
The Closeness of In-Context Learning and Weight
Shifting for Softmax Regression

Shuai Li
Shanghai Jiao Tong University
shuaili8@sjtu.edu.cn

Zhao Song
Simons Institute for the Theory of Computing, UC Berkeley

magic.linuxkde@gmail.com

Yu Xia
University of California, San Diego

yux078@ucsd.edu

Tong Yu
Adobe Research
tyu@adobe.com

Tianyi Zhou
University of Southern California

tzhou029@usc.edu

Abstract

Large language models (LLMs) are known for their exceptional performance in
natural language processing, making them highly effective in many human life-
related tasks. The attention mechanism in the Transformer architecture is a critical
component of LLMs, as it allows the model to selectively focus on specific input
parts. The softmax unit, which is a key part of the attention mechanism, normalizes
the attention scores. Hence, the performance of LLMs in various NLP tasks
depends significantly on the crucial role played by the attention mechanism with
the softmax unit.
In-context learning is one of the celebrated abilities of recent LLMs. Without fur-
ther parameter updates, Transformers can learn to predict based on few in-context
examples. However, the reason why Transformers becomes in-context learners
is not well understood. Recently, in-context learning has been studied from a
mathematical perspective with simplified linear self-attention without softmax unit.
Based on a linear regression formulation minx ∥Ax − b∥2, existing works show
linear Transformers’ capability of learning linear functions in context. The capa-
bility of Transformers with softmax unit approaching full Transformers, however,
remains unexplored.
In this work, we study the in-context learning based on a softmax regression
formulation minx ∥⟨exp(Ax),1n⟩−1 exp(Ax)− b∥2. We show the upper bounds
of the data transformations induced by a single self-attention layer with softmax
unit and by gradient-descent on a ℓ2 regression loss for softmax prediction function.
Our theoretical results imply that when training self-attention-only Transformers
for fundamental regression tasks, the models learned by gradient-descent and
Transformers show great similarity.

1 Introduction

In recent years, there has been a significant increase in research and development in the field of
Artificial Intelligence, with large language models (LLMs) emerging as an effective way to tackle
complex tasks. Transformers have achieved state-of-the-art results in various NLP tasks, such as
machine translation [PCR19, GHG+20] and text generation [LSX+22]. As a result, they have become
the preferred architecture for NLP, where BERT [DCLT18], GPT-3 [BMR+20], PaLM [CND+22]
were proposed. They have demonstrated remarkable learning and reasoning capabilities and have
proven to be more efficient than traditional models when processing natural language.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Additionally, LLMs can be fine-tuned for multiple purposes without requiring a new build from
scratch, making them a versatile tool for AI applications. Moreover, recent studies on the in-context
learning abilities of LLMs have demonstrated that even without further fine-tuning, LLMs can
generalize to new tasks with only a few demonstration examples in the prompt. To understand how
LLMs become in-context learners, recent works have studied the problem and provided mathematical
explanations from the Transformer architecture perspective, showing a simplified linear self-attention
layer of Transformer can learn linear functions similarly as a step of gradient descent [ONR+22,
ASA+22, GTLV22, CLL+24]. While such linear approximation of full Transformers is overly
simplistic, studies on more complex Transformer architecture are needed to further explain the
in-context learning phenomenon.

Transformers have a specific type of sequence-to-sequence neural network architecture. They utilize
the attention mechanism [VSP+17, RNS+18, DCLT18, BMR+20] that allows them to capture long-
range dependencies and context from input data effectively. The core of the attention mechanism
is the attention matrix which is comprised of rows and columns, corresponding to individual words
or “tokens”. The attention matrix represents the relationships within the given text. It measures the
importance of each token in a sequence as it relates to the desired output. During the training process,
the attention matrix is learned and optimized to improve the accuracy of the model’s predictions.
Through the attention mechanism, each input token is evaluated based on its relevance to the desired
output by assigning a token score. This score is determined by a similarity function that compares the
current output state with input states.

Theoretically, the attention matrix is comprised of the query matrix Q ∈ Rn×d, the key matrix K ∈
Rn×d and the value matrix V ∈ Rn×d. Following [ZHDK23, AS23, BSZ24, AS24b, AS24c, AS24a],
the computation of the normalized attention function is defined as D−1 exp(QK⊤)V . Following the
transformer literature, we apply exp to a matrix entry-wise way. Here D ∈ Rn×n is diagonal matrix
that defined as D = diag(exp(QK⊤)1n). Intuitively, D denotes the softmax normalization matrix.
A more general computation formulation can be written as

D−1︸︷︷︸
n×n diagonal matrix

exp(XQK⊤X⊤)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

V︸︷︷︸
d×d

,

where

D := diag(exp(XQK⊤X⊤)1n).

In the above setting, we treat Q,K, V ∈ Rd×d as weights and X is the input sentence data that
has length n and each word embedding size is d. In the remaining of the part, we will switch X to
notation A and use A to denote sentence. Mathematically, the attention computation problem can be
formulated as a regression problem in the following sense
Definition 1.1. We consider the following problem

min
X∈Rd×d

∥D−1 exp(AXA⊤)−B∥F

where A ∈ Rn×d can be treated as a length-n document and each word has length-d embedding
size. Here D = diag(AXA⊤1n). For any given A ∈ Rn×d and B ∈ Rn×n, the goal is to find some
weight X to optimize the above objective function.

In contrast to the formulation in [ZHDK23, AS23, BSZ24], the parameter X in Definition 1.1
is equivalent to the QK⊤ ∈ Rd×d in the generalized version of [ZHDK23, AS23, BSZ24] (e.g.
replacing Q ∈ Rn×d by XQ where X ∈ Rn×d and Q ∈ Rd×d. Similarly for K and V . In such
scenario, X can be viewed as a matrix representation of a length-n sentence.).

A number of work [ASA+22, GTLV22, ONR+22] study the in-context learning from mathematical
perspective in a much simplified setting than Definition 1.1, which is linear regression formulation as
in Definition 1.2. They show linear Transformer without softmax unit in its attention layer can mimic
the ability of gradient descent in learning linear functions in context. While the softmax unit plays an
important role in attention computations of full Transformers, their simplification of the softmax unit
leaves a gap in explaining LLMs’ in-context learning abilities.
Definition 1.2. Given a matrix A ∈ Rn×d and b ∈ Rn, the goal is to solve

min
x

∥Ax− b∥2

2

Several theoretical transformer work have studied either exponential regression [GMS23, LSZ23] or
softmax regression problem [DLS23, LLSS24a]. In this work, to take a step forward to understand
the softmax unit in the attention scheme in LLMs. We consider the following softmax regression
and study the in-context learning phenomena and its closeness to gradient descent from the data
transformation perspective.
Definition 1.3 (Softmax Regression). Given a A ∈ Rn×d and a vector b ∈ Rn, the goal is to solve

min
x∈Rd

∥⟨exp(Ax),1n⟩−1 exp(Ax)− b∥2

We remark that the Definition 1.3 of Softmax Regression is a formulation in between Definition 1.2
and Definition 1.1.

We state our major result as follows:
Theorem 1.4 (Bounded shift for in-context learning, informal version of the combination of The-
orem 4.2 and Theorem 4.3). If the following conditions hold: Let A ∈ Rn×d. Let b ∈ Rn.
∥A∥ ≤ R. Let ∥x∥2 ≤ R. ∥A(xt+1 − xt)∥∞ < 0.01. ∥(At+1 − At)x∥∞ < 0.01. Let R ≥ 4. Let
M := n1.5 exp(10R2). We consider the softmax regression (Definition 1.3) problem

min
x

∥⟨exp(Ax),1n⟩−1 exp(Ax)− b∥2.

• Part 1. If we move the xt to xt+1, then we’re solving a new softmax regression with
minx ∥⟨exp(Ax),1n⟩−1 exp(Ax)− b̃∥2 where ∥b̃− b∥2 ≤ M · ∥xt+1 − xt∥2

• Part 2. If we move the At to At+1, then we’re solving a new softmax regression with
minx ∥⟨exp(Ax),1n⟩−1 exp(Ax)− b̂∥2 where ∥b̂− b∥2 ≤ M · ∥At+1 −At∥

Recall that A ∈ Rn×d denotes a length-n document and each word has the length-d embedding size
and x denotes the simplified version of QK⊤. One-step gradient descent can be treated as an update
to the model’s weight x. Thus, part 1 of our result (Theorem 1.4) implies that the data transformation
of b induced by gradient-descent on the ℓ2 regression loss is bounded by M · ∥xt+1 − xt∥2.

According to [ONR+22], to do in-context learning, a self-attention layer update can be treated as an
update to the tokenized document A. For detailed derivation, please refer to [ONR+22]. Thus, part 2
of our result (Theorem 1.4) implies that the data transformation of b induced by a single self-attention
layer is bounded by M · ∥At+1 −At∥.

We remark that the data transformation of b induced by 1) a single self-attention layer and by 2)
gradient-descent on the ℓ2 regression loss are both bounded. The bounded transformation of b implies
that when training self-attention-only Transformers for fundamental regression tasks, the models
learned by gradient-descent and Transformers show great similarity.

Roadmap. In Section 2, we give some preliminaries. In Section 3, we compute the gradient of
the loss function with softmax function with respect to x. Those functions include α(x)−1, α(x)
and f(x). In Section 4, we give our formal theoretical results, validated by numerical experiments
presented in Section 5. In Section 6, we conclude our paper.

2 Preliminary

In Section 2.1, we introduce the notations used in this paper. In Section 2.2, we give some facts about
the basic algebra. In Section 2.3, we propose the lower bound on ⟨exp(Ax),1n⟩.

2.1 Notations

For a positive integer n, we use [n] to denote {1, 2, · · · , n}, for any positive integer n. We use E[·]
to denote expectation. We use Pr[·] to denote probability. We use 1n to denote the vector where all
entries are one. We use 00 to denote the vector where all entries are zero. The identity matrix of size
n× n is represented by In for a positive integer n. The symbol R refers to real numbers and R≥0

represents non-negative real numbers. For any vector x ∈ Rn, exp(x) ∈ Rn denotes a vector where
the i-th entry is exp(xi) and ∥x∥2 represents its ℓ2 norm, that is, ∥x∥2 := (

∑n
i=1 x

2
i)

1/2. We use

3

∥x∥∞ to denote maxi∈[n] |xi|. For any vector x ∈ Rn and vector y ∈ Rd, we use ⟨x, y⟩ to denote
the inner product of vector x and y. The notation Bi is used to indicate the i-th row of matrix B. If a
and b are two column vectors in Rn, then a ◦ b denotes a column vector where (a ◦ b)i = aibi. For a
square and full rank matrix B, we use B−1 to denote the true inverse of B.

2.2 Basic Algebras

Fact 2.1. For vectors x, y ∈ Rn, we have

• ∥x ◦ y∥2 ≤ ∥x∥∞ · ∥y∥2

• ∥x∥∞ ≤ ∥x∥2 ≤
√
n∥x∥∞

• ∥ exp(x)∥∞ ≤ exp(∥x∥2)

• For any ∥x− y∥∞ ≤ 0.01, we have ∥ exp(x)− exp(y)∥2 ≤ ∥ exp(x)∥2 · 2∥x− y∥∞
Fact 2.2. For matrices X,Y , we have

• ∥X⊤∥ = ∥X∥

• ∥X∥ ≥ ∥Y ∥ − ∥X − Y ∥

• ∥X + Y ∥ ≤ ∥X∥+ ∥Y ∥

• ∥X · Y ∥ ≤ ∥X∥ · ∥Y ∥

• If X ⪯ α · Y , then ∥X∥ ≤ α · ∥Y ∥

2.3 Lower bound on β

Lemma 2.3. If the following conditions holds

• ∥A∥ ≤ R

• ∥x∥2 ≤ R

• Let β be lower bound on ⟨exp(Ax),1n⟩

Then we have

β ≥ exp(−R2)

Proof. We have

⟨exp(Ax),1n⟩ =
n∑

i=1

exp((Ax)i)

≥ min
i∈[n]

exp((Ax)i)

≥ min
i∈[n]

exp(−|(Ax)i|)

= exp(−max
i∈[n]

|(Ax)i|)

= exp(−∥Ax∥∞)

≥ exp(−∥Ax∥2)
≥ exp(−R2)

the 1st step follows from simple algebra, the 2nd step comes from simple algebra, the 3rd step
follows from the fact that exp(x) ≥ exp(−|x|), the 4th step follows from the fact that exp(−x) is
monotonically decreasing, the 5th step comes from definition of ℓ∞ norm, the 6th step follows from
Fact 2.1, the 7th step follows from the assumption on A and x.

4

3 Softmax Function with Respect to x

In Section 3.1, we give the definitions used in the computation. In Section 3.2, we compute the
gradient of the loss function with softmax function with respect to x. Those functions includes
α(x)−1, α(x) and f(x).

3.1 Definitions

We define function softmax f as follows

Definition 3.1 (Function f , Definition 5.1 in [DLS23]). Given a matrix A ∈ Rn×d. Let 1n denote a
length-n vector that all entries are ones. We define prediction function f : Rd → Rn as follows

f(x) := ⟨exp(Ax),1n⟩−1 · exp(Ax).

Definition 3.2 (Loss function Lexp, Definition 5.3 in [DLS23]). Given a matrix A ∈ Rn×d and a
vector b ∈ Rn. We define loss function Lexp : Rd → R as follows

Lexp(x) := 0.5 · ∥⟨exp(Ax),1n⟩−1 exp(Ax)− b∥22.

For convenient, we define two helpful notations α and c

Definition 3.3 (Normalized coefficients, Definition 5.4 in [DLS23]). We define α : Rd → R as
follows

α(x) := ⟨exp(Ax),1n⟩.

Then, we can rewrite f(x) (see Definition 3.1) and Lexp(x) (see Definition 3.2) as follows

• f(x) = α(x)−1 · exp(Ax).

• Lexp(x) = 0.5 · ∥α(x)−1 · exp(Ax)− b∥22.

• Lexp(x) = 0.5 · ∥f(x)− b∥22.

Definition 3.4 (Definition 5.5 in [DLS23]). We define function c : Rd ∈ Rn as follows

c(x) := f(x)− b.

Then we can rewrite Lexp(x) (see Definition 3.2) as follows

• Lexp(x) = 0.5 · ∥c(x)∥22.

3.2 Gradient Computations

We state a lemma from previous work,

Lemma 3.5 (Gradient, Lemma 5.6 in [DLS23]). If the following conditions hold

• Given matrix A ∈ Rn×d and a vector b ∈ Rn.

• Let α(x) be defined in Definition 3.3.

• Let f(x) be defined in Definition 3.1.

• Let c(x) be defined in Definition 3.4.

• Let Lexp(x) be defined in Definition 3.2.

For each i ∈ [d], we have

• Part 1.

d exp(Ax)

dxi
= exp(Ax) ◦A∗,i

5

• Part 2.

d⟨exp(Ax),1n⟩
dxi

= ⟨exp(Ax), A∗,i⟩

• Part 3.

dα(x)−1

dxi
= −α(x)−1 · ⟨f(x), A∗,i⟩

• Part 4.

df(x)

dxi
=

dc(x)

dxi
= − ⟨f(x), A∗,i⟩ · f(x) + f(x) ◦A∗,i

• Part 5.

dLexp(x)

dxi
= A⊤

∗,i︸︷︷︸
1×n

·
(
f(x)︸︷︷︸
n×1

⟨c(x), f(x)⟩︸ ︷︷ ︸
scalar

+diag(f(x))︸ ︷︷ ︸
n×n

c(x)︸︷︷︸
n×1

)

4 Main Results

In Section 4.1, we show the lipschitz bound of function f . In Section 4.2, we show our upper bound
result of δb with respect to x. In Section 4.3, we show our upper bound result of δb with respect to A.

4.1 Lipschitz Bound

To bound the shift of b, we first show the Lipschitz property for the basic functions:

• ∥ exp(Ax)− exp(Ay)∥2 ≤ 2
√
nR exp(R2) · ∥x− y∥2

• |α(x)− α(y)| ≤ ∥ exp(Ax)− exp(Ay)∥2 ·
√
n

• |α(x)−1 − α(y)−1| ≤ β−2 · |α(x)− α(y)|

We can show that

Lemma 4.1. If the following conditions hold

• Let β ∈ (0, 1).

• Let δb,1 ∈ Rn be defined as Definition B.3.

• Let δb,2 ∈ Rn be defined as Definition B.3.

• Let δb = δb,1 + δb,2.

• Let R ≥ 4.

We have

• Part 1.

∥δb,1∥2 ≤ 2β−2n1.5 exp(2R2) · ∥xt+1 − xt∥2

• Part 2.

∥δb,2∥2 ≤ 2β−1
√
nR exp(R2) · ∥xt+1 − xt∥2

• Part 3.

∥ f(xt+1)− f(xt)︸ ︷︷ ︸
δb

∥2 ≤ 4β−2n1.5R exp(2R2) · ∥xt+1 − xt∥2

6

Proof. Proof of Part 1. We have

∥δb,1∥2 ≤ |α(xt+1)
−1 − α(xt)

−1| · ∥ exp(Axt+1)∥2
≤ |α(xt+1)

−1 − α(xt)
−1| ·

√
n · exp(R2)

≤ β−2 · |α(xt+1)− α(xt)| ·
√
n · exp(R2)

≤ β−2 ·
√
n · ∥ exp(Axt+1)− exp(Axt)∥2 ·

√
n · exp(R2)

≤ β−2 ·
√
n · 2

√
nR exp(R2)∥xt+1 − xt∥2 ·

√
n · exp(R2)

= 2β−2n1.5R exp(2R2) · ∥xt+1 − xt∥2

where the first step follows from definition, the second step follows from assumption on A and x, the
third step follows Lemma B.7, the forth step follows from Lemma B.6, the fifth step follows from
Lemma B.5.

Proof of Part 2.

We have

∥δb,2∥2 ≤ |α(xt+1)
−1| · ∥ exp(Axt+1)− exp(Axt)∥2

≤ β−1 · ∥ exp(Axt+1)− exp(Axt)∥2
≤ β−1 · 2

√
nR exp(2R2) · ∥xt+1 − xt∥2

where the first step follows from definition, the 2nd step comes from Lemma B.5.

Proof of Part 3.

We have

∥δb∥2 = ∥δb,1 + δb,2∥2
≤ ∥δb,1∥2 + ∥δb,2∥2
≤ 2β−2n1.5R exp(2R2) · ∥xt+1 − xt∥2 + 2β−1n0.5R exp(2R2) · ∥xt+1 − xt∥2
≤ 2β−2n1.5R exp(2R2) · ∥xt+1 − xt∥2 + 2β−2n1.5R exp(2R2) · ∥xt+1 − xt∥2
≤ 4β−2n1.5R exp(2R2) · ∥xt+1 − xt∥2

where the 1st step follows from the definition of δb, the 2nd step follows from triangle inequality, the
3rd step follows from the results in Part 1 and Part 2, the 4th step follows from the fact that n ≥ 1
and β−1 ≥ 1, the 5th step follows from simple algebra.

Similarly, we can show the Lipschitz property of function f with respect to A as the following

∥f(At+1)− f(At)∥2
≤ 4β−2n1.5R exp(2R2) · ∥At+1 −At∥2

Due to space limitation, we defer formal lemma and proof to D.2.

4.2 Shifting Weight Parameter x

Theorem 4.2 (Bounded shift for shifting the weight parameter, formal of Theorem 1.4). If the
following conditions hold

• Let A ∈ Rn×d

• ∥A∥ ≤ R

• ∥A(xt+1 − xt)∥∞ < 0.01

• Let R ≥ 4

• Let M := n1.5 exp(10R2).

7

We consider the softmax regression problem
min
x

∥⟨exp(Ax),1n⟩−1 exp(Ax)− b∥2
If we move the xt to xt+1, then we’re solving a new softmax regression problem with

min
x

∥⟨exp(Ax),1n⟩−1 exp(Ax)− b̃∥2
where

∥b̃− b∥2 ≤ M · ∥xt+1 − xt∥2

Proof. We have

∥b̃− b∥2 ≤ 4β−2n1.5R exp(2R2) · ∥xt+1 − xt∥2
≤ 4n1.5R exp(2R2) exp(2R2) · ∥xt+1 − xt∥2
≤ n1.5(4R) exp(4R2) · ∥xt+1 − xt∥2
≤ n1.5 exp(6R2) exp(4R2) · ∥xt+1 − xt∥2
≤ n1.5 exp(10R2) · ∥xt+1 − xt∥2
≤M · ∥xt+1 − xt∥2

where the 1st step follows from Lemma 4.1, the 2nd step comes from Lemma 2.3, the 3rd step comes
from simple algebra, the 4th step follows from simple algebra, the 5th step follows from simple
algebra and the 6th step follows from the definition of M .

4.3 Shifting Sentence Data A

Theorem 4.3 (Bounded shift for in-context learning, formal of Theorem 1.4). If the following
conditions hold

• Let A ∈ Rn×d

• ∥A∥ ≤ R

• ∥(At+1 −At)x∥∞ < 0.01

• Let R ≥ 4

• Let M := n1.5 exp(10R2).

We consider the softmax regression problem
min
x

∥⟨exp(Ax),1n⟩−1 exp(Ax)− b∥2
If we move the At to At+1 then we’re solving a new softmax regression problem with

min
x

∥⟨exp(Ax),1n⟩−1 exp(Ax)− b̃∥2
where

∥b̃− b∥2 ≤ M · ∥At+1 −At∥.

Proof. We have

∥b̃− b∥2 ≤ 4β−2n1.5R exp(2R2) · ∥At+1 −At∥
≤ 4n1.5R exp(2R2) exp(2R2) · ∥At+1 −At∥
≤ n1.5(4R) exp(4R2) · ∥At+1 −At∥
≤ n1.5 exp(6R2) exp(4R2) · ∥At+1 −At∥
≤ n1.5 exp(10R2) · ∥At+1 −At∥
≤M · ∥At+1 −At∥

where the 1st step follows from Lemma D.5, the 2nd step follows from Lemma 2.3, the 3rd step
follows from simple algebra, the 4th step comes from simple algebra, the 5th step comes from simple
algebra and the 6th step follows from the definition of M .

8

5 Numerical Experiments

In this section, we present our numerical experiments to validate our theoretical results that when
training self-attention-only Transformers for softmax regression tasks, the models learned by gradient-
descent and Transformers show great similarity.

5.1 Experiments Setup

According to Definition 1.3, we construct the synthetic softmax regression tasks consists of randomly
sampled length-n documents A ∈ Rn×d where each word has the d-dimensional embedding and
targets b ∈ Rn. Each document is generated from a unique random seed. In our experiments, we
choose a set of different document length n and a set of different embedding size d.

Following [ONR+22], we compare the following two models in our experiment

• a trained single self-attention (SA) layer with softmax unit approximating full Transformers.

• a softmax regression model trained with one-step gradient descent (GD).

The training objective for both models is defined as in Definition 1.3. For the single self-attention
layer with a softmax unit, we choose the learning rate ηSA = 0.005. For the softmax regression
model, we determine the optimal learning rate ηGD by minimizing the ℓ2 regression loss over a
training set of 103 tasks through line search.

To compare the trained single self-attention layer with a softmax unit and the softmax regression
model trained with one-step gradient descent, we sample 103 tasks and record the losses of two
models. In addition, we follow [ONR+22] to record

• Pred Diff: the predictions difference measured with the ℓ2 norm:

∥ŷSA(A)− ŷGD(x)∥2

where ŷSA(A) corresponds to the b̃ in Theorem 4.2, and ŷGD(x) corresponds to the b̃ in
Theorem 4.3.

• Model Cos: the cosine similarity between the sensitivities of two models:

CosSim (
∂ŷGD(x)

∂x
,
∂ŷSA(A)

∂A
)

• Model Diff: the model sensitivity difference measured with the ℓ2 norm:

∥∂ŷGD(x)

∂x
− ∂ŷSA(A)

∂A
∥2

All experiments run on a single NVIDIA RTX2080Ti GPU with 10 independent repetitions.

5.2 Different Document Lengths

For synthetic softmax regression tasks of document length n ∈ {200, 1000} and word embedding
size d = 20, the comparison results between a trained single self-attention layer and one-step gradient
descent are shown in Figure 1 and Figure 2. Due to space limitation, we present more results with
different document length n ∈ {25, 50, 100, 200, 400, 1000} in Appendix E.

We compare two models’ losses over training steps of Transformers in Figure 1a and Figure 2a. In
Figure 1b and Figure 2b, we show the differences and similarities of two models over the training
steps. From the results, we find identical performances of the two models measured in losses. We
also observe considerable alignment of the two models across tasks of different document lengths,
indicated by decreasing prediction and model difference and increasing cosine similarity between
models. Besides, comparing results with different n, we observe that with larger document length,
which is common in practical NLP tasks, more training steps are required for Transformers to exhibit
such similarities. This shows the crucial role of pretraining stage of Transformers for their in-context
learning ability.

9

0 200 400 600 800 1000
Training Step

0.4

1.2

2.0

2.8

3.6

Lo
ss

Gradient Descent
Trained Transformer

(a) Losses over training
steps of Transformer

0 200 400 600 800 1000
Training Step

0.0

1.0

2.0

3.0

4.0

L2
 N

or
m

Preds Diff
Model Diff

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Co
sin

e
Si

m

Model Cos

(b) Difference and similarity
over training steps

Figure 1: Comparison on softmax regression tasks
of document length n = 200.

0 200 400 600 800 1000
Training Step

0.6

1.8

3.0

4.2

5.4

6.6

Lo
ss

Gradient Descent
Trained Transformer

(a) Losses over training
steps of Transformer

0 200 400 600 800 1000
Training Step

0.0

10.0

20.0

30.0

L2
 N

or
m

Preds Diff
Model Diff

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
Si

m

Model Cos

(b) Difference and similarity
over training steps

Figure 2: Comparison on softmax regression tasks
of document length n = 1000.

5.3 Different Word Embedding Sizes

We also compare trained single self-attention layer and one-step gradient descent on synthetic softmax
regression tasks of different word embedding sizes and document length n = 200. Similarly, we
measure two models’ losses and similarities over training steps on each set of tasks. Due to space
limitation, we follow [ONR+22] to show in Figure 3 the loss comparisons at the end of training over
different embedding size d ∈ {5, 10, 20, 35, 50}. The complete loss curves and measurements of
model difference and similarity are presented in Appendix E.

10 20 30 40 50
Input Dim

0.4

0.5

0.6

0.7

0.8

Lo
ss

Gradient Descent
Trained Transformer

Figure 3: Loss comparisons with
different word embedding sizes d.

From the results, we again observe similar performances and
close alignment of the two models with different word embed-
ding sizes.

To summarize, our numerical results validate our theoretical
results in Section 4, showing that when training self-attention-
only Transformers for softmax regression tasks, the models
learned by gradient-descent and Transformers show great sim-
ilarity. Note that due to the non-linearity of softmax regression,
it is not expected for models to match exactly as implied in our
theoretical results in Section 4, which is also observed in our
numerical findings.

6 Conclusion

The attention mechanism that incorporates the softmax unit is a crucial aspect of Large Language
Models (LLMs) and significantly contributes to their extraordinary performance in various Natural
Language Processing (NLP) tasks. The ability to learn in-context is highly valued in recent LLMs,
and comprehending this concept is vital when querying LLMs. In this study, taking a step further
from prior works’ studies on linear Transformer’s ability of learning linear functions, we examined
the in-context learning process from a softmax regression perspective of Transformer’s attention
mechanism. We established the bound on the data transformations brought about by a single self-
attention layer with softmax unit and gradient descent on an L2 regression loss. Our findings suggest
that the update acquired through gradient descent and in-context learning are highly similar when
training self-attention-only Transformers for softmax regression tasks, which is also validated through
our preliminary experimental results. These results offer insights into the theoretical underpinnings
of in-context learning in Transformers and can aid in improving the understanding and performance
of LLMs in various NLP tasks.

Acknowledgments

The authors would like to thank Jerry Yao-Chieh Hu, Zhenmei Shi, Lichen Zhang and Yufa Zhou
for helping preparing for camera-ready version of this paper. For more information related to
the paper and adjacent topics, see https://www.youtube.com/@zhaosong2031 and https://
space.bilibili.com/3546587376650961.

10

https://www.youtube.com/@zhaosong2031
https://space.bilibili.com/3546587376650961
https://space.bilibili.com/3546587376650961

References
[Ano24a] Anonymous. Fundamental limits of prompt tuning transformers: Universality, capacity

and efficiency. In Submitted to The Thirteenth International Conference on Learning
Representations, 2024. under review.

[Ano24b] Anonymous. On statistical rates of conditional diffusion transformer: Approximation
and estimation. In Submitted to The Thirteenth International Conference on Learning
Representations, 2024. under review.

[AS23] Josh Alman and Zhao Song. Fast attention requires bounded entries. In NeurIPS, 2023.

[AS24a] Josh Alman and Zhao Song. Fast rope attention: Combining the polynomial method
and fast fourier transform. In manuscript, 2024.

[AS24b] Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for
training large language models. In NeurIPS. arXiv preprint arXiv:2402.04497, 2024.

[AS24c] Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing
matrix softmax attention to kronecker computation. In ICLR, 2024.

[ASA+22] Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What
learning algorithm is in-context learning? investigations with linear models. arXiv
preprint arXiv:2211.15661, 2022.

[BAG20] Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the Ability and Limitations of
Transformers to Recognize Formal Languages. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 7096–7116,
Online, November 2020. Association for Computational Linguistics.

[Bel22] Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. Compu-
tational Linguistics, 48(1):207–219, March 2022.

[BMR+20] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing
systems, 33:1877–1901, 2020.

[BP66] Leonard E Baum and Ted Petrie. Statistical inference for probabilistic functions of
finite state markov chains. The annals of mathematical statistics, 37(6):1554–1563,
1966.

[BPG20] Satwik Bhattamishra, Arkil Patel, and Navin Goyal. On the computational power of
transformers and its implications in sequence modeling. In Proceedings of the 24th
Conference on Computational Natural Language Learning, pages 455–475, Online,
November 2020. Association for Computational Linguistics.

[BSZ24] Jan van den Brand, Zhao Song, and Tianyi Zhou. Algorithm and hardness for dy-
namic attention maintenance in large language models. In ICML. arXiv preprint
arXiv:2304.02207, 2024.

[CDL+22] Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and
Christopher Re. Pixelated butterfly: Simple and efficient sparse training for neural
network models. In International Conference on Learning Representations (ICLR),
2022.

[CDW+21] Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scat-
terbrain: Unifying sparse and low-rank attention. Advances in Neural Information
Processing Systems (NeurIPS), 34:17413–17426, 2021.

[CGRS19] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences
with sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

11

[CLL+24] Bo Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Bypassing the
exponential dependency: Looped transformers efficiently learn in-context by multi-step
gradient descent. arXiv preprint arXiv:2410.11268, 2024.

[CLS+24] Bo Chen, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Hsr-enhanced
sparse attention acceleration. arXiv preprint arXiv:2410.10165, 2024.

[CND+22] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. Palm: Scaling language modeling with pathways. arXiv preprint
arXiv:2204.02311, 2022.

[DCL+21] Tri Dao, Beidi Chen, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and
Christopher Re. Pixelated butterfly: Simple and efficient sparse training for neural
network models. arXiv preprint arXiv:2112.00029, 2021.

[DCLT18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[DGS23] Yichuan Deng, Yeqi Gao, and Zhao Song. Solving tensor low cycle rank approximation.
arXiv preprint arXiv:2304.06594, 2023.

[DGV+18] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser.
Universal transformers. arXiv preprint arXiv:1807.03819, 2018.

[DKOD20] Giannis Daras, Nikita Kitaev, Augustus Odena, and Alexandros G Dimakis. Smyrf-
efficient attention using asymmetric clustering. Advances in Neural Information
Processing Systems (NeurIPS), 33:6476–6489, 2020.

[DLS23] Yichuan Deng, Zhihang Li, and Zhao Song. Attention scheme inspired softmax
regression. arXiv preprint arXiv:2304.10411, 2023.

[DMS23] Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Randomized and deterministic
attention sparsification algorithms for over-parameterized feature dimension. arxiv
preprint: arxiv 2304.03426, 2023.

[EGKZ21] Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases
and variable creation in self-attention mechanisms. arXiv preprint arXiv:2110.10090,
2021.

[EGZ20] Javid Ebrahimi, Dhruv Gelda, and Wei Zhang. How can self-attention networks
recognize Dyck-n languages? In Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 4301–4306, Online, November 2020. Association for
Computational Linguistics.

[GHG+20] Peng Gao, Chiori Hori, Shijie Geng, Takaaki Hori, and Jonathan Le Roux. Multi-pass
transformer for machine translation. arXiv preprint arXiv:2009.11382, 2020.

[GMS23] Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential
regression. arXiv preprint arXiv:2303.16504, 2023.

[GSYZ24] Yeqi Gao, Zhao Song, Xin Yang, and Yufa Zhou. Differentially private attention
computation. In Neurips Safe Generative AI Workshop 2024, 2024.

[GTLV22] Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can trans-
formers learn in-context? a case study of simple function classes. arXiv preprint
arXiv:2208.01066, 2022.

[HCL+24] Jerry Yao-Chieh Hu, Pei-Hsuan Chang, Haozheng Luo, Hong-Yu Chen, Weijian Li,
Wei-Po Wang, and Han Liu. Outlier-efficient hopfield layers for large transformer-
based models. In Forty-first International Conference on Machine Learning (ICML),
2024.

12

[HCW+24] Jerry Yao-Chieh Hu, Bo-Yu Chen, Dennis Wu, Feng Ruan, and Han Liu. Nonparametric
modern hopfield models. arXiv preprint arXiv:2404.03900, 2024.

[HL19] John Hewitt and Percy Liang. Designing and interpreting probes with control tasks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2733–2743, Hong Kong, China, November 2019. Association
for Computational Linguistics.

[HLSL24] Jerry Yao-Chieh Hu, Thomas Lin, Zhao Song, and Han Liu. On computational
limits of modern hopfield models: A fine-grained complexity analysis. In Forty-first
International Conference on Machine Learning (ICML), 2024.

[HWL24a] Jerry Yao-Chieh Hu, Dennis Wu, and Han Liu. Provably optimal memory capacity
for modern hopfield models: Transformer-compatible dense associative memories
as spherical codes. In Thirty-eighth Conference on Neural Information Processing
Systems (NeurIPS), 2024.

[HWL+24b] Jerry Yao-Chieh Hu, Weimin Wu, Zhuoru Li, Sophia Pi, , Zhao Song, and Han Liu. On
statistical rates and provably efficient criteria of latent diffusion transformers (dits). In
Thirty-eighth Conference on Neural Information Processing Systems (NeurIPS), 2024.

[HYW+23] Jerry Yao-Chieh Hu, Donglin Yang, Dennis Wu, Chenwei Xu, Bo-Yu Chen, and Han
Liu. On sparse modern hopfield model. In Thirty-seventh Conference on Neural
Information Processing Systems (NeurIPS), 2023.

[KKL20] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient trans-
former. arXiv preprint arXiv:2001.04451, 2020.

[KS23] Tokio Kajitsuka and Issei Sato. Are transformers with one layer self-attention using
low-rank weight matrices universal approximators? arXiv preprint arXiv:2307.14023,
2023.

[KVPF20] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Trans-
formers are rnns: Fast autoregressive transformers with linear attention. In International
Conference on Machine Learning, pages 5156–5165. PMLR, 2020.

[LLS+24a] Chenyang Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Tianyi Zhou. Fourier
circuits in neural networks and transformers: A case study of modular arithmetic with
multiple inputs. arXiv preprint arXiv:2402.09469, 2024.

[LLS+24b] Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Fine-grained
attention i/o complexity: Comprehensive analysis for backward passes. arXiv preprint
arXiv:2410.09397, 2024.

[LLS+24c] Yingyu Liang, Heshan Liu, Zhenmei Shi, Zhao Song, Zhuoyan Xu, and Junze Yin.
Conv-basis: A new paradigm for efficient attention inference and gradient computation
in transformers. arXiv preprint arXiv:2405.05219, 2024.

[LLS+24d] Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Yufa Zhou. Beyond
linear approximations: A novel pruning approach for attention matrix. arXiv preprint
arXiv:2410.11261, 2024.

[LLSS24a] Chenyang Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Exploring the frontiers of
softmax: Provable optimization, applications in diffusion model, and beyond. arXiv
preprint arXiv:2405.03251, 2024.

[LLSS24b] Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. A tighter complexity analysis
of sparsegpt. arXiv preprint arXiv:2408.12151, 2024.

[LSS+24a] Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Looped relu
mlps may be all you need as practical programmable computers. arXiv preprint
arXiv:2410.09375, 2024.

13

[LSS+24b] Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Multi-layer
transformers gradient can be approximated in almost linear time. arXiv preprint
arXiv:2408.13233, 2024.

[LSSY24] Yingyu Liang, Zhenmei Shi, Zhao Song, and Chiwun Yang. Toward infinite-long prefix
in transformer. arXiv preprint arXiv:2406.14036, 2024.

[LSSZ24a] Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Differential privacy of
cross-attention with provable guarantee. arXiv preprint arXiv:2407.14717, 2024.

[LSSZ24b] Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention train-
ing: Provably efficient learning of higher-order transformers. arXiv preprint
arXiv:2405.16411, 2024.

[LSX+22] Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon, and Tie-Yan
Liu. Biogpt: generative pre-trained transformer for biomedical text generation and
mining. Briefings in Bioinformatics, 23(6), 2022.

[LSZ23] Zhihang Li, Zhao Song, and Tianyi Zhou. Solving regularized exp, cosh and sinh
regression problems. arXiv preprint, 2303.15725, 2023.

[LWD+23] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali
Shrivastava, Ce Zhang, Yuandong Tian, Christopher Re, and Beidi Chen. Deja vu:
Contextual sparsity for efficient llms at inference time. In Manuscript, 2023.

[ONR+22] Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexan-
der Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn
in-context by gradient descent. arXiv preprint arXiv:2212.07677, 2022.

[PCR19] Gabriele Prato, Ella Charlaix, and Mehdi Rezagholizadeh. Fully quantized transformer
for machine translation. arXiv preprint arXiv:1910.10485, 2019.

[PMB19] Jorge Pérez, Javier Marinković, and Pablo Barceló. On the turing completeness of
modern neural network architectures. arXiv preprint arXiv:1901.03429, 2019.

[RNS+18] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving
language understanding by generative pre-training. 2018.

[SMN+24] Zhenmei Shi, Yifei Ming, Xuan-Phi Nguyen, Yingyu Liang, and Shafiq Joty. Discover-
ing the gems in early layers: Accelerating long-context llms with 1000x input token
reduction. arXiv preprint arXiv:2409.17422, 2024.

[SSZ+24a] Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Yanyu Li, Yifan Gong, Kai Zhang, Hao
Tan, Jason Kuen, Henghui Ding, Zhihao Shu, Wei Niu, Pu Zhao, Yanzhi Wang, and
Jiuxiang Gu. Lazydit: Lazy learning for the acceleration of diffusion transformers,
2024.

[SSZ+24b] Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Jing Liu, Ruiyi Zhang, Ryan A. Rossi,
Hao Tan, Tong Yu, Xiang Chen, Yufan Zhou, Tong Sun, Pu Zhao, Yanzhi Wang, and
Jiuxiang Gu. Numerical pruning for efficient autoregressive models, 2024.

[SZKS21] Charlie Snell, Ruiqi Zhong, Dan Klein, and Jacob Steinhardt. Approximating how
single head attention learns. arXiv preprint arXiv:2103.07601, 2021.

[TDP19] Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP
pipeline. In Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4593–4601, Florence, Italy, July 2019. Association for
Computational Linguistics.

[VB19] Jesse Vig and Yonatan Belinkov. Analyzing the structure of attention in a transformer
language model. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages 63–76, Florence, Italy, August 2019.
Association for Computational Linguistics.

14

[VBC20] James Vuckovic, Aristide Baratin, and Remi Tachet des Combes. A mathematical
theory of attention. arXiv preprint arXiv:2007.02876, 2020.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[WCM21] Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation:
a case study on approximating turing machines with transformers. arXiv preprint
arXiv:2107.13163, 2021.

[WHHL24] Dennis Wu, Jerry Yao-Chieh Hu, Teng-Yun Hsiao, and Han Liu. Uniform memory
retrieval with larger capacity for modern hopfield models. In Forty-first International
Conference on Machine Learning (ICML), 2024.

[WHL+24] Dennis Wu, Jerry Yao-Chieh Hu, Weijian Li, Bo-Yu Chen, and Han Liu. STanhop:
Sparse tandem hopfield model for memory-enhanced time series prediction. In The
Twelfth International Conference on Learning Representations (ICLR), 2024.

[WLK+20] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer:
Self-attention with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

[XHH+24] Chenwei Xu, Yu-Chao Huang, Jerry Yao-Chieh Hu, Weijian Li, Ammar Gilani, Hsi-
Sheng Goan, and Han Liu. Bishop: Bi-directional cellular learning for tabular data
with generalized sparse modern hopfield model. In Forty-first International Conference
on Machine Learning (ICML), 2024.

[XRLM21] Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation
of in-context learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080,
2021.

[XSL24] Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large language models have
compositional ability? an investigation into limitations and scalability. In ICLR 2024
Workshop on Mathematical and Empirical Understanding of Foundation Models, 2024.

[YBR+20] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv
Kumar. Are transformers universal approximators of sequence-to-sequence functions?
In International Conference on Learning Representations, 2020.

[YPPN21] Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-
attention networks can process bounded hierarchical languages. In Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 3770–3785, Online, August 2021. Association for Computational
Linguistics.

[ZBB+22] Yi Zhang, Arturs Backurs, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, and Tal
Wagner. Unveiling transformers with lego: a synthetic reasoning task, 2022.

[ZHDK23] Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating
transformers via kernel density estimation. arXiv preprint arXiv:2302.02451, 2023.

[ZKV+20] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank
Reddi, Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention
models? Advances in Neural Information Processing Systems, 33:15383–15393, 2020.

[ZPGA23] Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse
while predicting the masked word? arXiv preprint arXiv:2303.08117, 2023.

15

Appendix

Roadmap. In Section A, we introduce some related works. In Section B, we compute the Lipschitz
with respect to x. In Section C, we give some definitions related to the softmax function of A.
In Section D, we compute the Lipschitz with respect to A. In Section E, we show our complete
numerical experiments that support our theoretical results.

A Related Work

A.1 In-Context Learning

[ASA+22] indicate that Transformer-based in-context learners are able to perform traditional learning
algorithms implicitly. This is achieved by encoding smaller models within their internal activations.
These smaller models are updated by the given context. They theoretically investigate the learning
algorithms that Transformer decoders can implement. They demonstrate that Transformers need
only a limited number of layers and hidden units to implement various linear regression algorithms.
For d-dimensional regression problems, a O(d)-hidden-size Transformer can perform a single step
of gradient descent. They also demonstrate its ability to update a ridge regression problem. The
study reveals that Transformers theoretically have the ability to perform multiple linear regression
algorithms.

[GTLV22] concentrate on training Transformer to learn certain functions, under in-context conditions.
The goal is to have a more comprehensive understanding of in-context learning and determine if
Transformers can learn the majority of functions within a given class after training. They found that
in-context learning is possible even when there is a distribution shift between training and inference
data or between in-context examples and query inputs. In addition, they find out that Transformers
can learn more complex function classes such as sparse linear functions, two-layer neural networks,
and decision trees. These trained Transformers have comparable performance to task-specific learning
algorithms.

[ONR+22] demonstrate the similarity between the training process of Transformers in in-context
tasks and some meta-learning formulations based on gradient descent. During training Transformers
for auto-regressive tasks, the implementation of in-context learning in the Transformer forward pass
is carried out through gradient-based optimization of an implicit auto-regressive inner loss that is
constructed from the in-context data.

Formally speaking, they consider the following problem minx ∥Ax− b∥2 defined in Definition 1.2.
They show that one step of gradient descent carries out data transformation as follows:

∥A(x+ δx)− b∥2 = ∥Ax− (b− δb)∥2
= ∥Ax− b̃∥2

where δx denotes the one-step gradient descent on x and δb denotes the corresponding data transfor-
mation on b. They also show that a self-attention layer is in principle capable of exploiting statistics
in the current training data samples. Concretely, let Q,K, V ∈ Rd×d denotes the weights for the
query matrix, key matrix, and value matrix respectively. The linear self-attention layer updates an
input sample by doing the following data transformation:

b̂j = bj + PV K⊤Qj

where b̂ denotes the updated b and P denotes the projection matrix such that a Transformer step b̂j on
every j is identical to the gradient-induced dynamics b̃j . This equivalence implies that when training
linear-self-attention-only Transformers for fundamental regression tasks, the models learned by GD
and Transformers show great similarity.

[XRLM21] explores the occurrence of in-context learning during pre-training when documents
exhibit long-range coherence. The Language Model (LLM) develops the ability to generate coherent
next tokens by deducing a latent document-level concept. During testing, in-context learning is
observed when the LLM deduces a shared latent concept between examples in a prompt. They
demonstrate that in-context learning happens even when there is a distribution mismatch between
prompts and pretraining data, especially when the pretraining distribution is a mixture of Hidden

16

Markov Models [BP66]. Theoretically, they show that the error of the in-context predictor is optimal
when a distinguishability condition holds. In cases where this condition does not hold, the expected
error still reduces as the length of each example increases. This finding highlights the importance of
both input and input-output mapping for in-context learning.

A.2 Transformer Theory

The advancements of Transformers have been noteworthy, however, their learning mechanisms are not
completely comprehensible yet. Although these models have performed remarkably well in structured
and reasoning activities, our comprehension of their mathematical foundations lags significantly
behind. Past research has indicated that the outstanding performance of Transformer-based models
can be attributed to the information within their components, such as multi-head attention. Various
studies [TDP19, VB19, HL19, Bel22, LLS+24a, XSL24] have presented empirical proof that these
components carry a substantial amount of information, which can help resolve different probing
tasks.

Recent research has investigated the potential of Transformers through both theoretical and experimen-
tal methods, including Turing completeness [BPG20], function approximation [YBR+20, CDW+21],
formal language representation [BAG20, EGZ20, YPPN21], and abstract algebraic operation learning
[ZBB+22]. Some of these studies have indicated that Transformers may act as universal approxima-
tors for sequence-to-sequence operations [YBR+20, KS23, Ano24a] and emulate Turing machines
[PMB19, BPG20]. [LWD+23] demonstrate the existence of contextual sparsity in LLM, which
can be accurately predicted. They exploit the sparsity to speed up LLM inference without degrad-
ing the performance from both a theoretical perspective and an empirical perspective. [DCL+21]
proposed the Pixelated Butterfly model that uses a simple fixed sparsity pattern to speed up the
training of Transformer. Other studies have focused on the expressiveness of attention within
Transformers [DGV+18, VBC20, ZKV+20, EGKZ21, SZKS21, WCM21, LSSY24, LSS+24a] and
differentially private attention mechanisms [GSYZ24, LSSZ24a]. Recently, modern Hopfield models
[HYW+23, HLSL24, WHHL24, HCL+24, HWL24a, HCW+24] have introduced Hopfield layers
as powerful alternatives for transformer attention, offering solid theoretical guarantees and strong
empirical performance [XHH+24, WHL+24]. Additionally, the statistical and computational theory
of transformer-based diffusion models, specifically Diffusion Transformers (DiTs), has been studied
in depth [HWL+24b, Ano24b].

Furthermore, [ZPGA23] has demonstrated that moderately sized masked language models may
effectively parse and recognize syntactic information that helps in the partial reconstruction of a
parse tree. Inspired by the language grammar model studied by [ZPGA23], [DGS23] consider
the tensor cycle rank approximation problem. [GMS23] consider the exponential regression in
neural tangent kernel over-parameterization setting. [LSZ23] studied the computation of regularized
version of the exponential regression problem but they ignore the normalization factor. [DLS23]
consider the softmax regression which considers the normalization factor compared to exponential
regression problems [GMS23, LSZ23]. The majority of LLMs can perform attention computations in
an approximate manner during inference, as long as there are sufficient guarantees of precision. This
perspective has been studied by various research, including [CGRS19, KKL20, WLK+20, DKOD20,
KVPF20, CDW+21, CDL+22, LLSS24b, LLS+24d, LSS+24b, SMN+24, LLS+24c, SSZ+24b,
SSZ+24a]. With this in mind, [ZHDK23, AS23, BSZ24, DMS23, HYW+23, LLS+24b, CLS+24,
LSSZ24b, HLSL24, HWL+24b, HWL24a] have studied the attention matrix computation from the
hardness perspective and developed faster algorithms.

B Lipschitz with respect to x

In Section B.1, we give the preliminary to compute the Lipschitz. In Section B.2, we compute the
Lipschitz of function exp(Ax) with respect to x. In Section B.3, we compute the Lipschitz of the
function α with respect to x. In Section B.4, we compute the Lipschitz of function α−1 with respect
to x.

17

B.1 Preliminary

We can compute

dL

dx
= g(x)

Let η > 0 denote the learning rate.

We update

xt+1 = xt + η · g(xt)

Definition B.1. We define δb ∈ Rn to be the vector that satisfies the following conditions

∥⟨exp(Axt+1),1n⟩−1 exp(Axt+1)− b∥22 = ∥⟨exp(Axt),1n⟩−1 exp(Axt)− b+ δb∥22

Let {−1,+1}n denote a vector that each entry can be either −1 or +1. In the worst case, there are
2n possible solutions, e.g.,

(⟨exp(Axt+1),1n⟩−1 exp(Axt+1)− ⟨exp(Axt),1n⟩−1 exp(Axt)) ◦ {−1,+1}n

The norm of all the choices are the same. Thus, it is sufficient to only consider one solution as
follows.
Claim B.2. We can write δb as follows

δb = ⟨exp(Axt+1),1n⟩−1 exp(Axt+1)︸ ︷︷ ︸
f(xt+1)

−⟨exp(Axt),1n⟩−1 exp(Axt)︸ ︷︷ ︸
f(xt)

.

Proof. The proof directly follows from Definition B.1.

For convenience, we split δb into two terms, and provide the following definitions
Definition B.3. We define

δb,1 := (⟨exp(Axt+1),1n⟩−1 − ⟨exp(Axt),1n⟩−1) · exp(Axt+1)

δb,2 := ⟨exp(Axt),1n⟩−1 · (exp(Axt+1)− exp(Axt))

Thus, we have
Lemma B.4. We have

•

δb = δb,1 + δb,2

• We can rewrite δb,1 as follows

δb,1 = (α(xt+1)
−1 − α(xt)

−1) · exp(Axt+1),

• We can rewrite δb,2 as follows

δb,2 = α(xt)
−1 · (exp(Axt+1)− exp(Axt)).

Proof. We have

δb = δb,1 + δb,2

= α(xt+1)
−1 exp(Axt+1)− α(xt)

−1 exp(Axt+1)+

α(xt)
−1 exp(Axt+1)− α(xt)

−1 exp(Axt)

= α(xt+1)
−1 exp(Axt+1)− α(xt)

−1 exp(Axt)

= ⟨exp(Axt+1),1n⟩−1 exp(Axt+1)− ⟨exp(Axt),1n⟩−1 exp(Axt),

where the 1st step follows from the definitions of δb, the 2nd step follows from the definitions of δb,1
and δb,2, the 3rd step follows from simple algebra, the 4th step comes from the definition of α.

18

B.2 Lipschitz for function exp(Ax) with respect to x

Lemma B.5. If the following conditions holds

• Let A ∈ Rn×d

• Let ∥A(y − x)∥∞ < 0.01

• Let ∥A∥ ≤ R

• Let x, y satisfy that ∥x∥2 ≤ R and ∥y∥2 ≤ R

Then we have

∥ exp(Ax)− exp(Ay)∥2 ≤ 2
√
nR exp(R2) · ∥x− y∥2.

Proof. We have

∥ exp(Ax)− exp(Ay)∥2 ≤ ∥ exp(Ax)∥2 · 2∥A(x− y)∥∞
≤

√
n · exp(∥Ax∥2) · 2∥A(x− y)∥∞

≤
√
n exp(R2) · 2∥A(x− y)∥2

≤
√
n exp(R2) · 2∥A∥ · ∥x− y∥2

≤ 2
√
nR exp(R2) · ∥x− y∥2

where the 1st step follows from ∥A(y−x)∥∞ < 0.01 and Fact 2.1, the 2nd step comes from Fact 2.1,
the 3rd step follows from Fact 2.2, the 4th step follows from Fact 2.2, the last step follows from
∥A∥ ≤ R.

B.3 Lipschitz for function α(x) with respect to x

We state a tool from previous work [DLS23].
Lemma B.6 (Lemma 7.2 in [DLS23]). If the following conditions hold

• Let α(x) be defined as Definition 3.3

Then we have

|α(x)− α(y)| ≤ ∥ exp(Ax)− exp(Ay)∥2 ·
√
n.

B.4 Lipschitz for function α(x)−1 with respect to x

We state a tool from previous work [DLS23].
Lemma B.7 (Lemma 7.2 in [DLS23]). If the following conditions hold

• Let ⟨exp(Ax),1n⟩ ≥ β

• Let ⟨exp(Ay),1n⟩ ≥ β

Then, we have

|α(x)−1 − α(y)−1| ≤ β−2 · |α(x)− α(y)|.

C Softmax Function with respect to A

In this section, we consider the function with respect to A. We define function softmax f as follows
Definition C.1 (Function f , Reparameterized x by A in Definition 3.1). Given a matrix A ∈ Rn×d.
Let 1n denote a length-n vector that all entries are ones. We define prediction function f : Rn×d →
Rn as follows

f(A) := ⟨exp(Ax),1n⟩−1 · exp(Ax).

19

Similarly, we reparameterized x by A for our loss function L. We define loss function L as follows
Definition C.2 (Loss function Lexp, Reparameterized x by A in Definition 3.2). Given a matrix
A ∈ Rn×d and a vector b ∈ Rn×d. We define loss function Lexp : Rn×d → R as follows

Lexp(A) := 0.5 · ∥⟨exp(Ax),1n⟩−1 exp(Ax)− b∥22.

For convenience, we define two helpful notations α and c with respect to A as follows:
Definition C.3 (Normalized coefficients, Reparameterized x by A in Definition 3.3). We define
α : Rn×d → R as follows

α(A) := ⟨exp(Ax),1n⟩.

Then, we can rewrite f(A) (see Definition C.1) and Lexp(A) (see Definition C.2) as follows

• f(A) = α(A)−1 · exp(Ax).

• Lexp(A) = 0.5 · ∥α(A)−1 · exp(Ax)− b∥22.

• Lexp(A) = 0.5 · ∥f(A)− b∥22.

Definition C.4 (Reparameterized x by A in Definition 3.4). We define function c : Rn×d ∈ Rn as
follows

c(A) := f(A)− b.

Then we can rewrite Lexp(A) (see Definition C.2) as follows

• Lexp(A) = 0.5 · ∥c(A)∥22.

D Lipschitz with respect to A

In Section D.1, we give the preliminary to compute the Lipschitz. In Section D.2, we show the upper
bound of δb with respect to A. In Section D.3, we compute the Lipschitz of function exp(Ax) with
respect to A. In Section D.4, we compute the Lipschitz of the function α with respect to A. In Section
D.5, we compute the Lipschitz of function α−1 with respect to A.

D.1 Preliminary

We define δb as follows
Definition D.1 (Reparameterized x by A in Definition B.1). We define δb ∈ Rn to be the vector that
satisfies the following conditions

∥⟨exp(At+1x),1n⟩−1 exp(At+1x)− b∥22 = ∥⟨exp(Atx),1n⟩−1 exp(Atx)− b+ δb∥22
Claim D.2 (Reparameterized x by A in Definition B.2). We can write δb as follows

δb = ⟨exp(At+1x),1n⟩−1 exp(At+1x)︸ ︷︷ ︸
f(At+1)

−⟨exp(Atx),1n⟩−1 exp(Atx)︸ ︷︷ ︸
f(At)

.

Proof. The proof directly follows from Definition D.1.

For convenient, we split δb into two terms, and provide the following definitions
Definition D.3 (Reparameterized x by A in Definition B.3). We define

δb,1 := (⟨exp(At+1x),1n⟩−1 − ⟨exp(Atx),1n⟩−1) · exp(At+1x)

δb,2 := ⟨exp(Atx),1n⟩−1 · (exp(At+1x)− exp(Atx))

Thus, we have
Lemma D.4 (Reparameterized x by A in Lemma B.4). We have

20

• We can rewrite δb ∈ Rn as follows

δb = δb,1 + δb,2

• We can rewrite δb,1 ∈ Rn as follows

δb,1 = (α(At+1)
−1 − α(At)

−1) · exp(At+1x),

• We can rewrite δb,2 ∈ Rn as follows

δb,2 = α(At)
−1 · (exp(At+1x)− exp(Atx)).

Proof. We have

δb = δb,1 + δb,2

= α(At+1)
−1 exp(At+1x)− α(At)

−1 exp(At+1x)+

α(At)
−1 exp(At+1x)− α(At)

−1 exp(Atx)

= α(At+1)
−1 exp(At+1x)− α(At)

−1 exp(Atx)

= ⟨exp(At+1x),1n⟩−1 exp(At+1x)− ⟨exp(Atx),1n⟩−1 exp(Atx),

where the 1st step follows from the definitions of δb, the 2nd step follows from the definitions of δb,1
and δb,2, the 3rd step comes from simple algebra, the 4th step comes from the definition of α.

D.2 Upper Bounding δb with respect to A

We can show that
Lemma D.5 (Reparameterized x by A in Lemma 4.1). If the following conditions hold

• Let β ∈ (0, 1).

• Let δb,1 ∈ Rn be defined as Definition D.3.

• Let δb,2 ∈ Rn be defined as Definition D.3.

• Let δb = δb,1 + δb,2.

• Let R ≥ 4.

We have

• Part 1.

∥δb,1∥2 ≤ 2β−2n1.5 exp(2R2) · ∥At+1 −At∥2

• Part 2.

∥δb,2∥2 ≤ 2β−1
√
nR exp(R2) · ∥At+1 −At∥2

• Part 3.

∥ f(At+1)− f(At)︸ ︷︷ ︸
δb

∥2 ≤ 4β−2n1.5R exp(2R2) · ∥At+1 −At∥2

Proof. Proof of Part 1. We have

∥δb,1∥2 ≤ |α(At+1)
−1 − α(At)

−1| · ∥ exp(At+1x)∥2
≤ |α(At+1)

−1 − α(At)
−1| ·

√
n · exp(R2)

≤ β−2 · |α(At+1)− α(At)| ·
√
n · exp(R2)

≤ β−2 ·
√
n · ∥ exp(At+1x)− exp(Atx)∥2 ·

√
n · exp(R2)

≤ β−2 ·
√
n · 2

√
nR exp(R2)∥At+1 −At∥ ·

√
n · exp(R2)

21

= 2β−2n1.5R exp(2R2) · ∥At+1 −At∥
where the first step follows from definition, the second step follows from assumption on A and x, the
third step follows Lemma D.8, the forth step follows from Lemma D.7, the fifth step follows from
Lemma D.6.

Proof of Part 2.

We have

∥δb,2∥2 ≤ |α(At+1)
−1| · ∥ exp(At+1x)− exp(Atx)∥2

≤ β−1 · ∥ exp(At+1x)− exp(Atx)∥2
≤ β−1 · 2

√
nR exp(2R2) · ∥At+1 −At∥

Proof of Part 3.

We have

∥δb∥2 = ∥δb,1 + δb,2∥2
≤ ∥δb,1∥2 + ∥δb,2∥2
≤ 2β−2n1.5R exp(2R2) · ∥At+1 −At∥+ 2β−1n0.5R exp(2R2) · ∥At+1 −At∥
≤ 2β−2n1.5R exp(2R2) · ∥At+1 −At∥+ 2β−2n1.5R exp(2R2) · ∥At+1 −At∥
≤ 4β−2n1.5R exp(2R2) · ∥At+1 −At∥

where the 1st step follows from the definition of δb, the 2nd step comes from triangle inequality, the
3rd step comes from the results in Part 1 and Part 2, the 4th step follows from the fact that n ≥ 1 and
β−1 ≥ 1, the 5th step follows from simple algebra.

D.3 Lipschitz for function exp(Ax) with respect to A

Lemma D.6 (Reparameterized x by A in Lemma B.5). If the following conditions holds

• Let A,B ∈ Rn×d

• Let ∥(A−B)x∥∞ < 0.01

• Let ∥A∥ ≤ R

• Let x satisfy that ∥x∥2 ≤ R

Then we have

∥ exp(Ax)− exp(Bx)∥2 ≤ 2
√
nR exp(R2) · ∥A−B∥.

Proof. We have

∥ exp(Ax)− exp(Bx)∥2 ≤ ∥ exp(Ax)∥2 · 2∥(A−B)x∥∞
≤

√
n · exp(∥Ax∥2) · 2∥(A−B)x∥∞

≤
√
n exp(R2) · 2∥(A−B)x∥2

≤
√
n exp(R2) · 2∥A−B∥ · ∥x∥2

≤ 2
√
nR exp(R2) · ∥A−B∥

where the 1st step follows from ∥A(y − x)∥∞ < 0.01 and Fact 2.1, the 2nd step follows from
Fact 2.1, the 3rd step follows from Fact 2.2, the 4th step comes from Fact 2.2, the last step follows
from ∥A∥ ≤ R.

D.4 Lipschitz for function α(A) with respect to A

Lemma D.7 (Reparameterized x by A in Lemma B.6). If the following conditions hold

• Let α(A) be defined as Definition C.3

22

Then we have

|α(A)− α(B)| ≤ ∥ exp(Ax)− exp(Bx)∥2 ·
√
n.

Proof. We have

|α(A)− α(B)| = |⟨exp(Ax)− exp(Bx),1n⟩|
≤ ∥ exp(Ax)− exp(Bx)∥2 ·

√
n

where the 1st step comes from the definition of α(x), the 2nd step follows from Cauchy-Schwarz
inequality (Fact 2.1).

D.5 Lipschitz for function α(A)−1 with respect to A

Lemma D.8 (Reparameterized x by A in Lemma B.7). If the following conditions hold

• Let ⟨exp(Ax),1n⟩ ≥ β

• Let ⟨exp(Bx),1n⟩ ≥ β

Then, we have

|α(A)−1 − α(B)−1| ≤ β−2 · |α(A)− α(B)|.

Proof. We can show that

|α(A)−1 − α(B)−1| = α(A)−1α(B)−1 · |α(A)− α(B)|
≤ β−2 · |α(A)− α(B)|

where the 1st step follows from simple algebra, the 2nd step follows from α(A) ≥ β, α(B) ≥ β.

E Experiments

In this section, we show the complete numerical experimental results supporting our theoretical
results that when training self-attention-only Transformers for softmax regression tasks, the models
learned by gradient-descent and Transformers show great similarity.

Experiments setup. According to Definition 1.3, we construct the synthetic softmax regression
tasks consists of randomly sampled length-n documents A ∈ Rn×d where each word has the
d-dimensional embedding and targets b ∈ Rn. In our experiments we choose a set of different
value of document length n ∈ {25, 50, 100, 200, 400} and a set of different embedding size d ∈
{5, 10, 20, 35, 50}. Following [ONR+22], we compare the two models in our experiment: a trained
single self-attention (SA) layer with a softmax unit approximating the full Transformers, and a
softmax regression model trained with one-step gradient descent. The training objective for both
models is defined as in Definition 1.3. For the single self-attention layer with a softmax unit, we
choose the learning rate ηSA = 0.005. For the softmax regression model, we determine the optimal
learning rate ηGD by minimizing the ℓ2 regression loss over a training set of 103 tasks through line
search.

To compare the trained single self-attention layer with a softmax unit and the softmax regression
model trained with one-step gradient descent, we sample 103 tasks and record the losses of two
models. In addition, we follow [ONR+22] to record

• Pred Diff: the predictions difference measured with the ℓ2 norm:

∥ŷSA(A)− ŷGD(x)∥2

where ŷSA(A) is corresponding to the b̃ in Theorem 4.2, and ŷGD(x) is corresponding to
the b̃ in Theorem 4.3.

• Model Cos: the cosine similarity between the sensitivities of two models:

CosSim (
∂ŷGD(x)

∂x
,
∂ŷSA(A)

∂A
)

23

• Model Diff: the model sensitivity difference measured with the ℓ2 norm:

∥∂ŷGD(x)

∂x
− ∂ŷSA(A)

∂A
∥2

All experiments run on a single NVIDIA RTX2080Ti GPU with 10 independent repetitions.

Results on tasks of different document lengths. The results of the comparisons between a trained
single self-attention layer and one-step gradient descent on synthetic softmax regression tasks of
document length n ∈ {25, 50, 100, 200, 400, 1000} and word embedding size d = 20 are shown in
Figure 4-9. We measure two models’ losses and similarities over the training steps of the SA layer for
each set of tasks. From the results, we observe identical performances of the two models measured in
losses. We also observe considerable alignment of the two models across tasks of different document
lengths, indicated by decreasing prediction and model difference and increasing cosine similarity
between models.

Results on tasks of different word embedding sizes. The results of the comparisons between a
trained single self-attention layer and one-step gradient descent on synthetic softmax regression tasks
of document length n = 200 and word embedding size d ∈ {5, 10, 20, 35, 50} are shown in Figure 7
and 10-13. Similarly, we measure two models’ losses and similarities over training steps of the SA
layer for each set of tasks. We again observe similar performances and close alignment of the two
models.

In conclusion, our experimental results empirically validate our theoretical results in Section 4,
showing that when training self-attention-only Transformers for softmax regression tasks, the models
learned by gradient-descent and Transformers show great similarity. Due to the non-linearity of
softmax regression, it is not expected for models to match exactly as implied in our theoretical results
in Section 4, which is also observed in our experimental findings.

0 200 400 600 800 1000
Training Step

0.6

0.9

1.2

1.5

1.8

Lo
ss

Gradient Descent
Trained Transformer

(a) Losses over training steps of Trans-
former

0 200 400 600 800 1000
Training Step

0.0

0.2

0.5

0.8

1.0

1.2

1.5

L2
 N

or
m

Preds Diff
Model Diff

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Co
sin

e
Si

m

Model Cos

(b) Difference and similarity over training
steps

Figure 4: Comparison between trained single-SA-layer Transformer and one-step GD on softmax
regression tasks of document length n = 25 and embedding size d = 20.

F Limitations

Our findings are restricted to small Transformer and simple regression problems. One interesting
direction for further investigation is to acquire a comprehensive perception of in-context learning
in larger models. To our best knowledge, we believe this work does not have any negative societal
impact.

G Impact Statements

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here.

24

0 200 400 600 800 1000
Training Step

0.6

0.9

1.2

1.5

1.8

Lo
ss

Gradient Descent
Trained Transformer

(a) Losses over training steps of Trans-
former

0 200 400 600 800 1000
Training Step

0.0

0.5

1.0

1.5

2.0

L2
 N

or
m

Preds Diff
Model Diff

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Co
sin

e
Si

m

Model Cos

(b) Difference and similarity over training
steps

Figure 5: Comparison between trained single-SA-layer Transformer and one-step GD on softmax
regression tasks of document length n = 50 and embedding size d = 20.

0 200 400 600 800 1000
Training Step

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Gradient Descent
Trained Transformer

(a) Losses over training steps of Trans-
former

0 200 400 600 800 1000
Training Step

0.0

1.0

2.0

3.0

4.0

L2
 N

or
m

Preds Diff
Model Diff

0.6

0.7

0.8

0.9

1.0

Co
sin

e
Si

m

Model Cos

(b) Difference and similarity over training
steps

Figure 6: Comparison between trained one-SA-layer Transformer and one-step GD on softmax
regression tasks of document length n = 100 and embedding size d = 20.

0 200 400 600 800 1000
Training Step

0.4

1.2

2.0

2.8

3.6

Lo
ss

Gradient Descent
Trained Transformer

(a) Losses over training steps of Trans-
former

0 200 400 600 800 1000
Training Step

0.0

1.0

2.0

3.0

4.0

L2
 N

or
m

Preds Diff
Model Diff

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Co
sin

e
Si

m

Model Cos

(b) Difference and similarity over training
steps

Figure 7: Comparison between trained one-SA-layer Transformer and one-step GD on softmax
regression tasks of document length n = 200 and embedding size d = 20.

25

0 200 400 600 800 1000
Training Step

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Gradient Descent
Trained Transformer

(a) Losses over training steps of Trans-
former

0 200 400 600 800 1000
Training Step

0.0

2.0

4.0

6.0

8.0

L2
 N

or
m

Preds Diff
Model Diff

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Co
sin

e
Si

m

Model Cos

(b) Difference and similarity over training
steps

Figure 8: Comparison between trained one-SA-layer Transformer and one-step GD on softmax
regression tasks of document length n = 400 and embedding size d = 20.

0 200 400 600 800 1000
Training Step

0.6

1.8

3.0

4.2

5.4

6.6

Lo
ss

Gradient Descent
Trained Transformer

(a) Losses over training steps of Trans-
former

0 200 400 600 800 1000
Training Step

0.0

10.0

20.0

30.0

L2
 N

or
m

Preds Diff
Model Diff

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
Si

m

Model Cos

(b) Difference and similarity over training
steps

Figure 9: Comparison between trained one-SA-layer Transformer and one-step GD on softmax
regression tasks of document length n = 1000 and embedding size d = 20.

0 200 400 600 800 1000
Training Step

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Lo
ss

Gradient Descent
Trained Transformer

(a) Losses over training steps of Trans-
former

0 200 400 600 800 1000
Training Step

0.0

1.0

2.0

3.0

4.0

5.0

6.0

L2
 N

or
m

Preds Diff
Model Diff

0.75

0.80

0.85

0.90

0.95

1.00

Co
sin

e
Si

m

Model Cos

(b) Difference and similarity over training
steps

Figure 10: Comparison between trained one-SA-layer Transformer and one-step GD on softmax
regression tasks of document length n = 200 and embedding size d = 5.

26

0 200 400 600 800 1000
Training Step

0.2

1.2

2.2

3.2

4.2

5.2

Lo
ss

Gradient Descent
Trained Transformer

(a) Losses over training steps of Trans-
former

0 200 400 600 800 1000
Training Step

0.0

1.0

2.0

3.0

4.0

L2
 N

or
m

Preds Diff
Model Diff

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Co
sin

e
Si

m

Model Cos

(b) Difference and similarity over training
steps

Figure 11: Comparison between trained one-SA-layer Transformer and one-step GD on softmax
regression tasks of document length n = 200 and embedding size d = 10.

0 200 400 600 800 1000
Training Step

0.6

1.2

1.8

2.4

3.0

3.6

Lo
ss

Gradient Descent
Trained Transformer

(a) Losses over training steps of Trans-
former

0 200 400 600 800 1000
Training Step

0.0

1.0

2.0

3.0

4.0

5.0

L2
 N

or
m

Preds Diff
Model Diff

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
Si

m

Model Cos

(b) Difference and similarity over training
steps

Figure 12: Comparison between trained one-SA-layer Transformer and one-step GD on softmax
regression tasks of document length n = 200 and embedding size d = 35.

0 200 400 600 800 1000
Training Step

0.6

1.2

1.8

2.4

3.0

Lo
ss

Gradient Descent
Trained Transformer

(a) Losses over training steps of Trans-
former

0 200 400 600 800 1000
Training Step

0.0

1.0

2.0

3.0

4.0

5.0

L2
 N

or
m

Preds Diff
Model Diff

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
Si

m

Model Cos

(b) Difference and similarity over training
steps

Figure 13: Comparison between trained one-SA-layer Transformer and one-step GD on softmax
regression tasks of document length n = 200 and embedding size d = 50.

27

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose our main results at the end of the introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations is discussed in Section F.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

28

Justification:
• For Theorem 4.2, the proof is in Section 4.2.
• For Theorem 4.3, the proof is in Section 4.3.

We have carefully checked the correctness and the time complexity proof that shown in this
paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental setup is described in Section 5.1 and Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

29

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The data and code are planned to be released upon acceptance and approval.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setup is described in Section 5.1 and Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results plotted in Section 5 and Appendix E include error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resource information is provided in Section 5.1 and Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have read the NeurIPS Code of Ethies and made sure the paper
followsthe NeurIPS Code of Ethics in every aspect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The potential societal impact is discussed in Section G.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

31

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release new dataset or model.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The assets are properly mentioned and cited in Section 5 and Appendix E.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

32

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

33

	Introduction
	Preliminary
	Notations
	Basic Algebras
	Lower bound on

	Softmax Function with Respect to
	Definitions
	Gradient Computations

	Main Results
	Lipschitz Bound
	Shifting Weight Parameter
	Shifting Sentence Data

	Numerical Experiments
	Experiments Setup
	Different Document Lengths
	Different Word Embedding Sizes

	Conclusion
	Related Work
	In-Context Learning
	Transformer Theory

	Lipschitz with respect to
	Preliminary
	Lipschitz for function with respect to
	Lipschitz for function with respect to
	Lipschitz for function with respect to

	Softmax Function with respect to
	Lipschitz with respect to
	Preliminary
	Upper Bounding with respect to
	Lipschitz for function with respect to
	Lipschitz for function with respect to
	Lipschitz for function with respect to

	Experiments
	Limitations
	Impact Statements

