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DNA language model GROVER learns 
sequence context in the human genome

Melissa Sanabria    1, Jonas Hirsch1, Pierre M. Joubert1,2,3 & 
Anna R. Poetsch    1,4 

Deep-learning models that learn a sense of language on DNA have achieved 
a high level of performance on genome biological tasks. Genome sequences 
follow rules similar to natural language but are distinct in the absence of a 
concept of words. We established byte-pair encoding on the human genome 
and trained a foundation language model called GROVER (Genome Rules 
Obtained Via Extracted Representations) with the vocabulary selected via a 
custom task, next-k-mer prediction. The defined dictionary of tokens in the 
human genome carries best the information content for GROVER. Analysing 
learned representations, we observed that trained token embeddings 
primarily encode information related to frequency, sequence content 
and length. Some tokens are primarily localized in repeats, whereas the 
majority widely distribute over the genome. GROVER also learns context 
and lexical ambiguity. Average trained embeddings of genomic regions 
relate to functional genomics annotation and thus indicate learning of 
these structures purely from the contextual relationships of tokens. This 
highlights the extent of information content encoded by the sequence that 
can be grasped by GROVER. On fine-tuning tasks addressing genome biology 
with questions of genome element identification and protein–DNA binding, 
GROVER exceeds other models’ performance. GROVER learns sequence 
context, a sense for structure and language rules. Extracting this knowledge 
can be used to compose a grammar book for the code of life.

The first draft of the human genome has been available for more than 
20 years1, and genomes of multiple species have become available 
since. We know the letters, but we still understand little about the 
‘genetic code’. DNA triplets in genes encode for amino acids2 in 1–2% 
of the genome1, but there are additional layers of ‘code’. How those 
genes are regulated; how transcripts are structured, function and are 
kept stable; how, where and when the genome replicates; and how it 
is concurrently kept stable and functional are all encoded within the 
genome. Extracting these different layers of code comprehensively 
requires complex algorithms that only recently have become avail-
able in natural language processing. Large language models (LLMs), 

which are based on transformer architectures3, are well suited for text 
data, with unprecedented performance and transparency. Pretrained 
LLMs like GPT-3 (ref. 4) and successors can also function as foundation 
models to be fine-tuned with classification, regression or generative 
tasks. These models have changed how we view language and can be 
very useful for a variety of purposes.

Although genomes are analogous to language in their structure 
that resembles grammar, syntax and semantics, they also differ. First, 
there is no clearly defined direction, unless viewed relative to biological 
processes like transcription or replication. Second, there is no natural 
definition of words. We know transcription factor binding motifs or the 
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of the genome. However, if length is chosen as a constant, the frequen-
cies of the tokens become heterogeneous. 6-mers range from about 
104 to 107 occurrences in the human genome (hg19). Such a frequency 
imbalance can inhibit model training through Rare Word Problems or 
lead to training on frequencies rather than genome language context. 
We therefore applied byte-pair encoding (BPE)14 to the human genome 
to generate multiple frequency-balanced vocabularies and selected 
the vocabulary that carries the information content of the human 
genome in an optimal way. In combination with fine-tuning tasks and 
the inbuilt transparency of the model architecture, we can now start 
using the resulting foundation DLM, GROVER (Genome Rules Obtained 
Via Extracted Representations), to extract its learning and different 
layers of the genome’s information content.

Results
Building a frequency-balanced vocabulary on the human 
genome
For a human DLM, grouping nucleotides into tokens with similar fre-
quencies is a difficult task because of the heterogeneous sequence 
composition over the genome. A- and T-rich sequences are relatively 
frequent, whereas CG dinucleotides are depleted due to their suscep-
tibility to mutation15. Therefore, tokens that contain rarer sequence 
content should be shorter and tokens with frequent sequence content 
should be longer. In the case of CG dinucleotides, this is of particular 
importance, given that through potential DNA methylation in the form 
of 5-methyl-cytosine16, this dinucleotide fulfils a special biological 
role in gene regulation17,18 and retrotransposon silencing19. Aiming for 
frequency balance, we employed BPE14 (Fig. 1a). The algorithm prior-
itizes larger tokens of more frequent sequence content by sequentially 
combining the most frequent token pairs into new tokens. Starting 
with the four nucleotides A, C, G and T, in the first cycle of BPE, two Ts 

triplet code that encodes proteins. However, in the genome as a whole, 
there is no clear concept for words. To overcome those challenges 
for training transformer models on DNA, so-called DNA language 
models (DLM), there have been several approaches. Some are aimed 
at addressing specific tasks, such as the modelling of gene expression 
with Enformer5, a model that combines convolutional layers with trans-
former blocks. Through the convolutional layer, no definition of words 
is necessary. Foundation models, however, are trained not directly on a 
specific genome biology task but rather are first pretrained on masked 
token prediction and subsequently fine-tuned. This strategy requires 
the definition of discrete tokens: that is, to build ‘words’ from DNA. 
Available models for the human genome include LOGO6, DNABERT7 
and Nucleotide Transformer (NT)8, which use a Bidirectional Encoder 
Representations from Transformers (BERT)9 architecture and apply dif-
ferent strategies of generating the vocabulary. NT uses mainly 6-mers 
as its vocabulary. DNABERT uses k-mers of 3, 4, 5 and 6 nucleotides for 
four different models, of which the 6-mer model performs best7. The 
k-mers overlap, and the training is designed for the central nucleotide 
of a masked sequence not to overlap with any unmasked tokens. Con-
sequently, the model largely learns the token sequence, rather than 
the larger context10. Semisupervised models include data beyond 
the genome sequence, such as GeneBERT11. HyenaDNA uses implicit 
convolutions in its architecture12. Taking genomes from multiple spe-
cies increases the amount of training data, as for DNABERT-2 (ref. 13). 
Although these alternative strategies may improve performance for 
some tasks, the additional sources of information or different archi-
tectures make it harder to follow what the model is learning and to link 
the learned representations back to the relevant genome sequence. 
Therefore, we decided to train only with the human genome sequence, 
distributed into tokens. The ideal vocabulary for a DLM should have 
tokens with an appropriate length to capture the language structure 
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Fig. 1 | DNA BPE and model architecture. a, The principle of BPE highlighted 
on an example sequence with the tokenization steps relevant for this sequence. 
Resulting vocabularies are coloured by token length and depicted in a word 
cloud with relative weights of the words by their frequency. b, The model is a 
BERT architecture with 12 transformer blocks (in purple), which use multihead 

attention and a feed forward layer with normalisation steps (LayerNorm) in 
between. The model is embedding the tokens and is trained with cross-entropy 
loss to predict the masked token and updates the embedding while training. The 
output is probabilities of the masked token identity.
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are combined into a TT token, which adopts a new token identity. This 
pairing can in principle be continued for many cycles, continuously 
forming larger tokens. With the dictionary growing, new pairs become 
less frequent. We use these vocabularies to train a model with a BERT 
architecture (Fig. 1b) for masked token prediction with cross-entropy 
loss. This results in multiple models from 100–5,000 cycles of BPE 
from which the optimal model and therefore vocabulary is selected.

Selecting an optimal vocabulary with next-k-mer prediction
To select an optimal vocabulary and model, performance can in 
principle be assessed with two strategies, intrinsic or extrinsic vali-
dation: for example, on a specific genome biological task. To avoid 
biasing the model towards specific biology, we chose intrinsic vali-
dation. However, perplexity is dependent on dictionary size, so we 
applied next-k-mer prediction10. Predicting the next sequence token 
of a defined length requires a sense of sequence context. This allows 
relative comparisons without biological focus and is independent 
of tokenization strategy, vocabulary size and foundation model 
architecture. We used fine-tuning models for fixed-size k-mers with 
k = [2,3,4,5,6] in combination with models trained on 100–5,000 cycles 
of BPE vocabulary (Fig. 2a). With minor differences, the different k-mer 
models perform most accurately within 400–800 cycles, so we picked 
cycle 600 for GROVER. To compare GROVER with models of fixed-size  
k-mer vocabularies, we established foundation models of 
non-overlapping 4-mers, 5-mers and 6-mers and performed the equiv-
alent tasks. We also included the established models for the human 
genome NT8 and HyenaDNA12, as well as the multispecies model 
DNABERT-2 (ref. 13) (Fig. 2b and Supplementary Fig. 1a,c,e,g). They gen-
erally show inferior accuracy for next-token prediction, similar to the 
accuracy we have previously shown for DNABERT10. Relative differences 
become increasingly apparent when predicting larger tokens. GROVER 
achieves 2% accuracy predicting next-6-mers, whereas the next-best 
model, the multispecies model DNABERT-2, achieves 0.6% accuracy. 
Fixed-size k-mer BERT models, including NT, do not exceed 0.4% accu-
racy, independent of the k-mer sizes of the foundation model. Using 
term frequency-inverse document frequency (TF-IDF) models, we set a 
baseline of prediction dependencies on token frequencies for fine-tuning 
tasks. Applying TF-IDF to next-k-mer prediction with vocabulary on 
fixed-size k-mers and 600 cycles (BPE-600) (Fig. 2c and Supplementary 
Fig. 1b,d,f,h), we achieve increasing accuracy with longer token lengths, 
and BPE-600 shows intermediate accuracy. The best TF-IDF model for 
next-6-mers achieves 1.1% accuracy, outperforming all pretrained foun-
dation models but GROVER. Sequence imbalances in the human genome 
are a dominant feature for some prediction tasks, and DLMs may focus 
on this feature rather than learning a sense of sequence context.

The GROVER foundation model training task of masked token 
prediction (Fig. 2d) achieves 21% accuracy. Allowing for the top 60 
predicted tokens—that is, 10% of the dictionary—increases the accuracy 
to 75%. GROVER shows perplexity of 72 bits per token, which represents 
12% of the dictionary size, whereas fixed-size k-mer models show per-
plexity of 65 (25%), 216 (21%) and 1472 (36%) for 4-mers, 5-mers and 
6-mers, respectively (Fig. 2e). The selected BPE vocabulary is therefore 
outperforming the fixed-size k-mer models and the vocabulary is 
thus optimized to carry the information content of the genome with 
relevance for this type of model training. To interrogate the origin of 
such performance improvement, we next investigated vocabulary 
composition and learned representations.

The optimized vocabulary for DNA language training
BPE adds to the special tokens and the four nucleotides one token for 
each of the 600 cycles. All single A, C and T (not adjacent to N) are 
incorporated into larger tokens and thus removed from the dictionary, 
which consequently comprises 601 tokens. Fixed-size k-mer vocabu-
laries show bimodal frequency distributions (Fig. 3a). The GROVER 
vocabulary (BPE-600) shows token frequencies that are mostly higher 

than 100,000, with a median of about 400,000. The majority of tokens 
are 4-mers with average token length 4.07 (Fig. 3b). Token length ranges 
from one 1-mer G to two 16-mers (A16, T16). Not all possible k-mer com-
binations are generated. CG dinucleotides, for example, have never 
formed, and this sequence is part of larger or several tokens. There is 
a heterogeneous representation of k-mers in the GROVER dictionary 
(Fig. 3c). Most token types are 5-mers (n = 213) and 6-mers (n = 224). 
Proportional representation of k-mers in the dictionary is therefore 
also heterogeneous (Fig. 3d). Of all 1-mers, only G is represented in the 
vocabulary, and 63% of the 2-mers are represented. Although 4-mers 
are the most frequent tokens in the vocabulary, only 32% of possible 
4-mer sequences are represented. In total, the nucleotide represen-
tation within the dictionary reflects the nucleotide composition of 
the genome (Fig. 3e). There is, however, an imbalance with respect to 
the first nucleotide of the tokens in the dictionary, with 97% starting 
with A or T, where 60% would be expected. BPE initially prioritizes the 
more frequent As and Ts to generate new tokens and thus amplifies the 
nucleotide frequency imbalance of the genome in the representation 
of the tokens’ first nucleotides.

Assessing performance metrics per token type, we discovered that 
6-mers perform worse on average for area under the curve (AUC) and 
accuracy in comparison to both shorter and longer tokens (Fig. 3f,g). 
Importantly, every token has an AUC above 50% and thus contributes 
to predictions. Tokens with the most accurate predictions (>99%), are 
the 9-mer ATTACAGGC and 12-mer TGTAATCCCAGC. The least accurate 
predictions (<1%) are made for the 6-mer TTTAGG. This heterogeneity 
may be related either to heterogeneous sequence ambiguity of the 
tokens or differences within GROVER’s learning. Therefore, we inves-
tigated what GROVER learns about the tokens themselves.

GROVER learns token characteristics and some annotations
What transformer models learn can be extracted by analysing token 
embeddings. Updated during the training process, they reflect how 
the trained model sees the tokens. We compared the average trained 
GROVER embeddings with static Word2Vec (W2V) embeddings20 for 
each token type. W2V was built to reflect average word associations in a 
multidimensional space and reflects average word associations within 
the vocabulary. To assess how much context learning can be inferred, we 
extract the maximum explainable variance (MEV)21, which takes from 
a principal component analysis (PCA) the variance explained from the 
first principal component (PC1) (Fig. 4a). Although W2V embedding 
shows with 15% a rather high MEV value for an LLM, GROVER lies with 
3.5% in a range typical for LLMs21. The first two PCs of W2V shows that 
there are no clear token clusters forming (Fig. 4b). Due to the high vari-
ance explained on PC1, its ranks were used to colour-code tokens as a 
visual measure of token similarity, which correlates with GC content 
(Spearman’s R = 0.93) (Fig. 4c). Some outlier tokens are also coloured 
blue, despite not being of high GC content. These are predominantly 
tokens that reside in Alu sequences and are thus surrounded by high 
GC content. A nonlinear dimensionality reduction of W2V embed-
ding with Uniform Manifold Approximation and Projections (UMAP) 
largely reflects the colour coding and also does not reveal major token 
clusters (Fig. 4d). PCA and UMAP on the trained embedding of GROVER 
also does not reveal major token clusters. This indicates that GROVER 
does not simply learn to spell out tokens10, but the trained embeddings 
reflect learned content beyond pure token identity. Dimensionality 
reduction reflects the token colours derived from the W2V embedding 
(Fig. 4e,f) on the second dimension. The first 20 PCs correlate with some 
quantifiable characteristics (Fig. 4g,h). W2V learns GC content on PC1 
(Spearman’s R = 0.93) and AG content on PC2 (Spearman’s R = 0.75). AG 
content is also a reflection of strand specificity relative to replication, 
transcription and repeats. Although the PCs explain less variance for 
GROVER, associations with token characteristics and annotation are 
more pronounced. Because most genome functional annotations cor-
relate with GC content, this was corrected for. PC1 strongly correlates 
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with token frequency (Spearman’s R = 0.88) (Fig. 4i), which played no 
visible role for W2V. BPE was used to reduce frequency imbalance in 
the vocabulary, but PC1 shows that remaining imbalances of token 
frequency is still a major feature learned by GROVER. PC2 correlates 

with GC content (Spearman’s R = −0.96) (Fig. 4j), similar to W2V’s PC1. 
PC3 correlates with AG content (Spearman’s R = 0.94) (Fig. 4k), which 
probably reflects the learning of DNA strand information. PC4 and PC6 
mildly correlate with token length (Spearman’s R = 0.39 and Spearman’s 
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Fig. 2 | Performance based selection of the vocabulary identifies 600 cycles of 
BPE as optimal. a, Selection of the optimal vocabulary through accuracy of next-
token prediction as a fine-tuning task for the foundation models using prediction 
of two- to six-nucleotide-long next-k-mers as readout. Depicted with solid points 
is accuracy with a solid line depicting a loess fit and the 95% confidence interval 
as shading. The interruption of the line illustrates the change of scale on the x 
axis. b, Performance comparison using accuracy of next-k-mer prediction as 
a fine-tuning task. Compared are GROVER with 600 cycles of BPE (BPE-600) 
with models based on k-mer tokenization, with lengths of four, five and six 
nucleotides, the human model of NT with 500 million parameters (NT-Human), 

HyenaDNA and DNABERT-2. c, Comparison of accuracy to TF-IDF models, which 
use two- to six-nucleotide-long k-mers and the GROVER vocabulary (BPE-600). 
These models take only token frequencies into account, which are used to  
train a random forest model. They are not learning context between tokens.  
d, Performance assessment of GROVER with 600 cycles of BPE using accuracy 
for the masked token being predicted as the top 1 token, up to top 60: that is, the 
top 10%. e, Performance assessment of GROVER with 600 cycles of BPE using 
perplexity divided by the total number of words in the dictionary. Comparison 
with models based on k-mer-tokenization, with lengths of four, five and six 
nucleotides.
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R = 0.43, respectively) (Fig. 4l,n). Token length is also related to token 
frequencies, which may result in these mild correlations. Finally, PC5 
correlates with AC content (Spearman’s R = −0.81) (Fig. 4m), which 
complements GC and AG content. Lower PCs show additional mild 
associations with certain repeat classes, gene transcription and replica-
tion timing (Fig. 4h). Although GROVER learns with an unsupervised 
strategy, it clearly learns to separate token characteristics. Hierarchi-
cal clustering on the Euclidean distance of the average trained token 
embeddings leads to similar results (Supplementary Fig. 2). The most 
prominent cluster is composed on high-frequency 4-mers and 5-mers. 
GC content, AG content and token length contribute to the token dis-
tances. There are tokens that almost exclusively localize to repeat 

elements. Although there is also clustering visible for tokens with vari-
able contribution to chromatin colours, beyond repeats there is no clear 
assignment of tokens to specific genome functional elements. Taken 
together, GROVER learns from token identity, but learning of functional 
genomics features needs to rely on a larger sequence context.

GROVER learns context
To assess how much GROVER sees context for individual token types, 
we use self-similarity: that is, cosine similarity between trained embed-
dings across a token type’s different contexts (Fig. 5a). The more 
contextualized the representations are, the lower self-similarity we 
expect. Using hierarchical clustering on the Euclidean distance over 
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self-similarities for each transformer layer, clustering resembles the 
analogous results of clustering based on average trained embeddings. 
Tokens that localize largely to repeats show the highest self-similarity 
almost throughout the transformer layers. They are also distinct in 
their good per-token performance metrics and long token lengths. 
Otherwise, high self-similarity in layer 12 also highlights a special 
token group, short tokens with high frequency, which also show good 
performance metrics. For the other tokens, it can be concluded that 
dependent on their cluster, there is low self-similarity in different lay-
ers, which indicates contextualized learning. To investigate whether 
there is sufficient context to reflect particular genome biology, we 
used trained embeddings for the classify token (CLS) summarising 
the trained embeddings per window of 510 tokens (average 2.1 kb) 
over the genome to interrogate which regions GROVER identifies as 
similar or dissimilar (Fig. 5b–d). UMAP shows a spread of sequence 
context with some clustering. Annotation of repeats over the win-
dows (Fig. 5b) indeed shows that long interspersed nuclear elements 
(LINEs) form distinct clusters dependent on their orientation relative 
to the tokenization direction. Similar patterns are formed by short 
interspersed nuclear elements (SINEs), of which Alu elements are the 
most prominent representative. Long terminal repeats (LTRs), satellite 
repeats, as well as low-complexity and simple repeats cover distinct ter-
ritories. Annotation of chromatin colours (Fig. 5c) also shows distinct 
locations for most chromatin features. Within these features there has 
not been a strong enrichment of particular token sequences (Fig. 5a), 
which suggests that sequence context has been learned. Differentiat-
ing some selected elements for their predominant direction relative 
to tokenization as well as replication timing reveals that GROVER not 
only recognizes the elements in question by giving them distinct ter-
ritories in the trained embedding space but also separates them by their 
directionality (Fig. 5d). Representation of directionality becomes even 
more pronounced for repeat elements with little fragmentation (LINE1 
6 kb ± 300 bp, LTR > 1 kb, Alus 300 bp ± 30 bp). Correlation between 
direction of replication and direction of genes becomes visible as well 
as the anticorrelation of both with direction of LINE elements, which 
preferentially localize on the strand antisense to replication22. GROVER 
also assigns distinct territories to replication timing without explicitly 
being given information beyond DNA sequence. Therefore, GROVER 
can learn biological information and epigenetic phenomena directly 
from sequence.

GROVER can be fine-tuned for tasks on genome biology
To show the suitability of GROVER for genome biology questions, we 
selected three representative fine-tuning tasks. Prom300 was adapted 
with some minor modifications from ref. 7 (Fig. 6a). In short, promot-
ers are selected for sequences around transcription start sites (TSS) 
−250 bp/+50 bp and classified as actual promoters versus promoters 
with shuffled tokens. Shuffling was implemented rather than taking 

non-promoter sequences or nucleotide exchanges to give token iden-
tity and frequency less relevance for the task. Shuffling relative to 
BPE-600, the task performs with a Matthew’s correlation coefficient 
(MCC) of 99.6% as compared to 79% for the 4-mer model, the model 
with second-best performance (Fig. 6b). MCC is comparable to other 
performance metrics and results relative to shuffling with fixed-k-mer 
tokens (Supplementary Fig. 3). Interestingly, for this task, token fre-
quency is still very informative, with an MCC of 67% for the TF-IDF 5-mer 
model (Fig. 6c). A more challenging task is PromScan (Fig. 6d), where 
1 kb windows are selected from 10 kb regions around the TSS and clas-
sified for overlap with the TSS. Due to unbalanced classes, this task is 
more challenging, yet GROVER recognizes the TSS windows with an 
MCC of 63% as compared to 52% for NT, the second-best-performing 
human model (Fig. 6e) and 39% for TF-IDF 3-mers, the best-performing 
context-free model (Fig. 6f). Other performance metrics show similar 
results (Supplementary Fig. 4). Finally, we developed a task of pre-
dicting protein–DNA binding focusing on the CCCTC-binding fac-
tor (CTCF) (Fig. 6g). The task is to recognize which sites that contain 
a CTCF binding motif are indeed bound by the protein according to 
ChIP–seq data from HepG2 cells obtained from ENCODE23. Although 
there are ~85,000 binding motifs in the human genome, only ~32,000 
are actually bound by CTCF. Beyond the motif, sequence context with 
particular physicochemical properties of the DNA, as well as binding of 
other proteins, determines whether a protein indeed binds its assigned 
motif. GROVER achieves for this task an MCC of 60% as compared to 
59% of the multispecies model DNABERT-2, the next-best-performing 
model (Fig. 6h). For this task, a TF-IDF 4-mer model reaches an MCC of 
26% (Fig. 6i). The performance is comparable when using other per-
formance metrics (Supplementary Fig. 5).

To compare with other published benchmarking tasks, we derived 
the scores from refs. 8,13, who defined the benchmarking tasks ‘NT 
tasks’ and ‘Genome Understanding Evaluation (GUE) tasks’, respectively 
(Fig. 6j and Supplementary Fig. 6). Comparing MCCs between human 
models, multispecies models and GROVER shows that the performance 
is comparable for most tasks. The two NT-enhancer prediction tasks 
represent the hardest tasks with an MCC for GROVER of 58% and 46%, 
which outperforms all other DLMs. However, comparison to the TF-IDF 
models shows that this is only marginally improved over the BPE-600 
TF-IDF model (55%) and even inferior for the second enhancer predic-
tion task (57%). The NT-promoter models all perform similarly both for 
the human and multispecies models. However, this task can already be 
explained through token frequency with an MCC up to 87%. Splice sites 
are the main task where DLMs strongly outperform TF-IDF models and 
among the human models, GROVER is slightly outperformed by NT and 
DNABERT with an MCC of 94%, 96% and 96%, respectively, for all splice 
sites. DNABERT is a model that mainly learns token identity due to the 
design of overlapping tokens10. Therefore, this task is likely dependent 
on short sequence motifs rather than larger sequence context. Similar 

Fig. 4 | Average GROVER token embedding shows learning of genome 
information content. a, MEV derived from PC1 of the GROVER embedding 
averaged for each token, compared to W2V static embedding, derived from the 
same vocabulary. b, PCA of the GROVER vocabulary-derived W2V embedding for 
the first two PCs, with their explained variance. Colour represents the rank within 
W2V PC1. c, Correlation of W2V PC1 with token GC content. Colour represents the 
rank within W2V PC1. R = Spearman’s R correlation coefficient. d, UMAP of the 
W2V embedding of the GROVER vocabulary. Colour represents the rank within 
W2V PC1. e, PCA of the GROVER vocabulary embedding, averaged per token, 
for the first two PCs, with their explained variance. Colour represents the rank 
within W2V PC1. f, UMAP of the GROVER vocabulary embedding, averaged per 
token. Colour represents the rank within W2V PC1. g,h, Correlation of vocabulary 
characteristics and genome biology annotation of the vocabulary with the 
GROVER vocabulary-derived W2V embedding (g) and with the GROVER token 
averaged embedding (h). Depicted is variance explained throughout the first 
20 PCs of a PCA, along with the Spearman correlation with token characteristics 

and percentage of tokens of a specific token sequence that belong to genome 
annotation categories. Gene element annotations with gene promoters 
(transcriptional start site ±1 kb), 5′ and 3′ untranslated regions, exons, introns, 
gene downstream regions (10 kb) and distal intergenic regions, as well as gene 
strand, coding sequence strand, chromatin colours, replication timing and 
replication strand, were corrected for GC content (as marked with an asterisk) 
using linear regression. Repeat annotations are obtained from RepeatMasker: 
SINE, short interspersed nuclear elements; rRNA, ribosomal RNA; LTR, long 
terminal repeats; LINE, long interspersed nuclear elements. i–n, Correlation of 
the PCs from a PCA of the GROVER token averaged embedding with features that 
were identified to explain much of the variance explained in the PC: that is, PC1 
and token frequency (i), PC2 and GC content (j), PC3 and AG content (k), PC4/PC6 
and token length (l,n) and PC5 and AC content (m). ChromCol, chromatin colour; 
CNV, copy number variation; txn, transcribed; UTR, untranslated region; var. 
expl., variance explained.
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to the NT tasks, the GUE tasks (Supplementary Fig. 6) also show largely 
marginal performance gains over TF-IDF models, with the exception of 
tasks on splice sites. GROVER and DNABERT-2 do particularly well on the 
transcription factor binding tasks (MCCtf4 = 75% and 77%, respectively), 
especially when considering that the BPE-600 TF-IDF model explains 
the task less (MCCtf4 = 59%) than the 6-mer model (MCCtf4 = 72%), which 
would be the corresponding model to NT (MCCtf4 = 61%). However, the 
generally high-performance metrics for the TF-IDF models raise the 

question of how much of the performance can be explained by learn-
ing token frequencies versus relevant sequence context. Still, GROVER 
generally shows similar performance to the other models that had 
already been assessed for the GUE and NT tasks.

In conclusion, GROVER not only achieves good performance with 
tasks that are agnostic to genome biology questions but also achieves 
good performance with tasks that directly address genome function, 
particularly those that have been designed with a special focus on 
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Fig. 5 | GROVER learns token context and genome annotation. a, Self-
similarity per token sequence as extracted by cosine similarity of the same token 
in different contexts throughout the 12 transformer layers. Self-similarity is 
clustered with hierarchical clustering by Euclidean distance. Cluster annotation 
with token characteristics: that is, token frequencies in the genome, token length, 
performance (AUC), W2V embedding PC1, proportion of tokens falling into 
chromatin colours of ChromHMM and repeats. b–d, UMAP for the summarized 

embedding of regions in the genome, 510 tokens in size. Regions are annotated 
relative to repeats (b) and chromatin colours (c) and shown if they overlap with 
the feature of interest. Comparisons dependent on feature direction relative 
to the tokenization direction (+ strand) and annotation relative to early or late-
replicating DNA as measured by OK-Seq (d). Bins with a unique assignment of 
direction or annotation are shown. A., active; W., weak; P., poised; S., strong; Rep., 
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Fig. 6 | GROVER outperforms other models for biological fine-tuning tasks. 
GROVER tokens (BPE-600) are coloured by their rank in PC1 of W2V embedding. 
a, Prom300 promoter classification, defined as sequences around TSS 
−249/+50 nt. Promoters are classified into real promoters versus promoters  
with shuffled BPE-600 tokens. The OLIG2 promoter is shown in the context  
of the nucleotide sequence with A in green, C in blue, G in yellow and T in red.  
b, MCC for the Prom300 task of GROVER, human NT, HyenaDNA, DNABERT-2 
and models of fixed-size k-mers. c, Comparison of MCC for the Prom300 task 
to TF-IDF random forest classifiers with two- to six-nucleotide-long k-mers and 
BPE-600. d, For PromScan promoter assignment, windows are defined in regions 
of 1,001 bp around the TSS +/− 10 kb with an offset of 300 bp. PromScan classifies 
overlap with the TSS. Shown is the OLIG2 promoter with BPE-600. e, MCC for the 
PromScan task of GROVER versus human NT, HyenaDNA and models of fixed-size 
k-mers. DNABERT-2 is not included due to problems with memory with this task. 

f, Comparison of MCC for the PromScan task to TF-IDF random forest classifiers 
with two- to six-nucleotide-long k-mers and BPE-600. g, CTCF binding prediction 
task, where regions are defined as CTCF binding motifs ± 500 bp and GROVER is 
trained for CTCF binding, determined by ChIP–seq in HepG2 cells. Depicted is 
a random region in the genome with a prominent CTCF binding peak on a CTCF 
binding motif, in the context of BPE-600. h, MCC for the CTCF-motif-binding 
task of GROVER versus human NT, HyenaDNA, DNABERT-2 and models of fixed-
size k-mers. i, Comparison of MCC for the CTCF-motif-binding task to TF-IDF 
random forest classifiers with two- to six-nucleotide-long k-mers and BPE-600. 
j, MCC for the tasks of the NT study8, for which human data are available. MCCs 
were obtained from the study and complemented with performance metrics for 
GROVER and TF-IDF random forest classifiers with two- to six-nucleotide-long 
k-mers and BPE-600. acc., acceptor; chr., chromosome; don., donor.
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learning sequence context. It is still an open question how protein–DNA 
binding is generally encoded in the DNA beyond direct binding motifs. 
The larger context for this and other questions on genome function 
can now be addressed through extracting the learned representations 
from GROVER.

Discussion
We have built GROVER, a foundation DLM with an optimized vocabu-
lary for the human genome, selected using next-k-mer prediction, a 
fine-tuning task that is independent of the structure of the foundation 
model and thus can handle different vocabulary sizes and tokeniza-
tion strategies without directly selecting models for biological tasks. 
GROVER can grasp DNA language structure by learning both charac-
teristics of the tokens and larger sequence contexts. It outperforms 
similar models both for next-k-mer prediction and fine-tuning tasks 
that address promoter identification and DNA–protein binding. 
Thus, we have identified the vocabulary that well defines the infor-
mation of the human genome as it can be extracted by a BERT model.  
However, we have also revealed that standard tasks to interrogate genome  
biology show good predictability from token frequencies alone, which 
indicates that there is a need to develop further tasks to interrogate 
learning independent of token frequency that target learning of  
biological sequence context.

GROVER can be a basis to extract the information content of 
the genome by learning its grammatical and general language struc-
tures via analysing trained token embeddings, learning gradients or 
through extracting attention from the foundation model. These can 
also be obtained from specific fine-tuning tasks to interrogate specific 
genome biology. Such tasks could be genome annotation with func-
tional data, genotype-phenotype predictions or technical tasks such 
as data augmentation.

GROVER uses the human genome exclusively. For DNABERT-2 (ref. 
13) and NT8, different genomes are combined in one model. Although 
using one genome limits the training data, the models serve different 
purposes given that different genomes follow different language rules. 
For example, the human genome contains about 12% primate-specific 
Alu retrotransposons. The coding genome is relatively conserved over 
species; the non-coding genome is more unique. It is these language 
rules we aim to learn with GROVER in a transparent way, specifically 
for biomedical questions. Despite this one-species strategy, we are not 
compromising in regards to performance for biological fine-tuning 
tasks. However, this approach may be limited for smaller genomes.

Different layers of the genetic code can now be approached 
through these models, and it can be extracted how DNA is coding for 
protein and transcripts, for gene regulation, self-propagation and 
stability. In there lies not only the key to genotype-to-phenotype pre-
diction and the information of what in DNA makes us human but also 
information about predisposition to disease and treatment responses, 
which is to a large extent encoded in the patients’ general and somatic 
genomes. DLMs like GROVER therefore have the potential to substan-
tially push progress in personalized medicine.

Methods
Unless otherwise specified as being written in R (v.4.2.1), all code is 
written in Python (v.3.12.2) with Scikit-learn (v.1.4.2).

Data
We used the Homo sapiens (human) genome assembly GRCh37 (hg19) 
and only take into account the sequences that contain A, C, G and T. 
Tokenization was performed as described below. Each chromosome is 
split into windows varying between 20 and 510 tokens in size. Specifi-
cally, with a 50% probability, the size of a window is 510. With another 
50% probability, its size is a random integer between 20 and 510. Eighty 
percent of the windows are taken as a training set and the remaining 
windows as a test set.

Byte-pair tokenization
BPE or byte-pair tokenization was originally developed as a text com-
pression algorithm14 and is now widely adapted as a tokenization strat-
egy for transformer models on natural languages like GPT-3 (ref. 4). We 
adapted the tokenizer from ref. 24 for genome sequence and used up 
to 5,000 cycles of tokenization.

Tokens are visualized in a Word cloud with the R package Word-
cloud2 (https://github.com/Lchiffon/wordcloud2).

The optimal vocabulary was selected through performance assess-
ment with next-k-mer prediction with GROVER.

The DLM GROVER
GROVER adapts the transformer encoder BERT architecture9. It takes 
as input tokenized sequences of up to 510 tokens in length. In addition 
to the vocabulary generated from the genome, GROVER takes five 
special tokens: CLS, PAD, UNK, SEP and MASK. These special tokens are 
commonly used in language models: CLS represents the classification 
token, PAD is used for padding the right side of the sequence in case 
it is shorter than the maximum input length of the model, UNK is for 
sequences of nucleotides that do not belong to the vocabulary, SEP 
is used to indicate the end of a sequence, and MASK represents the 
masked tokens. The model is trained for masked token prediction.

In a given input sequence, 2.2% of the tokens are selected, of which 
80% are substituted with a special mask [MASK] token; 10% of tokens 
are randomly replaced with standard tokens (that is, any token different 
from the class [CLS], pad [PAD] or mask [MASK] token).

To pretrain the model, we gather more than 5 million samples 
from the genome. Training was carried out on clusters of A100 
graphics processing units, on batches of sizes 64 with an Adam opti-
mizer and a learning rate of 4−4, epsilon 10−6, beta 0.99, maximum 
input length of 50, dropout probability of 0.5, and 0.022 probability  
of masking.

Next-k-mer prediction
For model validation and selection of the optimal vocabulary, we used 
a fine-tuning task of next-k-mer prediction that we previously devel-
oped10. It allows us to compare different foundation models that rely 
on context learning independent of how their vocabulary was gener-
ated, the size of the vocabulary or the learning parameters. The task 
is not dependent on a specific biological question. The principle of 
next-k-mer prediction is to take the pretrained language model and 
fine-tune it to predict the next k-mer, where k is 2, 3, 4, 5 and 6.

Chromosome 21 is split into sequences of 510 nucleotides, where 
we keep the first 56 nucleotides of each sequence. We randomly select 
500,000 sequences, 80% for training and 20% for testing.

The samples are defined as the first 50 nucleotides of each 
sequence. For the labels, we take the k nucleotides that follow the 50 
nucleotides. The next-k-mer model has 4k different classes: that is, 16, 
64, 256, 1,024 and 4,096, respectively, which are all the permutations 
of k nucleotides. We use an Adam optimizer with learning rate 10−6, 
epsilon 10−8, beta 0.99, maximum input length of 50, dropout prob-
ability of 0.5 and batch_size 64.

For NT, HyenaDNA and DNABERT-2, the models are fine-tuned with 
the pretrained models provided by the authors.

From the models, we extract performance metrics and use accu-
racy of token prediction for the decision of the optimal vocabulary 
and comparison to other tokenization strategies. For comparison of 
byte-pair tokenization cycles and visualization with ggplot2 (v.3.4.1) in 
R (v.4.2.1), we use a loess fit with a 95% confidence interval.

k-mer models
For the k-mer models, we use the same parameters and samples as 
GROVER, differing only by the vocabulary and tokenization. Tokeni-
zation is performed with non-overlapping k-mers four, five and six 
nucleotides in length. The vocabularies consist of all the permutations 
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of k consecutive nucleotides (that is 256, 1,024 and 4,096, respectively) 
as well as the five special tokens described above.

W2V
For comparison of token embeddings, we use W2V as a static word 
embedding tool20 that maps each word to a single vector. In general, this 
mapping function does not account for lexical ambiguity: that identical 
letter sequences can have multiple interpretations or different gram-
matical roles. We use W2V with a continuous bag-of-words approach for 
learning representations of words. Continuous bag-of-words predicts 
the middle word from surrounding words in a sentence with a small 
number of words as context. The order of the words is not taken into 
consideration. To generate the W2V embeddings, 300,000 sequences 
are randomly chosen from the training set. We use the W2V module 
of Gensim (https://radimrehurek.com/gensim/models/word2vec.
html), with the following parameters: min_count = 1, vector_size = 
768, window = 5.

Model embedding
We obtain a contextualized word representation that is the token 
embedding of the BERT model. To obtain the trained token embeddings 
of the model, we extract the weights of the layer ‘word_embeddings’. 
Where needed, we derive either the embedding of all 12 transformer 
layers, a summarized version for each token sequence or a summarized 
version for sequences of 510 token lengths with the classify token (CLS).

Dimensionality reduction
We obtain dimensionality reduction from average token embeddings 
that are represented as vectors with length 768. PCA and UMAP were 
performed in R (v.4.2.1) with the packages ‘stats’ (v.4.2.1) and ‘UMAP’ 
(v.0.2.10.0), respectively, with default parameters. MEV as a measure 
for context learning21 was extracted as the variance explained by PC1.

Clustering of the token embeddings and self-similarity was per-
formed with hierarchical clustering of Euclidean distance with pheat-
map (v.1.0.12).

Dimensionality reduction for extracted embeddings of genome 
windows was performed in Python. The whole genome was split in 
non-overlapping bins of 510 tokens. Then these sequences were used as 
input to the model to obtain the CLS token embedding of the last layer. 
The 768 dimensions of the embedding matrix were reduced to two 
dimensions using UMAP. UMAP was configured with standard param-
eters, including 15 nearest neighbours and a minimum distance of 0.1.

Self-similarity
Self-similarity was assessed as the cosine similarity of different embed-
dings from the same token sequence, separately for all 12 transformer 
layers of the BERT architecture.

Five thousand embeddings per token were gathered from the 
test set, and pairwise cosine similarity for each token was computed 
in every layer.

Genome annotation
Tokens and sequence windows were annotated to token characteristics 
and functional genomics data in R (v.4.2.1) with the GenomicRanges 
(v.1.50.2) package, for genome information BSgenome.Hsapiens.UCSC.
hg19 (v.1.4.3) and TxDb.Hsapiens.UCSC.hg19.knownGene (v.3.2.2). 
Sequence was derived with Biostrings (v.2.66.0) to obtain GC, AC, AG 
and nucleotide content as well as k-mer frequencies. Gene element 
annotation was performed with ChIPSeeker (v.1.34.1). Regression of GC 
content was performed using the residuals of a loess regression from 
the stat (v.4.2.1) package. Strand annotation relative to transcription 
was obtained from TxDb.Hsapiens.UCSC.hg19.knownGene (v.3.2.2). 
ChromHMM annotation was used from the GM12878 lymphoblastoid 
cell line from ENCODE, downloaded via the UCSC genome browser 
(https://www.genome.ucsc.edu/), where the repeat masker was also 

obtained for annotating repeats. Repeat classes were differentiated 
into the displayed categories, which were pooled with the respective 
‘?’ category. Categories that are not displayed separately were pooled 
as ‘other’. Replication strand and timing were obtained from OK-Seq 
data from K562 chronic myeloid leukaemia cells from the reanalysis 
by ref. 25 downloaded via GEO (GSE131417). Tokens were annotated 
by determining the proportion of tokens overlapping with a specific 
annotation. Genome regions were annotated by determining overlaps. 
For differential assignment of annotation by strand, only bins are 
visualized that have overlaps with the annotation in a unique direction. 
Replication timing is visualized only for early- and late-replicating DNA 
for clearer visualization than taking all four categories. Of the total 
ranges, 995 points of the 1,378,385 total ranges (0.07%) were regarded 
as outliers and not visualized. Their inclusion did not add information 
but impacted visibility.

Fine-tuning task promoter identification, Prom300
Promoter sequences were obtained from the EPD database (https://epd.
epfl.ch/) and lifted over to the hg19 assembly. Promoters were defined 
as the TSS −249/+50 bp. The corresponding byte-pair sequences were 
retrieved from the byte-pair-tokenized genome or converted into 
k-mer tokenized sequences with k = [4, 5, 6]. For generating negative 
class samples, each tokenized sequence was split into eight chunks, 
and the tokens of six randomly selected chunks were shuffled among 
those six chunks. For the classification task for correct or shuffled 
sequence, the dataset was split 80%–10%–10% for training, validation 
and test. For NT, HyenaDNA and DNABERT-2, the models are fine-tuned 
with the pretrained models provided by the authors.

Fine-tuning task promoter scanning, PromScan
The same human promoter annotations as used in the Prom300 task 
were taken in 10 kb windows around the TSS. The sequence was divided 
into overlapping 1,001 bp windows with a step size of 300 bp. Training 
was performed for classification of the presence of a TSS in a respec-
tive window. Only the central TSS was considered, even in the pres-
ence of more than one TSS. The dataset was split 80%–10%–10% for 
training, validation and test. The training was done with the ‘Trainer’ 
method of the ‘Transformers’ library, with the hyperparameters learn-
ing_rate = 1 × 10−6, batch size 8, warmup steps 50 and weight decay 
0.01. For NT and HyenaDNA, the models are fine-tuned with the pre-
trained models provided by the authors. DNABERT-2 struggles with 
the memory required for the larger ranges and sample sizes of this task 
and was therefore excluded.

CTCF motif binding
CTCF ChIP–seq peaks in HepG2 cells were derived from the ENCODE 
project (https://www.encodeproject.org/experiments/ENCSR-
000BIE/). The human CTCF motif was retrieved from the JASPAR 
database (https://jaspar.genereg.net/matrix/MA0139.1/), and motif 
occurrences in the hg19 genome were derived with FIMO from the 
MEME suite using the default background model and P < 10−4. Motifs 
that intersect with a CTCF peak were considered to be CTCF bound. 
Classification was performed for bound and unbound CTCF motifs 
for a 1 kb window around the binding motif with a split 80%–10%–10% 
for training, validation and test. Training was done with the ‘Trainer’ 
method of the ‘Transformers’ library, with the hyperparameters learn-
ing_rate = 1 × 10−6, batch size 16, warmup steps 50 and weight decay 0.01. 
For NT, HyenaDNA and DNABERT-2, the models are fine-tuned with the 
pretrained models provided by the authors.

Fine-tuning task GUE
Datasets were obtained from https://github.com/MAGICS-LAB/
DNABERT_2. We selected only the tasks with human data: promoter 
detection, core promoter detection, transcription factor binding 
site prediction and splice site prediction. Training was done with the 
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‘Trainer’ method of the ‘Transformers’ library, with the hyperparam-
eters warmup_steps = 50, weight_decay = 0.01, learning_rate = 1 × 10−4 
and adamw_torch as optimizer.

Fine-tuning task NT
Datasets were obtained from https://huggingface.co/datasets/
InstaDeepAI/nucleotide_transformer_downstream_tasks, with the 
‘load_dataset’ method and InstaDeepAI/nucleotide_transformer_down-
stream_tasks as parameter. The test split was used to report the results, 
and 5% of the training split was used for validation. We selected only the 
tasks with human data: promoter sequence prediction (promoter_all, 
promoter_no_tata, promoter_tata), enhancer sequence prediction 
(enhancers, enhancers_types) and splice site prediction (splice_sites_
acceptors, splice_sites_all, splice_sites_donors). Training was done with 
the ‘Trainer’ method of the ‘Transformers’ library, with the hyperpa-
rameters learning_rate = 1 × 10−5 and batch size 8.

TF-IDF
Initially the sequences are tokenized with non-overlapping k-mers  
(2, 3, 4, 5, 6) and with the BPE of GROVER. We use ‘TfidfVectorizer’ from 
scikit (v.1.5) with default parameters to extract the features of each 
sequence of the training set. From these features, we train a random 
forest classifier and choose the best number of estimators between 100 
and 2,000. This model is purely trained on token frequencies without 
any sense of grammar, syntax or overall ‘language’ context between 
tokens. It thus serves as a negative control for tasks that benefit from 
application of a language model.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Pretrained GROVER26 with 600 cycles of BPE and the respective 
tokenised genome are available at https://huggingface.co/PoetschLab/
GROVER. The model can be directly implemented with Python for 
any suitable fine-tuning task. The vocabulary for the tokenized hg19 
genome (600 cycles)27 is available as a data resource for fine-tuning 
models based on GROVER and can also be used to train different model 
architectures or for different purposes. The full datasets are available 
via Zenodo at https://doi.org/10.5281/zenodo.8373202 (ref. 28). Source 
data are provided with this paper.

Code availability
The full code in R and Python needed to reproduce the findings 
of this study is available via Zenodo at https://doi.org/10.5281/
zenodo.8373202 (ref. 28). A tutorial on how to use GROVER as a 
foundation model is available via Zenodo at https://doi.org/10.5281/
zenodo.8373158 (ref. 29). The tutorial includes full instructions 
for configuring GROVER for a fine-tuning task using the exam-
ple of CTCF binding prediction. It is written as a Jupyter notebook  
with Python.
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