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ABSTRACT

We present a memory-efficient neural ODE framework PNODE based on high-
level adjoint algorithmic differentiation. It is implemented using PyTorch and
PETSc, one of the most commonly used portable, scalable scientific computing
libraries. By leveraging discrete adjoint time integrators and advanced checkpoint-
ing strategies tailored for these integrators, PNODE can provide a balance between
memory and computational costs while computing the gradients consistently and
accurately. We demonstrate the performance through numerical experiments on
image classification, continuous normalizing flow, and time series regression. We
show that PNODE achieves the highest memory efficiency when compared with
other reverse-accurate methods. We also show PNODE enables the application of
implicit time integration methods that are desired for stiff dynamical systems.

1 INTRODUCTION

A residual network can be seen as a forward Euler discretization of a continuous time-dependent
ordinary differential equation (ODE), as discussed in Lu et al. (2018); Haber & Ruthotto (2017);
Ruthotto & Haber (2020). In the limit of smaller time steps, a new family of deep neural network
models called neural ordinary differential equations (neural ODEs) was introduced in Chen et al.
(2018). Compared with traditional discrete-time models, this family is advantageous in a wide range
of applications, for example, modeling of invertible normalizing flows Grathwohl et al. (2019) and
continuous time series with irregular observational data Rubanova et al. (2019). This continuous
model also makes neural ODEs particularly attractive for learning and modeling the nonlinear
dynamics of complex systems. They have been successfully incorporated into many data-driven
models Rubanova et al. (2019); Greydanus Google Brain et al. (2019); Ayed et al. (2019) and adapted
to a variety of differential equations including hybrid systems Dupont et al. (2019) and stochastic
differential equations Jia & Benson (2019).

A main challenge in training neural ODEs is the balance between stability, accuracy, and memory
efficiency. A naive implementation is to backpropagate the ODE solvers directly, resulting in a large
redundant computational graph. To overcome this memory limitation, Chen et al. Chen et al. (2018)
proposed to use a continuous adjoint method in place of backpropagation and invert the forward
trajectory, which requires no storage of previous states and allows for training with constant memory.
However, as pointed out in Gholaminejad et al. (2019); Onken & Ruthotto (2020); Zhuang et al.
(2020), the continuous adjoint method may lead to inaccuracy in the gradient and instability during
training. A framework named ANODE, based on a discrete adjoint method with checkpointing
strategy, was proposed in Gholaminejad et al. (2019) and extended to ANODEV2 in Zhang et al.
(2019b). A generalization of ANODE and ANODEV2 has been implemented in a Julia library
Rackauckas et al. (2020). ANODE compresses the memory cost by saving only the initial states and
recomputing the forward pass. The adaptive checkpoint adjoint method proposed in Zhuang et al.
(2020) is similar to Gholaminejad et al. (2019) but uses a slightly different checkpointing strategy.

In this paper we begin by introducing and analyzing the two different adjoint methods that are common
techniques for solving optimal control problems. Then we show that the discrete adjoints derived
from a time integration method can be cast as a high-level abstraction of automatic differentiation
and can produce exact gradients if the Jacobian is exact. Based on the discrete adjoint method with
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checkpointing, we propose PNODE to address the challenges in neural ODEs. The main contributions
of this paper are:

1. We propose a framework that minimizes the depth of the computation graph for backpropa-
gation, leading to significant savings in memory cost for neural ODEs. Our code is available
online at https://github.com/pnode-dev/pnode.

2. High-level adjoint calculation with backpropagation through a minimal computation graph
allows more flexibility in the design of neural ODEs. We show our framework enables
implicit time integration and opens up possibilities to incorporate other integration methods.

3. We show that PNODE outperforms existing approaches in memory efficiency on a variety
of tasks including image classification and continuous normalizing flow. We demonstrate
the application of implicit integration methods with a time series regression example.

2 PRELIMINARIES

2.1 NEURAL ODES AS AN OPTIMAL CONTROL PROBLEM

Neural ODEs are a new class of models that consider the continuum limit of neural networks where
the input-output mapping is realized by solving a system of parameterized ODEs

du

dt
= f(u,θ, t) u(t0) = u0, t ∈ [t0, tF ], (1)

where u ∈ RN is the state, θ ∈ RNp are the weights, and f : RN × RNp × R→ RN is the vector
field approximated by a neural network. Essentially, the input-output mapping is learned through a
data-driven approach. During training, u(1),u(2), . . . ,u(S) are fed as initial states, and the output
should match the solutions of (1) at tF .

Training neural ODEs can be viewed as solving an optimal control problem

min
θ,u

{
L := φ(u(tF )) +

∫ tF

t0

q(u(t), t)dt

}
,

subject to the dynamical constraint (1).
(2)

This formulation generalizes the loss functional that depends on the final solution in the vanilla neural
ODEs to additional functionals that depend on the entire trajectory in the time (or depth) domain.
The integral term may come as part of the loss function or as a regularization term, for example,
Tikhonov regularization, typically used for solving ill-posed problems. Finlay et al. (2020) showed
that regularization techniques can be used to significantly accelerate the training of neural ODEs.
Their approach can also be captured by the formula (2).

Notations For convenience, we summarize the notions used across the paper:

• Nt: the number of time steps in time integration.
• Ns: the number of stages in the time integration method.
• Nf : the number of layers in the neural network that approximates the vector field f in (1).
• Nb: the number of ODE blocks (one instance of (1) corresponds to one block).
• Nc: the number of maximum allowed checkpoints (one checkpoint can store one state).

2.2 DISCRETE ADJOINT VS CONTINUOUS ADJOINT

To evaluate the objective L in (2), both the ODEs (1) and the integral need to be discretized in time.
In order to calculate the gradient of L for training, adjoint methods (i.e., backpropagation in machine
learning) can be used. Two distinct ways of deriving the adjoints exist: continuous adjoint and
discrete adjoint.

Continuous adjoint The continuous adjoint sensitivity equation is

dλ̃

dt
= − ∂f

∂u
λ̃− ∂q

∂u
, (3)

λ̃(tF ) =
∂L

∂u(tF )
, (4)
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Table 1: Comparison between different adjoint approaches for forward Euler.
forward propagation un+1 = un + hf(un,θ, tn)

continuous adjoint λ̃n = λ̃n+1 + h

(
∂f(un+1,θ, tn+1)

∂u

)T
λ̃n+1

discrete adjoint λn = λn+1 + h

(
∂f(un,θ, tn)

∂u

)T
λn+1

where λ̃ ∈ RN is an adjoint variable. Its solution gives the gradient of L with respect to the initial
state u0; that is, λ̃(t0) = dL

du0
. The gradient of L with respect to the weights θ is

dL
dθ

=
∂L
∂θ

+

∫ tF

t0

(
λ̃T

∂f

∂θ
+
∂q

∂θ

)
dt. (5)

The infinite-dimensional sensitivity equations and the integrals also need to be discretized in time in
order to obtain a finite-dimensional approximation to the derivatives. In the practical implementation,
one must integrate (1) forward in time and save the intermediate states. Then the sensitivity equations
are solved backward in time, during which the saved states are restored to evaluate the Jacobians.
These two steps are analogous to forward pass and backpropagation in machine learning nomenclature.
Theoretically, different time integration methods and different time step sizes can be chosen for
solving the forward equations and the sensitivity equations.

Discrete adjoint An alternative approach is to derive the adjoint for the discretized version of the
infinite-dimensional equations (1) directly. Assume the discretization is formally represented by a
time-stepping operator N that propagates the solution from one time step to another:

un+1 = N (un). (6)
The adjoint sensitivities are propagated with

λn =

(
dN
du

(un)

)T
λn+1, n = N − 1, . . . , 0,

λN =

(
dψ

du
(uN )

)T
.

(7)

Similarly, λ0 gives the sensitivity of L to the initial state u0. Parametric sensitivities dL
dθ can be

derived by augmenting the original ODEs with dθ
dt = 0. See the appendix for more details.

2.3 WHICH ADJOINT METHOD IS BETTER FOR NEURAL ODES?

While both approaches can generate the gradients for the loss function, these gradients are typically
not the same even if the same time integration method and step sizes are used. They are asymptotically
equivalent as the time-step size approaches zero. As a concrete example, we compare the continuous
adjoint equation after time discretization using the forward Euler method with the discrete adjoint
for the same method. As shown in Table 1, the Jacobian is evaluated at un+1 and un, respectively,
causing a discrepancy that can be quantified by the following proposition. To show the influence on
the gradient, we analyze the discrepancy in the adjoint variable between the two methods after one
backward time step.

Proposition 1 Assuming λ̃n+1 = λn+1, the local discrepancy between the continuous adjoint
sensitivity and the discrete adjoint sensitivity is

‖λ̃n − λn‖ = h2‖H (un + ε(un+1 − un),θ, tn) f(un,θ, tn)‖‖λn+1‖, (8)
whereH is the Hessian of f and ε is a constant in (0, 1).

This indicates that λ̃n+1 = λn for linear functions since the Hessian is zero and for nonlinear
functions, such as deep neural networks, λ̃n+1 approaches λn quadratically as h→ 0. Nevertheless,
the accumulated discrepancy may clearly lead to inconsistency in the gradient calculated with the
continuous adjoint approach. Similar results also hold for other multistage time integration methods
such as Runge–Kutta methods.

3



Under review as a conference paper at ICLR 2022

Φ

Save the computation
graph for f

u!

h∗

u!"#+

       f

(a) Forward pass

u!

h∗

u!"#+
∂Φ
∂u$"#

∂f 
∂u!

∂b
∂u!

=1 𝜕u!"#
𝜕b = 1

∂a
∂f =h

∂b
∂a=1

a

b

       f
Discrete adjoint method

Backpropagate f

Φ

(b) Reverse pass

Figure 1: Illustration of the discrete adjoint method using forward Euler. For simplicity, the state
variable is assumed to be scalar, and the function f is assumed to be a scalar function.

3 METHOD

3.1 HIGH-LEVEL ABSTRACTION OF AUTOMATIC DIFFERENTIATION

Despite the nuances in different approaches for gradient computation in neural ODEs, they can be
interpreted fundamentally as a unified method that utilizes automatic differentiation (AD) (Nocedal
& Wright, 2006) at different abstraction levels. Specifically, the reverse (adjoint) mode of AD
can compute the gradient of a scalar function efficiently, at a cost independent of the number of
parameters. In order to compute the gradient, the function needs to be evaluated first, often called
a forward pass that generates output from input. Then a list of operations during the evaluation is
recorded and forms a computational graph of the function. To compute the derivatives, one applies
the chain rule of differentiation to each node in the graph in a backward order.

This procedure can be performed in different ways based on the definition of a primitive operation in
the list. In the continuous adjoint approach adopted in vanilla neural ODE, the primitive operation is
the ODE itself; in the discrete adjoint approach in Section 2.2, the primitive operation is a propagation
equation for a particular time-stepping algorithm, thus yielding a high-level representation of the
computation flow.

3.2 ADJOINT METHODS REDUCE THE DEPTH OF COMPUTATIONAL GRAPH.

In a naive neural ODE approach, one can use an AD tool to backpropagate the entire forward solve,
thus requiring O(NtNsNf ) memory to record every operation in the graph. The memory cost for
backpropagation increases with the size of the neural network and the number of time steps, making
this approach infeasible for large problems and long-time time integration.

In contrast, high-level AD methods, such as the discrete adjoint method in Section 2.2, compute the
gradient by composing the derivatives for the primitive operations. Therefore, one only needs to
backpropagate the primitive operations instead of the entire ODE solver. If the primitive operation
is a time step, then one can backpropagate one time step at a time, and the memory cost for
backpropagation will be independent of the number of time steps.

3.3 PNODE MINIMIZES THE DEPTH OF THE COMPUTATIONAL GRAPH AND BALANCES THE
COSTS OF RECOMPUTATION AND CHECKPOINTING

Based on discrete adjoint method, we propose PNODE that checkpoints the solutions at selective time
steps in the forward pass, with the stage values if multistage time integration methods such as Runge-
Kutta methods are used. Essentially, we take the function evaluation of f as the primitive operation
in the high-level discrete adjoint method. In the reverse pass, the checkpoints are restored and used to

compute the transposed Jacobian-vector product
(
∂f
∂u

)T
v , where the vector v is determined by the

time integration algorithm. The transposed Jacobian-vector product is obtained by backpropagating f
with a constant memory cost O(Nf ). To illustrate our approach, we show the workflow for forward
Euler in Figure 1. By assembling all the edges along each path from the output to the input according,
we obtain the gradient of the output function to the input u0. Nota that the high-level discrete
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adjoint algorithm (Zhang et al., 2019a) for a time integration method can be derived and implemented
manually, and it can be reused in different applications.

The memory cost thus consists of two parts for backpropogation and checkpointing, respectively.
The cost for backpropogation is O(Nf ), which is minimal for backpropagating the computational
graph of f . The cost for checkpointing is O(Nc). With limited memory budget (Nc < Nt), the states
that are not checkpointed in the forward pass can be recomputed from a nearby checkpoint. See
Figure 1 in Appendix for illustration. We employ optimal checkpointing schedules with minimal
recomputations developed by (Zhang & Constantinescu, 2021) to achieve the best efficiency.

Proposition 2 (Zhang & Constantinescu, 2021) Given Nc allowed checkpoints in memory, the
minimal number of extra forward steps (recomputations) needed for the adjoint computation of Nt
time steps is

p̃(Nt, Nc) = (t− 1)Nt −
(
Nc + t

t− 1

)
+ 1, (9)

where t is the unique integer satisfying
(
Nc+t−1
t−1

)
< Nt ≤

(
Nc+t
t

)
.

We remark that this checkpointing strategy allows us to balance between the recomputation cost and
the memory cost for checkpointing. In an ideal case where memory is sufficient for saving all stages
at each time step, no recomputation is needed. Then the computational cost of PNODE becomes
O(NtNs).

3.4 PNODE ENABLES IMPLICIT TIME INTEGRATION

The application of implicit time integration is highly desired for stiff dynamical systems where
explicit methods may fail due to stability constraints. However, backpropagating through the implicit
solver is difficult because the complexity of the nonlinear/linear solve required at each time step and
the large amount of memory needed for the resulting computational graph. By taking the function
(f ) evaluation as the primitive operation in high-level AD, PNODE excludes the nonlinear/linear
solvers from the computational graph for backpropagation. Instead, it solves an adjoint equation (a
transposed linear system) to propagate the gradients. See Appendix C.3 for examples. We solve both
the linear system in the forward pass and the transposed system in the reverse pass with a matrix-free
iterative method for efficiency. The action of the matrix or its transpose is computed efficiently by
backpropagating f . Again, only the computational graph for f needs to be created in our approach.

3.5 COMPARISON WITH OTHER METHODS

NODE cont: the original implementation by Chen et al. (2018) with continuous adjoint The
vanilla neural ODE (Chen et al., 2018) avoids recording everything by solving the ODE backward
in time to obtain the intermediate solutions needed when solving the continuous adjoint equation.
Therefore, it requires a constant memory cost O(Nf ) to backpropagate f .

NODE naive: a variant of the original implementation by Chen et al. (2018) This is a naive
method that backpropagates the ODE solvers and has the deepest computational graph, but it has the
minimum computational cost O(Nt) since no recomputation is needed in the backward solve.

ANODE: a framework with discrete adjoint and checkpointing method proposed by Gho-
laminejad et al. (2019) The checkpointing method for ANODE (Gholaminejad et al., 2019) has the
same memory cost O(Nt) as NODE naive theoretically when a single ODE block is considered.
For multiple ODE blocks, ANODE saves only the initial states for each block and recomputes the
forward pass before the backpropagation for each block; consequently, the total memory cost for
checkpointing is O(Nt) +O(Nb) where Nb is the number of ODE blocks.

ACA: the adaptive checkpoint adjoint (ACA) method proposed by Zhuang et al. (2020) To
achieve reverse accuracy, ACA checkpoints the state at each time step and recomputes the forward
steps locally during the backward pass, thus consuming O(Nt) memory for checkpointing. To save
memory, ACA deletes redundant computation graphs for rejected time steps when searching for
optimal step size. Its memory cost for backpropagation is O(NtNsNf ).
A summary comparing PNODE with existing representative implementations of neural ODEs is
given in Table 2. For simplicity, we assume the number of reverse time steps in the continous adjoint
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Table 2: Comparison between different implementations of neural ODEs for one ODE block. The
computational complexity is measured in terms of the number of function evaluations (f ).

NODE cont NODE naive ANODE ACA PNODE(Ours)

Computational complexity 2NtNs NtNs 2NtNs 2NtNs 2NtNs

Backpropagation memory Nf NtNsNf NtNsNf NtNsNf Nf

Checkpointing memory - - Nt Nt Nc

Reverse-accuracy × X X X X
Implicit time stepping support × × × × X

method is also Nt and do not consider rejected time steps. Note that the rejected time steps have no
influence on the computational cost and the memory cost of PNODE because the adjoint calculation
in the reverse pass involves only accepted time steps (Zhang & Constantinescu, 2021).

3.6 IMPLEMENTATION

Drawing on state-of-the-art adjoint-capable ODE solvers (TSAdjoint in PETSc), we implemented
PNODE by interfacing PETSc to PyTorch and utilizing its discrete adjoint solvers with optimal
checkpointing. As a key step, we implemented a data conversion mechanism in petsc4py, the
Python bindings for PETSc, based on the DLPack standard.1 This enables in-place conversion
between PETSc vectors and PyTorch tensors for both CPUs and GPUs and thus allows PETSc and
PyTorch to access the same data seamlessly. Although PNODE can be implemented with any dif-
ferentiable ODE solvers such as FATODE (Zhang & Sandu, 2014) and DiffEqSensitivity.jl
(Rackauckas & Nie, 2017), PETSc has several favourable features that other tools may lack:

Rich set of numerical integrators As a widely used time-stepping library, PETSc offers a large
collection of time integration algorithms for solving ODEs, differential algebraic equations, and
hybrid dynamical systems (Abhyankar et al., 2018; Zhang et al., 2017). It includes explicit, implicit
methods, and implicit-explicit methods, multirate methods with various stability properties, and
adaptive time-stepping support. The discrete adjoint approach proposed in Section 2.2 has been
implemented for some time integrators and can be easily expanded to others (Zhang et al., 2019a).

Discrete adjoint solvers with matrix-free Jacobian When using the adjoint solver, we compute
the transposed Jacobian-vector product through AutoGrad in PyTorch and supply it as a callback
function to the solver, instead of building the Jacobian matrix and performing matrix-vector product,
which are expensive tasks especially for dense matrices. In addition, combining low-level AD with
the high-level discrete adjoint solver guarantees reverse accuracy, as explained in Section 3.1.

Optimal checkpointing for multistage methods Checkpointing is critical for balancing memory
consumption and computation cost. In addition to the classic Revolve algorithm (Griewank
& Walther, 2000), PETSc supports optimal algorithms (Zhang & Constantinescu, 2021) that are
extended from Revolve and tailored specifically for multistage methods. PETSc also support
sophisticated checkpointing algorithms (Stumm & Walther, 2010) for hierarchical storage systems.

HPC-friendly linear algebra kernels PETSc has fully fledged GPU support for efficient training of
neural ODEs, including multiprecision support (half, single, double, float128) and extensive parallel
computing that leverages CUDA-aware MPI (Mills et al., 2020).

4 EXPERIMENTAL RESULTS

In this section we test the performance of our proposed framework PNODE and compare it with
the aforementioned four implementations of neural ODEs on diverse benchmark tasks. All the
experiments are conducted on an NVIDIA Tesla V100 GPU with a memory capacity of 32 GB.
When testing PNODE, we use Nc = Nt for best speed. Note that this corresponds to the worst-case
memory cost for PNODE.

1https://github.com/dmlc/dlpack

6



Under review as a conference paper at ICLR 2022

0 50 100 150 200
Epoch

0

2

4

6

8
10

-3 Training loss

0 50 100 150 200
Epoch

0.2

0.4

0.6

0.8

1
Test accuracy

NODE naive

ANODE

NODE cont

PNODE

(a) Euler

50 100 150 200
Epoch

0

2

4

6

8
10

-3 Training loss

50 100 150 200
Epoch

0.2

0.4

0.6

0.8

1
Test accuracy

NODE naive

ANODE

NODE cont

PNODE

(b) RK4

Figure 2: Training and testing performance of SqueezeNext on CIFAR10 using Euler and fourth-
order Runge–Kutta (RK4) schemes with one time step. The inaccuracy in the gradient calculated via
continuous adjoint causes a significant gap in performance between discrete adjoint and continuous
adjoint when using the Euler scheme, while the performance is consistent when using RK4.
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Figure 3: GPU memory and wall-clock time usage of different implementations as functions of the
number of time steps (Nt) using RK4 scheme. PNODE is the only discrete adjoint method that does
not exceed the memory capacity with Nt = 12. Both NODE naive and ANODE fail for Nt ≥ 12.

4.1 REPLACING RESIDUAL BLOCKS IN IMAGE CLASSIFICATION

Chen et al. Chen et al. (2018) showed that replacing residual blocks with ODE blocks yields good
accuracy and parameter efficiency on the MNIST dataset from Lecun et al. (1998). Here we perform
the experiment on a more complex dataset CIFAR-10 from Krizhevsky (2012) using a SqueezeNext
network introduced by Gholami et al. (2018), where every nontransition block is replaced with
a neural ODE block. There are 4 ODE blocks of different dimensions with 199, 800 trainable
parameters in total. Unfortunately, we were not able to run the ACA (and MALI) code on this test
using the same time integration methods. Thus ACA is not included for comparison here.

Accuracy We train the model using the same architecture with one time step but different schemes,
and we display the results in Figure 2. The ReLU activations in this model result in irreversible
dynamics and inaccurate gradient calculation through continuous adjoint, and the adaptive Runge–
Kutta 4(5) method (dopri5) using the continuous adjoint method leads to divergent training, as
also observed in Gholaminejad et al. (2019). With the low-accuracy forward Euler scheme, our
implementation and other reverse-accurate methods converge with lower loss and higher accuracy
compared with the continuous adjoint implementation.

Memory/time efficiency We perform an empirical comparison on the same task while fixing L = 4
given the SqueezeNext architecture and lettingNt vary. The statistics of GPU memory and time usage
are displayed in Figure 3. Among all reverse-accurate methods, PNODE has the slowest growth when
Nt increases when the number of time steps increases. Its memory cost is approximately 18.5% of
NODE and 28.8% of ANODE. The training speed is comparable to but slightly better than ANODE,
which agrees with the theoretical result shown in Table 2.
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4.2 CONTINUOUS NORMALIZING FLOW FOR DENSITY ESTIMATION

For continuous normalizing flow (CNF), a continuous dynamics from a base contribution to the
observable data is constructed through solving an initial value problem for a neural ODE. The model
is naturally reversible through integrating backward in time. We consider the CNF approach for
density estimation, where the loss function is the negative log-likelihood (lower is better).

We follow the architecture and hyperparameters chosen by Grathwohl et al. (2019) and compare
the results using fixed and adaptive step sizes on three public datasets with different dimensions:
POWER, MINIBOONE, and BSDS300 (see Papamakarios et al. (2017) for a detailed description).
The statistics are shown in Table 3. All implementations yield comparable test loss. As expected,
PNODE has the best memory efficiency among the reverse-accurate methods and has better time
efficiency than ANODE has. We note that when training models using adaptive step size solver, the
number of function evaluations in the forward pass (NFE-F) and backward pass (NFE-B) are not
fixed ahead of time and may increase drastically. As a result, they take significantly more time than
do schemes with fixed step size. On the BSDS300 dataset, experiments using an adaptive step size
solver were unable to be finished for neural ODEs using discrete adjoint methods: the GPU memory
usage grows significantly and exceeds the memory capacity within few epochs, and NODE cont
failed to converge after 14 days of training and was terminated prematurely.

Table 3: Performance statistics on POWER, MINIBOONE, and BSDS300. *Note that for BSDS300,
the batchsize is 1, 000 for discrete adjoint methods (to fit into the memory capacity) and 10, 000 for
the continuous adjoint method.

Scheme NFE-F NFE-B Time per
epoch (s)

GPU Mem
(MB)

Test
loss

POWER, 5 flow steps

NODE naive
dopri5,
Nt = 10

300 0 5.10E2 13,375 -0.15
ANODE 300 300 3.29E2 3,681 -0.34
PNODE 305 300 2.72E2 1,802 -0.42

NODE naive dopri5,
adaptive

556(160-568) 0 3.39E3 - 0.04
NODE cont 501(166-604) 502(183-579) 4.76E2 1,549 -0.34
ACA 528(105-532) 497(145-509) 7.18E2 2,301 -0.29

MINIBOONE, 1 flow step

NODE naive
dopri5,
Nt = 4

24 0 2.02 2,159 10.45
ANODE 24 24 3.21 2,295 10.54
PNODE 25 24 3.11 1,701 10.91

NODE naive dopri5,
adaptive

114(32-140) 0 2.66E1 - 10.53
NODE cont 110(32-122) 87(33-93) 1.68E1 1,582 10.44
ACA 104(21-105) 85(29-85) 9.48 2,423 10.15

BSDS300, 2 flow steps

NODE naive
dopri5,
Nt = 20

240 0 2.63E3 24,314 -128.68
ANODE 240 240 2.78E3 12,022 -166.57
PNODE 242 240 2.32E3 2,063 -143.95

NODE naive dopri5,
adaptive

125(58-190) 0 1.99E3 - 18.88
NODE cont 408(70-604) 325(66-516) 2.71E3 *9,572 -148.87
ACA 177(42-210) 166(58-184) 4.41E2 26,553 40.40

4.3 TIME SERIES REGRESSION

Implicit solvers are known to have absolute stability with arbitrary step size, while the stability of
explicit solvers typically requires the step size to be smaller than a certain value, which is hard to
determine without prior knowledge of the dynamics. In this example we demonstrate the potential of
implicit time integration methods in time series modeling through the following two-dimensional toy
example:
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(a) First-order methods: Euler (explicit) and backward
Euler (implicit)

(b) Second-order methods: midpoint (explicit) and
Crank–Nicolson (implicit)

Figure 4: Train and test loss with explicit/implicit ODE solvers as functions of number of iterations.

d

dt

[
x1
x2

]
= A

[
x31
x32

]
, A =

[
−0.10 2.00
−2.00 −0.10

]
.

The goal is to fit the matrix A by minimizing the sum of the absolute values of residuals. The time
ranges from 0 to 16, and we have a batch size of 20. For the training model, we use a single linear
layer with 2D input and output applied to the elementwise cubic of x, so the true underlying model
can be represented exactly. The reference solution and samples for training are generated from the
high-accuracy adaptive dopri5 solver.

Here we show results with fixed step size (h = 0.1) using four different solvers: Euler (first order,
explicit), backward Euler (first order, implicit), midpoint (second order, explicit), and Crank–Nicolson
(second order, implicit). The training and test loss as functions of iteration are shown in Figure 4.
Models with implicit solvers outperform explicit solvers with the same order by reaching a smaller
training loss. Moreover, training with explicit solvers caused the ODE solutions to explode because
of instability, reflected by the discontinuities of curves in the test loss. In contrast, there is no stability
issue for training with implicit solvers.

In addition, the matrices learned by neural ODE with implicit solvers are closer to the ground truth,
as shown below.

AEuler =

[
−0.23 1.24
−1.21 −0.22

]
, ABEuler =

[
0.11 1.98
−2.00 0.10

]
AMidpoint =

[
−0.05 1.16
−1.14 −0.03

]
, ACN =

[
−0.11 2.00
−1.99 −0.12

]

5 CONCLUSION

In this work we propose PNODE, a framework for neural ODEs based on high-level discrete adjoint
methods with checkpointing. We show that PNODE can minimize the depth of the computation
graph for backpropagation while still generating an accurate gradient. We successfully reduce the
memory cost of neural ODEs to O(Nc) +O(Nf ), and O(NtNs) +O(Nf ) in the worse case when
checkpointing all intermediate states (including ODE solutions and stage vectors). With extensive
numerical experiments we demonstrate that PNODE has the best memory efficiency among the
existing neural ODEs with accurate gradients. Furthermore, we demonstrate that PNODE enables
the application of implicit integration methods, which offers a potential solution for stabilizing the
training of stiff dynamical systems. We have made PNODE freely available. We believe it will be
useful for a broad range of AI applications, especially for scientific machine learning tasks such as
the discovery of unknown physics.
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