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Abstract

We present the first whiteness hypothesis test for graphs, i.e., a whiteness test for
multivariate time series associated with the nodes of a dynamic graph; as such,
the test represents an important model assessment tool for graph deep learning,
e.g., in forecasting setups. The statistical test aims at detecting existing serial
dependencies among close-in-time observations, as well as spatial dependencies
among neighboring observations given the underlying graph. The proposed AZ-
test can be intended as a spatio-temporal extension of traditional tests designed
for system identification to graph signals. The AZ-test is versatile, allowing the
underlying graph to be dynamic, changing in topology and set of nodes over time,
and weighted, thus accounting for connections of different strength, as it is the
case in many application scenarios like sensor and transportation networks. The
asymptotic distribution of the designed test can be derived under the null hypothesis
without assuming identically distributed data. We show the effectiveness of the test
on both synthetic and real-world problems, and illustrate how it can be employed to
assess the quality of spatio-temporal forecasting models by analyzing the prediction
residuals appended to the graph stream.

1 Introduction

In the past decade, machine learning methods based on graph-structured data have largely contributed
to the field of multivariate time-series analysis with major achievements, e.g., in forecasting and
missing values imputation [7, 25]. In this paper, we focus on spatio-temporal time series xv[t], t =
1, 2, . . . , positioned1 at the vertices v ∈ V of a graph; the functional/structural dependency existing
among nodes — say, over space — is modeled by a set E ∈ V × V of relations. We denote
with G = (V,E,X) the resulting (directed or undirected) graph whose nodes v are associated
with stochastic time series xv[t] ∈ X, and name X = {xv[t] | ∀ v, t} as a graph signal, to be
intuitively intended as a set of measurements appended to the graph nodes. The framework can
be naturally extended to deal with graphs seen as a realization of a random variable. Graph G can
be static, meaning that vertex and edge sets are constant over time, or dynamic, hence modeling
frameworks where topology and number of nodes can change. Dynamic graphs appear frequently
in cyber-physical systems where sensors can be added or removed, or node data are missing either
pointwise or for lapses of time, e.g., following communication or sensor readout faults. Another
example is provided by social networks where users expand their set of friends or change preferences
and interests over time. Indeed, we account for graphs with weighted edges encoding, for instance,

1Known as time-vertex signals too, e.g., see [21].
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Figure 1: A dynamic weighted graph and associated graph signal. The dynamic graph is defined over
a set V of nodes; without requesting all nodes to be always available over time. The topology of the
graph is represented by solid lines. Dashed lines represent temporal edges connecting the same node
at consecutive time steps. The graph signal at generic time step t and node v is multivariate. On the
left-hand side, a single snapshot of the temporal graph and graph signal are extracted.

the capacity or the strength of the link. Figure 1 provides a visualization of a weighted dynamic graph
G with associated graph signal X.

In the presented setting we address whether the graph G is white or not. We define a white graph as a
graph G = (V,E,X) where for all distinct xu[ti],xv[tj ] ∈ X we have that E [xu[ti]] = 0F is the
F -dimensional zero vector (with F dimension of the node signals) and E

[
xu[ti]xv[tj ]

>] = 0F×F
is the F × F zero matrix, in accordance with traditional white signals;2 as we will see, the graph
structure is fundamental asset in designing a whiteness test. In turn, identifying white graphs entails
us, for instance, to assess the optimality of a predictive model fθ trained to solve a forecasting task
associated with stochastic graph signal X. In this prediction application, we consider a residual
graph with graph signal R composed of residuals rv[t] = x̂v[t]− xv[t] evaluated over the estimated
values x̂v[t] given by model fθ and measured ones xv[t]. Indeed, if the residual graph is not white,
there is further information in data not exploited by predictive model fθ and the inference problem
shows margins for improvement. While assessing whether X (or R) is zero-mean can be carried out
with traditional centrality tests for generic data samples [24], here we focus on the rather unexplored
problem of detecting data dependencies within graph signals.

In this manuscript, we propose a novel whiteness test to decide whether a graph G can be considered
white or not, i.e., there is prominent evidence of serial (time) and/or spatial correlation among data
observations conditioned to the graph structure. In general, testing the assumption of independent
signals is an ill-posed problem as it requires studying unknown distributions pv,t (of the stochastic
process associated with X) whose number is proportional to the cardinality of nodes and time
steps, and for each of which we have a single observation only. We solve this ill-posed problem by
integrating into the whiteness assessment method the relational inductive bias associated with the
graph topology and the temporal coherence. The AZ-test we propose extends traditional methods for
serial correlation [14, 18, 19] to deal with the general case of spatio-temporal correlation and, with
this alphabetic encompassing name, we emphasize its widespread applicability. To the best of our
knowledge, this is the first paper proposing a general whiteness test. The suggested test statistic is
based on counting the positive and negative signs of the product between spatially and temporally
adjacent observations, whose disproportion indicates either direct or inverse correlation between a
variables pair; indeed, authors can consider different statistics.

The contributions of the paper can be summarized as

• We propose the first statistical test to verify the whiteness hypothesis for a, possibly weighted
and dynamic, graph G [Sections 3 and 4].

• We derive the limit distribution of the test statistics under the null hypothesis [Theorem 1].
2A scalar stationary time series is said to be white if it is zero-mean and the autocorrelation function

κ(τ) = E[x[t]x[t− τ ]] = 0 for all τ 6= 0 which, in turn, holds if and only if the power density spectrum S(ω)
is constant [20]; the term “white” is in analogy the white light containing all frequencies in the visible spectrum.
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Table 1: Configurations in which the proposed whiteness test is applicable.
Topology Temp. dimension Edge weights Node signals Correlation

Static T = 1 Absent Scalar (F = 1) 1-hop/lag
Dynamic T > 1 Present Multivariate (F > 1) K-hop/lag (K > 1)

• We present a procedure based on the proposed test to assess whether a given forecasting
model can be considered optimal with respect to the given data or not [Section 5.2].

The proposed whiteness test is computationally efficient for sparse graphs as the number of operations
scales linearly with the number of edges and time steps. Moreover, the test is very general and allows
us for incorporating very relevant application contexts and operational scenarios, e.g., those listed
in Table 1. In particular, the test is applicable when xv[t] is uni- or multivariate, when G is static or
dynamic, when the edges of G are weighted, and when the graph signal is composed of a set of time
series or it is static, namely, X = {xv ∈ RF | v ∈ V }, and there is no temporal dimension involved.

The remainder of the paper is structured as follows. Section 2 reviews related work. Section 3 presents
the test in the simplified case without the temporal dimension. Section 4 shows how the test designed
in Section 3 can be applied to spatio-temporal signals on dynamic graphs. Section 5 reports empirical
evidence of the statistical power of the test and shows how to assess the optimality of forecasting
models by applying the test to prediction residuals. Finally, Section 6 draws some conclusions and
provides pointers to future research. Supplemental material accompanies the manuscript with proofs,
extensions of the proposed test, and further experimental details.

2 Related work

Among the most renowned whiteness tests, there are the Durbin-Watson test [9] and the Ljung-Box
test [19]. Both have been introduced to test serial dependency in a univariate time series. More
recently, Drouiche [8] proposed a test that operates on the spectral density of the signal. Several
whiteness tests have been proposed for multivariate data as well, e.g., see [2, 5, 14, 16, 18].

To the best of our knowledge, no work has presented a whiteness test for spatio-temporal signals,
and what proposed here is pioneering in this direction. A few tests consider a graph structure to
represent relationships among the given observations [4, 11, 22], but none of them is a whiteness test.
The AZ-test we propose shares the fundamental idea of Geary’s test [12] of counting sign changes
between consecutive observations in a univariate time series, but introduces several advancements
that make it a substantial and original contribution. Apart from the fact we are considering graphs,
which is a major contribution per se, the most important result is the applicability of the test to
spatio-temporal signals defined over graphs. Secondly, the designed test is general enough to operate
on weighted and dynamic graphs with multivariate node signals.

3 Whiteness test for static graphs

Figure 2: A static graph G
with time-independent multi-
variate node signals.

For the sake of clarity, we first present the test in a simplified — yet
relevant — setting characterized by a static weighted graph and a
static signal with a single observation (scalar or vector) associated
with each node; an example is given in Figure 2. The most gen-
eral case where time is involved and the graph is dynamic, as in the
scenario depicted in Figure 1, is provided in next Section 4 as an ex-
tension of what we present here by considering a suitably constructed
(multiplex) graph involving temporal edges alongside spatial edges.

Consider a weighted graph G = (V,E,W,X) defined over node set
V, edge set E ⊆ V × V without self-loops,3 and scalar weights

W = {wu,v ∈ R+ | (u, v) ∈ E}.

3As we comment below, and in Supplemental Material, we avoid self-loops to simplify the notation only.
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The graph topology and weights define the spatial structure underlying a graph signal

X = {xv ∈ RF | v ∈ V}

defined over the nodes of G. We assume that the edge weights are positive real numbers that encode
the strength/capacity of the links; without loss of generality, we consider absent edges characterized
by a weight equal to zero. Node signals xv ∈ RF can be scalars (F = 1) or vectors (F > 1), but
they are static, meaning that no temporal information is associated with them, as shown in Figure 2.
Essentially, we consider a single snapshot of the dynamic graph depicted in Figure 1.

The test The ultimate goal is to test if graph signal X is white or it displays dependencies among
nodes. The statistical hypotheses of the test are{

H0 : xu,xv are uncorrelated for all u 6= v ∈ V,
H1 : xu,xv are correlated for some u 6= v ∈ V, (1)

and the proposed AZ-whiteness test is

If |C(G)| > γ =⇒ Reject the null hypothesis H0, (2)

and it is based on threshold γ > 0 and statistic

C(G) =
C̃(G)√
W

∼ N (0, 1) as |E| → ∞, (3)

(as we prove in Theorem 1), where |E| denotes the cardinality of set E — that is, the number of
edges in G — while C(G) is defined over quantities

C̃(G) =
∑

(u,v)∈E

wu,v sgn(x>u xv), (4)

W =
∑

(u,v)∈E\E↔

w2
u,v +

∑
(u,v)∈E↔

(wu,v + wv,v)
2 (5)

with sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0, and sgn(x) = 0 if x = 0, and where set E↔
accounts for multiple edges linking the same pair of nodes, that is E↔ = ∅ for undirected graphs,
otherwise E↔ = {(u, v) ∈ E | u < v, (v, u) ∈ E}.
The intuition behind (2) to test null hypothesis H0 against H1 is that, when the node signals in X are
mutually independent and centered around zero, then random variables sgn(x>u xv) for all u 6= v ∈ V
are centered in zero too as proven in Lemma 1 (supplemental material). In particular, in the case
of scalar signals, sgn(xu xv) = sgn(xu) sgn(xv) and we observe that large values of C(G) � 0
indicate the presence of few sign changes between observations of adjacent nodes, which in turn
suggests correlation among variables. Similarly, negative correlation is revealed by C(G) � 0.
Therefore, |C(G)| � 0 is symptomatic of a dependent data set up, and justifies our test (2).

Theorem 1 supports the soundness AZ-whiteness test (2) and provides a distribution-free criterion to
select threshold γ granting a user-defined significance level α = P(Reject H0|H0), e.g., α = 0.05.

Theorem 1. Consider a weighted graph G = (V,E,W,X) without self-loops and stochastic graph
signal X = {xv ∈ RF | v ∈ V } on it, with xv 6= 0 almost surely. Under assumptions

(A1) All {xv | v ∈ V} are mutually independent (hypothesis H0 in (1)),

(A2) Exv

[
sgn(x̄>xv)

]
= 0 for all x̄ ∈ RF \ {0} and v ∈ V,

(A3) wu,v ∈ (0, w+] for all (u, v) ∈ E, and W →∞ as |E| → ∞,

the distribution of C(G) in (3) converges weakly to a standard Gaussian distribution N (0, 1) as the
number |E| of edges goes to infinity.

In light of above Theorem 1, threshold γ is selected to be the quantile 1 − α/2 of the standard
Gaussian distribution so that P(|C(G)| > γ | H0) = α, thus ensuring to meet the user-defined
significance level α.
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Before sketching the proof, we comment that, although Assumption (A2) is not always compatible
with the null-mean hypothesis for X to be white noise, we need (A2) to test data correlation only.
Moreover, in the scalar case with F = 1, (A2) reduces to ask that the median m of all xv is zero and,
when m 6= 0, we can safely4 and equivalently run the test on X′ = {xv−m | v ∈ V }. Notably, (A2)
allows node signals to have different distributions. Assumption (A3) is technical and takes part in the
limit case of |E| → ∞; intuitively, it ensures that all edges bring a tangible contribution to the final
statistics C(G). The same theorem can be proven under milder assumptions. Finally, the assumptions
of no self-loops and P(xv = 0) = 0 are made to simplify the notation only. More comments on the
assumptions of Theorem 1 can be found in Section B of the supplemental material.

Sketch of the proof. The proof of Theorem 1 is based on the fact that, under (A1) and (A2), random
variables sgn(x>v xu), for all (u, v) ∈ E, are mutually independent, including edges that share one
of the two ending nodes. It follows that statistic C̃(G) in (4) is a weighted sum of independent
Bernoulli random variables. Finally, we prove that, with bounded weights, the Lindeberg condition
(Equation 13, in the supplemental material) holds for C̃(G) under (A3), and conclude by applying the
central limit theorem [1] for independent, but not equally distributed, terms of C̃(G). The detailed
proof is given in Section A of the supplemental material.

Despite the apparently little amount of information required to perform the test (only the sign of
the scalar products x>v xu of all edges (u, v) ∈ E), Geary [12] has shown that for scalar time-series
(interpretable as a path graph) the test performance was aligned with that of more sophisticated tests.
Empirical evidence of the effectiveness of the AZ-whiteness test is given in Section 5.

4 Whiteness test for spatio-temporal graphs

In this section, we show how to apply the test designed in Section 3 to a generic spatio-temporal
signal associated with a possibly dynamic and weighted graph.

Consider a time frame [1, T ] and a discrete-time dynamic graph

~G =
(
~V , ~E, ~W, ~X

)
=
(
{Vt}Tt=1 , {Et}

T
t=1 , {Wt}Tt=1 , {Xt}Tt=1

)
, (6)

where the arrow “→” on top of the symbols recalls their temporal nature. For each time step t,
(Vt, Et,Wt,Xt) is a static graph like the one in Figure 2; when we consider time the reference figure
is that of Figure 1. Since we are dealing with node-level time series, we have a correspondence
between the nodes of ~G at different time steps and, in general, Vt1 ∩ Vt2 6= ∅ if t1 6= t2. Note that the
possibility of having a variable node set is important to model scenarios such as those related to the
integration of new intersections in a street map, removal of a faulty device in a real cyber-physical
system, or missing data from smart meters in a power grid. As edge weights can be dynamic too,
denote with wu,v[t] ∈Wt the weight associated with edge (u, v) present in the edge set Et at time t.
In this new setting, each node v ∈ ∪Tt=1Vt is associated with a stochastic time series xv[t] available
for all time steps t = 1, 2, . . . , T , if v ∈ Vt for all t, or only for a subset of {1, 2, . . . , T}. This setting
is depicted in Figure 1.

Indeed, we can model a spatio-temporal signal ~X associated with a static graph (V,E,W) simply by
assuming in (6) that Vt = V,Et = E, and Wt = W, for all t.

The test The test designed in the previous section is able to identify spatial dependencies existing
among the different nodes; here, we extend it to deal also with temporal dependencies that might exist
among observations at different time steps. The null and alternative hypotheses in (1) are extended to
incorporate the temporal dimension as{

H0 : All pairs xu[ti],xv[tj ] ∈ ~X, with (u, ti) 6= (v, tj), are uncorrelated;
H1 : At least a pair xu[ti],xv[tj ] ∈ ~X, with (u, ti) 6= (v, tj), is correlated.

(7)

4Testing the correlation in X or X′ is equivalent, since E[(xu − E[xu])(xv − E[xv])] = E[(xu −m −
E[xu −m])(xv −m− E[xv −m])].
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The proposed whiteness test for spatio-temporal graphs is

If |C(G∗)| > γ =⇒ Reject null hypothesis H0, (8)

where C(G∗) is statistic C(G) in (3), but applied to a different graph G∗ defined below: the sums in
(4) and (5) are now over all edges of G∗, instead of G. Graph G∗ is a conveniently chosen (static)
representation of given dynamic graph ~G so that the theory from Section 3 applies to C(G∗) too (e.g.,
to choose γ according to Theorem 1) to test the uncorrelation of graph signal ~X on dynamic graph ~G;
accordingly, test (8) relies on the same assumption set of test (2) but, this time, related to graph G∗.

A representation of graph G∗ is given in Figure 1, where the nodes of ~G are replicated for all
their occurrences across time while preserving their spatial connectivity (solid lines), and temporal
edges (dashed lines) are added by connecting corresponding nodes at subsequent time steps. In the
remainder of the section, we detail the construction of graph G∗ = (V ∗, E∗,W∗,X∗) from given
graph (6).

Nodes of G∗ Define node set V ∗ as the disjoint union of Vt, for all t, that is,

V ∗ = {v[t] = (v, t) | v ∈ Vt, t = 1, 2, . . . , T} .

If node v is not present in node set Vt, for some t, then (v, t) 6∈ V ∗. Therefore, the number of nodes
|V ∗| is

∑
t |Vt|; for a static graph G, |V ∗| = |V | · T .

Edges of G∗ Define edge set E∗ as a collection of spatial and temporal edges. The set of spatial
edges is the disjoint union of sets Et, for all t, that is

Esp = {(u[t], v[t]) | (u, v) ∈ Et, t = 1, 2, . . . , T} .

Temporal edges, instead, connect consecutive occurrences of the same nodes:

Etm = {(v[t], v[t+ 1]) | v ∈ Vt ∩ Vt+1, t = 1, 2, . . . , T − 1} .

The edge set E∗ is then given by E∗ = Etm ∪ Esp. Referring to Figure 1, set Esp collects all edges
represented by solid lines, while edges in Etm are represented as dashed lines.

Weights of G∗ Define edge weights in W∗ following the construction of E∗. Spatial edges
(u[t], v[t]) ∈ Esp are associated with weight wu,v[t] ∈Wt corresponding to edge (u, v) ∈ Et. The
weight of the temporal edges can be set arbitrarily. In general, when all edge weights have similar
values, the spatial correlation contributes more to the final statistic than the temporal one, because
|Esp| = T |V | d ≈ d |Etm|, where d is the average node degree. In Section C of the supplemental
material, we show how to assign a weight wtm to every temporal edge and yield balanced spatial and
temporal contributions. In addition, Section C presents a straightforward way with which the user
can decide how to trade off the impacts of the spatial and temporal edges.

Signal X∗ Arrange graph signal ~X in (6) over the new node set V ∗ of G∗ as follows

X∗ =
{
xv[t] = xv[t] ∈ RF | v[t] ∈ V ∗, with xv[t] ∈ X

}
.

To conclude, we observe that when T = 1 the statistic reduces to the one of Section 3 and that by
preprocessing G 7→ G∗ we are able to apply the very same statistical test (2) in different scenarios,
including that of a dynamic graph, as we did in the current section. In Section D of the supplemental
material, we discuss another preprocessing of G that allows for considering K-hop and K-lag
correlations.

5 Experiments

We consider two experimental setups. In the first one, we study the ability of the AZ-test to detect
data dependency of various amplitudes in a controlled environment. In the second one, we apply
the test to a prediction problem both on synthetic and real-world data. The code to reproduce the
experiments is available at https://github.com/dzambon/az-whiteness-test.
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Figure 3: Rate of rejected null hypotheses for significance level α = 0.05. Each block corresponds to
a different distribution P . Every block has different correlation parameters c on the rows and number
of time steps T on the columns. The node feature dimension is F = 1. The graph underlying the
graph signals is drawn on the right-hand side.

5.1 Detection of correlated residuals

We consider the undirected unweighted graph G = (V,E) of Figure 3 and denote with A its
adjacency matrix (Au,v = 1 if (u, v) ∈ E and Au,v = 0, otherwise). In this set of experiments, we
generate white-noise and correlated graphs by sampling the components of a matrix Z ∈ R|V |×T i.i.d.
from scalar probability distributions P with null median. Choices of P include unimodal symmetric
distributions, as well as asymmetric and bimodal ones; in Figure 3, we consider the standard Gaussian
distribution N (0, 1), the chi-squared distributions5 χ2(d) with d = 1, 5 degrees of freedom, and the
following mixtures of distributions: N (−3, 1) +N (+3, 1), χ2(1)− χ2(5), and U [−4, 0) +U [0, 1),
where U [a, b) uniform distribution in [a, b). In particular, ~X = {xv[t] = Zv,t} is a graph signal of
independent observations, meeting the null hypothesis H0 in (7).

Then, we generate correlated signals by propagating an independent signal Z ∈ R|V |×(T+1) across
graph ~G and time as

X = Zt>1 + ctm Zt≤T + csp AZt>1 −m, (9)
where Za<t≤b indicates the reduction of Z to the columns associated with time steps t ∈ (a, b]. The
correlation between observations is controlled by the positive parameters csp and ctm. Finally, a
scalar offset m is subtracted to have a null-median process X, as requested by the test. We generate
graph signals for variable number T of time steps, dimension F of the node features, and correlation
parameters csp and ctm; from Figure 5 in the supplemental material, it is evident that the higher the
values of csp and ctm, the more correlated the signals appear on both the temporal and spatial axes.

All experiments in the current section are repeated 1000 times, each time generating a different
sequence and applying test (8) with threshold γ set to meet a user-defined significance level α = 0.05.
The considered figure of merit is the rate of rejected null hypotheses, that is, the number of times the
test statistic is greater than γ over the total number of repetitions of the same experiment.

Power of the test Figure 3 shows the ability of the test to identify deviations from the null
hypothesis for different distributions P , number of time steps T , and values of parameter c, with
csp = c, ctm = c d and where d is the average node degree. We observe that (i) the higher the value of
c, the easier the AZ-whiteness test identifies the correlation, and (ii) the test becomes more powerful
as the number T of time steps increases.

Rate of false positives From Figure 3, we can also analyze whether selected test threshold γ yields
the desired rate of false positives, namely, significance level α = 0.05. We see that when c = 0
(independent signals) the rate of rejected null hypotheses is around the predefined significance level α,
regardless of the data distribution P (symmetric/asymmetric, unimodal/bimodal), hence suggesting
that γ is chosen correctly.

Similar results are displayed in Figure 7 in the supplemental material, where we varied the node
feature dimension F too.

5Distributions χ2(d) are shifted to have null median.
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5.2 Optimality of forecasting models

As a second set of experiments, we train state-of-the-art forecasting models and assess the whiteness
of the residual graph signal; when it is not the case, i.e., the residual signal is colored, then predictors
have margin to be improved.

5.2.1 Experimental setting

We consider three datasets.

GPVAR is a synthetic dataset generated from a graph polynomial vector autoregressive system model
[15]. The model generates each observation xv[t] ∈ R at time t and node v ∈ V from Q ∈ N
observations in the past and L-hop neighboring nodes, with L ∈ N, as follows:

x[t] = tanh

(
L∑
l=0

Q∑
q=1

Θl,qS
lx[t− q]

)
+ z[t] (10)

where x[t] ∈ RN concatenates all scalar node signals at time step t, S is a
graph shift operator, Θ ∈ R(L+1)×Q collects the model parameters, and z[t] ∈
RN is white noise generated form the standard Gaussian distribution [Section 5.1].
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Figure 4: Graph of GPVAR dataset.

Specifically, we consider the undirected and un-
weighted graph shown in Figure 4 with the fol-
lowing shift operator S = D−1/2(I + A)D−1/2

where A is the adjacency matrix (with now self-
loops), D is the diagonal degree matrix, and I the
identity matrix. Model parameters Θ are set to
[[5, 2], [−4, 6], [−1, 0]]> and result in L = Q = 2. We generate T = 30000 time steps.

PemsBay is a traffic dataset collected by the California Transportation Agencies Performance
Measurement System (PeMS) [17]. It presents T = 52128 scalar observations from N = 325
sensors in the Bay Area.

MetrLA is a dataset containing traffic information from N = 207 detectors along the Los Angeles
County highway [17]. Observations are collected for 4 months and amount to T = 34272 time steps.

The task to solve is a 1-step-ahead forecasting problem where, for every t, we want to predict
graph signal x[t] from window {x[t − j] ∈ RN | j = 1, . . . , τ}; τ is the size of the considered
temporal window. In addition, for PemsBay and MetrLA, a positional encoding of the day of
observation is added as exogenous variable. On the above forecasting tasks, we trained a Graph
WaveNet [25] (GWNet), a Gated Graph Network [23] (GatedGN), and a Diffusion Convolutional
RNN [17] (DCRNN). We also consider a baseline model (FCRNN) composed of a 1-layer fully-
connected encoder h[t] = f(x[t];u[t]) processing graph signal x[t] at each time step t and the
associated exogenous variables u[t], and a 2-layer GRU decoder applied to the resulting window
of representations [h[t − τ ], . . . ,h[t − 1]]. The size τ of the temporal window is set to 12 for all
experiments. Train, validation and test sets contain 0.7, 0.1, and 0.2 of the original data. The models
are trained until convergence with patience of 50 epochs. All models and datasets are available in
the TorchSpatiotemporal library [6], except for GPVAR dataset. Further details are available as
supplemental material.

5.2.2 Results

In Table 2, we report the results for all datasets. In particular, we report the mean absolute deviation
(MAE) achieved by the above models on the different datasets and the results of a statistical test
on the median of the residuals; MAE and residual median are related in that the minimum of the
MAE should produce residuals with null median. The test on the median is implemented as a test
on the parameter of Bernoulli random variable sgn(xv[t]). Then, we report the results produced by
the proposed AZ-whiteness test. In addition to the AZ-test run on the given graph (referred to as
“Spatio-temporal” in Table 2), we consider two modified versions to assess the impact of the temporal
and spatial components alone, and named “Temporal”, where we operate on the temporal edges
only by setting to zero the weights of all spatial edges, and “Spatial”, where we consider the spatial
edges only by setting the weights of all temporal edges to zero; note that the three test statistics are
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Table 2: Analysis of observed residuals. The tests of null median report the estimated median while
the AZ-tests report the statistic C(G∗); associated p-value are subscripted. Bold results highlight
results with p-value > 0.01. Values reported as 0.000 are intended as < 0.001.

Test AZ-test AZ-test AZ-test
Dataset Model MAE Median=0 Spatio-temporal Temporal Spatial

GPVAR Optimal Pred. 0.319 0.001 0.083 -0.8 0.416 -0.9 0.355 -0.2 0.823
GPVAR FCRNN 0.385 0.003 0.010 5.0 0.000 8.9 0.000 -1.8 0.067
GPVAR GWNET 0.324 0.004 0.000 0.3 0.709 0.3 0.706 0.1 0.881
GPVAR GATEDGN 0.321 0.008 0.000 1.3 0.172 2.7 0.006 -0.8 0.414
GPVAR DCRNN 0.328 0.013 0.000 -0.0 0.955 -0.6 0.534 0.5 0.587

PemsBay FCRNN 2.016 0.032 0.000 1107.4 0.000 1035.1 0.000 531.0 0.000
PemsBay GWNET 0.841 -0.003 0.000 422.7 0.000 7.1 0.000 590.7 0.000
PemsBay GATEDGN 0.838 0.018 0.000 454.6 0.000 25.2 0.000 617.7 0.000
PemsBay DCRNN 0.845 -0.004 0.000 433.0 0.000 14.2 0.000 598.1 0.000

MetrLA FCRNN 2.842 -0.016 0.000 415.3 0.000 238.5 0.000 348.8 0.000
MetrLA GWNET 2.115 0.014 0.000 162.6 0.000 -6.5 0.000 236.5 0.000
MetrLA GATEDGN 2.151 0.010 0.000 200.1 0.000 2.2 0.022 280.7 0.000
MetrLA DCRNN 2.141 -0.018 0.000 177.4 0.000 6.7 0.000 244.1 0.000

comparable among each other because, as shown in Section C of the supplemental material, they are
all asymptotically distributed as a standard Gaussian distribution N (0, 1).

We start by considering the synthetic dataset GPVAR. In this experiment, we know the data generating
process (10) and we are able to contrast the considered methods against the optimal predictor, i.e.,
the graph polynomial VAR filter with the same parameter Θ that generated the data. From the first
row of Table 2, we discover the value of the reference (optimal) MAE and observe that the residual
median can be considered null. Then, we note that the outcomes of the AZ-test suggest uncorrelated
residuals. Baseline model FCRNN produces a MAE substantially higher than the reference MAE,
non-null median of the residual, and correlated residuals. From the Temporal and Spatial variations
of the AZ-test, we see that the temporal correlation appears more prominent than the spatial one for
FCRNN. In contrast, we can consider the training of GWNet, GatedGN, and DCRNN successful
because they produce MAE close to the target value and relatively high p-values in the AZ-tests.

Regarding PemsBay and MetrLA datasets, we do not have a reference MAE, as the optimal predictor
is unknown. None of DCRNN, GatedGN, and GWNet produces uncorrelated residuals, however,
looking at the test statistics, GWNet, GatedGN, and DCRNN display lower temporal correlation than
spatial. We point out that the null hypothesis is not rejected as a consequence of Assumption (A2)
being invalid. We verified it in the supplemental material, where we contrasted the outcome of the
analysis conducted on the residuals of FCRNN, GWNet, GatedGN, and DCRNN (Table 2) with that
on the same residual, but with the empirical median subtracted (Table 3). For all models and datasets,
we obtain almost identical results. We conclude that there is further information left in the residuals
that a model can, in principle, learn.

6 Conclusions

In this work, we propose the first whiteness test for spatio-temporal time series defined over the nodes
of a graph. By exploiting the known structural and functional relations defined by the underlying
graph, we are able to identify both temporal and spatial correlations that exist among data observations.
We show that the test is asymptotically distribution-free with respect to the number of time steps
and graph edges and, therefore, we can apply to data coming from arbitrary distributions and, even,
nonidentically distributed observations.

The designed test is general, from which the definitive alphabetic encompassing name, and based on
sign changes between observations that are close in time or with respect to the graph connectivity. The
test is very versatile, too, as it can exploit edge weights encoding the strength of the link, allows the
graph topology to vary over time, and can operate when nodes are inserted or removed from the graph;
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these scenarios are frequent when dealing with real-world graph signals, like those coming from
sensor networks, e.g., transportation networks, and smart grids. Finally, the test is computationally
scalable for sparse graphs with complexity linear in the number of edges and time steps.

We empirically show that the proposed test is indeed capable of identifying dependencies among
graph signals; when applied to analyze prediction residuals, the AZ-test can assess whether given
forecasting models can be assumed to be optimal or not.

The proposed whiteness test is pioneering in its nature, and allows for future extensions involving
stochastic graphs and more sophisticated edge statistics.
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