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Abstract

We propose a regularization framework inspired
by thermodynamic work for guiding pre-trained
probability flow generative models (e.g., contin-
uous normalizing flows or diffusion models) by
minimizing excess work, a concept rooted in sta-
tistical mechanics and with strong conceptual con-
nections to optimal transport. Our approach en-
ables efficient guidance in sparse-data regimes
common to scientific applications, where only lim-
ited target samples or partial density constraints
are available. We introduce two strategies: Path
Guidance for sampling rare transition states by
concentrating probability mass on user-defined
subsets, and Observable Guidance for aligning
generated distributions with experimental observ-
ables while preserving entropy. We demonstrate
the framework’s versatility on a coarse-grained
protein model, guiding it to sample transition con-
figurations between folded/unfolded states and
correct systematic biases using experimental data.
The method bridges thermodynamic principles
with modern generative architectures, offering
a principled, efficient, and physics-inspired al-
ternative to standard fine-tuning in data-scarce
domains. Empirical results highlight improved
sample efficiency and bias reduction, underscor-
ing its applicability to molecular simulations and
beyond.
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1. Introduction
Probability flow generative models, such as normalizing
flows (Papamakarios et al., 2021; Liu, 2022; Albergo et al.,
2023; Lipman et al., 2023) and diffusion models (Song et al.,
2020; Ho et al., 2020), enable the modeling of complex,
high-dimensional data distributions across a wide range
of applications. These models generate samples through
the integration of differential equations evolving a tractable
distribution into an approximation of the data distribution.
Although these models excel at general distribution learning,
many scientific applications require precise control over
generated samples to meet sparse observational constraints
(e.g., limited transition state configurations or partial density
constraints from experiments). Current guidance methods
struggle in data-scarce regimes as they typically rely on
either specialized training or abundant reward signals.

Existing approaches often involve fine-tuning (Wallace
et al., 2024; Black et al., 2023; Domingo-Enrich et al.,
2024), incorporating conditional information during train-
ing (Ho & Salimans, 2022; Nichol et al., 2021), or training
an additional noise-aware discriminative model (Song et al.,
2020). While effective, these methods may be impractical
in sparse-data settings. A prominent class of alternative
approaches, known as loss guidance, perturbs the score of
a frozen foundation model with guidance signals obtained
via backpropagation through the model (Bansal et al., 2023;
Chung et al., 2023; Song et al., 2023; Kawar et al., 2022)
or through the full ODE (Ben-Hamu et al., 2024). Although
successfully used for post hoc control, they can suffer from
high gradient variance in high-dimensional, structured
spaces, motivating the need for a more stable and principled
regularization framework.

Inspired by statistical mechanics, we introduce an approach
for regularizing guidance of probability flow generative
models based on the principle of minimum excess work
(MEW). In this context, “work” is a measure of the physi-
cal effort, e.g., energy, needed to transform a system from
one macrostate to another, where a macrostate is charac-
terized by a probability density function. MEW thereby
acts as a natural, physics-inspired regularization scheme
for guiding generative models. We develop the theoreti-
cal framework for MEW-based regularization of generative
models, explicitly connecting it to optimal transport theory,
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Figure 1: Schematic comparison of observable and path guidance. Both panels show the evolution of probability density over time t (blue
heat map) with marginal distributions p(x1) and p(x0) on the sides (blue: reference model, red dashed: guided model). (A) Observable
guidance perturbs the score function (red arrows) to match experimental observables (yellow) with unknown data distribution p(x0) using
minimal excess work. (B) Path guidance steers sampling trajectories (black solid) toward specific regions defined by guidance samples
X g = {xi

0}Mi=1 (dotted grey).

and validate its effectiveness through extensive benchmarks
across multiple systems, including a coarse-grained protein
Boltzmann Emulator. In addition to introducing the MEW
framework, we propose a simple yet effective form of path
guidance tailored to sparse sampling problems. We spe-
cialize MEW guidance to address two problems frequently
encountered in molecular dynamics simulations. First, Ob-
servable Guidance: a bias correction method to align dis-
tributions with experimental observables while preserving
distributional entropy. Second, Transition State Sampling:
a path-guidance-based sampling strategy to focus sampling
on a user-defined subset, e.g., the low-probability transition
region between states.

2. Background and Preliminaries
Diffusion models learn a stochastic process that maps a
simple prior distribution p1 to an approximation p0 of the
data distribution q0. This is typically done by reversing a
known noising process governed by an Ornstein–Uhlenbeck
SDE,

dxt = f(xt, t) dt+ g(t) dwt (1)

with f(xt, t) linear in xt. This process induces a family of
marginals qt with simple forward transitions qt(xt|x0) =
N (xt;αtx0, σ

2
t I), where αt, σt are determined by the

SDE coefficients. Given access to q1 and the score
∇xt

log qt(xt), one can sample from q0 via the time-
reversal (Anderson, 1982):

dxt =
[
f(xt, t)−g(t)2∇xt log qt(xt)

]
dt+g(t) dw̃t (2)

where w̃t is a reverse-time Wiener process, or via the prob-
ability flow ODE (Maoutsa et al., 2020; Song et al., 2020):

dxt

dt
= f(xt, t)−

1

2
g(t)2∇xt

log qt(xt) (3)

both having the same time-marginals qt as the forward pro-
cess. In practice, the score is approximated by a score model
sθ(xt, t), and a simple distribution p1 ≈ q1 is used as initial
distribution at t = 1:

dxt =
[
f(xt, t)− g(t)2sθ(xt, t)

]
dt+ g(t) dw̃t (4)

dxt

dt
= f(xt, t)−

1

2
g(t)2sθ(xt, t) (5)

We will denote by {pt}t∈[0,1] the probability path induced
by Equation (4) or Equation (5).

Equilibrium sampling of the Boltzmann distribution. A
key challenge in statistical mechanics is to generate inde-
pendent samples from the Boltzmann distribution

x ∼ p(x) ∝ exp(−βU(x)), (6)

where β = (kBT )
−1 is the inverse temperature and U(x)

is the potential energy of a configuration x ∈ Ω ⊆ Rd.
This distribution underlies estimation of macroscopic ob-
servables, such as Ep(x)[Oi(x)], which allow for a direct
comparison to experimental data. However, sampling from
p(x) is notoriously difficult due to the rugged energy land-
scape U(x). Traditional methods such as Molecular Dynam-
ics (MD) or Markov Chain Monte Carlo (MCMC) suffer
from slow mixing and generate highly correlated samples
that often fail to cross energy barriers between metastable
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states. This leads to biased estimates and poor coverage of
transition configurations, i.e., regions in state space that are
severely undersampled but mechanistically crucial. Recent
work on Boltzmann Generators (Noé et al., 2019; Klein
et al., 2024b; Midgley et al., 2023; Köhler et al., 2020;
Moqvist et al., 2025; Tan et al., 2025) addresses these chal-
lenges by learning direct mappings from simple priors to
Boltzmann-like distributions. Yet, two issues remain: inac-
curacies in the potential energy model can bias the learned
distribution (Kolloff et al., 2022; Klein et al., 2024a), and
physically important but low-probability states (e.g., tran-
sition states) remain exponentially rare. In this work, we
address both problems by guiding a generative model using
sparse experimental or structural information, leveraging a
coarse-grained Boltzmann emulator inspired by Arts et al.
(2023).

Maximum Entropy Reweighting is a broadly adopted
technique to overcome force field inaccuracies in poten-
tial energy models (Pitera & Chodera, 2012; Cavalli et al.,
2013; Olsson et al., 2013; 2016; Boomsma et al., 2014;
White & Voth, 2014; Beauchamp et al., 2014; Hummer
& Köfinger, 2015; Bonomi et al., 2016). The result of
this optimization is a tilted distribution which depends on
a set of Lagrange multipliers, {λi}, each corresponding
to an experimental observable of interest. The solution
p′(x) ∝ p(x) exp

(
−
∑M

i=1 λiOi(x)
)

minimizes the KL
divergence from the reference distribution p(x), subject
to the constraints Ep′(x)[Oi(x)] = oi. A detailed deriva-
tion is provided in Appendix A.1 for the reader’s conve-
nience. However, until now, this approach has been limited
to reweighting fixed sets of samples X = {xi}Mi=1 (e.g.,
an MD trajectory), thus motivating methods to apply these
principles in a generative setting.

Loss Guidance is the process of adjusting the diffusion
process to satisfy a target condition y without fine-tuning
and has been explored in several prior works (Bansal et al.,
2023; Chung et al., 2023; Song et al., 2023). To sample from
the conditional distribution p(x0|y) post hoc, we can use
the following identity: ∇xt

log p(xt|y) = ∇xt
log p(xt) +

∇xt
log p(y|xt). Obtaining ∇xt

log p(y|xt) typically re-
quires training a separate model on the noisy states xt,
as done in classifier guidance (Song et al., 2020). Al-
ternatively, the posterior mean x̂t(xt) := Ep(x0|xt) [x0]
can be used as an estimate of the clean data x0. Using
Tweedie’s formula, the posterior mean can be expressed
as Ep(x0|xt) [x0] = 1

αt
(xt + σ2

t∇xt
log p(xt)). This al-

lows us to approximate the likelihood in data space via
log p(y|x̂t(xt)) ≃ ℓ(y, x̂t(xt)), where ℓ denotes a suit-
able differentiable loss function (e.g., cross-entropy or log-
likelihood under a differentiable model). The gradient
∇xt

log p(y|x̂t(xt)) can then be computed by backprop-
agation. In practice, the mean is approximated using the
score model sθ(xt, t), allowing the score estimate to be up-

dated as ∇xt
log p(xt|y) ≃ sθ(xt, t) + ηt∇xt

ℓ(x̂t(xt),y)
with ηt being a guiding strength function.

Work and Optimal Transport. In statistical mechanics,
thermodynamic work W is the energy required to transform
a system from a probabilistic state p to another p′. For a
continuum system:

W =

∫∫
J(x, t) · F(x, t) dx dt, (7)

where J(x, t) = v(x, t)pt(x) is the probability flux and
F(x, t) is the force applied to the system. This generalizes
the classical work expression W =

∫
F (x) dx. When the

force and velocity field coincide (i.e., the Jacobian of the
push-forward map associated with the velocity field is a
diffeomorphism), they can be expressed as spatial gradients
of a potential u(x, t) (Brenier, 1991). Under these condi-
tions, W becomes equivalent to the kinetic energy in the
Benamou–Brenier formulation of optimal transport (Ben-
amou & Brenier, 2000), and provides an upper bound on the
squared 2-Wasserstein distance between the distributions:

W 2
2 (p, p

′) ≤
∫∫

∥v(x, t)∥2pt(x) dx dt =W (8)

where v and p satisfy ∂
∂tpt(x) = −∇x · [pt(x)v(x, t)].

Minimizing W yields the optimal transport map that trans-
forms p into p′ along the path requiring minimal energy.
The idea of identifying probability paths minimizing the
kinetic energy, or more generally a Lagrangian, has recently
been applied to improve the efficiency of probability flow
generative models (Tong et al., 2020; 2023; Klein et al.,
2023; Irwin et al., 2025; Shaul et al., 2023; Albergo et al.,
2023; Neklyudov et al., 2023a;b).

3. Minimum-Excess-Work Guidance
During the generative process, we transform a simple dis-
tribution p1 ∼ N (0, I) into a complex data distribution p0
with support Ω ⊆ Rd by solving the reverse-time SDE (4) or
the ODE (5). To incorporate additional constraints and align
the generative process with new information, we modify the
drift in Equations (4) and (5) by augmenting the score model
sθ(xt, t) with an additive correction hϑ(xt, t), resulting in
rθ,φ(xt, t) = sθ(xt, t) + hϑ(xt, t) , such that :

dxt =
[
f(xt, t) dt− g(t)2rθ,φ(xt, t)

]
dt+ g(t) dw̃t (9)

dxt

dt
= f(xt, t)−

1

2
g(t)2rθ,φ(xt, t) (10)

where hϑ : Rd × [0, 1] → Rd is a time-dependent vector
field.

The aim of MEW guidance is to satisfy a guidance objec-
tive for the guided distribution p′0 ̸= p0, while minimizing
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the excess work associated with hϑ(xt, t), required to mod-
ify the probability density, p0.

We define the excess work in the context of an unperturbed
and perturbed system described by the following ODEs over
t ∈ [0, 1]:

dxt

dt
= v(xt, t) ,

dxt

dt
= v(xt, t) + u(xt, t) , (11)

with the respective time-marginal densities pt, p′t, where we
assume p1 = p′1.

Loosely following Equation (8), we define the excess
work as ∆W :=

∫∫
∥u(x, t)∥2 p′t(x) dx dt , which for the

ODEs (5) and (10) becomes:

∆W (ϑ) =

∫∫
g(t)4

4
∥hϑ(x, t)∥2 p′t(x) dx dt . (12)

We will now establish quantitative relationships between
the perturbation of the model and the changes it induces
in the generated distribution. Detailed proofs are provided
in Appendices A.2 and A.3.

Proposition 3.1. Let pt and p′t be the distributions at time
t obtained by solving the ODEs (5) and (10) backwards
in time from the same initial distribution p1 at t = 1. As-
sume that the vector fields are measurable in time and Lt-
Lipschitz in space with Lt integrable. Then:

W 2
2 (p0, p

′
0) ≤

∫ 1

0

wW(t)
g(t)4

4
Ex∼p′

t

[
∥hϑ(x, t)∥2

]
dt,

(13)
with wW(t) := et+2

∫ t
0
Ls ds

Proposition 3.2. Let pt and p′t be the distributions at time t
induced by the reverse-time SDEs (4) and (9) starting from
the same distribution p1 at t = 1. Assume that both SDEs
admit strong solutions, and that P′ ≪ P, where P,P′ are
the path measures induced by the SDEs on C([0, 1],Rd).
Then:

DKL(p
′
0∥p0) ≤

∫ 1

0

wKL(t)
g(t)4

4
Ex∼p′

t

[
∥hϑ(x, t)∥2

]
dt,

(14)
with wKL(t) :=

2
g(t)2

Since both bounds—for the KL divergence and the Wasser-
stein distance—are time-reweighted versions of the excess
work ∆W (12), it serves as a natural choice of regularizer
for guidance objectives, encouraging the perturbed distri-
bution p′0 to remain close to the reference base distribution
p0.

We then optimize the parameters ϑ of the perturbation hϑ

by minimizing the following objective:

L(ϑ) = L1(ϑ) + γ ∆W (ϑ) , (15)

where L1(ϑ) is a guidance objective, and γ controls the
regularization strength.

We now explore how this minimum-excess-work principle
is applied in the two settings: (1) guidance based on ex-
pectations of observables; (2) targeted guidance towards a
user-defined subspace.

Observable Guidance. In this section, we guide a diffusion
model to align with data that reflects an expectation, using
the MEW approach. Using a set of Lagrange multipliers
Λ = {λ1, ..., λM} pre-estimated using, e.g., the algorithm
outlined in Bottaro et al. (2020), we dynamically adjust the
score by estimating an augmentation factor hϑ that ensures∣∣Ep′(x)[Oi(x)]− oi

∣∣ ≤ ϵ. We express the guidance factor
as,

hϑ(xt, t) = −ηt(ϑ)
M∑
i=1

λi∇xtOi(x̂t(xt)) . (16)

In the same way that a score model sθ(xt, t) approximates
the gradient of the log probability, hϑ(xt, t) is the gradient
of the observable function with respect to the latent variable
xt. λi steers the flow in directions favored (or penalized)
by the experimental observable expectation, thus “adjusting”
the score of the original model. Its amplitude is modulated
by ηt(ϑ) = ηinit exp(−κ(1 − t)), and learning the param-
eters ϑ = {ηinit, κ} of this scalar function constitutes the
primary objective of our optimization strategy. Note, we use
the mean posterior estimation x̂t(xt) discussed in Section 2,
instead of using xt directly (Bansal et al., 2023; Chung et al.,
2023). Our optimization objective is two-fold: We want to
reduce the discrepancies between the model predictions and
experimental data while minimizing the excess work ex-
erted by the augmentation. The former is a supervised loss
defined as

L1(ϑ) =
1

M

M∑
i=1

(
oexp
i − Ex∼p′

0
[Oi(x)]

)2
, (17)

where oexp
i are the experimental values and Ex∼p′

0
[Oi(x)]

denotes the expected values under the adjusted distribution
p′0. To balance accuracy with the principle of maximum
entropy, we introduce a regularization term based on min-
imizing the excess work ∆W . Substituting the specific
form of hϑ(xt, t) from Equation (16) into Equation (12),
we obtain:

∆W (ϑ) =

∫ 1

0

g(t)4

4
|ηt(ϑ)|2

· Ex∼p′
t

∥∥∥∥∥
M∑
i=1

λi∇xOi(x̂t(x))

∥∥∥∥∥
2
 dt . (18)

Path Guidance. In this setting, we assume access to a set of
guiding samples X g = {xi}Mi=1, each belonging to a target
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subset A ⊂ Ω of the sampling space. The goal is to modify
the score of the diffusion model to sample from a perturbed
distribution x ∼ p′0 that increases the likelihood of x ∈ A.
Since L1 need not be differentiable, the objective can be
formulated generally as:

L1(ϑ, φ) = 1− 1

N
Ex∼p′

0

[
1{x∈A}

]
. (19)

Guiding the diffusion process towards the subset A can be
done by taking advantage of the probability flow ODE (5),
which holds the desirable property of providing unique la-
tent representations of each data point, for any time step t.
Starting from the guiding samples, we compute their trajec-
tories by integrating Equation (5) forward in time, obtaining
the latent representations X g

t = {xi
t}Mi=1 for time t. The set

{X g
t }1t=0 defines a trajectory of latent representations that

the model must follow to ensure its samples satisfy x′ ∈ A.
Based on this trajectory, we can define the augmentation
factor as:

hϑ,φ(xt, t) := ηt(ϑ)∇xt logKht(φ)(xt,X g
t ) (20)

with Kht(φ)(xt,X g
t ) :=

∑
xi
t∈Xg

t
Kht(φ)(xt,x

i
t) where

K can be any differentiable kernel with time-dependent
bandwidth ht(φ). By updating the score function using
Equation (20), we align the sampling trajectory with that
of the guiding points, while regularizing the guidance
strength via the same excess work penalty as in Equa-
tion (18), now evaluated using the time-dependent KDE
score Ex∼p′

t

[
∥∇x logKht(φ)(x,X g

t )∥
]
. In practice, both

ηt(ϑ) and ht(φ) are implemented as sigmoid functions

ηt(ϑ) = ϑinit (1− σ(ϑg(t− ϑs))) (21)
ht(φ) = φinit + σ(φg(t− φs)) (22)

with learnable parameters ϑ = (ϑinit, ϑg, ϑs) and φ =
(φinit, φg, φs) and optimized for Equation (15) using
Bayesian optimization with Gaussian Processes. The use
of sigmoids allows the guidance to be stronger early in the
trajectory, when xt is close to the Gaussian prior and the
kernel signal is more stable, and weaker near t = 0, where
the data distribution is more complex and direct guidance is
less reliable.

4. Experiments
We now demonstrate the application of minimum-excess-
work guidance across several experimental setups. We first
evaluate path and observable guidance on two toy setups
and will then proceed to showcase our approach on a coarse-
grained protein Boltzmann Emulator.

Figure 2: Comparison of Probability Distributions Before and
After Observable Guidance for a 1D Energy Potential. The top
plot shows the probability distributions for three models: the biased
reference model (blue), the ground truth model (yellow), and the
guided model (red). Guidance helps to align the reference model
with that of the ground truth model using only the expectation of
an observable function (bottom) while minimizing excess work.

4.1. Observable Guidance

4.1.1. SYNTHETIC DATA

To evaluate our approach, we target a synthetic dataset
where the ground truth is available. We trained a diffu-
sion model on samples from a biased 1D quadruple-well
potential (Prinz et al., 2011), a simple test system displaying
two key properties in molecular dynamics: multi-modality
and metastability, while keeping the corresponding Boltz-
mann distribution is numerically accessible, allowing us to
directly gauge our methods’ ability to recover the unbiased
distribution.

Experimental Setup. The observable function is imple-
mented as a Gaussian mixture model with four components.
We compute the Lagrange multiplier following (Bottaro
et al., 2020) and integrate it into our guidance framework
via Equation (9). The model is evaluated by comparing the
expectation values of the observable function and the KL
divergence from the ground truth. The experimental details
can be found in Appendix B.3.

Evaluation. Figure 2 shows the sampled probability distri-
butions and observable values for three models: the biased
reference model (blue), ground truth (GT) (yellow), and
our guided model (red). The guided model successfully
recovers the GT using only the observable expectation value
as supervision. Quantitatively, Table 1 shows our method
reduces the KL divergence by a factor of 10 from 0.13 to
0.019± 0.002 and brings the observable expectation from
−13.6 to 11.95± 0.22, nearly matching the GT of 12.01.

Ablation. To evaluate the impact of MEW regularization,
we performed an ablation study comparing the observable-
guided model trained with (γ > 0) and without (γ = 0)
MEW. As shown in Table 4 and visualized in Figure 9 (in the
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Table 1: Metrics for O(x) and KL divergence across models.

Model M EpM(x)[O(x)] KL[pGT(x)∥pM(x)]

Ground Truth 12.01 —
Reference −13.6 0.13
Guided 11.95± 0.22 0.019± 0.002

Appendix), both models generate similar expected observ-
ables. However, the model trained without MEW suffers
from mode collapse, concentrating all probability density
in a narrow region of state space and exhibiting poor dis-
tributional fidelity. In contrast, MEW-regularized training
preserved the broader shape of the reference distribution.
This results highlights the impact of MEW regularization
by stabilizing training and preventing degenerate solutions.

This synthetic experiment demonstrates empirically that our
method enables guiding of a biased model toward the correct
distribution using only expectation values, while maintain-
ing similarity to the reference through MEW regularization.

4.1.2. COARSE-GRAINED PROTEIN BOLTZMANN
EMULATOR (CGBE)

To evaluate our method on a real-world task, we apply
observable guidance to guide a pre-trained cgBE to sample
conformations of chignolin, a ten-residue mini-protein that
serves as a standard benchmark in protein folding studies
(Honda et al., 2004; Satoh et al., 2006; Lindorff-Larsen
et al., 2011). Our task is to correct systematic biases
in the equilibrium sampling using only experimental
measurements while preserving physical validity. This is
a challenging task given the high-dimensional structured
space and unknown ground truth distribution.

Experimental Setup. We use folding free energy ∆G =
−kBT log( pfolded

punfolded
) as our observable, which captures the rel-

ative stability of different protein conformations. The refer-
ence model pMD shows significant bias in this metric (−1.27
kcal/mol vs. experimental value of −1.87 kcal/mol (Honda
et al., 2004)), making it a suitable test case. Model architec-
ture and training details are provided in Appendix B.3.

Evaluation. Our guided model achieves substantial im-
provements across several metrics (see Table 2) while main-
taining physical validity, which we verified through the
analysis of bond lengths and torsion angles (Figures 6 to 8,
in the Appendix). The guided model’s folding free energy
(−1.82± 0.01 kcal/mol) closely matches the target exper-
imental value (−1.87 kcal/mol), reducing mean squared
error by an order of magnitude from 0.6 to 0.05 kcal/mol.
Additionally, the KL divergence from the reference MD
trajectory improves from 0.329 to 0.005 ± 0.002, demon-
strating better conservation of the properties of the reference
distribution, including multi-modality and entropy. Figure 3

Table 2: Quantitative metrics evaluating the guidance process:
expected observables and KL divergence across models.

Model M EpM(x)[O(x)]
(kcal/mol) KL[p′MD(x)|pM(x)]

Experimental −1.87 —
Reference −1.27 0.329
Guided −1.82± 0.01 0.005± 0.002

visualizes these improvements. Panels A and B demonstrate
that guidance successfully increases the population of folded
states, consistent with experimental observations. Panel C
shows 50 superimposed generated structures, highlighting
both the diversity and physical validity of our samples.

These results demonstrate that guidance in the sparse-data
regime with MEW regularization allows allows us to effec-
tively align high-dimensional and highly structured gener-
ative models with experimental constraints without com-
promising local physical validity and maintaining global
distributional properties such as multi-modality.

4.2. Path Guidance

We now use the cgBE to evaluate path guidance with MEW
regularization for up-sampling high-energy transition con-
figurations (states), which are critical for understanding
the folding process of proteins. Due to their high energy
(Equation (6)), these states account for only 1% of both
the data and model distribution, making their successful
up-sampling a strong demonstration of our method’s ef-
fectiveness. Consistent with Section 4.1, we also use the
chignolin mini-protein as a test system. To contextualize
path guidance, we first introduce an alternative baseline.

Baseline. As a natural alternative to path guidance, we adapt
loss guidance to our setting by using the log-likelihood of a
KDE fitted on guiding points X g

0 = {xi
0}Mi=1. Specifically,

we will change the perturbation Kernel from Equation (20)
to Kht(φ)(x̂t(xt),X g

0 ). While it appears similar to path
guidance, the key difference lies in the space the KDE is
computed. In path guidance, the kernel is applied along the
trajectory {X g

t }t=1
t=0, resulting in a distinct KDE for each

time step t. In contrast, loss guidance computes the KDE
in data space and estimates the likelihood with respect to
the posterior mean x̂t(xt), which requires backpropagating
through the model at every sampling step. Implementation
details and ablation studies for two alternative baselines
that do not augment the vector field are provided in Ap-
pendix B.4 and Appendix D.3.

Evaluation Criteria. We assess the methods using three key
metrics. First, we measure guiding success as the percentage
of sampled transition configurations (see Appendix B.2 for
details). Second, we evaluate the diversity among transition
states using the Vendi score (VS) (Friedman & Dieng, 2022)
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Figure 3: Observable Guidance of a Protein Folding Model. (A) Folding free energy comparison between reference model (blue),
experimental data (yellow), and guided model (red). (B) Free energy profiles as a function of N- to C-terminal Cα distance. (C) Ensemble
of 50 generated protein structures colored by their energy.
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Figure 4: Path Guidance vs. Loss-Guidance for sampling Transition States. (A) Sample quality and diversity, measured by the
Wasserstein Distance (WD) and Vendi score (VS), show that path guidance preserves diversity and quality even at high guiding strengths,
whereas loss guidance deteriorates. (B) Without MEW regularization (γ = 0), the sampled transition states collapse and exhibit little to
no diversity (VS). Regularization also improves sample quality (WD). (C) Guiding success rate, measured as the percentage of transition
states sampled, for different regularization strengths.

to verify that our method generates novel samples rather
than merely resampling the guiding data. Lastly, since we
cannot evaluate the energy under the coarse-grained model,
we instead ensure physical validity of the generated sam-
ples under guidance by computing the Wasserstein distance
(WD) between the bond length distributions of generated
and ground truth samples, which quantifies how well our
method preserves the local molecular structure.

Synthetic Experiments. To explore the dynamics of both
methods, we design a synthetic example (see Appendix D.1
for details). While ODE sampling offers better control, it
often produces degenerate samples, as the guiding term
hϑ,φ(xt, t) can push trajectories off the data manifold, an
issue SDE sampling can correct for through noise injection.
As a result, SDE sampling proves more robust, maintaining
sample diversity and quality while achieving comparable

guidance success. Based on these findings, we use SDE
sampling for all subsequent experiments. Additionally, we
tested various guiding strength ηt(ϑ) and KDE bandwidth
ht(φ) functions, finding step-like sigmoid functions both
effective and easy to optimize.

Transition State Sampling. For the transition configura-
tion sampling task, we adapt the kernel to handle rigid-body
transformations using the Kabsch algorithm (Kabsch, 1976)
akin to that adopted in (Pasarkar et al., 2023). Since we
found loss guidance to be difficult to optimize in this appli-
cation, we first performed a large grid search to identify opti-
mal parameters for a fair comparison. This analysis revealed
that increasing the guidance strength deteriorates sample
quality in loss guidance, preventing it from achieving mean-
ingful guiding success (Figure 12B). The performance gap
stems from two key disadvantages of loss guidance, both
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linked to the fact that the KDE is fitted in data space. First,
loss guidance requires using the mean of the posterior to
compute the augmentation factor, which, especially at early
time steps t, suffers from very high variance. Second, at
later time steps, while the predictions become more accurate,
the KDE fails to capture the actual distribution of the guid-
ing points effectively, as it is not well-suited for high data
complexity. As a result, the loss signal can degrade the sam-
pled data, which is evident from the increasing Wasserstein
distance as the guiding strength ϑinit increases (Figure 4A).
In contrast, path guidance circumvents this issue by apply-
ing stronger guidance at higher time steps, where the latent
is primarily noise, and decreasing the guiding strength over
time. Notably, in Figure 4A, we observe that both the qual-
ity and diversity remain largely unaffected by the initial
guiding strength ϑinit. We further investigate the difference
between path and loss guidance in Appendix D.2.

After observing that loss guidance could not be reliably
optimized, we conducted a separate set of experiments to
evaluate path guidance within the MEW framework by op-
timizing the objective in Equation (15). Disabling regular-
ization (γ = 0) results in the highest guidance success rates
(Figure 4C), but produces highly degenerate samples and
reduced structural diversity, as indicated by the large vari-
ance in Wasserstein distance. In contrast, applying MEW
regularization improves both sample quality and diversity
(Figure 4B), while incurring only a modest reduction in
guidance success. Overall, our results demonstrate that path
guidance offers a strong alternative to loss guidance, and
that MEW regularization is essential for robust and physi-
cally meaningful sampling in data-sparse regimes.

5. Related Works
Guidance of diffusion models. Guiding diffusion models
during inference has been extensively explored. While ear-
lier methods relied on training classifiers on noisy states
(Song et al., 2020) or conditioning models during train-
ing (Ho & Salimans, 2022; Nichol et al., 2021), recent
approaches guide inference without extra training, using the
pre-trained model as a prior and incorporating loss-based
signals (Bansal et al., 2023; Chung et al., 2023; Song et al.,
2023; Kawar et al., 2022; Ben-Hamu et al., 2024). Our
method follows this line, but introduces a regularization
framework inspired by thermodynamic principles.

Stochastic Optimal Control. MEW also naturally con-
nects to recent advances in stochastic optimal control (SOC)
applied to diffusion and flow-based generative models. In
particular, to approaches which consider steering generative
trajectories by balancing a task-specific objective, such as
aligning with experimental observables or reward models
with a regularization that penalizes deviation from a pre-
trained base model. In those works (Uehara et al., 2024;

Domingo-Enrich et al., 2024; Han et al., 2024; Tang, 2024),
fine-tuning the diffusion model is framed as a SOC prob-
lem that minimizes control effort while achieving alignment
with downstream goals. Conceptually, the Minimum Excess
Work principle plays an analogous role to the control cost in
SOC, regularizing path perturbations to preserve the prior’s
structure while achieving target objectives. This connection
situates the MEW framework within the broader trend of
leveraging control-theoretic principles, including KL and
f-divergence regularization, to derive principled, sample-
efficient, and robust fine-tuning strategies for probabilistic
generative models.

Transition ensemble sampling. Traditional methods like
transition path sampling (Bolhuis et al., 2000; Cabriolu et al.,
2017) use Monte Carlo in trajectory space, while recent ma-
chine learning approaches (Liu et al., 2025) employ neural
networks but require extensive training data or predefined
collective variables. Instead of explicit path sampling, we
guide the generative process using latent representations of
known transition states. While related to recent work using
Boltzmann Generators (Plainer et al., 2023), our approach
directly modifies the score function during sampling rather
than performing MCMC moves between paths, enabling
more efficient exploration of transition regions.

Reweighting with experimental data. Reweighting molec-
ular dynamics simulations using experimental data has a
long history in computational chemistry and biophysics.
Theoretical work (Roux & Weare, 2013; Cavalli et al., 2013;
Boomsma et al., 2014; Pitera & Chodera, 2012) adopted
Jaynes (1957) Maximum Entropy approach to the prob-
lem, following several early experimental studies (Lindorff-
Larsen et al., 2005; Dedmon et al., 2004; Cesari et al., 2018)
based on replica-averaged simulations, giving a theoreti-
cal foundation for these approaches. This work was later
complemented by probabilistic and Bayesian perspectives
(Olsson et al., 2013; Bottaro et al., 2020; Bonomi et al.,
2016; 2018), some of which specifically focused on reweigh-
ing (Hummer & Köfinger, 2015; Olsson et al., 2016; 2017;
Kolloff & Olsson, 2023).

6. Limitations
Despite the strong empirical performance of MEW guidance
across diverse settings, several limitations merit considera-
tion. These primarily stem from the assumptions underpin-
ning the method’s application—for instance, that physical
observables or representative samples can be leveraged to
correct expectation values or guide sampling in low-density
regions. While these assumptions do not demand perfect
model accuracy, they do require that the model be suffi-
ciently expressive and responsive to the applied guidance.
If key modes are absent, convergence to meaningful dis-
tributions may be compromised. Additionally, the current
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framework assumes differentiable observables and guid-
ance targets, restricting its applicability in discrete or non-
differentiable domains. Lastly, although scalability has been
demonstrated in moderate settings, further evaluation is
necessary for high-dimensional problems and large-scale
simulators.

7. Conclusion
In this work, we introduced minimum-excess-work (MEW)
guidance, a physics-inspired framework for regularizing the
guidance of pre-trained probability flow generative models
by regularizing excess work. Our analysis shows that this
thermodynamically motivated regularization is closely con-
nected to upper bounds on the Wasserstein distance and the
KL divergence between the reference and guided distribu-
tions. We demonstrated the effectiveness of MEW regular-
ization in two settings: Observable Guidance and Path Guid-
ance. These approaches enable alignment with sparse ex-
perimental constraints and targeted sampling in low-density
regions, while maintaining model flexibility. By penalizing
excess work, our method reduces bias and enhances the sam-
pling of rare, physically meaningful configurations, without
degrading sample quality. Our results position MEW guid-
ance as a principled and effective tool for bias correction and
informed exploration in data-scarce scientific applications.
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A. Proofs
A.1. Short Derivation of Maximum Entropy Reweighting of MD Trajectories using Observables

The maximum entropy approach (Jaynes, 1957) has been widely adopted (Hummer & Köfinger, 2015; Boomsma et al.,
2014; Olsson et al., 2016; 2017; Bottaro et al., 2020) to derive reweighting schemes to find a minimally biased probability
distribution that satisfies experimental constraints.

Consider a reference probability distribution p(x), e.g., an empirical distribution estimated from MD simulation data, and an
unknown target distribution p′(x) that should match experimental measurements. Following Jaynes’ maximum entropy
principle, we seek to minimize the KL divergence from p(x) to p′(x) subject to the constraint that the expectations of
observables Oi(x) under p′(x) match their experimental values oi. That is,

min
p′

∫
p′(x) log

p′(x)

p(x)
dx (23)

subject to:

Ep′(x)[Oi(x)] = oi for i = 1, . . . ,M (24)∫
p′(x) dx = 1 (25)

Using the method of Lagrange multipliers, we obtain the following objective:

S = −
∫
p′(x) log

p′(x)

p(x)
dx+

M∑
i=1

λi

(∫
p′(x)Oi(x) dx− oi

)
+ µ

(∫
p′(x) dx− 1

)
(26)

where {λi}Mi=1 are the Lagrange multipliers for the constraints on the M observables, and µ is the multiplier for density
normalization. Setting the functional derivative δS/δp′ to zero yields

− log
p′(x)

p(x)
− 1 +

M∑
i=1

λiOi(x) + µ = 0 . (27)

Finally, solving for p′(x) and determining µ through normalization gives

p′(x) ∝ p(x) exp

(
−

M∑
i=1

λiOi(x)

)
, (28)

where the λs are determined, e.g., following Bottaro et al. (2020), such that the constraints on the expectations are satisfied.
This reweighted distribution represents the maximum entropy solution that satisfies the experimental constraints while
minimizing the bias introduced relative to the reference distribution p(x).

A.2. Bounding the Wasserstein distance

In this section, we derive an upper bound on the squared Wasserstein distance W 2
2 (p0, p

′
0), where the distributions p0 and p′0

are obtained by evolving a common terminal distribution p1 = p′1 backward in time according to the ODEs in Equations (5)
and (10). We begin by proving a Grönwall-type lemma (see, e.g., Bressan & Piccoli (2007, Lemma 2.1.2)) that will be
useful to prove our result.

Lemma A.1. Let T > 0 and let f be an absolutely continuous function over [0, T ] satisfying the differential inequality

d

dt
f(t) ≤ a(t)f(t) + b(t) for a.e. t ∈ [0, T ], (29)

where a, b ∈ L1([0, T ]) are integrable functions. Then, for every t ∈ [0, T ],

f(t) ≤ exp

(∫ t

0

a(u) du

)
f(0) +

∫ t

0

exp

(∫ t

s

a(u) du

)
b(s) ds . (30)
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Proof. Define the absolutely continuous function

ψ(t) := exp

(
−
∫ t

0

a(u) du

)
and note that ψ(t) > 0, ψ(0) = 1, and

d

dt
ψ(t) = −a(t)ψ(t) .

Multiplying both sides of Equation (29) by ψ(t) and integrating from 0 to t, we have∫ t

0

ψ(s)
d

ds
f(s) ds ≤

∫ t

0

ψ(s)a(s)f(s) ds+

∫ t

0

ψ(s)b(s) ds (31)

ψ(t)f(t)− ψ(0)f(0)−
∫ t

0

ψ′(s)f(s) ds ≤
∫ t

0

ψ(s)a(s)f(s) ds+

∫ t

0

ψ(s)b(s) ds (32)

ψ(t)f(t)− f(0) +

∫ t

0

a(s)ψ(s)f(s) ds ≤
∫ t

0

ψ(s)a(s)f(s) ds+

∫ t

0

ψ(s)b(s) ds (33)

ψ(t)f(t) ≤ f(0) +

∫ t

0

ψ(s)b(s) ds . (34)

We then divide both sides by ψ(t) again to conclude:

f(t) ≤ f(0)

ψ(t)
+

∫ t

0

ψ(s)

ψ(t)
b(s) ds (35)

= exp

(∫ t

0

a(u) du

)
f(0) +

∫ t

0

exp

(∫ t

s

a(u) du

)
b(s) ds (36)

Proposition A.2. Let T > 0, and let v,v′ : [0, T ]× Rd → Rd be measurable in time and Lt-Lipschitz in space, with Lt

integrable. Let p0 be a probability measure on Rd, and define pt, p′t as the pushforwards of p0 under the flows of the ODEs
dxt

dt = vt(xt) and dx′
t

dt = v′
t(x

′
t). Then for all t ∈ [0, T ],

W 2
2 (pt, p

′
t) ≤

∫ t

0

exp

(
t− s+ 2

∫ t

s

Lu du

)
Ex∼p′

s

[
∥vs(x)− v′

s(x)∥2
]
ds . (37)

Proof. Let ϕt, ϕ′t be the flows of the ODEs, i.e., xt = ϕt(x0),
dϕt(x)

dt = vt(ϕt(x)), and similarly for x′ and ϕ′t. Define the
coupling:

π̃t := (ϕt, ϕ
′
t)∗p0 ∈ Γ(pt, p

′
t) , (38)

i.e., the pushforward of p0 through the map x 7→ (ϕt(x), ϕ
′
t(x)). By definition of 2-Wasserstein distance, we can write:

W 2
2 (pt, p

′
t) ≤

∫
∥x− x′∥2 dπ̃t(x,x′) = E(xt,x′

t)∼π̃t

[
∥xt − x′

t∥2
]

(39)

Take any x0,x
′
0 ∈ Rd and let xt = ϕt(x0) and x′

t = ϕ′t(x
′
0). Then,

d

dt
∥xt − x′

t∥2 = 2(xt − x′
t) · (vt(xt)− v′

t(x
′
t)) (40)

= 2(xt − x′
t) · (vt(xt)− vt(x

′
t)) + 2(xt − x′

t) · (vt(x
′
t)− v′

t(x
′
t)) (41)

We bound the first term using the Cauchy–Schwarz inequality and the Lt-Lipschitzness of vt:

2(xt − x′
t) · (vt(xt)− vt(x

′
t)) ≤ 2∥xt − x′

t∥ ∥vt(xt)− vt(x
′
t)∥ (42)

≤ 2Lt∥xt − x′
t∥2 . (43)
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Using 0 ≤ ∥a− b∥2 = ∥a∥2 + ∥b∥2 − 2a · b for the second term we have:

2(xt − x′
t) · (vt(x

′
t)− v′

t(x
′
t)) ≤ ∥xt − x′

t∥2 + ∥vt(x
′
t)− v′

t(x
′
t)∥2 . (44)

Plugging these two bounds into Equation (41), we get

d

dt
∥xt − x′

t∥2 = 2(xt − x′
t) · (vt(xt)− vt(x

′
t)) + 2(xt − x′

t) · (vt(x
′
t)− v′

t(x
′
t)) (45)

≤ 2Lt∥xt − x′
t∥2 + ∥xt − x′

t∥2 + ∥vt(x
′
t)− v′

t(x
′
t)∥2 (46)

= (2Lt + 1)∥xt − x′
t∥2 + ∥vt(x

′
t)− v′

t(x
′
t)∥2 . (47)

Finally, taking expectations on both sides w.r.t. (xt,x
′
t) ∼ π̃t, and exchanging expectation and derivative under standard

regularity assumptions, we get:

d

dt
E
[
∥xt − x′

t∥2
]
≤ (2Lt + 1) E

[
∥xt − x′

t∥2
]
+ E

[
∥vt(x

′
t)− v′

t(x
′
t)∥2

]
. (48)

This inequality can be expressed as

df(t)

dt
≤ (2Lt + 1)f(t) + b(t) , f(0) = 0 , (49)

with

f(t) := E(xt,x′
t)∼π̃t

[
∥xt − x′

t∥2
]

(50)

b(t) := Ex′
t∼p′

t

[
∥vt(x

′
t)− v′

t(x
′
t)∥2

]
. (51)

Applying Lemma A.1 with a(t) = (2Lt + 1), we get:

f(t) ≤
∫ t

0

exp

(∫ t

s

(2Lu + 1) du

)
b(s) ds (52)

=

∫ t

0

et−s exp

(
2

∫ t

s

Lu du

)
b(s) ds (53)

Since from Equation (39) we know that W 2
2 (pt, p

′
t) ≤ f(t), the statement follows:

W 2
2 (pt, p

′
t) ≤

∫ t

0

et−s exp

(
2

∫ t

s

Lu du

)
Ex∼p′

s

[
∥vs(x)− v′

s(x)∥2
]
ds . (54)

Although the result in the time-reversed case is straightforward as it directly follows from a time reparameterization, we
state it and prove it for the sake of completeness.

Proposition A.3. Let v,v′ : [0, 1]× Rd → Rd be measurable in time and Lt-Lipschitz in space, with Lt integrable. Let
p0, p

′
0 be probability measures on Rd, and define pt, p′t as the pushforwards of p0 under the flows of the ODEs dxt

dt = vt(xt)

and dx′
t

dt = v′
t(x

′
t). Assume p1 = p′1. Then,

W 2
2 (p0, p

′
0) ≤

∫ 1

0

exp

(
t+ 2

∫ t

0

Ls ds

)
Ex∼p′

t

[
∥vt(x)− v′

t(x)∥2
]
dt . (55)

Proof. Consider the time reversal transformation s = 1− t. Define x̃s := x1−s and x̃′
s := x′

1−s, where xt and x′
t satisfy

the original ODEs with vector fields vt,v
′
t, with xt ∼ pt, x′

t ∼ p′t, and p1 = p′1. Differentiating the reversed processes, we
get:

dx̃s

ds
=

dx1−s

dt
· dt
ds

= −v1−s(x1−s) = −v1−s(x̃s) (56)
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and similarly for x̃′. Thus, the reversed processes satisfy:

dx̃s

ds
= ṽs(x̃s) ,

dx̃′
s

ds
= ṽ′

s(x̃
′
s) , (57)

where we defined the reversed velocity fields ṽs(x) := −v1−s(x) and ṽ′
s(x) := −v′

1−s(x). From the definitions
x̃s := x1−s and x̃′

s := x′
1−s it directly follows that p̃s = p1−s and p̃′s = p′1−s. At s = 0, we have p̃0 = p1 = p′1 = p̃′0, so

the reversed processes start from the same distribution.

Since vt and v′
t are Lt-Lipschitz in space with Lt integrable, ṽs and ṽ′

s are L1−s-Lipschitz. The reversed ODEs start at
s = 0 from the same distribution (p̃0 = p̃′0) and evolve to p̃1 = p0 and p̃′1 = p′0 at s = 1. Applying Proposition A.2, we get:

W 2
2 (p̃1, p̃

′
1) ≤

∫ 1

0

exp

(
1− s+ 2

∫ 1

s

L1−u du

)
Ex∼p̃′

s

[
∥ṽs(x)− ṽ′

s(x)∥2
]
ds . (58)

Substituting p̃s = p1−s and p̃′s = p′1−s, using the definitions of ṽt, ṽ
′
t, and applying a change of variables t = 1− s, we

obtain the desired bound:

W 2
2 (p0, p

′
0) ≤

∫ 1

0

exp

(
1− s+ 2

∫ 1

s

L1−u du

)
Ex∼p′

1−s

[
∥v1−s(x)− v′

1−s(x)∥2
]
ds (59)

=

∫ 1

0

exp

(
t+ 2

∫ 1

1−t

L1−u du

)
Ex∼p′

t

[
∥vt(x)− v′

t(x)∥2
]
dt (60)

=

∫ 1

0

exp

(
t+ 2

∫ t

0

Ls ds

)
Ex∼p′

t

[
∥vt(x)− v′

t(x)∥2
]
dt . (61)

In this work, we are specifically interested in the ODEs (5) and (10):

Proposition 3.1. Let pt and p′t be the distributions at time t obtained by solving the ODEs (5) and (10) backwards in time
from the same initial distribution p1 at t = 1. Assume that the vector fields are measurable in time and Lt-Lipschitz in space
with Lt integrable. Then:

W 2
2 (p0, p

′
0) ≤

∫ 1

0

wW(t)
g(t)4

4
Ex∼p′

t

[
∥hϑ(x, t)∥2

]
dt, (13)

with wW(t) := et+2
∫ t
0
Ls ds

Proof. The ODEs (5) and (10) have the following vector fields:

vt(x) = f(x, t)− 1

2
g(t)2s(x, t)

v′
t(x) = f(x, t)− 1

2
g(t)2 (s(x, t) + h(x, t)) .

The result directly follows by applying Proposition A.3:

W 2
2 (p0, p

′
0) ≤

∫ 1

0

exp

(
t+ 2

∫ t

0

Ls ds

)
g(t)4

4
Ex∼p′

t

[
∥hϑ(x, t)∥2

]
dt . (62)

A.3. Bounding the KL divergence

Proposition A.4. Let p, p′ : Rd × [0, 1] → R≥0 be two probability paths over time t ∈ [0, 1], induced by two reverse-time
SDEs:

dxt = µt(xt) dt+ gt dw̃t , dxt = µ′
t(xt) dt+ gt dw̃

′
t (63)
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where w̃t, w̃
′
t are reverse-time Wiener processes, µ,µ′ : Rd × [0, 1] → Rd, and g : [0, 1] → R>0. Assume that p1 = p′1,

that both SDEs admit strong solutions, and that P′ ≪ P, where P,P′ are the path measures induced by the SDEs on
C([0, 1],Rd). Then:

DKL(p
′
0∥p0) ≤

1

2

∫ 1

0

1

g2t
Ex∼p′

t

[
∥µ′

t(x)− µt(x)∥2
]
dt . (64)

Proof. By applying the chain rule of the KL divergence (Léonard, 2014, Theorem 2.4) at t = 0 and t = 1, we have:

DKL(P
′∥P) = DKL(p

′
0∥p0) + Ex∗

0∼p′
0

[
DKL(P

′
x0=x∗

0
∥Px0=x∗

0
)︸ ︷︷ ︸

≥0

]
(65)

DKL(P
′∥P) = DKL(p

′
1∥p1)︸ ︷︷ ︸

=0

+Ex∗
1∼p′

1

[
DKL(P

′
x1=x∗

1
∥Px1=x∗

1
)
]
. (66)

The subscripts on the path measures denote conditioning on the value of the process at a specific time (by disintegration of
path measures). We can therefore bound DKL(p

′
0∥p0) by a KL divergence between path measures:

DKL(p
′
0∥p0) ≤ Ex∗

1∼p′
1

[
DKL(P

′
x1=x∗

1
∥Px1=x∗

1
)
]
. (67)

By Girsanov’s theorem (Øksendal, 2003),

DKL(P
′
x1=x∗

1
∥Px1=x∗

1
) =

1

2
EP′

x1=x∗
1

[∫ 1

0

1

g2t
∥µ′

t(xt)− µt(xt)∥2 dt
]
. (68)

We can now write the iterated expectation as an expectation over the unconditional path measure P′:

Ex∗
1∼p′

1

[
DKL(P

′
x1=x∗

1
∥Px1=x∗

1
)
]
=

1

2
Ex∗

1∼p′
1

[
EP′

x1=x∗
1

[∫ 1

0

1

g2t
∥µ′

t(xt)− µt(xt)∥2 dt
]]

(69)

=
1

2
EP′

[∫ 1

0

1

g2t
∥µ′

t(xt)− µt(xt)∥2 dt
]
. (70)

Finally, we switch the expectation and integral (Fubini–Tonelli), and simplify the expectation over P′ into an expectation
over the time marginal p′t since the argument of the integral only depends on t:

EP′

[∫ 1

0

1

g2t
∥µ′

t(xt)− µt(xt)∥2 dt
]
=

∫ 1

0

1

g2t
Ex∼p′

t

[
∥µ′

t(x)− µt(x)∥2
]
dt , (71)

which concludes the proof.

In this work, we are specifically interested in the reverse-time SDEs (4) and (9):

Proposition 3.2. Let pt and p′t be the distributions at time t induced by the reverse-time SDEs (4) and (9) starting from the
same distribution p1 at t = 1. Assume that both SDEs admit strong solutions, and that P′ ≪ P, where P,P′ are the path
measures induced by the SDEs on C([0, 1],Rd). Then:

DKL(p
′
0∥p0) ≤

∫ 1

0

wKL(t)
g(t)4

4
Ex∼p′

t

[
∥hϑ(x, t)∥2

]
dt, (14)

with wKL(t) :=
2

g(t)2

Proof. The result directly follows by applying Proposition A.4 to the drifts of the reverse-time SDEs (4) and (9).
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B. Experimental details
B.1. Coarse-grained Boltzmann Emulator model architecture and training setup

The score function in this work is based on the CPaiNN architecture introduced in (Schreiner et al., 2023) with nh = 64
hidden features and five message passing layers. The score is calculated in two steps - embedding and processing by CPaiNN.
In the embedding step, each node is embedded using a lookup function. The pairwise distances between nodes and the
diffusion time t is encoded with a positional embedding as described in (Vaswani, 2017). The embedded t is concatenated to
the node features and the resulting vector is projected down to nh dimensions using an MLP. Additionally, each node is
assigned nh zero-vectors serving as initial equivariant features.

The embedded graph is processed by the score model and the final equivariant features are read out as the score.

The score model was trained in a DDPM setup as described in (Schreiner et al., 2023) using an exponential moving average
(Tarvainen & Valpola, 2017) with a decay value of 0.99, batch size of 128, and the Adam optimizer with a learning rate of
0.001, β1 = .9, β2 = .999.

B.2. Analysis of CLN025 MD Trajectory

To evaluate our methods, we calculate pair-wise Cα distances of the ten-residue miniprotein and project those features onto
the two slowest time-lagged independent components (Pérez-Hernández et al., 2013) with a lag time τ = 10 ns. We then
clustered the MD trajectory into n = 128 states using KMeans. The discretized trajectory was then used for estimating a
Markov State Model (MSM) (Prinz et al., 2011; Bowman et al., 2014; Kolloff & Olsson, 2024) using a lag time of τ = 10 ns
(Hoffmann et al., 2021). For detailed discussions on the background and use of these methods, we refer the reader to
(Bowman et al., 2009; Pande et al., 2010; Prinz et al., 2011; Husic & Pande, 2018).

B.2.1. COMMITTOR PROBABILITIES AND TRANSITION STATES

Figure 5: Committor Probability Voronoi Diagram. Each
region is colored by its committor probability, where values
near 1 correspond to folded states and values near 0 correspond
to unfolded states. Regions near 0.5 represent transition states.

In order to identify the transition states, we computed the com-
mittor probabilities (Metzner et al., 2009), defining transition
states as those with values near 0.5. If we consider a reactive
process of a system on a space Ω going from a state A ⊂ Ω
to another state B ⊂ Ω, s. t. A ∩ B = ∅, the committor qi
describes the probability of reaching state B before A starting
from i.(E. & Vanden-Eijnden, 2006) Considering the protein
folding process, A is the unfolded state and B is the folded state,
qi = P (folded first | starting at state i). Most importantly in
our context, are states with committor values near 0.5, indicating
an equal likelihood of folding or unfolding, which are identified
as transition states (Figure 5). These states often represent crit-
ical bottlenecks in the folding process or in chemical reactions
and are thus of significant biophysical and chemical interest.

B.3. Observable Guidance

We evaluated our method on two systems: a synthetic one-
dimensional model and the chignolin protein system. For both
systems, guidance parameters were optimized using Bayesian
optimization with Gaussian Processes (GPs) implemented via scikit-optimize (Head et al., 2021). The scaling function
took the form ηt(ϑ) = ηinit exp(−κ(1− t)), with system-specific search spaces for ηinit and κ. All optimizations used 64
function evaluations with a convergence threshold of 1e-5, retaining the 5 best parameter sets. The scaling hyperparameter γ,
which balances observable matching and minimum excess work, was consistently set to 1e-3 after hyperparameter search.

B.3.1. SYNTHETIC SYSTEM

Neural Network Architecture and Training. Two multilayer perceptron (MLP) networks were trained on the Prinz
potential system (Prinz et al., 2011) with kB = 1.38 · 10−23 and T = 300 K: one on the unbiased potential and another

19



Minimum-Excess-Work Guidance

Table 3: Gaussian Mixture Model Component Parameters

Component Mean (µ) Variance (σ2) Weight (w)

1 0.30 0.01 0.35
2 -0.24 0.01 0.22
3 0.69 0.01 0.27
4 -0.71 0.01 0.16

incorporating a linear bias of -4. Both networks were trained for 15,000 epochs using a batch size of 256 and the Adam
optimizer with a learning rate of 1e-3. The networks shared identical architectures, with input dimension corresponding
to single-atom (natoms = 1) one-dimensional data, a time embedding dimension of 3, hidden dimension of 64, and output
dimension of 1. The training process employed a linear beta scheduler with parameters a = 0.1 and b = 20.0. This
scheduler controlled the noise scale during training, allowing for progressive refinement of the learned distributions.

Observable Function Parameterization. For the synthetic system, the observable function was implemented as a Gaussian
Mixture Model (GMM) with four components, parameterized as shown in Table 3. The Lagrange multiplier was calculated
to be -0.66 following (Bottaro et al., 2020). The parameter search space was defined as ηinit ∈ [1.0, 20.0] and κ ∈ [1.0, 20.0].

B.3.2. CHIGNOLIN SYSTEM

For the chignolin protein system, we defined the observable function using the interatomic distance between the first and last
Cα atoms (Cα

1 and Cα
10). The folding free energy was calculated as:

∆G = −kBT log

(
pf

1− pf

)
(72)

where pf represents the fraction of folded samples, defined using a distance cutoff of 7.5 Å. The Lagrange multiplier was
determined to be -0.5 (Bottaro et al., 2020). The parameter search space was set to ηinit ∈ [10−2, 1.0] and κ ∈ [1.0, 10.0].
The optimization process used 256 samples per epoch, with final evaluation conducted on 256 × 256 samples to ensure
robust statistical assessment.

B.3.3. COMPUTE RESOURCES AND RUNTIME DETAILS

Observable guidance experiments were conducted using HPC compute infrastructure equipped with NVIDIA A100 GPUs
(80GB memory). Training and evaluation scripts were run on single-GPU nodes.

For the synthetic system (Section 2 and Table 1), each experiment took approximately 4 min to run, consuming 6 GB
GPU memory. The chignolin experiments (e.g., Figure 12) required up to 30 min of compute time per run, and 30 GB
of GPU memory due to the larger input size and batch requirements. Ablation studies (Figure 9) were conducted with
the same hardware and each variant was run across 50 (synthetic case) and 10 (chignolin case) seeds, requiring 1–3 hours
per configuration. In total, the reported experiments required approximately 10 GPU hours. Preliminary runs and failed
hyperparameter sweeps amounted to an estimated additional 100 GPU hours, not included in the main results.

B.4. Path Guidance

Similar to observable guidance, path and loss guidance were evaluated on two systems: a synthetic two-dimensional setup
and the chignolin mini-protein. We experimented with various functional forms for the guiding strength and time-dependent
bandwidth and found that sigmoid-like step functions performed well across both tasks:

ηt(ϑ) = ϑinit (1− σ(ϑg(t− ϑs))) (73)
ht(φ) = φinit + σ(φg(t− φs)) (74)

To optimize the parameter sets ϑ and φ we applied Bayesian optimization with Gaussian Processes (GPs), using the
scikit-optimize library. We employed the gp_hedge acquisition function, which dynamically combines strategies
such as Expected Improvement (EI), Probability of Improvement (PI), and Lower Confidence Bound (LCB) based on their
empirical performance. After initial exploration, we restricted the search space to a sensible domain to improve optimization
efficiency and support a broader sweep of experimental configurations.
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Figure 6: tICA Projection of Original and Observable-Guided Model. State space distribution projected onto the first and second tICs
for the original (A) and guided (B) BG. The plots are colored by their respective energies.

B.4.1. SYNTHETIC SYSTEM

We evaluated our method on a simple three-moon example, where the two-dimensional dataset consists of three noisy half-
moon arcs generated by sampling from shifted semicircles with optional convexity and added Gaussian noise (see Figure 10).
While two of the arcs are well-represented in the training data, only 2.5% of the samples belong to the third arc, creating
a challenging low-data region. We adopt the Conditional Flow Matching (CFM) framework (Lipman et al., 2022), from
which the score function can be derived for augmentation. To approximate the resulting vector field, we train a four-layer
MLP on 10,000 samples for 3,000 steps using a learning rate of 10−4 and a batch size of 256. Training hyperparameters
were selected via a small grid search on an NVIDIA A100 GPU. For optimizing the guidance schedules in Equation (73),
we run 25 Bayesian optimization steps. To classify whether a sample falls within the target moon, we train a two-layer
MLP classifier using a learning rate of 10−3, 1,000 training steps, and a batch size of 256. For path and loss guidance, we
evaluated γ values between 0 and 1, finding 0.03 working best for path guidance and 0.1 for loss guidance. For sampling we
use 20 guiding points generating 1000 samples in one batch.

B.4.2. CHIGNOLIN SYSTEM

The Boltzmann Emulator used for sampling the chignolin system is described in Appendix B.1. Since loss guidance could
not be reliably optimized via Bayesian optimization, we performed an extensive grid search over hyperparameters, including
various functional forms for the schedules in Equation (73). This grid search was run for 24 hours on a single NVIDIA
H100 GPU and served primarily to investigate the failure modes of loss guidance. The corresponding results are shown in
Figure 12B. To improve stability, we explored gradient clipping and found it essential for loss guidance. For MEW-guided
optimization, we focused exclusively on path guidance. We tested γ values between 0 and 1 and found values γ ≤ 0.5 to be
effective. Each run consisted of 50 Bayesian optimization steps, with one function evaluation taking approximately 2.5
minutes. As a result, a full optimization run for a fixed γ required about two hours on a single NVIDIA H100 GPU (80GB).
After each iteration, we computed committor probabilities of the sampled protein conformations using the method described
in Appendix B.2 to estimate the proportion of transition-state configurations. For each of the 50 guiding points available, we
generated 10 samples, leading to a sample batch size of 500.

C. Results: Observable Guidance
All error bars for observable guidance were calculated as the standard deviation between n runs (n = 50 for the 1D energy
potential experiments and n = 10 for the chignolin experiments.

C.1. Ablation Studies

D. Results: Path Guidance
D.1. Synthetic System
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Figure 7: Comparison of sequential Cα–Cα distances between the observable-guided diffusion model (OG-DDPM, green) and the
original diffusion model (DDPM, orange). The plots show the distance distributions for all adjacent Cα pairs (0–2 through 8–9 using
zero indexing) in the protein backbone, showing that the guided model maintains proper protein geometry while achieving the desired
constraints.

Table 4: Metrics for O(x) and KL divergence with and without MEW regularization.

Model M EpM(x)[O(x)] KL[pGT(x)∥pM(x)]

w/o MEW 0.131 0.754± 1.533
w/ MEW 0.131 0.029± 0.007
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with MEW regularization without MEW regularization

Figure 9: Ablation study on MEW regularization in the 1D four-well potential. Left: With MEW regularization, the guided distribution
(red) closely matches both the reference (blue) and ground truth (yellow) distributions. Right: without regularization, guidance leads to
mode collapse and overconcentration, resulting in low observable prediction error but poor distributional fidelity. Insets show the expected
observable values Ep(x)[O(x)].

Figure 8: Distribution of backbone torsion angles (ϕ1 through ϕ7) comparing
the MD simulation (solid lines) with the observable-guided model (dashed
lines). The close agreement between the distributions indicates that the guided
model preserves the native conformational preferences of the protein while sat-
isfying the experimental constraints. Each torsion angle is shown in a different
color. The differences between the two densities stem from the guidance procedure.
Importantly, the the torsion angles themselves remain the same.

Before applying our method to the Boltz-
mann Generator on the chignolin system, we
first evaluated it on a simple three-moon ex-
ample (Figure 10; see Appendix B.4.1 for
implementation details). This setup offers
a useful testbed, as the low-data region is
connected to a high-density area while re-
maining well-separated from the other half-
moon. The objective of guidance in this case
is to enable transitions into the low-density
region without deviating off the underlying
data manifold connecting the moons.

We observe that with ODE sampling, points
frequently fall off the manifold, and only
careful tuning of the guiding strength min-
imizes this issue. In contrast, SDE guiding is
more robust, as noise helps correct guidance
errors. Overall, after minimal optimization
of ηt and ht, both Path Guidance and Loss
Guidance perform well on this toy example.
However, in both methods, careful calibration
of the guiding strength at low t is essential, as
errors at this stage cannot be corrected later.
Hence, we found the sigmoid function to be
effective in these scenarios, as it naturally
converges to 0 for t → 1. In contrast to the
Chingolin experiment, we find that loss guid-
ance performs equally well in this synthetic setting, likely due to the simplicity of the data distribution, where the (KDE) in
data space sufficiently captures the underlying probability distribution. We also investigate the effect of MEW regularization
and observe that omitting the regularization reduces the diversity of the generated samples. Without MEW, the samples
tend to be overly guided towards the guiding points on most probable regions, failing to capture the full variance of the
underlying distribution Figure 11.
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A
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B

Path Guided Model (ODE)

Guiding Samples

C

Path Guided Model (SDE)

D

Loss Guided Model (SDE)

Figure 10: Sampling the synthetic system. Comparison of un-
guided, path-guided, and loss-guided models using both SDE and
ODE samplers.

A

Path Guidance (w/o MEW)

Model Samples B

Path Guidance (w/ MEW)

Guiding Samples

C

Loss Guidance (w/o MEW)

D

Loss Guidance (w/ MEW)

Figure 11: Guidance with and without MEW regularization.
MEW guidance ensures that we do not collapse onto the guiding
points.

D.2. Ablation Studies on Loss guidance

Since reliable sampling with loss guidance could not be achieved, we conducted a more thorough investigation to enable a fair
comparison. Instead of relying on Bayesian optimization, we performed an extensive grid search over the guiding parameters
(see Appendix B.4.2 for details), with particular focus on smaller guiding strengths to mitigate the effects of unstable or
misaligned gradients. Compared to path guidance, the grid search results show substantially lower guiding success, with a
maximum transition-state sampling rate of only 0.15%. While this does represent an improvement over unguided sampling
(1%), most configurations with non-negligible guidance success resulted in degenerate samples (Figure 12B). Our analysis
suggests that while loss guidance can partially align the model with the target angle distribution, it struggles to follow the
desired sampling trajectory throughout the generative process. As a result, strong corrections near the data distribution are
required, increasing the risk of sample degeneration (Figure 12A).

D.3. Baseline Experiments

In this section, we describe the other two baselines, mentioned in Section 4.2, which do not augment the vector field. Instead,
they utilize the latent representations of the guiding points X g

t to initialize the sampling process for generating new points
with similar latent characteristics. While these methods are appealing in their simplicity, they lack direct control over the
sampling process itself.

Latent-KDE (L-KDE). We can fit a KDE in the latent space on X g
1 , sample from it, and integrate the probability flow

ODE backwards in time. Fitting the KDE at the prior can be advantageous because the Euclidean distance, on which most
kernels are based, is better suited for Gaussian-distributed data compared to its use in data space. We refer to this method as
Latent-KDE (L-KDE).

Stochastic-Reverse (SR). Alternatively, we can select a specific time step t such that the desired properties are preserved
and initialize the backward SDE (Equation (2)) with latents from X g

t . The stochasticity of the SDE will ensure we generate
new divers samples with x′ ∈ A.

We conduct sampling experiments using the aforementioned baseline methods to verify whether the results align with our
intuition. Specifically, for the L-KDE baseline, we evaluate a Gaussian kernel with noise levels (standard deviations) of
{0.01, 0.05, 0.1}. For the SR baseline, we consider intermediate times {0.1, 0.5, 0.9}. For simplicity, we only examine the
scenario where there is a single guiding point (i.e., X g

1 and X g
t are singleton sets). Each experiment is repeated with five
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Figure 12: Path Guidance vs. Loss-Guidance for sampling Transition States. (A) Evolution of the mean torsion angle (which
determines the state of the protein) during the diffusion process. (B) Guiding success rates across different parameter settings.

different seeds.

In the following figures (Figures Figure 13 – Figure 18), we provide various metrics, histograms, and energy surfaces that
summarize the trends observed in these baseline guidance scenarios. Overall, the results strongly suggest that guidance
biases the sampling procedure toward the reference guiding points, which aligns with our intuition.
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Figure 13: Trade-off between sample variance and guidance
success rate (L-KDE). As the KDE noise scale increases for the
L-KDE baseline, the percentage of transition states among the
generated samples decreases (blue), while the vendi score among
the generated states increases (red).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Intermediate time

0.0

0.1

0.2

0.3

0.4

0.5

Pe
rc

en
ta

ge
 o

f t
ra

ns
iti

on
 st

at
es

Percentage of transition states
Vendi score

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Ve
nd

i s
co

re

Figure 14: Trade-off between sample variance and guidance
success rate (SR). As the selected time step t increases for the SR
baseline, the percentage of transition states among the generated
samples decreases (blue), while the vendi score among the gener-
ated states tends to increase (red).
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Figure 15: Energy surface plots. First row: L-KDE baseline for various levels of noise scale. The smaller the perturbation, the more
concentrated the samples around the transition states region. Second row: SR baseline for various values of intermediate time. The smaller
the stochasticity level, the more concentrated the samples around the transition states region. Compare with Figure 5 and Figure 3 A and
B.
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(a) L-KDE noise=0.01
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(b) L-KDE noise=0.1

Figure 16: Comparison of bond distance distributions for L-KDE and the reference. The L-KDE baseline (blue) is superposed on the
corresponding histogram of the unconditional (red) distribution (the CLN025 MD simulation). We see that for small perturbations, the
generated samples seem to conform to particular details of the guiding samples. As the noise increases, the guidance impact diminishes.
This is quantified in a more principled way in Figure 18.
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(a) SR intermediate time=0.1
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(b) SR intermediate time=0.9

Figure 17: Torsion angle histograms for the SR baseline at different noise levels. Solid lines show SR samples at t = 0.1 (Left) and
t = 0.9 (Right), superimposed on the corresponding unconditional distributions (dashed lines). At high stochasticity (t = 0.9), the torsion
angle distribution becomes nearly indistinguishable from the unconditional one.
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(a) Wasserstein distance vs noise scale for L-KDE baseline
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(b) Wasserstein distance vs intermediate time for SR baseline

Figure 18: Wasserstein distance between baselines and reference bond distance distributions. We measure the distance between the
bond distance distributions of baseline methods and the CLN025 MD simulation (see Figure 16). As the stochasticity level increases for
both baselines, the generated distributions converge toward the unconditional reference, indicating a reduced influence of the guidance
signal.
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