definite), our goal is to classify a matrix into one of seven classes. Because of how costly it would
be to parameterize vector fields at this dimension, we use a BiMap layer (Huang & Gool, 2017),
BiMapdi

di+1
: SPD(di) → SPD(di+1) as a base point remapping from 400 × 400 matrices to

50× 50 matrices. We use vector field design 4 from Appendix A.1. In the context of this problem,
we have:

ℓ1(X) = XPdiag(f1(spec(X)))PT

where f1 : R50 → R50, spec : SPD(50) → R50, P ∈ O(50). Note the vector field is a map
ℓ1 : SPD(50) → T SPD(50). We express our forward pass as

g(x) = expBiMap40050 (x)(ℓ1(BiMap40050 (x)))

which is a map g : SPD(400) → SPD(50). Thereafter we apply a logarithm to the eigenvalues of
the 50× 50 matrices (this helps linearize features Brooks et al. (2019)). Lastly we flatten the matrices
and use a linear map from dimension 2500 to dimension 7 (representing the 7 different emotions).
We use a simple cross entropy loss (Goodfellow et al., 2015) to train the model.

9



Submitted to the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

0 10 20 30 40 50
Epoch

0

10

20

30

40

50

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

AFEW Classification Task
SPDNet
RResNet with Spectrum Map (Ours)

Figure 1: AFEW classification accuracies for RResNet (ours) compared to the SPDNet (Brooks et al.,
2019) baseline. Results are averaged over five trials for each model. Error bars denote one standard
deviation away from the mean accuracy. We observe that our model converges much faster than
SPDNet.

B.4 RESULTS

We compare our RResNet design above (Section B.3) to SPDNet (Brooks et al., 2019; Huang &
Gool, 2017), a network architecture for SPD matrix learning. All models have a comparable number
of parameters. To replicate the results of Brooks et al. (2019), we use a learning rate of 5 · 10−2 for
the baseline. We use a learning rate of 1 · 10−1 for our model. We observe that our model has faster
convergence than SPDNet (see Figure 1). Empirically, we observed that the beneficial effects of our
RResNet construction match those of the SPD batch norm introduced in Brooks et al. (2019).

C THEORETICAL RESULTS

We show that our construction agrees with the standard ResNet when the underlying manifold
is Euclidean space. This aligns with our intuition and shows that our construction is a natural
generalization of previous work.
Proposition 1. When M(i) ∼= Rni , our RResNet is a standard residual network.

Proof. Note that the vector fields take the form:
ℓi(x) = projTxRn(ni(x)) = ni(x)

meaning that our ℓi are standard neural networks. The hi : Rni−1 → Rni can be replaced by
Euclidean linear layers that go from dimension ni−1 to dimension ni. Also observe since expx(v) =
x+ v, our neural network construction becomes:

f(x) = x(m)

x(0) = x

x(i) = exphi(x(i−1))(ℓi(hi(x
(i−1))))

= hi(x
(i−1)) + ℓi(hi(x

(i−1)))

= hi(x
(i−1)) + ni(hi(x

(i−1)))

10
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where the last equality holds ∀i ∈ [m]. Moreover, if all ni are the same, we can use the identity map
for our hi, and we have:

x(i) = x(i−1) + ni(x
(i−1)) ∀i ∈ [m]

Hence our neural network architecture reduces precisely to that of Euclidean residual neural networks.
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