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Abstract

The emergence of modern compute infrastructure for iterative optimization has
led to great interest in developing optimization-based approaches for a scalable
computation of k-SVD, i.e., the £ > 1 largest singular values and corresponding
vectors of a matrix of rank d > 1. Despite lots of exciting recent works, all
prior works fall short in this pursuit. Specifically, the existing results are either
for the exact-parameterized (i.e., k = d) and over-parameterized (i.e., k > d)
settings; or only establish local convergence guarantees; or use a step-size that
requires problem-instance-specific oracle-provided information. In this work,
we complete this pursuit by providing a gradient-descent method with a simple,
universal rule for step-size selection (akin to pre-conditioning), that provably finds
k-SVD for matrix of any rank d > 1. We establish that the gradient method with
random initialization enjoys global linear convergence for any k,d > 1. Our
convergence analysis reveals that the gradient method has an attractive region, and
within this attractive region, the method behaves like Heron’s method (a.k.a. the
Babylonian method). Our analytic results about the said attractive region imply that
the gradient method can be enhanced by means of Nesterov’s momentum-based
acceleration technique. The resulting improved convergence rates match those
of rather complicated methods typically relying on Lanczos iterations or variants
thereof.

1 Introduction

The task. Consider M € R™*™ a matrix of rank d < m A n. Let SVD of M be given as
M = UXV", where ¥ = diag(cy,...,0q4) € R4 with 0y, .., 04 being the singular values of
M in decreasing order, U € R™*? (resp. V € R?*?) be semi-orthogonal matrix containing the left
(resp. right) singular vectors.! Our objective is to find the the k-SVD of M, i.e. the leading k singular
values, 0;,7 < k, corresponding left (resp. right) singular vectors w;,7 < k (resp. v;,¢ < k). For
ease and clarity of exposition, we will consider M € R™*" that is symmetric, positive semi-definite
in which case u; = v; for all ¢ € [d]. Indeed, we can always reduce the problem of k-SVD for any
matrix M to that of solving the k-SVD of M M T and M T M, which are both symmetric, positive
semi-definite.

A bit of history. Singular Value Decomposition (SVD) is an essential tool in modern machine
learning with applications spanning numerous fields such as biology, statistics, engineering, natural
language processing, econometric and finance, etc (see [12] for a non-exhaustive list of examples). It
is a fundamental linear algebraic operation with a very rich history (see [45] for an early history).

'We adopt the convention that the ¢-th element of the diagonal of 3 is oy, and that ¢-th column of U (resp.
of V) denoted u, (resp. denoted vy) are its corresponding ¢-th left (resp. left) singular vector. The condition
number of M is defined as k = o1/04.
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Traditional algorithms for performing SVD or related problems like principal component analysis, or
eigenvalue and eigenvector computation, have mostly relied on iterative methods such as the Power
method [37], Lanczos method [34], the QR algorithm [20], or variations thereof for efficient and
better numerical stability [15]. Notably, these methods have also been combined with stochastic
approximation schemes to handle streaming and random access to data [42]. The rich history of
these traditional algorithms still impacts the solutions of modern machine learning questions [?
2,27,22,43, 23, 1, 49].

Why study a gradient-based method? Given this rich history, one wonders why look for another
method? Especially a gradient-based one. To start with, the k-SVD problem is typically formulated
as a non-convex optimization problem [3] and the ability to understand success (or failure) of
gradient-based methods for non-convex settings can expand our understanding for optimization
in general. For example, the landscape of loss function associated with PCA has served as a
natural nonconvex surrogate to understand landscape of solutions that arise in training for neural
networks [6]. It is also worth mentioning some of the recent works have been motivated by this
very reason [24, 26, 35, 14]. Moreover, gradient-based methods are known to be robust with respect
to noise or missing values [28]. For example, problems like matrix completion [13] or phase
retrieval [9] can be formulated as nonconvex matrix factorization problems and are typically solved
using (stochastic) gradient-based methods (see [14] and references therein). This is precisely what
fueled the recent interest in understanding gradient methods for non-convex matrix factorization
[16, 29, 46, 16, 29, 46, 51, 30, 36]. Finally, the recent emergence of scalable compute coupled with
software infrastructure for iterative optimization like gradient-based methods can naturally enable
computation of k-SVD for large scale matrices in a seamless manner, and potentially overcome
existing challenges with the scaling for SVD computation, see [47].

Question of interest: £-SVD with gradient descent. This work aims to develop gradient descent
method for k-SVD for any matrix. This is similar in spirit to earlier works devoted to developing
gradient-based approaches for solving maximum eigen-pair problems [3, 4, 5, 38, 21, 31, 44].
These works proposed methods that, indeed, leverage gradient information, but their design is
different from that of the standard gradient descent methods and their global convergence guarantees
remain poorly understood. Recent works on gradient descent for non-convex matrix factorization
[16, 29, 46, 16, 29, 46, 51, 30, 36] are also useful for computing k-SVD; however, they fall short in
doing so due to various limitations (see Table 1 for a summary and discussion of related works in
§A). This has left the question of whether gradient descent can provably compute k-SVD for any
matrix unresolved.

Table 1: Here, we contextualize and compare our contributions to prior work. Specifically, on computing k-SVD
using gradient-descent for non-convex matrix factorization (i.e., minimizing ||M — X X "||% over X € R™*%),

Parametrization Linear Step-size Selection Random (Local)
Regime Convergence Parameter-free  Pre-conditioning Initialization =~ Acceleration
(k>d) [32, 46, 51] [51] [51, 36] [36] -
Prior work (k =d) [48,51,32,30,46]  [48,51,30] [30, 36] [30, 36] -
(k< d) [14, 32] - [36] [36] -
This work (any k) v v v v v

Summary of Contributions. The primary contribution of this work is to provide a gradient descent
method for k-SVD for any given matrix. The method is parameter-free, enjoys global linear conver-
gence, and works for any setting. In contrast to prior works, as summarized in Table 1, this is the first
of such result for the under-parametrized setting, i.e. k less than rank of matrix, including k£ = 1.
The method can also be immediately enhanced by means of acceleration techniques such as that of
Nesterov’s. The accelerated method is algorithmically simple, yet enjoys an improved performance.
Empirical results corroborate our theoretical findings. The proof of the global linear convergence
result is novel. Critical to the analysis is the observation that the gradient descent method for £-SVD
is similar to the classical Heron’s method * (a.k.a. Babylonian method) for root finding. This offers

’To find the square root of number a, Heron’s method consist in running the iterations z;4+1 = %(zt + Z%)
starting with some initial point 21 > 0. Heron’s method is guaranteed to converge to /a at a quadratic rate.



an interesting explanation to why pre-conditioning works. We believe this insight might shed further
light in the study of gradient descent for generic non-convex loss landscapes.

2 Main Results

Gradient descent for £-SVD. Like the power method, the algorithm proceeds by sequentially finding
one singular value and its corresponding vector at a time, in a decreasing order until all the & > 1
leading vectors are found. To find the top singular value and vector of M, we minimize the objective

1
g(w; M) = 2 |M — 2" |7 M
Gradient-descent starts by randomly sampling an initial point o € R™ as follows:
x9 = Mz, with x ~N(0,1,), )
then updates for ¢ > 0,
Ui
T4l = Tt — 7Vg(xt,M), (3)
]2

where 7 € (0, 1). For the above algorithm, we establish the following:

Theorem 2.1. Let ¢ > 0 and M € R"*™ be a symmetric, positive semi-definite with o1 — go > 0.
Running gradient descent iterations as described in (3) with the choice 1 = 1/2, ensures that fort > 1,
lzel?—o1| < eon, [zl e —ur | Azl e tud ]| < € and lze+y/orud[Alloe—y/orud]| < e
3, for any € € (0,1), so long as

1
t> _aga log (601> + co log <e ( + 01>) . @)
o1 — 09 € (01 — 02) o1

number of iterations to converge within attracting region — number of iterations to reach attracting region

where c1, co are constants that only depend on the initial point xy, with the random initialization
(2), the constants c1, co are almost surely strictly positive.
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(a) The Gradient Descent Trajectory. We generate a (b) Gap vs. Number of Iterations. Comparison be-
random matrix M of dimension 2 X 2 and visualize =~ tween the power method and accelerated variants of
the trajectories of the iterates (x¢);>0 when running  gradient descent when minimizing g for different val-
the gradient descent iterations (3) with specified initial ues of the gap o1 — o2.

points along the loss landscape g.

In Figure la, we illustrate the convergence result of the gradient descent method. = We remark
that the condition o1 — g9 > 0 is not necessary for gradient descent (3) to converge. We only
require it to simplify the exposition of our results and analysis. Indeed, when oy = 09 = --- = 0;
and o; — 0,41 > 0 for some ¢ < d, it can be shown that the iterations (3) still converge to some
x, where ||z, = /o1, and 2, € Span{ui,...,u;} with a numer of iterations that is of order

The notation A is for max and V is for min.



Q (U ~— log ( )) Furthermore, the requirement that A/ must be a symmetric, positive semi-
1 0i+1

definite matrix can be relaxed to that of M being simply a symmetric semi-definite matrix with
01(M) = max;c[q) |0;|. Indeed, our proofs naturally extend under this more general setting, and this
requirement is only made to simplify the analysis.

As a consequence of Theorem 2.1 it immediately follows that by sequential application of (3), we

can recover all k singular values and vectors (up to a desired precision).

Theorem 2.2. Let ¢ > 0 and M € R™ "™ be a symmetric, positive semi-definite matrix with
U‘%Z‘“ > eforalli € [k]. Sequential application of (3) withn = 1/2 and the random initialization
(2), recovers 61, ...,0k and iy, . . ., Uy such that: |6,—o;| < eo; and ||G;+u; || A||G; —u;]| < e,
so long as the number of iterations, denoted t, per every application of (3) satisfies:

t > Cikmax <U'> log <01 max <0> > + Cs log <6 <01 + >> , (5
iclk] \ 0y — 0441 oy iclk] \ (0; — 0i41) ) € ok

where Cy and Cs are constants that are almost surely strictly positive.

Accelerated gradient descent for £-SVD. Gradient methods can achieve better performance when
augmented with acceleration schemes [41, 19]. Building upon the known literature, we propose to
accelerate (3) as follows:

VP

1+./p
n
Tip1 =Y — ”yt”ﬂg(yt),

1 1 1
Vi1 = <1 - \/f)> v + % <yt - ,uvg(yt)) ; (6)

where 7, 11, p > 0. This accelerated gradient descent method is an adaptation of the general scheme of
the so-called optimal method proposed by Nesterov [41][Chapter 2.2.1]. We establish in Theorem 2.3
below, that this scheme offers improved bounds then those obtained in Theorem 2.1, at the expense
of the convergence being only local.

Theorem 2.3. Let M € R™*™ be a symmetric, positive semi-definite matrix with o1 — oo > 0.
Assume that xy € R", such that ||z + \/oru1|| < (o1 — 02)3/2/(90\/501), vy = xg. Running the
accelerated gradient-descent iterations ©6)withn =1/6, u < (01 — 02)/4, p = 901/ 1, ensures

Yt = Ty + (v — @)

b i e
et IRV th+1H ~ 2yp+1t°

When one chooses 4 of order ©(0; — 03), and sets p = O( ), then in view Theorem 2.3,

010

the gradient descent scheme (6) enjoys a convergence rate of order ( -0 Ul"_lm )) after ¢ it-

erations. Thus, to achieve an approximation error of order €, we require 2 ( ——1lo g( ))

1 02
iterations. In contrast, the gradient descent iterations (3), in view of Theorem 2.1, would re-
quire Q ( log( )) iterations. Finally, we also remark that the presented result shows a
gap- 1ndependent rate which is similar in spirit to the results of [39, 1].

While indeed the accelerated gradient scheme (6) requires to adequately choose p and p to attain
improved convergence rates and properly initialize the method. For empirical purposes, we propose a
simpler version (6) where the number of parameters to choose. Start with random initial point x¢ as
per (2), then run the iterations:

Tpp1 = & + B2y — 2421) — Hy%v!}(yt; M), and, y =+ a(x—x4-1) 8)
t

where parameter 7), 5 € (0,1) and « € {0, 3}. We set « = 3 (resp. aw = 0), to recover a reminiscent
version of Nesterov’s acceleration [41] (resp. Polyak’s heavy ball method [40]) but with an adaptive
step-size selection rule. Both methods are appealingly simple. Moreover, as demonstrated in Figure

1b, both acceleration schemes yield a performance improvement from —*— to when
1—02 o1 — 02

is well chosen. This suggests that gradient descent with the acceleration schemes (8) is globally
convergent, despite Theorem 2.3 only showing local convergence.
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A Related Work

Our work is primarily concerned with k-SVD computation which is of fundamental importance and
has a very long history. Our results broadly relate to three lines of research reviewed below.

Methods from numerical linear algebra. Computation of SVD is typically done via iterative
methods that rely on one or more key algorithmic building blocks that includes power method [37],
Lanczos’ iterations [34], and the QR decomposition [20]. As is, these algorithmic building blocks are
not always numerically stable. This has led to a significant body of work to identify stable, efficient
algorithms. The stable, efficient variant of algorithms based on these building blocks typically
transforms the matrix of interest to a bidiagonal matrix and then uses a variant of the QR algorithm,
see [17] and [15] for example, for an extensive literature overview. Such an algorithm, in some
form or other, tries to identify singular vectors and values iteratively (either individually or in a
block manner). The number of iterations taken by such an algorithm typically depends on the gap
between singular values and the accuracy desired. In recent years, there have been gap independent
(but still accuracy dependent) guarantees established when the desired accuracy is far above the
gap [39, 1]. It is an understatement that such an algorithm is a workhorse of modern scientific
computation and, more specifically, machine learning, cf. [2, 22, 43, 23]. The power method, despite
not being optimized, is part of this workhorse due to its simplicity [27]. In this work, our objective
is not necessarily to develop a method that is better than that known in literature. Instead, we seek
to develop a fundamental understanding of the performance of a gradient based approach for the
k-SVD problem. Subsequently, it will help understand the implications of acceleration methods on
performance improvement. In the process, compare it with the rich prior literature and understand
relative strengths and limitations.

Gradient descent and nonconvex optimization. The convergence of gradient descent for nonconvex
optimization has been studied extensively recently due to interest in empirical risk minimization
in the context of large neural network or deep learning [6, 52, 24, 35, 26, 25, 33, 18]. In [24],
authors established that the stochastic variant of gradient descent, the stochastic gradient descent
(SGD), converges asymptotically to local minima and escapes strict saddle points for the tensor
decomposition problem. In [35], it was further established that even the vanilla gradient descent
converges to local minima provided that all saddle points are strict and the step-size is relatively
small. An efficient procedure for saddle point escaping were also proposed in [33]. For eigenvalue
problem, matrix completion, robust PCA, and matrix sensing tasks, [3, 4, 5, 26, 25] have highlighted
that optimization landscapes have no spurious local minima, i.e., the objectives possesses only strict
saddle points and all their local minima are also global. In [7, 52], authors established convergence
of Riemannian or geometric gradient descent method.

While all these works are quite relevant, they primarily provide asymptotic results, require the
landscape of objective to satisfy strong conditions, or utilize complicated step-size selection rules
where often knowledge of problem specific quantities is needed which are not obvious how to
compute apriori. As we shall see, this work overcomes such limitations (see Theorem 2.1).

Matrix factorization as nonconvex optimization. Matrix factorization can be viewed as a min-
imization of a nonconvex objective. Specifically, given a symmetric matrix M, to obtain rank k
approximation, the objective to minimize is |[M — XX "||% for X € R"**. The parameterization
X X7 has been often referred to as the Burrer-Monteiro matrix factorization [8]. Recently, the
study of gradient descent for solving this minimization problem has received a lot of interest, see
[9, 16, 29, 14, 11, 48, 46, 51, 50, 32, 31, 30, 36] and references therein. Specifically, progress
has been made in three different regimes, namely, over-parameterized setting when k > d, exact-
parameterized setting when k = d, and under-parameterized setting when k < d. Linear convergence
rates for gradient descent were initially established only locally for all regimes (see [18, 14]. In
[46], it was shown that small random initialization is enough to ensure global linear convergence
provided gradient descent uses a fixed but small enough step-size, which is problem instance de-
pendent. Originally, this was restricted to the regime of £ > d, and subsequently was extended to
the regime of k < d in [31]. In [48], authors proposed using gradient descent with preconditioning,
X1+ Xy —nVg(Xy; M)(X, X;)~1, with 7 > 0 that is constant. They established linear con-
vergence for k = d with spectral initialization. But then it requires already knowing the SVD of
the matrix! In [51] extended this result to k£ > d. In [30], authors established that preconditioning
with random initialization is in fact sufficient to ensure global linear convergence, when k = d. In



[36], authors extend these results to & > d and showed that even quadratic convergence rates can be
achieved using the so-called Nystrom initialization.

Table 2: Here, we contextualize and compare our contributions to prior work. Specifically, on computing k-SVD
using gradient-descent for non-convex matrix factorization (i.e., minimizing ||M — X X "||% over X € R™*%),

Parametrization Linear Step-size Selection e e (Local)
Resi C Initialization Accelerati
cgume ONVEIEENCE  parameter-free  Pre-conditioning ceeleration

Stoger et al. [46] v - - small-random-init -
Jiaetal. [32] > d) v - - small-random-init -
Zhang et al. [51] a v - - spectral-init -
Lietal. [36] v - v random-init -
Zhang et al. [51] v - - spectral-init -
Tong et al. [48] v - v spectral-init -
Stoger et al. [46] k= d) v - - small-random-init -
Jia et al. [32] - v - - small-random-init -
Jia et al. [30] v v v random-init -
Li et al. [36] v - v random-init -
Chietal. [14] v - - spectral-init -
Jiang et al. [32] (k< d) v - - small-random-init -
Lietal. [36] - - v random-init -
This work (any k) v v v random-init v

Despite all this progress, none of the aforementioned works consider the under-parameterized
regimes, except [14, 31, 36]. Indeed, [14] provided local convergence results for gradient descent
with fixed step-size when k& = 1, see [14, Theorem 1]. In [31], global linear convergence was
established but required small random initialization and fixed step-size when k < d. In [36], authors
considered gradient descent with preconditioning when k£ < d. However, they only showed sub-linear
convergence, requiring O((1/€)log(1/€)) to find an e-optimal solution, see [36, Theorem 2]. In
contrast to the prior works, this work establishes global linear convergence, that is gradient descent
requires O(log(1/¢)) iterations to find an e-optimal solution, see Theorem 2.1 and Theorem 2.2.

Why study the under-parameterized setting? While the under parameterized regime, especially
the case k£ = 1 is of fundamental importance as highlighted in [14], note that for £ > 1, even if
one finds an exact solution X, that minimizes the objective ||[M — X X "||2,, then for any k x k,
orthogonal matrix @, X, @ also minimizes |[M — X X " ||. This rotation problem poses a challenge
in using the objective ||M — X X " ||% for k-SVD while the objective || M — xx " ||% doesn’t. More
importantly, being able to solve the under parameterized regime with k = 1, allows us to perform
k-SVD for any k£ > 1.



B Building Intuition with rank 1 Matrix: Gradient descent is Heron’s method

A key insight from our analysis is the observation that gradient descent with adaptive step-size (3)
behaves like Heron’s method. This is in stark contrast, with the observation of [46] suggesting
that gradient descent for low-rank matrix factorization with a fixed step-size and small random
initialization behaves like a power-method at an initial phase. To clarify our observation, we present
here a convergence analysis in the simple yet instructive case of M being exactly of rank 1.

First, let us note that gradient of the function g at any given point x € R™ is given by:

Vy(w; M) = =Mz + || 2. ©)
When M is exactly of rank 1, i.e., M = 011, ulT, the gradient updates (3) become: forall ¢t > 1,
1 Uluirxt
_ - 10
T4l = 5 <33t + EAE uy (10)

To further simplify things, let us consider that the initial point ; is randomly selected as follows:
r1=Mz and x~N(0,1,). (11)

Thus, we see that 1 = 03 (ui'—x)ul This, together with the iterations (10), clearly shows that for all
t > 1, zy = ||z¢||lus. Hence, for all t > 1, we have:

1 o
ol = 5 (el + 74 ) (12)

¢
We see then that ||x;|| is evolving precisely according to Heron’s method (a.k.a. the Babylonian

method) for finding the square root of o1. Below, we present the convergence rate of the method in
this case:

Proposition B.1. When M = Jlulur. Gradient descent as described in (3) with an initial random
point as in (11) is guaranteed to converge almost surely, i.e., ||z + \/o1ui||—0 a.s. ast — oo.

More precisely, denoting ¢, = (||z¢||/\/o1) — 1, we have for allt > 2,0 < ;41 < (€2 A ep)/2

Proposition of B.1 is immediate and corresponds exactly to the convergence analysis of Heron’s
method. We provide a proof in Appendix D for completeness. The established convergence guarantee
indicates that gradient descent converges at a quadratic rate, meaning, that in order to attain an error
accuracy of order ¢, the method only requires O(loglog(1/¢)) iterations.

It is worth mentioning that when the rank of M is exactly 1, then the objective g corresponds to that
of an exact-parameterization regime. The random initialization scheme (11) we consider is only
meant for ease of exposition and has been studied in the concurrent work of [36]. Like us, they also
obtain quadratic convergence in this exact-parameterization regime. Indeed, if one uses an alternative
random initialization, say x1 ~ A(0, I,,), then one only obtains a linear convergence rate.

In general, we do not expect the matrix M to be exactly of rank 1. Extending the analysis to the
generic setting is more challenging and is exactly the subject of §C.

10



C Convergence analysis for General Matrix: Establishing Theorem 2.1

In this section, we present the key ingredients for proving Theorem 2.1. The proof strategy is broken
into three intermediate steps: (i) establishing that gradient descent has a natural region of attraction;
(ii) showing that once within this region of attraction the iterates (x;);>o align with u, at a linear rate;
(iii) showing that the sequence (||x||):>0 is evolving according to an approximate Heron’s method,
and is convergent to /o7 at a linear rate.

Without loss of generality, we consider that x; is randomly initialized as in (11). This choice of
initialization allows us to simplify the analysis as it ensures that x; is in the image of M. Most
importantly, our analysis only requires that P(x{ u; # 0) = 1. It will be also convenient to introduce,
forall t > 0,4 € [d], the angle 6, ; between u; and z;, defined through

T
Ty Ug

[

cos(b; ) = (13)

whenever ||z|| > 0.

Step 1. Region of attraction. One hopes that the iterates x; do not escape to infinity or vanish at 0.
It turns out that this is indeed the case and this is what we present in Lemma C.1. We define:

1
a=2yn(l-n) (| cos(f1,0)| V \/E> , (14)

"= (1—n)+;\/z<|005(191,0)| A\/E) ’ (1

where it is not difficult to verify thata < 1 and b > 1.

Lemma C.1 (Attracting region of gradient descent). Gradient descent as described in (3) with the
random initialization (11) ensures that: (i) ¥t > 1,a\/a1 < ||a¢]|; (i) Vt > 7, ||z¢|| < by/o1 where

T is given by:
n(®* 1) < [l ] )
= 1 . 16

T+ ¢ \byar (e

Moreover, the sequence (| cos(01 ¢)|)e>0 is non-decreasing.

The proof of Lemma C.1 is given in Appendix D.3. Interestingly, the constants a and b do not
arbitrarily degrade with the quality of the initial random point. Thus, the number of iterations
required to enter the region [a./o7, b\/01] can be made constant if for instance one further constrains
|z1]] = 1. Furthermore, the fact that | cos(6; ;)| is non-decreasing is remarkable because it means
that 24 /|| ¢ || can only get closer to {—uy,u; }. To see that, note that we have ||(z¢/||z¢||) & u1]|* =
2 £ 2cos(f1,4) > 2(1 — |cos(f1,,)]). Indeed, a consequence of Lemma C.1, is the following
saddle-point avoidance result.

Lemma C.2 (Saddle-point avoidance). Let > 0. Assume that 01—02 > 0 and that ||| z¢||—/7;| < 0
fori # 1 and some t > 1. Then, gradient descent as described in (3) with the random initialization
(11) ensures that

IVg(ze; M)|| = ao|cos(61,0)|[[Vor — vai| = 9] (17)

We provide a proof of Lemma C.2 in Appendix D.4. We remark that if § < 01 — 0, then the gradient
cannot vanish. The lower bound depends on the initial point z( through | cos(; )| which can be
very small. In general with the random initialization (11), small values of | cos(61 )| are improbable.

Step 2. Alignment at linear rate. Another key ingredient in the analysis is Lemma C.3 which we
present below:

Lemma C.3. Assume that 01 — 09 > 0 and let T be defined as in Lemma C.1. Gradient descent as
described in (3) with random initialization (11) ensures that: t > 7, i # 1,

Tt Lt n(o1 —o2) =T
L Tt <(1_
-l [+l < (- 5w ss) vEtm@o.
n(o1 —oy) T cos(6i0)
|COS(91,2§)| = ( ((1 _ n)b2 + 1)0_1) COS(91,0)

11



The proof of Lemma C.3 is given in Appendix D.5. The result shows that gradient descent is implicitly
biased towards aligning its iterates with ;. This alignment happens at a linear rate with a factor that
depends on o1 — 02, and this is why we require the condition o1 — g2 > 0. If 07 = 02 > 03, then
our proof can be easily adjusted to show that x; will align with the singular subspace spanned by
u1, uz. Thus, our assumptions are without loss of generality.

Step 3. Convergence with approximate Heron’s iterations. The final step of our analysis is to

show that |||z||/,/o1 — 1| vanishes at a linear rate which is presented in Lemma C.4. To establish
this result, our proof strategy builds on the insight that the behavior of the iterates (||z||)¢>0 resemble
those of an approximate Heron’s method. The result is only shown when 1 = 1/2 as this gives the
cleanest proof.

Lemma C.4. Assume that 01 — oo > 0 and let T be defined as in Lemma C.1. Gradient descent as
described in (3) with n = 1/2 and random initialization (11) ensures that: for all t > T,

241l 01— 03 1\
2l see-n (-7 Fs) v ) (19

4al cos(01,0)[? [ cos(01,0)]

where C' = ( | tan(61,0)|* (b+ %)2 + [ tan(61,0)] (b+ %))

Proof sketch of Lemma C.4. By taking the scalar product of the two sides of the gradient update
equation (3) with u;, we deduces that

o1 > | cos(01.4)] (19)

1
X =3 z .
[y 5 <|| ¢l llzell ) | cos(01,441)]

Next, we can leverage Lemma C.3 to show that the ratio | cos(61,4)|/| cos(61,,+1)| converges to 1 at
a linear rate. We then recognize the familiar form of Heron’s iterations 12. Starting with this form,
we can show convergence of ||z || to \/o1. We spare the reader the tedious details of this part and
refer them to the complete proof given in Appendix D.6. O

Step 4. Putting everything together. Below, we present a result which is an immediate consequence
of Lemma C.1, Lemma C.3, and C 4.

Theorem C.5. Assume that 01 — o2 > 0. Gradient descent as described in (3) withn = 1/2 and
random initialization (11) ensures that: forallt > T,

_ 1\?!
|2e1r + Voru || A e — Vot < eny/ar ((1 - m> v ﬁ) , (0

solong as T > co (% \ 1) log ( - ) with positive constants c1, ca, c3 that depend only on

(01—02)
xo, with random initialization cy, ca, cg are strictly positive almost surely.

The proof is given in Appendix D.2. Theorem 2.1 is an immediate consequence of Theorem C.5.

12



D Global Convergence of Gradient Descent

In this section, we provide the detailed proofs of Theorem B.1, Theorem 2.1, and Theorem C.5.

The proof of Theorem B.1 is self-contained and is provided in §D.1 and serves the purpose of building
intuition as of why gradient descent behaves like Heron’s method. Theorem 2.1 is an immediate
consequence of Theorem C.5, and both their proofs are given in §D.2.

The proof of Theorem C.5 builds on the insight that gradient descent behaves like Heron’s method
which is captured in the proof of Lemma C.4 given in §D.5. But before that, we need first to ensure
that gradient descent has a region of attraction and this made precise in Lemma C.1 and its proof is
given in §D.3. And secondly, we require the iterates of the gradient descent method to align with the
leading singular vector which is established in Lemma C.3 with its proof given in §D.5.

D.1 Proof of Proposition B.1

Proof of Proposition B.1. First, we immediately see that the event {||z1| # 0, and z; =
||z1]|w1} holds almost surely.

We start with the observation that for all ¢ > 1, |z, u1| = ||z||. This is because, by construction, the
initial point x; is already in the span of M. Next, we have that for all ¢ > 1,

T g1 T
1= (1=—n)+n7—5 |2, u

t+1%1 <( 77) 77||xt”2> t W1

which leads to
01
zeall = (X = m)llzell + 0
[l
In the above, we recognize the iterations of a Babylonian method (a.k.a. Heron’s method) for finding
the square root of a real number. For completeness, we provide the proof of convergence. Let us
denote
el

¢ =——1
01

by replacing in the equation above we obtain that

€1 =(1—n)(e,+1)+ @ Z_ 5
_ (1 —n)ef + (1 = 2n)e
g +1
With the choice 7 = 1/2, we obtain that
_ €
€t+1 = m

from which we first conclude that for all £ > 1, 441 > 0 (note that we already have €, > —1). Thus
we obtain

1
0<eyr < 3 min (e?, et) .
This clearly implies that we have quadratic convergence. O

D.2 Proof of Theorem 2.1 and Theorem C.5

Theorem C.5 is an intermediate step in proving Theorem 2.1 and is therefore included in the proof
below.

Proof of Theorem 2.1. First, by applying Lemma C.1 (with n = 1/2), that after 7 = log ( z‘)l;%)

that for all ¢ > 7, we have

a\/o1 < ||z¢|| < by/o1.
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and we also have

£

ey <

01

il _ 1’ ]

Vo |ver

Thus, using the decompositions G.11 and applying Lemma C.3 and C.4, we obtain

- ’ (b+1)

Vo 1‘ 1)

—2t —t
o1 (01 —02)
e <cwat<(1 W) vf) +C2W<1+bzal+@>
where we denote

| tan(fy1)[2 1\> |tan(614)| 1

=0b0+1)| ——F=5 b+ - e vl W

CGi=0+1) <4a|cos(91,1)|2 * a M | cos(61,1)] " a
Cy = V2| tan(0y,1).

We can verify that
b2 2 b2
£ (WJrl)\/ V2 ) e 2( o1t oz, 22)
01 — 02 V2-1 01 — 02 2
b2
— > (WH) v log(t)  (23)
01— 02 2—1

=>t<(1+b201+02)\/\f) <1 (24)

where we use the elementary fact that if ¢ > 2alog(2a) then ¢ > alog(t) for any @ > 0 and
log(1 +z) > ¢ forall z > 0. Thus, under condition (22) we obtain

>\/\f> +02\ﬁ<1+( 02)>t,

b20q + o9y

|Zt4+7 £ Voru|| < Cry/or ((1 + W

In view of Lemma G.11, the statement concerning ||x;z,; — o1uyu] || follows similarly. At this stage
we have shown the statement of Theorem C.5.

We also see that

> ((bl) y (ﬂf?l))l ()
— 01@(<1+b201 )V\f) <

b20'1+0'2 2
t> —+1)1
- ( g1 — 09 + ) o8 (CQQ/O]E)

—t
:>01W(1+1“’2) <3 (26)

(25)

N

b20'1 + 09

where we used again the elementary fact log(1 + x) > 1. We conclude that if
b? b?
P> (M w) log <C2 (M v1>> and 7= log (llxtl>
01 — 02 o1€ \ 01 — 09 b\/o1

H’I’t + \/01u1|| § €.

then

14



D.3 Proof of Lemma C.1

Proof of Lemma C.1. Our proof supposes that x{ u; # 0 which guaranteed almost surely by the
random initialization (11).

Claim 1. First, we establish the following useful inequalities: for all ¢ > 1,
(@) |lze]| > 0.

(id) ((1=m) + 052 ) el < loeall < (0= n) + 02 ) ol

We start by noting that we can project the iterations of the gradient descent updates (3) onto u;, for
all ¢ € [d], gives

%

’U/;r(Et+1 = ((1 - '17) + 77||xt||2> u;rwt (27)
which follows because of the simple fact that u;] M = o;u; . Thus, squaring and summing the
equations (27) over i € [d], gives

d 2
i=1

Recalling that 01 > - > 04 > 0, we immediately deduce from (28) the inequality (i¢). Inequality
(2) because if ||z1]| > 0, than thanks to (¢4) it also follows ||a¢|| > 0.

Claim 2. Let us denote for all i € [d], t > 1, |cos(6; )| = |u, z¢|/||z¢|. We establish that the
following properties hold:

(7) (|cos(f1,¢)|)e>1 is non-decreasing sequence
(#3) (| cos(fq,)])e>1 is a non-increasing sequence

(ti) forallt > 1, ||zep1| > a\/o1.

To prove the aforementioned claim we start by noting from (27) that for all ¢ € [d], we have

ol cos(@sl = (1=l + 72 ) Teos(ho) (29)

Thus, from the Claim 1 (Eq. (ii)), we immediately see that for all ¢ > 1, we have
1> |cos(01,e41)] > |cos(B1.¢)| > | cos(f1.1)] (30)
| cos(0a,t+1)] < |cos(fa)] <1, 31

Now, we see that the 1.h.s. inequality of Eq. (ii) in Claim 1, the combination of (30) and (29) leads to
the following:

ol = mesx{ (0=l + 057 ) leoston0l (=l 40770 ) | 3

(a) o4
> 24/n(1 —n) max< | cos(61,1)], o Vo1 (33)
= a\/o1 (34)

where we used in (a) the elementary fact that 2/7(1 — 7)o = inf,~0(1 — n)x + n(o/z) for all
o > 0. This concludes Claim 2.

Claim 3. We establish that if a,/o7 < ||| < /o7 then,

15



We can immediately see from Claim 1 that

!

el < (L =n)llae]l +n 35)
¢ ]
n
1-— v/ 36
< (( n) + VD) max(cos(91,1)|,l€1/2)> o1 (36)

< ((1 )+ %‘ /% min(| cos(f1.1)] %, 51/2)) N (37)

= byar (38)

where we denote b = (1 —n) + 3, /ﬁ min(| cos(61,1)| ™!, v/k) and note that b > 1.

Claim 4: If /o7 < ||a¢|| < b\/o71, then ||z41|| < b\/o7.

Indeed, start from the inequality in Claim 1, we can immediately verify that

g1

vl < (1= + g2z ) ol < el < b/ (39)

Indeed we observe that if /o1 < ||2¢|| < by/o1, then (/o1 /||a¢|| < 1.

Claim 5: If ||x1|| > by/07, then there exists k* > 1, such that ||z || < by/07, satisfying

b? [

< s () “

Assuming that ||z¢|| > by/01, let us define k* = min{k > 1 : |zt4x|| < b\/o1}, the number of
iterations required for ||z || < by/01. Using the r.h.s. of the inequality in Claim 1, and by definition
of k*, we know that for 1 < k < k*,

g1 _
lzesn—1l < ((1 —n)+ UM> lzeqkll < (1= n) 4+ nb72) [|2e4k]l- (41)
Iterating the above inequality, we obtain that

_o\k*
[Zene || < (L —m) +0b2)" [|ze]].

Now, let us note that £* can not be too large. More specifically, we remark that:

log (2l
x n®*—1) < ¢ ] ) 5 ( boy —2\k”
k* > log > = ((L=n)+nb72)" |lze|| < by/or
_ 2
(L=mb o m Ao og (W)

Therefore, it must hold that

2 —1
e D (Ll
(L—=m)b*+n by/a1
Note that from Claim 3 and 4, as soon as a./o1 < ||z¢|| < b\/o71, then it will never escape this region.

Therefore, we only need to use Claim 5 if the first iterate ||z || is outside the region [ay/071, by/01]. O
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D.4 Proof of Lemma C.2

Proof of Lemma C.2. We prove the saddle-avoidance property of gradient descent. The proof is an

immediate application of C.1. Indeed, we have

IVg(we; M)|| = [ Mae — [z *2]
d

= Z(Ui - HthQ)(UinEt)Ui
i=1
d 1/2
= (Z(ai - IIItIIZ)Q(qutf)
=1
> o — ||z [uq @l

> v/a1 — llzillllv/ar + el cos(@y,0)]
> |1VaT - V/ai| - 8ly/aray/ai] cos(d,.)|
< aoy| cos(61.1)] [|/o1 — v/l — 9]

where we used Lemma C.1 to bound |z;|| > a./o1 and |cos(6; )| > |cos(6;1)], and reverse

triangular inequality

D.5 Proof of Lemma C.3

Proof of Lemma C.3. We start from the observation that for all ¢ € [d], we have

sl cos(Bs.41)] = (( Dl + 72 H) | cos(6i.).

Now, note dividing the equations corresponding to 1 and ¢, we get

|cos(01441)] ( )z +77\|u|\) | cos(f1,¢)|
| cos(6;.¢+1)] )|zl +77H ”) | cos(6;.+)]

(0=
_ ( 77 Hz I ) | cos(6y¢)]

th||+nnzt||) | os(6e2)
- (1 L Mo — i) ) | cos(b:,4)]

el +noi ) | cos(0;4)]

>1 because o1 —0; >0

Thus, we have forall ¢ > 1 :

|cos(0ie)| n(o1 —oi) | cos(01,1)|
N <1 1 >

| cos(6;,¢41 = n)llzell® +noi ) [cos(0r,141)]

which leads to

| cos(0;.1) ﬁ( n(o1 — 0;) > | cos(61,1)] .
| cos(6;,t+1) et Mlzsll* +n0i ) | [cos(r,t41)]

We recall that for all ¢ > ¢,

|cos(61,)] < |cos(f1,+1)] <1 and a\/o1 < ||lz¢]] < by/oq

which implies that
| cos(1,1)]
| cos(61,¢41)]

—n)l|x]|? + no; (1 —=n)b201 +no;

> [cos(6,)
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Hence,

—t
n(oy — 0i) > | cos(6i,1)|
cos(0; < |1+ AN 0}
oot pi1)| < (14 ame ) et
Either u{ 21 > 0 or u{ 2; < 0. Without loss of generality, we will present the case when u{ ¥ > 0,
in which case cos(61,1) > 0 and consequently cos(; ;) > 0. Let us further note that
leize -l

—x —ur|| =2(1—cos(f1.))
e

1 —cos?(6y )
—o- = VLY
1+ cos(f1,)

d
<2 Z cos?(0.¢)
i=2

s (1 ) ) o

n)b%o1 + no; | cos(611)]?

<2 (1 + n(o1 — o32) >_2t 1 — [ cos(f1,1)]?
- (1 —n)b20y + no | cos(61,1)]?

—ot
n(o1 — o2) 2
<211 t 0
= < + (1 _n)bQO_l +77(72> | a’n( 1,1)‘

O
D.6 Proof of Lemma C.4
Proof of Lemma C.4. Letus denote forallt > 1
| cos(01 +)|
=1-—— 46
= Teos(Oren) i

Vo1
First, we verify that p; o2 0. Indeed, we have
| cos(f1,)]
| cos(01,¢41)]
< |cos(61,441) — 1] 4+ |1 — cos(61 1)
| cos(61,1)]

1
< —— max — X
= Jeos(01,1)] <|mwm .

< 2| tan(6; 1)| (1+ 01— 02 )—2t

Pt =

2
1— U

)

1
T T w
[l

2)
|COS(0171)‘ b20'1 + 09

where we used the fact that (cos(61,¢)):>1 is a non-decreasing sequence, and used Lemma C.3 to
obtain the final bound. Thus, we see that p; t—> 0.
—00

Next, we also recall by assumption that a/o1 < ||z1]| < by/01, and by Lemma C.1 that a,/o7 <
||z¢]| < by/oq forallt > 1. Thus, we have:

—1<a-1<e¢<b-1 (48)
Now, let us show that ¢, t—> 0. We recall that
—00
o1
t

|$H1W%WMH):(ﬂ—ﬁN%+mm”)W%WMN (49)
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Thus, we have

= (1= )4 ) ) -

=(a—mm+n+

6t+1
n

)—um(u—m@+n+ !

6t+1 €t+1

_(1—n)6?+(1—2n)6t_pt((l_n)(€t+1)+ U )

(€t+]—) 6t+].

2

€t Pt 1
SR S— 1
20+ 1) 2 <(€t+ )+et+1>

where in the last equality we used 7 = 1/2. We conclude from the above that for all ¢ > 1

€141 > mMax P b—i—1 ,a—1] =—min b+ ,1—a
2 a 2

€ty1 <

- Q(Et + 1)

2
€t

— Pt

Thus, for all ¢ > 2, we have

letr1| <

which further gives

2

2
€3 1 Pt 1
—t 1 b+~ 2o+ =
S 36+ D) {et>0}+ (+a> +2<+a)

2 1\? 1
Smmmmn+&,HW Loy
2 8a a 2 a

<1 (r? 1 Pi—k
<SS [ 2R (b4 = =R
lets1] = 2o ( sa ( +a) T +

t—2 1 o1 — 09 —2t+4-2k
<C — |14+
- (ZZ’“( +6201+02> )

k=0

where we define the constant C' as follows:

C:

| tan(6 1) 1\* | [tan(61,1)] 1
<4a|cos(91,1)|2 b+a +|cos(01,1)| b+a

To conclude, we will use the following elementary fact that for v € (0, 1), we have

t—k

([
E:Ek—““—ﬂﬂ< Dy + 1y £ 12}y 25—

1—5

2

2y
2y —1]

<I{y= 1/2}(t ; D) +1{y #1/2}4%(t - 1) (; \/7) )

<@t-1) (vvi)t

-1 1

< I{y=1/2}(t - 1)y + 1{y #1/2}

where in our case we have

Indeed, we obtain that

_ 1+ 01 — 09 _2: b20'1+0'2 2
i b2o1 + o9 (b2 + 1)0’1
—2t
<C(t-1 1+ 0—-———
tzoun (1 i) )
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E Proof of Theorem 2.2

Proof of Theorem 2.2. We recall that Mg+1 = M — Zle &mm; and denote My ; = M —

Zle aiuiu; with M; = Ml = M. We will also denote the leading eigenvalue of Me by &,
and its corresponding eigenvector by #,. Note that the leading singular value of M, is o, and its
corresponding vector is ug. We also note that

14 14
i=1 =1
14
i=1

(56)

By application of gradient descent (3), we know that if method is run for ¢ large enough then for all
for each ¢ € [k], we have the guarantee:

s + @ || A [l — @] < e (58)
|60, — 0,4 || < e (59)

Now, we show by induction that things remain well behaved. (for £ = 1), we have
|5’1 — 0'1| = 0
|U1 — ’EL1| = 0
|01u1u1T — 0'1111’[11 =0

(for £ = 2) We have

|5’2 — 0'2| S € (60)
2
|2 + G| A ||te — Ge|| < V2e (Lemma G.10) (61)
.
2
|Gotindy — Gaiintiy || < 3¢ + 722 (Lemma G.11) (62)
02 — 03
(for £ = 3) we have
2 2
&3—03§e+<e+3e+ "2f€>:<5+ "”f)e (63)
o9 — 03 02 — 03
2 2
s + s || A |iis — dis]| < V2 <5+ 72V2 ) ¢ (Lemma G.10)
03 — 04 02 — 03
(64)
2 2 2
G35t — 3igiid || < (3 <5+ 022 ) L V208 <5+ 722 )) ¢ (LemmaG.11)
02 — 03 03 — 04 02 — 03
(65)
and so forth, we see that at the end the error is at most
o k—1
|60 — o¢| < k:C’:])f <I_nax (l> vV 1) € (66)
i€lk] \ O — 041
1 o; kot
iie + tg|| A ||toe — @ig|| < kCF— (max <1> Y 1> € (67)
oy \i€lk] \O; — 011
o k-1
|Getipit, — Gotipt) || < kKC* <max (> Vv 1) € (68)
i€[k] \ O — 041
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Let us denote

. o; k—1 ¢
kC® |max | ——— | v1 €= —. (69)
i€lk] \O; — 041 2

If € is such that o; — 011 > 2ké€’, for i € [d], and 0,, > 2ke’, then it will be ensured that the singular

values of M, remain close to those of M and M, stays positive definite. We may then apply gradient
descent and use Theorem 2.1. Now, for a given €', and a precision e satisfying (69), by Theorem 2.1,
running gradient descent long enough, namely ¢,, ensures that:

|5’1 — O’i‘ S E/

oi([lwi + will Aflus — g]]) <€

||a¢uiu1T — OA'ﬂALZ’[LZH S E/

Vo — / Gitigti|| A ||y/Tiui + /Gt || < €

More precisely, t, is given by

i i k
to > Cp max (U vV 1> <k10g <Cg max < iy 1)) + log (/))
i€lk] \ O3 — 0j+1 i€lk] \O; — 0; €

In total, we need the total number of iterations to be

i i k
t > Cikmax (U\/l) (k‘log <C’2max< g \/1)) + log (/))
i€lk] \O; — 0j+1 i€lk] \O; — 0; €

21



F Local Convergence of Nesterov’s Accelerated Gradient Descent

In this section, we prove Theorem 2.3. The key challenge in establishing this results lies in the fact
that Nesterov’s acceleration method is not a descent method and that the function g is only smooth
and strongly-convex on a local neighborhood of the global minima (see Appendix G.2). Thus, we
need to ensure that Nesterov’s acceleration method remain in this local neighborhood once it enters it.
To that end, we adapt the results of Nesterov and establish Theorem F.5 which may be of independent
interest. The proof of Theorem F.5 is given in §F.1. The proof of Theorem 2.3 is given in §F.2.

F.1 Local acceleration for Nesterov’s gradient method in its general form

Here, we present a general result regarding the local acceleration of Netsterov’s method in its general
form [41]. Throughout this section, we consider function f that satisfies:

Assumption F.1. f is differentiable, L-smooth and p-strongly-convex on a local neighborhood
Ce = {z: ||z — x.|| < &} of a global minima =, for some x, L,§ > 0.

For convenience, we define also define C; = {z : ||z — z,[| < £/2}.

Before presenting the algorithm and result we start by introducing certain definitions and notations
which are needed for describing the method. We also introduce a Lyapunov function that will be
useful in characterizing the convergence properties of the method. This builds on the so-called
estimate sequence construction (see Definition 2.2.1 in [41]).

To that end, let (cv) x>0 be a sequence taking value in (0, 1), (yx)x>0 be an arbitrary sequence taking
values in C¢, and 7o > 0. For now the choice of this sequences will be arbitrary but will be made
precise later. Define a sequence of functions (¢ )r>0 on R™ as follows:

d0(w) = f(@0) + 'l — o

m (70)
Pri1(z) = (1 — o) o () + an (f(yk) +(VI)sx = yi) + Slle = yk\|2>
In the following Lemma, we see that the functions (¢ ) have quadratic form.
Lemma F.2. The ¢ (-) defined as per (70) have form, for any x € R",
Tk
ok (x) = 0 + o llo = well?,
where ¢ = f(xo), and for all k > 0,
1
Vi1 =(1 — ar) v + axp, Ukl = 2o (1 = aw)vwvr + arpyr — axVf(ye)) (1)
+
2
* * Qg 2
Prar =(1 = an)di + anf(ye) — 51V (yx)ll
Ve+1
ag(l — o
L ORI (24 (9 )0 — ). 72
Vh+1 2

The proof of Lemma F.2 is analytic and follows from that of Lemma 2.2.3. in [41].

Now, we describe the generic Nesterov’s method: initialize xg € C, & Vo = Lo, Y0 > 0; for k > 0,
define iterates satisfying

(1 — o)y + arpe

o = 7 (73)
U = OkYEVE + Ve+1Tk (74)
Vi + app

1
zp+1  suchthat  f(2kt1) < flyw) — 27||Vf(yk)||2, and  zp41 € Ce (75)

Vk+1, V41 asin (71),

where ¢ = 2L. In the above, the choices for ay, y, and x;1 are motivated by the need to ensure that
%1 = f(zr+1) which in turn will be useful to show decay of a certain Lyapunov function. This

will be apparent shortly.

22



Lemma F3. Fork > 0, if xx, yr, vk, € C¢, and ¢f > f(zk), then ¢\ > f(zri1).

Proof. We recall that

2
Shor =(1 = )i+ anfluw) = 5 19 )

O O (2 4 (9 (i) e~ )

L+
We note that ¢} > f(xy) and since zy, yx, € C¢ C C¢ and f is strongly convex on C¢ we have
(1 — o)k + arf(ye) = flyr) + (1= o) (VF(yr), 2k — Yi)-
We further note that by choice of yy, that we have

ap(l — ak)'Yk(
Ve+1

(VF(yr), (1 — o) (zr — yr) + vk —Yr)) =0

Combinging the above inequalities with the choice of oy, and x4 yields

. ol 1
Drir = k) — 5= 1F )P = Flue) — 5 1F W) I > f@rg)-
2’)%_;,.1 20
O
Lemma F.4. Fork > 0, if xx, yi, v € Qg, then for x € Cg,
Prt1(z) < (1 — on)dr(z) + arf(z).
Proof. Forall z € Cg,
br+1(x) = (1 — )i (@) + e (f(yr) + (VF(yr), 2 — yi) + %Hiﬂ — ukl?)
< (1 - ax)dr(x) + arf(z)
where in the last inequality we use that fact z, y;, € C, C Ce. O

Next we argue that x, yi, Vi remain in Q§ provided vy = x¢ is sufficiently close to x,.

Theorem E.5. Assume that o € (11, L), vo = wo € C such that ||zo — x4 < (§/2)+/p/ L. For all
k >0, we have:

(l) Ty Yk, Vk € Qg:
(ii) ¢ > f(xr),

(iii) Gfyr — (@) + 25 o — 2P < To(1 = i) (f(20) = f () + B llwo — . ]?)

Proof. 1t is easy to note, by construction, that for all £ > 0, 7, is weighted average of 1 and g, thus
w < v < L. Now we prove the result by induction.

Base case. k£ = 0., (1) we have by definition that g, vy € C, ¢ Because vy is a weighted average of
g and vy and C ¢ is convex, we also have that yo € Qé

(2) By definition we have ¢} = f(z0).
(3) Next, since xg, Yo, vg € C ¢ we have by Lemma F.4, that for all z € C¢

#1(z) < (1 —ag)do(r) + o f(z),

and recalling that ¢y, () = ¢} + L |lvg — a.||?, we have, in particular (z = z,),
* v
61 = F(@) + Bllon =22 = 61() = fl@a) < (1= ao) (f(w0) = F(@) + T llwo — 2.]?)

Induction Step. £ > 1. Assume the desired statements are true for k — 1:
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(i) Tp—1,Yp—1,vk—1 € C¢,
(ii) ¢p_1 > f(Tr-1),
(iii) ¢ — F(@a) + Bllow — 2l < THZ0 (1= i) (Fl@o) = ) + B llwo — 2412 -

We wish to argue that the above remains true for k. We argue that next.

(1) First, since x—1,Yk—1,vk-1 € C¢, and ¢f_; > f(zg—_1), then by Lemma F.3, we also have
% > f(zk).

(2) Next, combining the fact that ¢} > f(zy) with the inequality (ii7) from the induction hypothesis
(for k — 1), we obtain

k—1

Fan) = F@a) + loe =) <TI0 =) (Flao) = @) + Dllzo —.]2) . (76)

=0

Because by choice of x, we have z, z, € C¢, and because f is L-smooth and p-strongly convex on
C¢, it follows that

fl) = f@) 2 Bl - wl? o fw) ~ f) < ollw - 2,

Combining the above inequalities with (76), yields

k—1
L+ 7o 2 (L) , &2
Ty — i V ||ze — v |)? < 1—q Ty — X <|[—)|zx —z <=
(Il kIl VI kD? < TTC )<u+ )II oll m | oll" =5

1=0

where we used the fact that o; € (0,1) forall ¢ > 0, and ||z, — || < (£/2)+//L. This means that
zk, v € C¢. Since yy, is weighted average of xy, vg, and C; is convex, we also have y;, € C,.

(3) Since 1, Yk—1,Vk—1 € Qg, by Lemma F.4, we have
or(r) < (1 —ap—1)dr-1(x) + ar—1f(x).
In particular, with z = z, € C¢, we have
O (2x) — f(75) < (1= ap_1)(Pr—1(7s) — f(24))

< (1= on) (61 — F) + 7 o — o)

Recalling that ¢y (z,) = ¢} + %||vx — 2./, and using the above inequality together with the
induction hypothesis gives

k

O = Flwa) + P osn =l < ] - @) (F(w0) = Flar) + Plleo — )
=0

We will next provide the following result which quantifies the growth of Hfzo(l — ;).
Lemma F.6 (Lemma 2.2.4 in [41]). For vy > u, we have

ﬁ)(l_ai)gmin{<l_\/g)k’(2\f£;li\ﬁ%)2}'

F.2 Proof of Theorem 2.3

To prove Theorem 2.3 we apply Theorem FE.5. To that end, let us start by defining z, €

{=varu, +yFim}, € = f2, and
Co=Co={o:|o—nl <&, Ci=Co={r:|r—aul<E2}
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From Lemma G.9, we see that the set C constitute a basin of attraction for the function g, in the sense
that g is L-smooth and p-strongly-convex with

90'1 g1 — 09
L=— = -
2 M 4
Next, we that x5 is updated as follows:
1
Th+1 = Yk — mvg(%)-

Before applying Theorem F.5, we need to ensure the following result:

Lemma F.7. Assume that y. € C,. Then, g(z+1) < g(yx) — Vg (ye) >

1 1 g1—0 g
Proof. We start by noting that y;, € C. In particular, we have |lyr — x4 || < e < (x/€+21)\/ﬂ and

this implies that

30’1 2 30’1
—_— < < —. 77
4 = ||yt|| =79 an
Next, we have
1
Tl — Ty = Yp — Tu — mvg(yk) (78)

Because y;, € C, by L-smoothness of g on C, we have || Vg(yx)|| < L||yx — 2| Starting from the
above equality and using triangular inequality gives

L
Tht1 — Ti|| < 1+) Yk — Tx|| < 2|lyp — i <€
oo =l < (14 g ) o = 2l < 2l = )

Thus, 41 € C. Again, using the fact that g is L-smooth on C, we also have

L
9(@r+1) < 9(yr) + (Va(yr), vk — @rsr) + g — wpi || (L — smoothness)
1 L 2 .

1
< g(yr) — EHVSJ(%)”Z-

The last inequality follows because, using (43), we have

1 L 1 901 1 1 1
2~ 1)~ s\ ooz ) 29175 ) = :
6llyell>  72[ykl| 61|yl 24y || 901 2 1804

This concludes the proof. [

Specializing further the general scheme of Nesterov’s accelerated gradient descent to the case vy = u,
and x11 as per presented before gives the scheme: for all £ > 0

ak:a::w/%

Ve = W
1
Y = TE + a Vg
1+« 1+«
1
Tr+1 = Yk — mvy(yk)

1
ver = (1 - a)vg + a (y - Mvmyk))
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with vg = zg and ||zg — z4|| < (£/2)+/p/ L. Immediate application of Theorem F.5 gives
k
7 2 _ . Iz 8L
T —9(ze) + Zl|vet1 — 2| <minq (1 =/ 5= )| , —F/————
oar)  9(2) + Elver {( V) WEHW)Q}
% (9(z0) = g@.) + Ellzo — 2. 2)
Since Ty41, T4, To, € C¢, we have by p-strong convexity of g on C we deduce that

k
p 2 p 8L L+p 2
—||x — x, || < min 1—4/= , To — Ty
PR {( V%) <2x/ﬁ+wﬁ>2} Ly )

With the choice of z, using the inequality (L/p)||lzo — z«|| < &, with the above inequality and
replacing L and p by there values gives

k
I . ”2 < min 1 o1 — O3 14404 o1 — 09
Pl = V 3601 ) (1201 + kvor —02)2 [ \ 1501 )

We conclude by noting that Lemma G.12 ensures that

2

X
k1 — zal? = Nawill = VO + x| Vor ||
[y
\/§U Tk 2
> ||zpga |l — Vorl® + - oty
2 |||kl
V30 Tk 2
> max 4 [||zps | — Vo2 S | g
2 || |zktal

where the second to last inequality follows from the fact that 2,1 € C, and thus ||z 1]|? > 301 /4.
This concludes the proof.

Remark F.8. Note that in the proof of the result, we can replace 7> by p for any value of
p < 2292 and the result will still hold with an error rate that is of order

ol { (- Va) L WW} (%52)
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G Miscellaneous tools and lemmas

In this section, we present some tools and concepts that we make use of consistently in our proofs. A
review of strong convexity and smoothness are presented in §G.1. In §G.2, we present Lemma G.8
characterizing the critical points of the non-convex function g, and Lemma G.9 which establishes the
strong convexity and smoothness of g locally. Finally, in §G.3 we present a few error decomposition
lemmas.

G.1 Smoothness and strong convexity

In this subsection we review some concepts and results from convex optimization that are relevant to
our analysis. We will not prove these results as these are standard (e.g., see [19]).

The first property corresponds to that of smoothness which is characterized as follows:

Definition G.1 (L-smoothness). Let f be a differentiable function on C. We say that it is L-smooth
on C if for all z,y € C, we have

IVf(z) = Vil < Lz -yl

An important consequence of a function being L-smooth is the following inequality:

Lemma G.2. Let f be a differentiable function on C. If it is L-smooth on C, than for all x,y € C,
L 2
f@) < fy) +(Vf),z —y) + S lle —yll*

A consequence of the above result is the following:

Lemma G.3. Let f be a differentiable function on C. Assume that f is L-smooth on C, and x, € C is
a critical point of f (i.e., V f(xy) = 0), then forall x € X,

L
IVf@)l < Lz =zl and  f(z) = f(z.) < S~ . |?

To verify that a function f that is twice differentiable is L-smooth for some L > 0, we often inspect
the largest eigenvalue of its Hessian. The following lemma clarifies why.

Lemma G.4. Let f be a twice differentiable function on C. If Amax(V2f(x)) < L forall x € C,
then f is L-smooth on C.
The second property concerns the convexity of a given function, namely that of strong convexity.

Specifically, this property is often characterized via an important inequality as we present below:

Definition G.5. Let f be a differentiable function on C. We say that it is u-strongly convex on C if
forall z,y € C,

F(@) = fy) + (Vi()y =) + Slly =l

An immediate consequence of strong convexity is the following result

Corollary G.6. Let f be a differentiable function on C. Assume that f is p-strongly convex on C,
and x,. € C is a critical point of f (i.e., V f(x,) = 0), then for all x € X,

f@) = fla) = Slla =P

To verify whether a function f that is twice differentiable is u-strongly convex for some p > 0, we
often inspect the minimum eigenvalue of its Hessian.

Lemma G.7. Let f be a twice differentiable function on C. If Amin (V2 f(2)) > pforall v € C, then

f is p-strongly-convex on C.
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G.2 Properties of the non-convex function g

The properties of the function g and its relation to the spectral properties of M have pointed out in
early works (e.g., [3, 14]). Here we overview some of these properties which are relevant to our
analysis. In the following lemma, we present a characterization of the properties of critical points of
g:
Lemma G.8 (1*' and 2™ order optimality conditions). Let z € R", the following properties hold:
(i) x is a critical point, i.e. Vg(x; M) =0, if and only if v = 0 or x = £,/ou;, © € [k].
(i) ifforalli # 1, o1 > o;, then all local minima of the loss function g are also global minima®,
0 is a local maxima, and all other critical points are strict saddle’. More specifically, the
only local and global minima of g are the points —./c1u1 and +/c1u;.
A proof of Lemma G.8 can be found for instance in [14].

The function g is locally smooth and strongly convex. This statement is made precise in the following
lemma:

Lemma G.9. Define C = {x € R" : ||z £ \/orui|| < =22}, Then for all x € C, we have

15\/o1
an < V2g(z; M) < %[n

The proof follows that of [14], and we provide it below for completeness.

Proof of Lemma G.9. Let x € C, we can easily verify that
o1 —0.25(01 —03) < ||z]|* < 1.1507 and ||z — z,||||z| < (01 — 02)/12 (79)

Proving the upper bound. First, we recall that

V2g(z; M) = ||z||*1,, + 222" — M,
Thus, using the inequalities (79), we obtain
IV2g(a; M)|| < 3||z]|* + 01 < 4.50,

Proving the lower bound. We start start by lower bounding 2z " for z € C,

zr! = x*x*T + xi(x — x*)T + (x — x*)mI + (z—zy)(x — x*)T

= oruguy = 2|z — 2 |||z,
bt Ululuir —0.25(01 — 1)1,

We know that I,, = > i, u;u; and M = Y"1 | ou;u, . We may therefore write

Vig(x) = ||z Zuzu: +2 <01u1u]— —0.25(01 — 02) Zum?) — Zal-uiu;r
i=1

=1 =1

n n n
= |lz|)? Zuzuj + 2 (olululT —0.25(01 — 029) Zu,uj) - Zaiuiu;
i=1 i=1 i=1

n

= (l2]* + 01 = 0.5(01 — o2))uruf + > (|[#[|* = 07 — 0.5(c1 — 02))usu]
=2

= (l2]* = 0.5(01 — o2) — 02) Y wiu]
=1
t 0.25(0'1 — UQ)In

where in the last inequality we used (79). This concludes our proof. O

*We recall that z is a local minima of g iff Vg(z) = 0 and Amin (VZg(z)) > 0.
We recall that z is a strict saddle point iff Vg(z) = 0, and Amin (VZg(2)) < 0.
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Defining the parameters

— 9
u:01402 and L:%7

we note that Lemma G.9 ensures that the function g enjoys two key properties. First, g is locally
L-smooth near its global minima, meaning that for all z,y € C,

o(x) < 9(0) + (Valy),z —9) + 5 o — ]

Second, g is locally pu-strongly convex near its global minima, meaning that for all z,y € C,

9(@) = 9(y) + (Vg(y),a — ) + Sl =yl

G.3 Error decompositions

Lemma G.10. Let M, M e R"X" symmetric matrices. Let 01,...,0, (resp. 01,...,0,) be
the eigenvalues of M (resp. M) in decreasing order, and u1, ... ,uq (resp. U1, ...,ux) be their
corresponding eigenvectors. Then, for all { € [k], we have
- M—-M
min ||Uy, — U W] < V2 IM = M) (80)
Weoxt O — 041
loi —ai| < ||M — M|| (81)

where Ot denotes the set of { x { orthogonal matrices, and using the convention that 4,1 = 0.

Proof of Lemma G.10. The proof of the result is an immediate consequence of Davis-Kahan and the
inequality minyycoexe [|[Ure — Ur e W || < || sin(Us.¢, Ur.0)|| (e.g., see [10]). The second inequality
is simply Weyl’s inequality. O

Lemma G.11. For all x € R™"\{0}, the following inequalities hold

RS

o = vara|? = o1 (1 plalf e,
NG Vo || [zl

2 2

o+ yorul?® = o <v||x|l> TN
= o el

2
x

T
]

z
T Ul
]

2 2 9
||1'$T — UluluTH2 < 0'2 <|l‘|| _ 1) ( Hl‘” + 1) 4 ||'IH2
o\ \ver NG 20,

The proof of Lemma G.11. The first and second equality follow immediately by invoking Lemma
G.12 with y = /oju; and y = —,/o1u;. The third inequality follows by first upper bounding
|lzzT — orugu{ || < ||zz T — oyuiu ||k, then using Lemma G.13. O

Lemma G.12. Let z,y € R™"\{0}. The following equality holds

2
Y

T
el Iyl

Proof of Lemma G.12. We have through simple algebra the following:
lz = ylI* = llz[* + ly1* — 2(z, y)
= (2l = lly)? + 2lllllyll - 2{z, )

= (lell = Iyl + ey (2 ~2 <|§|| ||z||>>

2
Y
1yl
This concludes the proof. O

2
lz =l = [ll= | =y ll1” + [yl ‘

= (= 02 + Lol | 25 -

29



Lemma G.13. Let z,y € R™\{0}. It also holds that

2 2

ol Y

2 l=lPllyl
ez —yy IE = (=1 = lylI*)” + =5
P ) el Iyl

2

Proof of Lemma G.13. We have through simple algebra
Joe™ =y g = llea Tl + [low" | — 2tr(aaTyy )
= llz|* + llyl* = 2/, )
= (=1 = I191®)* + 2ll[Plly]1* - 2|z, )

= -1y B (o2 ) (42 (5 )

2 2
= (lel - pyiy? + W 2o ) ey v
oo I

This concludes the proof. O

H Pseudo-codes

Here we presented pseudo-codes detailing k-SVD with gradient descent and with power iterations.

Algorithm 1: £-SVD via gradient descent (GDSVD)

1 Input a symmetric matrix M, approximation rank k, step-size parameter 7, tolerance € ;

2 My + M,
sfort=1,...,kdo
4 xg < Mz where z is random unit norm vector in R"; > initialization
5 t <+ 0;
6 €7, € < 2¢;
7 while (e7 > €) or (¢f > ¢€) do
n . . .

8 Tyy1 < Ty — WVg(xt,Mg) ; > gradient descent step

u T4l @y . . .
9 €141 < ‘ Toal — Tl ’, > approximation error of wuy
10 €41 |||$t+1||2 = |lzell?] 5 > approximation error of oy
11 t+—t+1;
12 O 4 thszﬁe < 7Hii\| ; > Recovery of &y and 1y
13 | Mg+1 — Mg — fzﬂgﬂz—;

14 return 61, ...,06; and Uy, ..., Ug;

Algorithm 2: k-SVD via power iterations (Power Method)

1 Input a symmetric matrix M, approximation rank k, step-size parameter 7, tolerance € ;

2 My < M

sfor/=1,...,kdo

4 xo < Myz where z is random unit norm vector in R"; > initialization
5 t <+ 0;

6 €7, €y < 2¢;

7 while (e7 > €) or (¢f > ¢) do

8 Tpqp1 < W\Aﬁiﬁmﬂ:\l ; > power iteration step
9 €y — 1T — 2 > approximation error of wuy
10 €7y — |[[Maypa|| = [[Ma]] ; > approximation error of oy
11 t<—t+1;

12 6o+ || Mxy||, Gp + x4 ; > Recovery of 4, and fiy
3 M€+1 — M, — 0?[&[&2;

14 return oy, ...,0 and Uy, ..., Ug;
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I Experiments

We present here few experimental results illustrating the performance of k-SVD with gradient descent,
denoted GDSVD. The method was implemented in both C and Python. We mainly compare with the
Power Method.

I.1 Experimental Data

Synthetic data. We utilize synthetic data to evaluate various aspects of the method. This involves
generating matrices of the form M = UV T where U, V' are sampled uniformly at random from the
space of semi-orthogonal matrices of size n x d, and ¥ = diag(oy,...,04) Where o1, ..., 04 being
the singular values of M. The choice of number of non-zero singular values, i.e. d > 1 and their
magnitudes are done in a few different ways to capture various types of matrices:

Rank-1 matrices. Here d = 1. These are used to inspect the performance of the methods
with respect to the size of the matrix. The matrices were generated for up to size 10° x 10°.

Rank-2 matrices. Here d = 2. These are used to inspect the performance of the methods
with respect to the gap o1 — 0. For these matrices, we set 0y = 1 and vary o; — 02 in
{1074 : | € [20]}.

Rank-|log(n) | matrices. These are used to inspect the robustness of the compared methods
with respect to the heterogeneity in the distribution of singular values. Specifically, three
types of distribution are chosen.

1. Exponential Decay: Sample a ~ Unif(2,...,10) and set o; = a™¢, for i € [d].

2. Polynomial Decay: Set o; = i~* + 1 for i € [d].

3. Linear Decay: Sample a ~ Unif(1,...,10), b ~ Unif([0, 1]), then set o; = a — bi for
i€ [d].

Real-word matrices. To evaluate performance on real-world data, we utilize matrices from datasets
MNIST and MovieLens (10K, 1M, 10M).

1.2 Implementation Details

GDSVD. The implementation GDSVD is done by sequentially applying gradient descent to find one
singular value and corresponding vector at a time, until all £ > 1 are found. For every run of gradient
descent, the stopping conditions utilized is: given parameter € > 0, stop at iteration £ > 2 if

el ™ 2o = [lze—1 | el < e
el = llzelll <e. (82)

In all the experiments, we utilize ¢ = 1078, A detailed pseudo-code for the implementation is
provided in Algorithm 1 provided in Appendix ??.

For acceleration method, we implement two approaches: the Polyak’s and Nesterov’s. The Polyak’s
acceleration GDSVD (Polyak) uses Polyak’s momentum, i.e., the scheme (8) with « = 0. The
acceleration is implemented beyond iteration ¢ > 100/ steps before adding momentum in order for
the method to converge. The Nesterov’s acceleration GDSVD (Nesterov) uses Nesterov’s momentum,
i.e., the scheme (8) with 8 = 0. This method is robust in that the acceleration can be implemented
starting from ¢ > 1. For both GDSVD (Polyak) and GDSVD (Nesterov), different values of 5 were
tested and the best was reported.

Power iteration. We implement a power method for finding the k-SVD of a symmetric M. As
with the gradient based method, we also proceed sequentially finding one singular value at a time
and corresponding vector at a time. The method proceeds by iterating the equations x;y; =
|| M x| =t Mz until convergence. The stopping conditions utilized: given parameter € > 0, stop at
iteration ¢ > 2 if

ze41 — 24| <€
[[[Mzpa|| = [[Mael| < e (83)
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The method is initialized in the same fashion as the one with gradient descent. See Algorithm 2 in
Appendix ?? for a detailed pseudo-code.

Dealing with asymmetric matrices. When considering asymmetric matrices M in the experiments,
for both GDSVD and Power Method, we apply k-SVD to MM " to identify the leading k singular
values of M, &1, ..., 0 and corresponding left singular vectors w1, . . . , g, we then simply recover
the right singular vectors by setting o; = ¢; ' M ' i, for i € [k].

Computation of gradients and matrix-vector multiplications. In all implemented methods in
C, the computation of gradients or more generally matrix-vector multiplications, were parallelized
using CBLAS (https://www.netlib.org/blas/) and its default thread parameter settings, or
with OpenCilk (https://www.opencilk.org/) for efficient memory management and for-loops
parallelization.

Machine characteristics. All experiments were carried on machines with a 6-core, 12-thread Intel
chip, or a 10-core, 20-thread Intel chip.

1.3 Results

We start by summarizing the key findings of the experiments along with the supporting evidence
from experimental results for these findings. They are as follows.

First, GDSVD is robust to different singular value decay distribution and scale gracefully with the
matrix size n. This is inline with the theoretical results. This can be concluded from the results
listed in Table 3 across various datasets. Also see Figure 2. While n = % is a good choice for
GDSVD, to understand impact of 7 € (0, 1) on the performance, as seen from Figure 2, GDSVD still
works with different values of 7 € (0, 1) despite our proof only holding for 7 = 1/2. The choice of
17 = 1/2 in our theoretical statement was made to simplify the exposition of our proof analysis, these

experimental results reinforce our claims that the method should converge for all € (0, 1).

Second, the runtime of the implemented GDSVD is competitive if not faster than the Power Method
which reaffirms the benefits of the gradient-descent approach for solving k-SVD. This can be
concluded from the results listed in Table 3 across various datasets.

Third, the scaling of run time for GDSVD scales linearly with the inverse of the gap, o1 — o5 as
suggested by theoretical results. The Figure 2 provides evidence for this.

Fourth, the scaling of run time for accelerated version of GDSVD scales as square-root of the inverse
of the gap, o1 — 02 as suggested by theoretical results. This confirms the utility of acceleration and
ability for optimization based methods to achieve faster scaling inline with other methods. It is worth
noting that the GDSVD (Nesterov) is relatively better and more robust compared to GDSVD (Polyak).
See Figure 1b where this is clearly demonstrated. It is worth noting that while theoretical result in
Theorem 2.3 only shows local convergence, the experimental results suggest that GDSVD (Nesterov)
enjoys global convergence with improved performance.
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Table 3:

All the considered methods were tested on the rank-log(n) settings varying n
{50, 75, 100, 200, . .., 1000}, as well as on the real-word datasets. The reported values correspond to the mean
and standard deviation across different values of n (resp. number of datasets) and number of threads used for par-
allelization of the methods for the rank-log(n) (resp. real-world setting) settings. Here we report the runtime and

the k-SVD recovery errors measured as es; = ||S—3|| and e,y = max(|[UU T —=UU " ||¢, ||[VV T =VV T ||r).

For the rank-log(n) matrices, k = |log(n) . For the real-world matrices k& = 10.

Datasets Algorithms GDSVD (n = 0.5) Power Method
Evaluations mean (std) mean (std)
Runtime 1.884 (4.626) 3.598 (6.185)
Exponential I3 1.9x 10713(5.4x10713)  1.7x 10 '¢(1.6x1071°)
€UV 2.8x107° (9.0x107%) 3.4x107° (9.2x107%)
Runtime 5.400 (13.42) 6.433 (12.61)
Polynomial € 2.9x1071 (1.1x1071%)  2.3x10716 (7.3x10717)
€UV 6.1x107% (9.4x107%9)  1.9x107°® (4.5x107%9)
Runtime 10.23 (23.38) 10.56 (21.01)
Linear € 1.4x107* (2.0x10**)  4.5x1071% (5.1x1071°)
€U,V 6.2x107% (1.1x107%%)  2.5x107°® (5.6x107°9)
Runtime 227.2 (509.6) 227.2 (509.6)
Real-world €5 1.8x107% (3.1x107%)  1.8x107% (3.1x107%%)
evy 2.1x107°7 (5.3x107%)  1.0x10797 (4.0x107%%)
10' 4 —e— PowerMethod
wlT o

Runtime

# Iterations

Figure 2: Here, we illustrate the runtime and convergence performance of GDSVD in both C and Python as we
vary the gap o1 — o2 in the rank-2 setting. The implementations of GDSVD with different values of n € (0, 1)
were compared with Power Method. The curves were averaged over values of n € {50, 100, 200, . .., 1000},
and the shaded areas correspond to the standard deviations. The doted plots correspond to the lowest and
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