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ABSTRACT

Chart understanding tasks such as ChartQA and Chart-to-Text involve automat-
ically extracting and interpreting key information from charts, enabling users to
query or convert visual data into structured formats. State-of-the-art approaches
primarily focus on visual cues from chart images, failing to explicitly incorporate
rich textual information (e.g., data labels and axis labels) embedded within the
charts. This textual information is vital for intuitive human comprehension and
interpretation of charts. Moreover, existing models are often large and computa-
tionally intensive, limiting their practical applicability. In this paper, we introduce
AskChart, a universal model that explicitly integrates both textual and visual cues
from charts using a Mixture of Experts (MoE) architecture. AskChart facilitates
the learning of enhanced visual-textual representations of charts for effectively
handling multiple chart understanding tasks, while maintaining a smaller model
size. To capture the synergy between visual and textual modalities, we curate a
large-scale dataset named ChartBase with about 7.5M data samples, which helps
align textual and visual information and facilitates the extraction of visual entities
and text. To effectively train AskChart, we design a three-stage training strat-
egy to align visual and textual modalities for learning robust visual-textual repre-
sentations and optimizing the learning of the MoE layer. Extensive experiments
across five datasets demonstrate the significant performance gains of AskChart in
four chart understanding tasks. Remarkably, AskChart with 4.6B parameters out-
performs state-of-the-art models with 13B parameters by 68.3% in Open-ended
ChartQA and 49.2% in Chart-to-Text tasks, while achieving comparable perfor-
mance in ChartQA and Chart-to-Table tasks.

1 INTRODUCTION

Charts are essential tools for data visualization, playing a crucial role in conveying complex data
patterns in everyday applications (Wu et al., 2024). Chart understanding tasks, including chart
question answering (ChartQA) (Hoque et al., 2022), Chart-to-Text (Kantharaj et al., 2022b), and
Chart-to-Table translation (Liu et al., 2023), aim to automate the interpretation and extraction of key
information from charts, allowing users to query or convert visual data into structured formats.

With the advancement of multimodal large language models (MLLMs), recent studies aim to auto-
matically perform various chart understanding tasks (e.g., ChartQA and Chart-to-Text) by pretrain-
ing MLLMs on large-scale chart-related corpus (Masry et al., 2023; Han et al., 2023; Meng et al.,
2024). For example, ChartAst (Meng et al., 2024) is trained on a large-scale instruction-following
chart-related corpus based on Donut (Kim et al., 2022) and SPHINX (Lin et al., 2023) models, and
demonstrates strong performance in ChartQA, Chart-to-Text and Chart-to-Table tasks.

Despite significant advancements, existing specialized MLLMs for chart understanding tasks pre-
dominantly rely on image-based representations, failing to explicitly leverage the rich textual infor-
mation embedded in charts (Masry et al., 2023; Han et al., 2023; Meng et al., 2024). This limitation
reduces their effectiveness, particularly in tasks requiring precise interpretation of textual content.
For example, as shown in Figure 1(a), ChartAst (Meng et al., 2024) misrepresents key facts, such as
the percentage of slices of the pie chart, due to inadequate integration of textual data.
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half (51%) say the U.S. should 
cut off military aid to Egypt...
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Figure 1: Comparison between the conventional approach (specialized MLLMs) and our proposed
method (AskChart) for chart understanding tasks. Our approach explicitly integrates both visual and
textual information from charts, resulting in better performance in chart understanding tasks.

How do humans perform chart understanding? Humans naturally “read” and “comprehend”
charts by integrating both textual and visual information (Wu et al., 2024; Saket et al., 2019). When
interpreting charts, people don’t focus solely on visual elements like bars or lines. Instead, they
actively incorporate textual cues such as axes and data labels to form a complete understanding of
the data being presented. These textual elements provide essential context, clarifying relationships
between variables, and resolving ambiguities in the graphical representation (Huang et al., 2024).

Inspired by this cognitive process, our key idea is to explicitly integrate textual information in chart
understanding tasks, mimicking how humans interpret charts. To achieve this, as shown in Fig-
ure 1(b), our approach first employs a plug-in text extractor (e.g., OCR tools) to extract embedded
textual information from the chart’s visual elements and then aligns both visual and textual modal-
ities to learn more effective joint representations. By explicitly combining both visual and textual
cues, our approach could enable more accurate and comprehensive chart understanding, resulting in
improved performance across various tasks such as Chart-to-Text and Open-ended ChartQA.

Challenges. Directly employing OCR tools to extract text from charts often results in errors such
as misrecognition, incomplete extraction, or misalignment, particularly when dealing with complex
chart structures. This presents the first challenge: (C1: Alignment Challenge) How to accurately
align noisy OCR text with the corresponding visual components of the chart, enabling the model
to learn meaningful joint representations and avoid misinterpretation? (C2: Architectural Chal-
lenge) How can we design a flexible and efficient architecture that can dynamically adapt to differ-
ent chart types and tasks, effectively integrating visual and textual cues to optimize performance?
(C3: Dataset Challenge) Existing datasets lack comprehensive training data that integrates both
structural visual elements and textual information for chart understanding tasks.

Our Methodology. In response to these challenges, we introduce AskChart, a universal model that
explicitly integrates both textual and visual cues from charts using a sparse Mixture of Experts (MoE)
architecture to tackle multiple chart understanding tasks effectively. Specifically, AskChart utilizes
a plug-in text extractor to extract textual information from charts, which is processed alongside user
instructions via text encoders. In parallel, the visual encoder captures structural and visual chart
information. The attention mechanism in LLMs integrates these components, while visual-textual
alignment learning ensures the noisy extracted text is accurately aligned with its corresponding
visual elements (addressing C1). To effectively handle diverse chart types and tasks without com-
promising on performance and efficiency, AskChart employs MoE layers, which allows for sparse
computation, activating only the relevant experts and reducing unnecessary overhead by dynamically
distributing tasks among specialized experts (addressing C2).

To address the third challenge (C3), we construct ChartBase, a large-scale dataset consisting of
approximately 7.5 million samples that integrates both visual and textual elements from various
chart-related tasks. ChartBase consists of three specialized datasets: (a) the OCR-aware Data
Prompt Dataset: Aligns textual and visual information by featuring both single-turn and multi-
turn instruction-following tasks, such as OpenCQA, Chart-to-Table, and chart summarization. (b)
Visual Prompt Dataset: Comprising three types of chart question-answering tasks, i.e., reasoning,
search, and data retrieval, where answers are visually highlighted using various prompt types (e.g.,
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ellipses, bounding boxes, triangles) to enhance feature learning on chart images. (c) the Chart-to-
Table Instruction-Following Dataset: Facilitates table and text extraction from charts.

Contribution. Our contributions can be summarized as follows:

(1) New Methodology. We propose AskChart, a lightweight model that explicitly integrates both
textual and visual cues through MoE layers. We employ a three-stage training strategy with tailored
pretraining objectives to enhance its performance across diverse chart understanding tasks.

(2) New Dataset. We introduce ChartBase, a large-scale dataset with approximately 7.5 million
samples, comprising three specialized sub-datasets: the Visual Prompt Dataset, the OCR-aware
Instruction-Following Dataset, and the Chart-to-Table Instruction-Following Dataset.

(3) Extensive Experiments. Our approach achieves new state-of-the-art performance across mul-
tiple benchmarks. AskChart outperforms larger models, such as those with 13B parameters, by
68.3% in Open-ended ChartQA and 49.2% in Chart-to-Text tasks, while delivering comparable re-
sults in ChartQA and Chart-to-Table tasks. We make both code and datasets publicly available at
(https://github.com/anonymousAskchart/AskChart).

2 RELATED WORK

Chart Understanding. In chart understanding, key tasks have emerged, each focusing on interpret-
ing and reasoning over chart data. ChartQA (Hoque et al., 2022; Xu et al., 2023) involves answering
questions related to both the content and structure of charts, requiring models to extract insights
from graphical elements. The Chart-to-Table (Liu et al., 2023) task converts visual chart data into
structured tables for easier analysis, while Chart-to-Text (Kantharaj et al., 2022b) generates descrip-
tive text from chart information. Complex tasks like Open-ended ChartQA (Open CQA) (Kantharaj
et al., 2022a) demand higher-level reasoning beyond fact retrieval. Our AskChart is designed to
handle these four core chart understanding tasks.

MLLMs for Chart Understanding. MLLMs like LLaVA (Liu et al., 2024b) and BLIP2 (Li
et al., 2023a) have excelled in chart understanding tasks by leveraging abundant natural image
datasets (Changpinyo et al., 2021; Lin et al., 2014; Liu et al., 2024b). However, high-quality pre-
training datasets for charts are still underexplored. Existing methods like UniChart (Masry et al.,
2023) expand task types but struggle with complex reasoning. Models like ChartLLaMA (Han
et al., 2023), ChartAssistant (Meng et al., 2024), ChartGemma (Masry et al., 2024c), and ChartIn-
struct (Masry et al., 2024b) aim to address chart reasoning and editing tasks, while ChartMoE (Xu
et al., 2024) improves multimodal input handling. However, open-ended tasks like OpenCQA (Kan-
tharaj et al., 2022a) remain challenging. We propose AskChart with a visual-textual alignment
pre-training approach that achieves state-of-the-art results in OpenCQA by better aligning visual
chart structure with textual information of charts.

Visual-Textual Alignment Learning. Recent MLLMs (Zhang et al., 2023; Lin et al., 2024; Han
et al., 2023) like LLaVA (Liu et al., 2024b) use single-turn conversations between humans and an as-
sistant to briefly describe natural images. However, for charts, descriptions often include content that
visual entities alone cannot capture (e.g., the semantic context of the chart) (Kantharaj et al., 2022b),
which results in relatively noisy data for alignment tasks. Models like PresSTU (Kil et al., 2022),
PaLI (Chen et al., 2022), and LLaVAR (Zhang et al., 2023) utilize noisy OCR-generated text as
ground-truth prediction answers to enhance the model’s text comprehension capabilities. Neverthe-
less, this noisy data remains insufficient for achieving robust alignment (Xu et al., 2020; Ren et al.,
2016). LayoutLM (Xu et al., 2020) relies on object detection networks (Ren et al., 2016), which
tend to underperform in charts that are rich in structural visual units, as they struggle to compute
the patch-OCR loss to align vision and text. Similarly, ChartBERT (Xu et al., 2023), though using
OCR-generated text, lacks the ability to effectively represent image and text information jointly.
Limited approaches incorporate visual text as input for visual instruction fine-tuning. Our funda-
mental premise is to explicitly integrate visual-textual information with the user instruction, and
then process them in parallel with the chart tokens through the training process of our AskChart.

3 ASKCHART MODEL

We will first present the architecture of AskChart (Section 3.1). We will then introduce the training
objectives (Section 3.2) and finally elaborate on the training strategy (Section 3.3).
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Figure 2: The framework of AskChart. The upper part shows the processing pipeline and AskChart
structure while the lower part shows examples in ChartBase for pretraining. We newly curate three
datasets: (a) Visual Prompt Dataset, (b) OCR-aware Data Prompt Dataset, and (c) Chart-to-Table
Instruction Following Dataset. For ChartBase examples in lower part, blocks in green indicate tasks
(a1, b1, c1); blocks with purple borders indicate input charts (a3, b2, c2); block in blue is the OCR
result (b3); blocks in yellow indicate answers (a4, b4, c3).

3.1 ASKCHART ARCHITECTURE

Overall Architecture. As shown in Figure 2, the architecture of AskChart is designed to efficiently
integrate both textual and visual information from charts. AskChart incorporates a text extraction
module φ(·), which retrieves textual data from charts, alongside user instructions processed through
a word embedding layer gt(·). Simultaneously, a vision encoder gv(·), captures the structural and
visual elements. The extracted multimodal features are then aligned using a projection layer proj(·),
and passed to an LLM, fθ(·). The LLM is enhanced with the MoE architecture, which dynamically
allocates specialized experts to specific tokens. This design not only ensures efficiency and scala-
bility but also enables the model to effectively manage the complex interactions between visual and
textual modalities, all while maintaining a lightweight computational footprint.

To achieve a lightweight model, we adopt a tiny LLM (e.g., Phi) as a replacement for larger models
like Vicuna (Chiang et al., 2023) and LLaMA (Touvron et al., 2023). Both the image encoder and
LLM are built upon one of the recent state-of-the-art lightweight MLLMs, MoE-LLaVA (Lin et al.,
2024). Given an input chart Xv , the vision encoder processes the chart and generates a sequence
of visual tokens. These tokens are then passed through a projection layer, which maps the visual
tokens into language embedding tokens Hv . Simultaneously, the text extractor processes the chart
to extract visual text from the image, which is then combined with the user’s instruction. Both
the visual text Xo = φ(Xv) and instructions Xt are passed through gt(·) to generate visual-text
sequence tokens Ho and instruction sequence tokens Ht. Since the visual text is essentially textual
information, we utilize the same text encoder for this task to simplify the process. Consequently, the
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token sequences Hv , Ht, and Ho are concatenated and fed into the LLM, which uses MoE layers to
replace the traditional feed-forward networks (FFNs). Each MoE block consists of a learnable router
and multiple FFNs. The entire model workflow can be formally defined by the following equations:

Hv = proj(gv(Xv));Ht = gt(Xt);Ho = gt(Xo), (1)

Y = fθ([Hv;Ht;Ho]), (2)

where Y is the output answer.

Text Extractor. The text extractor is designed to accurately recognize task-agnostic visual text in
charts with varying resolutions. Although some OCR-free vision encoders (Kim et al., 2022; Xu
et al., 2020) trained on domain-specific data excel at understanding scene text, their generalization
ability is limited, particularly when dealing with visual text in charts that vary in font size and
style. Additionally, compared to some open-source OCR tools, these models often have a much
larger number of parameters, making them difficult to deploy and fine-tune in resource-constrained
environments. Therefore, we adopt a lightweight OCR tool, PaddleOCR (Pad), as the text extractor.
Given a chart, PaddleOCR sequentially extracts the text by scanning from the top-left corner to the
bottom-right corner of the image. The recognized visual text Xo, which forms part of the LLM
prompts used during both training and inference, is then concatenated with the user instruction Xt.

3.2 TRAINING OBJECTIVES

We perform instruction-tuning of AskChart. Specifically, we train the LLM with MoE and the
Vision Encoder in AskChart on the prediction tokens, using both the original (Lin et al., 2024) auto-
regressive loss Lreg and an auxiliary loss Laux (Fedus et al., 2021) which encourages the router to
efficiently balance the load across multiple experts. The combined objective can be expressed as:

L = Lreg + λLaux, (3)

where λ is a balancing factor that controls the contribution of the auxiliary loss Laux.

Given a sequence of length L, the auto-regressive loss of the target answers Ya is defined as,

Lreg = −
L∑

i=1

log pθ (yi | Xv,Xo,Xt,<i,Ya,<i) , (4)

where θ is the trainable parameters, yi is the current prediction token.

For N experts, the auxiliary loss Laux is computed as,

Laux = N ·
N∑
i=1

Fi · Pi , (5)

where F is the fraction of tokens processed by expert i, and P represents the portion of the router
probability assigned to expert i, which can be defined as:

Fi =
1

L

L∑
i=1

1 {argmax p(x) = i} ; Pi =
1

L

L∑
i=1

pi(x) . (6)

3.3 TRAINING STRATEGY

To effectively train AskChart, we adopt a three-stage training strategy designed to align visual
and textual modalities in charts, ensuring the model learns robust visual-textual representations.
This strategy also fine-tunes the MoE layers to handle diverse chart understanding tasks efficiently.
Throughout these stages, we employ multi-task tuning based on the ChartBase dataset (will be in-
troduced in Section 4). Unlike existing MLLMs (Liu et al., 2024b; Lin et al., 2024; Meng et al.,
2024), which typically freeze the vision encoder during training, we find that unfreezing the vision
encoder across all stages significantly improves performance in chart understanding tasks.

Table 9 in the Appendix shows the tasks and datasets used across the different training stages.
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Stage I: Visual-Textual Alignment. Effective chart understanding requires the model to establish
a clear relationship between the chart’s visual representation and its corresponding textual informa-
tion. The goal of this stage is to accurately align noisy OCR-extracted text with the visual elements
of the chart. To achieve this, we use Chart-to-Table translation as a pretraining task, similar to ap-
proaches used in ChartAst (Meng et al., 2024) and Matcha (Liu et al., 2022). The vision encoder
and projection layer are trained to map image tokens into pseudo-text tokens. During this phase,
we utilize relatively noisy chart-table pairs, where some of the underlying data tables are estimated
based on the graphical marks (e.g., bars) as a percentage of the chart’s plot area (Masry et al., 2023).
Although this introduces some noise, we mitigate it with high-quality datasets during fine-tuning,
effectively aiding the model in aligning charts with their corresponding tables.

Stage II: Multi-task Instruction Tuning. This stage aims to enable the model to generalize across
various chart understanding tasks and diverse user instructions. As shown in Table 9, a key task is
chart summarization, where the model generates summaries of chart content based on different user
instructions, enhancing its ability to produce varying levels of detail. Specifically, Numerical and
visual reasoning tasks go beyond the template-based reasoning seen in UniChart (Masry et al., 2023),
by incorporating multi-turn conversations, covering sub-tasks like chart structural understanding,
data retrieval, and mathematical reasoning. The open-ended ChartQA (Kantharaj et al., 2022a) task
involves high-level questions requiring reasoning and explanatory answers. To address these, the
model must comprehend visual text, demanding both perceptual and cognitive understanding. In
contrast, low-level ChartQA tasks focus on specific goals such as reasoning, searching, and data
retrieval. Each chart is marked with visual prompts to guide the model toward specific, highlighted
areas of the image, improving task focus and accuracy.

Stage III: Fine-tuning with Mixture of Experts. To mitigate the learning difficulty associated with
the sparse model architecture, we initialize the weights in the third stage using those from the second
stage. When tokens are fed into the MoE layers, the router activates the top-k experts to handle the
tokens, and their outputs are combined using a weighted sum based on the router’s weights. This
mechanism helps distribute the computational load across multiple experts, improving the model’s
efficiency. In this stage, we fine-tune the model on tasks that are highly relevant to downstream
tasks. Recognizing the challenges of translating charts to tables, we introduce a Chain-of-Thought
(CoT)-based (Wei et al., 2022) translation task. This task requires the model to generate a step-by-
step reasoning process (CoT) rather than producing a direct answer. By generating CoT answers, the
model is encouraged to explicitly demonstrate its reasoning pathway, which leads to more accurate
and interpretable results, particularly for complex Chart-to-Table translation tasks.

4 CHARTBASE DATASET

To enhance AskChart’s chart understanding capabilities, we curate ChartBase, comprising three
specialized datasets alongside existing work: (1) the Visual Prompt Dataset, (2) the OCR-aware
Data Prompt Dataset, and (3) the Chart-to-Table Instruction-Following Dataset.

ChartBase Overview. Figure 2 illustrates examples from our ChartBase, and Appendix A provides
a summary of the ChartBase statistics. Specifically, the Visual Prompt Dataset and OCR-aware Data
Prompt Dataset cover 6 representative chart types: pie, common bar, stacked bar, grouped bar, com-
mon line, and grouped line charts. Among these types of charts, the common bar and common line
both have only one category of data, while the stacked bar, grouped bar, and grouped line all have
multiple categories of data. The Chart-to-Table Instruction Following Dataset additionally involves
scatter plots. We transform all datasets, including datasets introduced by us and training sets of
existing UniChart (Masry et al., 2023), ChatQA (Masry et al., 2022), OpenCQA (Kantharaj et al.,
2022a), Chat-to-text (Kantharaj et al., 2022b) datasets, into an instruction-following format for pre-
training. As shown in Appendix G.1, we design various instruction templates for random selection
to increase language diversity. All the instruction-following datasets are used during the pretrain-
ing stages as illustrated in Table 9. Next, we will introduce the design consideration construction
pipelines for each specialized dataset in ChartBase. For more details, please refer to Appendix G.

4.1 VISUAL PROMPT DATASET

Region understanding capabilities are crucial in chart understanding, as questions often target only
particular elements, like individual bars in a bar chart. We also aim to strengthen the MLLM’s nu-
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merical visual reasoning to understand relationships among numerical values. Therefore, we develop
and incorporate the Visual Prompt Dataset for second-stage pretraining, as shown in Figure 2(a).

Construction. Charts in ChatQA (Masry et al., 2022) are utilized as the foundation to construct the
Visual Prompt Dataset. Firstly, we carefully design question templates (Appendix Table 14) to be
used in question generation for four tasks: (1) reasoning, (2) extremum, (3) determining range, and
(4) data retrieval. Subsequently, for each chart, we randomly select elements to generate questions
and record their bounding box indices, thereby overlapping the visual prompt using ViP-LLaVA
(Cai et al., 2024a). Charts unable to be visually prompted accurately by ViP-LLaVA, like involving
correlation and distribution tasks, will be deemed unsuitable and consequently excluded. For diver-
sity, we randomly select three types of visual prompts from a set of four (namely arrow, ellipsis,
bounding box, and triangle) for each question, yielding 417,780 (Chart, Question, Answer) pairs
ultimately. Figure 2-a2, a3 illustrates an example with the rectangle visual prompt.

4.2 OCR-AWARE DATA PROMPT DATASET

As mentioned, the weakness in text capture and utilization is a bottleneck limiting MLLMs’ chart
understanding capabilities. We aim to enhance MLLMs’ such capabilities by providing richer and
denser textual information aligned with the features in charts. Also, multi-turn question-answering
examples are included to enable the model to better fit real-world scenarios. Therefore, we introduce
the OCR-aware Data Prompt Dataset in the second-stage pretraining, as shown in Figure 2(b).

Construction. The OCR-aware Data Prompt Dataset includes two parts: single-turn and multi-turn
instruction-following data, with each example comprising four essential elements: questions (Fig-
ure 2-b1), charts (Figure 2-b2), OCR results (Figure 2-b3), and answers (Figure 2-b4). For both
single-turn and multi-turn examples, we employ PaddleOCR to extract textual information from the
input charts to obtain OCR results. The single-turn instruction-following data is directly derived
from UniChart (Masry et al., 2023) through format transformation, containing 6,791,230 examples.
For multi-turn data, we utilize charts in UniChart accompanied by original tables, serving as the
foundation for generation. First, we prompt ChatGPT (Ouyang et al., 2022) to identify and sum-
marize the common question types in PlotQA (Methani et al., 2020) templates, which encompass
three question-answering task categories: structural understanding, data retrieval, and mathemati-
cal reasoning. To enhance the effectiveness and accuracy of question and answer generation, we
provide ChatGPT with sequenced original tables instead of charts. Then ChatGPT is prompted to
synthetically generate two to three rounds of questions and answers, guided by identified question
types (prompts in Appendix Table 15). Finally, we obtain 189,747 multi-turn examples.

4.3 CHART-TO-TABLE INSTRUCTION FOLLOWING DATASET

To improve AskChart’s ability to comprehensively extract and understand information from charts,
we propose COT based the Chart-to-Table Instruction Following Dataset for the third-stage fine-
tuning, as shown by the example in Figure 2(c).

Construction. We construct a large amount of high-quality (chart, COT annotated table) pairs by
converting tables into charts with COT ground-truth answers (see Appendix F). To this end, we
first utilize widely used Text-to-SQL datasets, Spider (Yu et al., 2018) and BIRD (Li et al., 2024),
which contain 1,020 and 1,460 tables on 138 and 37 domains respectively, as the base table. we first
employ the automatic visualization system, DeepEye (Luo et al., 2018), to recommend good charts
for these tables. Subsequently, we use Matplotlib to render the charts. Finally, we have a total of
61,472 (chart, table) pairs for forming our Chart-to-Table Dataset.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and Tasks. We evaluate AskChart against state-of-the-art (SOTA) methods on four chart
understanding tasks using various widely-used benchmarks. For ChartQA, we use the ChartQA
benchmark (Masry et al., 2022), which focuses on visual and logical reasoning, where each question
typically has a single word or numerical answer. This benchmark also includes the Chart-to-Table
translation task, for which we follow the evaluation methodology from prior work. Additionally,
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Table 1: Evaluation results on chart-related benchmarks. Bold indicates the best result, and
underlined indicates the second-best result. The ChartQA task includes two sub-datasets (i.e., Aug.
and Human), while other tasks similarly encompass one or more datasets.

Categories Model Size ChartQA Open-ended ChartQA Chart-to-Table Chart-to-Text

Aug. Human Avg. OpenCQA ChartQA Pew Statista

General MLLMs
Blip2 (Li et al., 2023a) 4B 1.4 7.8 4.6 1.7 - 0.2 0.8

SPHINX (Lin et al., 2023) 13B 11.3 21.7 16.5 5.9 9.4 3.2 4.1
Qwen-VL (Bai et al., 2023) 9.6B 78.9 44.3 61.6 1.3 - 0.5 2.6

Specialist Models

Pix2Struct (Lee et al., 2023) 300M 81.6 30.5 56.1 12.7 85.9 10.3 38.0
Chart-T5 (Zhou et al., 2023) 400M 74.4 31.8 53.1 - - 9.1 37.5

Donut (Kim et al., 2022) 260M 78.1 29.8 54.0 13.1 87.4 7.2 38.2
Matcha (Liu et al., 2022) 300M 88.9 38.8 63.9 6.5 89.6 12.2 39.4

DePlot+Codex (Liu et al., 2023) 1.3B+175B 91.0 67.6 79.3 - 87.2 - -
Unichart (Masry et al., 2023) 260M 88.6 43.9 66.3 14.8 91.1 12.5 38.1

OneChart+LLaVA1.6 (Chen et al., 2024) 0.2B+34B 85.3 49.1 67.2 - - - -

Chart MLLMs

ChartLLama (Han et al., 2023) 13B 90.4 48.9 69.7 4.7 90.0 14.2 40.7
ChartInstruct (Masry et al., 2024a) 3B+7B 93.8 50.2 72.0 14.8 - 12.8 40.1

TinyChart+PoT (Zhang et al., 2024) 3B 90.7 70.2 80.5 20.4 92.9 17.2 -
ChartAst-D (Meng et al., 2024) 260M 91.3 45.3 68.3 14.9 92.0 14.0 40.2
ChartAst-S (Meng et al., 2024) 13B 93.9 65.9 79.9 15.5 91.6 15.2 41.0

AskChart (ours) 4.6B 90.9 61.2 76.1 83.8 87.4 64.4 47.7

Table 2: Evaluation results on ChartInsights benchmark.

Model Size
Analysis Search Query

Overall (%)
Reasoning Anomaly Distribution Correlation Range Order Filter Retrieval Extremum Cluster

VisCPM-Chat-v1.1 (Hu et al., 2023) 10B 28.4 46.1 33.3 51.9 23.0 6.4 25.1 15.8 32.0 29.6 26.2
BLIP2 (Li et al., 2023a) 11B 24.8 23.4 25.0 15.1 25.3 20.2 39.8 27.8 30.3 30.1 28.3
CogVLM-17B (Wang et al., 2024) 17B 20.3 23.1 43.6 29.6 37.7 10.8 9.1 37.9 56.6 26.7 29.4
LLaVA1.5 (Liu et al., 2024b) 13B 32.4 6.3 30.9 23.1 21.7 32.7 35.6 32.6 35.8 43.5 32.2
ChartAst-S (Meng et al., 2024) 13B 24.6 27.7 35.8 28.1 30.5 22.5 14.7 39.4 63.0 26.4 32.4
MiniCPM-v2 (Hu et al., 2024) 2.4B 19.5 55.1 33.3 56.5 24.9 16.7 36.3 37.9 52.4 32.0 33.0
mPLUG-Owl2 (Ye et al., 2023) 7B 31.0 27.0 29.4 35.3 28.4 22.5 40.3 30.9 41.1 27.3 33.3
Qwen-VL (Bai et al., 2023) 7B 27.8 36.3 45.1 55.8 33.8 20.0 28.7 31.3 50.2 27.1 33.4
ViP-LLaVA (Cai et al., 2024b) 13B 28.8 6.6 34.8 30.3 21.9 35.8 40.4 42.2 38.3 33.8 33.8
LLaVA-NEXT (Liu et al., 2024a) 13B 30.6 7.4 26.5 38.0 29.5 33.3 23.4 53.5 59.8 52.3 38.5
Sphinx (Lin et al., 2023) 13B 30.0 28.9 37.8 36.1 25.8 23.5 36.7 49.7 66.3 45.3 40.2
AskChart (ours) 4.6B 28.6 21.5 50.5 58.7 59.5 10.4 27.3 71.2 52.8 31.5 42.7

we assess the model’s performance in the chart summarization task using the Chart-to-Text bench-
mark (Kantharaj et al., 2022b). For Open-ended ChartQA, we evaluate using the OpenCQA bench-
mark (Kantharaj et al., 2022a), where questions require more explanatory and detailed answers.

Evaluation Metrics. We adopt evaluation metrics from prior studies (Masry et al., 2022). For
ChartQA, we use relaxed accuracy (RA), allowing a 5% margin of error for numerical answers
and exact matches for textual answers. For Chart-to-Table, we report RMS-F1 scores based on the
DePlot framework (Liu et al., 2023). Both the Chart-to-Text task and OpenCQA are evaluated using
BLEU scores (Post, 2018), consistent with previous works (Masry et al., 2023; Liu et al., 2022).

Baselines. We first selected several general-purpose MLLMs that excel at image understanding,
such as Blip2 (Li et al., 2023a), SPHINX (Lin et al., 2023), and Qwen-VL (Bai et al., 2023), to
evaluate their performance on chart-related tasks. Additionally, since Pix2Struct (Lee et al., 2023)
and Donut (Kim et al., 2022) have shown impressive results in the domain of document understand-
ing, we also considered specialist chart models like UniChart (Masry et al., 2023) and MatCha (Liu
et al., 2022), which are based on these architectures and focus specifically on chart comprehension.
Notably, Chart-T5 (Zhou et al., 2023) is an improved version of the versatile text-based language
problem-solving model, T5 (Raffel et al., 2020). Some chart-specific MLLMs, built on popular
vision-language models, can handle various chart-related tasks and achieve state-of-the-art perfor-
mance, including models like ChartInstruct (Masry et al., 2024a), ChartLLaMa (Han et al., 2023)
and ChartAst (Meng et al., 2024).

Implementation Details. AskChart is built on MoE-LLaVA (Lin et al., 2024), integrating
SigLIP (Zhai et al., 2023) as the vision encoder and Phi-2 (Li et al., 2023b) as the language model.
We trained all models using 8 A100 GPUs. Table 9 shows all datasets used for training. For Stage I,
we trained the model for 1 epoch with a learning rate of 1e-3 and a batch size of 32 per GPU. For
Stage II and Stage III, we fine-tuned the model for 1 and 6 epochs, respectively, with a learning rate
of 2e-5 and a batch size of 16 per GPU. Please refer to Appendix D for more details.

5.2 MAIN RESULTS

Table 1 shows a comparison of AskChart with SOTA models across four chart understanding bench-
marks. Remarkably, AskChart outperforms the current state-of-the-art methods by 68.3% and
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Table 3: Ablation study on different prompts.

Visual Prompt Ocr-aware data prompt ChartQA Open-ended ChartQA Chart-to-Table Chart-to-Text

aug. human avg. OpenCQA ChartQA Pew Statista

✗ ✗ 75.5 44.9 60.2 63.1 63.9 55.2 55.1
✗ ✓ 83.8 50.1 67.0 79.3 81.3 57.2 58.0
✓ ✗ 76.6 46.1 61.4 63.4 62.6 50.9 55.1
✓ ✓ 84.6 50.9 67.8 79.3 81.5 60.6 62.8

49.2% (on the Pew sub-dataset), and 6.7% (on the Statista sub-dataset) in the open-ended ChartQA
and chart-to-text tasks, respectively. This demonstrates that the lightweight AskChart (4.6B pa-
rameters) achieves competitive results on ChartQA and Chart-to-Table tasks, comparable to the
performance of ChartAst-S (13B parameters). Notably, on the more computationally demanding
ChartQA-human subset, which involves more challenging problems, AskChart surpasses the 13B
ChartLLama (Han et al., 2023). We also observe that existing models struggle to effectively handle
open-ended ChartQA, which requires generating explanatory answers by reasoning with the chart
content. Due to its multitask training, AskChart performs joint visual and explicit text represen-
tation, and its MoE architecture enables a single token to be processed by different experts, with
weighted outputs providing a more robust representation. This capability allows it to effectively
address such complex tasks. Moreover, AskChart demonstrates significant advantages in tasks that
demand both text recognition and generation. Unlike certain models, such as UniChart (Masry et al.,
2023) and MatCha (Liu et al., 2022), which require fine-tuning for each downstream task to achieve
optimal performance and often rely on separate models for different tasks, AskChart serves as a
universal solution capable of addressing diverse requirements without task-specific fine-tuning.

Additionally, we conducted an error analysis based on chart types and question types (see Ap-
pendix B.1). From the accuracy distribution across different chart types, it is evident that the per-
formance of AskChart is almost unaffected by the chart type, with comparable performance across
various chart categories. To further analyze performance from the perspective of question types, we
randomly selected 1,108 human-written questions. The model’s performance was notably lower on
data retrieval and compositional tasks that require multi-step reasoning, indicating that the vision
encoder struggles with understanding chart values, while the large language model exhibits limita-
tions in mathematical reasoning. These challenges primarily stem from the model’s susceptibility to
hallucinations in fine visual elements and its insufficient capacity for numerical representation.

5.3 FURTHER STUDY

The ChartInsights benchmark (Wu et al., 2024) evaluates multimodal models’ capabilities in low-
level chart analysis tasks, challenging them to not only recognize visual elements but also understand
their underlying statistical and analytical significance. As shown in Table 2, AskChart demonstrates
exceptional performance across various analytical tasks. Notably, it excels in the distribution and
correlation tasks, achieving scores of 50% and 58.7%, the highest among all evaluated models.
Furthermore, AskChart outperforms competitors in the range task with a leading score of 59.5%.
Its performance in retrieval is also remarkable, achieving a score of 71%, significantly surpassing
other models. Overall, AskChart attains an impressive total score of 42.7%, ranking first among all
models. These results highlight the effectiveness of the OCR-aware data prompt strategy employed
during pretraining, which has enabled AskChart to align textual and visual semantics effectively,
particularly excelling in tasks requiring nuanced integration of both modalities.

5.4 ABLATION STUDY

The Impact of Different Prompts. To evaluate the influence of visual prompts and OCR-aware
data prompts on model performance, we randomly sampled approximately 1M samples from the
sub-datasets of each stage due to limited computational resources. We trained the model from
scratch, and the results are shown in Table 3. The results indicate that visual prompts significantly
enhance the model’s performance on question-answering tasks (notably, we trained with only about
35% of the visual prompt dataset). This suggests that visual cues in charts help the model focus on
the relevant areas associated with the questions.
The Impact of Training Strategy. To assess which alignment strategy more effectively aligns vi-
sual and textual information, we pre-trained the model in Stage I using two different tasks: Chart-to-
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Text and Chart-to-Table. As shown in Table 4, the model trained with the Chart-to-Table alignment
strategy consistently outperforms across multiple tasks. We attribute this to the fact that Chart-to-
Table translation helps the model understand the underlying chart content rather than generating
potentially irrelevant textual descriptions.

The Impact of Number of Experts. To evaluate the effect of the number of experts in the MoE
layers on model performance, we conducted the following experiments. First, we varied the total
number of experts while keeping the number of activated experts constant. As shown in Table 6,
increasing the number of experts leads to improved performance across various tasks.
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Figure 3: Modalities across different experts.

Table 4: Ablation study on training stage I.
Task ChartQA Chart-to-Table Chart-to-Text

w/ Chart2text 67.0 80.2 59.1
w/ Chart2table 67.8 81.5 61.7

Table 5: Zero-shot study on multiple datasets.
Model ChartQA Chart-to-Table Chart-to-Text

RealCQA StructChart ChartX

Unichart (Masry et al., 2023) 38.0 1.6 6.8
LLaVA1.5 (Liu et al., 2024b) 30.0 7.5 0.45

LLaVA-NEXT (Liu et al., 2024a) 33.0 14.6 14.6
ChartAst (Meng et al., 2024) 11.0 14.3 12.8

AskChart (ours) 33.0 30.5 36.9

Table 6: The impact of the MoE layers.
MoE Layers ChartQA Chart-to-Table Chart-to-Text

w/o MoE 35.9 59.1 31.2
w/ MoE (#Experts=4) 76.1 87.4 56.1

Table 7: The performance of top-k experts
Experts ChartQA Chart-to-Table Chart-to-Text

1 74.4 86.4 51.5
2 76.1 87.4 56.1

Furthermore, as illustrated in Figure 3, we examined the distribution of different modalities across
the experts. Interestingly, the router distribution for both text and image tokens is similar, indicating
that each expert is capable of processing both types of tokens. The weighted outputs from multiple
experts contribute to stronger multimodal representations. Next, we varied the number of activated
experts while keeping the total number of experts fixed. As presented in Table 7, activating 2 ex-
perts yields the best improvement in model performance. To balance computational efficiency and
performance, we opted to set the number of activated experts to 2.

5.5 ZERO-SHOT STUDY

To evaluate the generalization capability of our model, we collected data from datasets that the
model had never seen before for zero-shot experiments. Specifically, we conducted tests on several
datasets, including RealCQA (Ahmed et al., 2023), StructChart (Xia et al., 2023), and ChartX (Xia
et al., 2024), for the ChartQA, Chart-to-Table, and Chart-to-Text tasks, respectively. The evalua-
tion metrics were consistent with those used for the corresponding tasks in the main results. As
shown in Table 5, AskChart exhibited superior zero-shot performance across all tasks. In contrast,
UniChart (Masry et al., 2023) performed poorly on both the Chart-to-Table and Chart-to-Text tasks,
which we attribute to the limited language modeling capability of its text decoder. Even though
ChartAst (Meng et al., 2024) utilizes a 13B parameter LLM, its generalization ability remains lim-
ited. AskChart, with only 4.6B parameters, demonstrated a clear advantage in ChartQA and text
generation tasks. It suggests that the text-enhanced visual representation and robust MoE architec-
ture contribute to the model’s improved understanding of charts.

6 CONCLUSION

In this paper, we introduced AskChart, a lightweight chart understanding model that integrates both
textual and visual cues using a Mixture of Experts architecture. By employing a three-stage training
strategy with tailored pretraining objectives, AskChart demonstrates enhanced performance across
diverse chart understanding tasks. We also presented ChartBase, a large-scale dataset with approx-
imately 7.5M samples, featuring three specialized sub-datasets designed to improve the model’s
ability to comprehend and interpret chart data. Extensive experiments show that AskChart achieves
state-of-the-art results, outperforming larger models in tasks such as Open-ended ChartQA and
Chart-to-Text by 68.3% and 49.2%, respectively.
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A STATISTICS OF CHARTBASE
Table 8: Statistics of ChartBase dataset.

Subdatasets in ChartBase #-Chart Types #-Charts #-Samples

Visual Prompt 6 104,445 417,780
OCR-aware Data Prompt 6 505,037 6,980,977

- Single-turn 6 505,037 6,791,230
- Multi-turn 6 189,747 189,747

Chart-to-Table Instr. Following 7 61,472 61,472

Table 9: Tasks and datasets used for pretraining (Stage I and Stage II) and fine-tuning (Stage III).
Our proposed dataset is denoted by “#”. “*” indicates that only a subset of the dataset is used for
the task. All datasets are accompanied by data prompts, except the visual prompt dataset.

Tasks Datasets #-Samples

Stage I Chart-to-Table #OCR-aware Data Prompt 495K

Stage II

Chart Summarization #OCR-aware Data Prompt 481K
Num & Vis Reasoning #OCR-aware Data Prompt 5.5M
Open-ended ChartQA #OCR-aware Data Prompt 481K
Low-level ChartQA #Visual Prompt 418K

Stage III

Chart-to-Text Chart-to-Text (Kantharaj et al., 2022b) 35K
Open-ended ChartQA OpenCQA (Kantharaj et al., 2022a) 5K

Chart-to-Table
∗ChartQA (Masry et al., 2022) 28K
#Chart-to-Table Instruction-Following 61K

Chart QA ∗ChartQA (Masry et al., 2022) 28K

B ADDITIONAL RESULTS FROM EVALUATION

B.1 ERROR ANALYSIS
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Figure 4: Results on the ChartQA Human
test set by chart type.
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Figure 5: Results on the ChartQA Human
test set by question type.

Figure 4 presents the results across different chart types on the ChartQA-H benchmark. We ran-
domly selected 1,108 human-written questions for this analysis. Figure 5 shows the performance
breakdown by question type on ChartQA-H. The question types are as follows: (1) Data Retrieval:
Questions focusing on directly extracting data information from the chart; (2) Visual Compositional:
Tasks that involve identifying visual elements followed by reasoning to derive an answer; (3) Com-
positional: Multi-step reasoning or the combination of multiple pieces of information from the chart;
(4) Visual: Questions that rely solely on the visual aspects of the chart to extract the answer, without
requiring additional reasoning or composition.

B.2 THE IMPACT OF MORE EXPERTS

We experimented with using more experts, as shown in Table 10. However, increasing the number
of experts in the MOE architecture significantly inflates the model’s parameter count, while the
performance improvement is not proportional. As a result, we opted for a trade-off in the number
of experts to leverage the advantages of the MOE framework fully. It is worth noting that extending
the number of training steps might yield further performance gains.
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Table 10: The impact of MoE experts numbers.

#-Experts ChartQA Chart-to-Table Chart-to-Text

0 35.9 59.1 31.2
4 76.1 87.4 56.1
8 77.0 87.5 56.2

C LIMITATIONS

Although AskChart demonstrates competitive performance, hallucinations remain a challenge, par-
ticularly when reasoning about fine-grained visual elements within the chart. Future research could
focus on enhancing the vision encoder’s capabilities, potentially through strategies such as integrat-
ing multiple encoders or employing visual token merging techniques. Moreover, the inherent limi-
tations of large language models in managing extended context lengths pose additional constraints.
Input tokens exceeding a predefined length are truncated, potentially affecting training outcomes.
Investigating methods to effectively support longer context lengths could be a promising direction
for improving joint representations of visual and explicit textual information.

Regarding the experimental setup, it is important to note that most of the reported results are from a
single run. Pretraining is computationally intensive and costly, particularly when multiple ablation
setups are considered. We believe that the results would benefit from training over a greater number
of steps.

D TRAINING DETAILS

Table 11: Training hyperparameters.

Configurations Stage I Stage II Stage III

Experts - - 4
Top-k - - 2

Deepspeed Zero2 Zero2 Zero2
Image resolution 384×384
Image encoder SigLip/384
Feature select layer -2
Image projector 2 Linear layers with GeLU
Epoch 1 1 6
Learning rate 1e-3 2e-5 2e-5
Learning rate schdule Cosine
Weight decay 0.0
Text max length 2048
Batch size per GPU 32 16 16
GPU 8 × A100-80G
Precision Bf16

We present the training hyperparameters for all stages, as shown in Table 11. We trained for 1 epoch
in both of the first two stages, while in Stage III, due to the smaller dataset size, we trained for 6
epochs for appropriate total steps. The batch size was set to 256 in the first stage and 128 in the
second and third stages. We utilized an image resolution of 384x384 across all three stages. Due to
the excessive length of tokens extracted from the visual text, we encountered GPU out-of-memory
issues in Stage III, even when using DeepSpeed’s zero2 offload mode. To address this, we employed
gradient accumulation.

E CHART UNDERSTANDING EXAMPLES

We below present examples for four involved chart understanding tasks: Chart-to-Text examples
in Figure 6, Chart-to-Table examples in Figure 7, ChartQA examples in Figure 8, and OpenCQA
examples in Figure 9.
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Ques�on: Write a summary for this chart

Ground Truth Answer:
This sta�s�c shows the degree of urbaniza�on in Myanmar, also known 
as Burma, from 2009 to 2019. Urbaniza�on means the share of urban 
popula�on in the total popula�on of a country. In 2019, 30.85 percent 
of Myanmar's total popula�on lived in urban areas and ci�es.

Predicted Answer:
This sta�s�c shows the degree of urbaniza�on in the Democra�c 
Republic of the Congo from 2009 to 2019. Urbaniza�on means the 
share of urban popula�on in the total popula�on of a country. In 2019, 
30.85 percent of the total popula�on of the Democra�c Republic of the 
Congo lived in urban areas and ci�es.

Ques�on: Provide a detailed descrip�on of the given image.

Ground Truth Answer:
This sta�s�c shows the volume of frozen broiler meat imported to 
South Africa in 2016, by category. In that year, the volume of frozen 
offal imported to South Africa amounted to about 49.75 thousand 
metric tons.

Predicted Answer:
This sta�s�c shows the import volume of poultry meat into the United 
States in 2018, by type. In that year, the United States imported 
approximately 239.59 thousand metric tons of bone-in por�ons of 
poultry meat.

Figure 6: Examples for Chart-to-Text tasks.

Ques�on: Transform the visual informa�on presented in 
the chart into an accurate tabular representa�on.

Ground Truth Answer:
Year | Western Europe | North America | Japan | Emerging countries\
n2020 | 47 | 47 | 32 | 113\n2019 | 46 | 43 | 31 | 102\n2018 | 43 | 34 
| 26 | 91\n2017 | 47 | 29 | 30 | 78\n2016 | 37 | 25 | 27 | 70\n2015 | 
35 | 21 | 25 | 61\n2014 | 33 | 22 | 21 | 52\n2013 | 31 | 17 | 21 | 46.

Predicted Answer:
Year | Western Europe | North America | Japan | Emerging countries\
n2020 | 47 | 47 | 32 | 113\n2019 | 46 | 43 | 31 | 102 \n2018 | 43 | 34 
| 26 | 91 \n2017 | 47 | 29 | 30 | 78 \n2016 | 33 | 25 | 27 | 70 \n2015 | 
35 | 21 | 21 | 61 \n2014 | 31 | 22 | 21 | 52 \n2013 | 17 | 11 | 17 | 46  

Ques�on: Transcribe the visual data points from the chart 
into a systema�c table format.

Ground Truth Answer:
Characteris�c | Youth unemployment rate\n2019 | 8.51%\n2018 | 
9.37%\n2017 | 9.78%\n2016 | 11.24%\n2015 | 10.56%\n2014 | 
10.25%\n2013 | 9.64%\n2012 | 9.36%\n2011 | 8.91%\n2010 | 9.45%\
n2009 | 10.63%\n2008 | 8.47%\n2007 | 9.38%\n2006 | 9.75%\n2005 | 
10.97%\n2004 | 12.07%\n2003 | 7.43%\n2002 | 7.14%\n2001 | 6.01%\
n2000 | 6.29%\n1999 | 5.92%

Predicted Answer:
Pred anwer: Characteris�c | Youth unemployment rate\n2019 | 8.51%\
n2018 | 9.37%\n2017 | 9.78%\n2016 | 11.24%\n2015 | 10.97%\n2014 
| 10.25%\n2013 | 9.36%\n2012 | 8.91%\n2011 | 9.45%\n2010 | 
8.91%\n2009 | 10.63%\n2008 | 9.37%\n2007 | 9.38%\n2006 | 9.75%\
n2005 | 10.97%\n2004 | 12.07%\n2003 | 7.14%\n2002 | 6.97%\n2001 
| 6.29%\n2000 | 6.29%\n1999 | 5.92%

Figure 7: Examples for Chart-to-Table tasks.

Ques�on: How many companies were in Hungary's 
insurance market in 2013?

Ground Truth Answer: 36

Predicted Answer: 36

Ques�on: Which late night host had the highest 
favorability ra�ngs?

Ground Truth Answer: Jimmy Fallon

Predicted Answer: Jimmy Fallon

Ques�on: What percentage of female students achieved a C/
4 grade or higher in the United Kingdom in 2020?

Ground Truth Answer: 80.2

Predicted Answer: 80.2

Ques�on: What's the percentage of U.S adults who refused?

Ground Truth Answer: 2
Predicted Answer: 2

Figure 8: Examples for ChartQA tasks.
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Ques�on: How do married adults conceive their rela�onship 
sa�sfac�on in comparison to adults living with a partner? 
Answer in a few sentences.

Ground Truth Answer:
Married adults are more likely than those who are living with a partner 
to say things are going very well in their rela�onship (58 % vs. 41% They 
also express higher levels of sa�sfac�on with specific aspects of their 
rela�onship, including the way household chores are divided between 
them and their spouse or partner how well their spouse or partner 
balances work and personal life, how well they and their spouse or 
partner communicate, and their spouse’s or partner’s approach to 
paren�ng.

Predicted Answer:
Married adults are more likely than those living with a partner to say
things are going very well in their rela�onship. About six - in - ten
married adults ( 58 % ) say this, compared with 41 % of those who are
living with a partner.

Ques�on: Describe the propor�on of those suppor�ng a 
way for undocumented migrants to gain legal status if 
certain requirements are met. Answer in a few sentences.

Ground Truth Answer:
When it comes to immigra�on policy, roughly seven - in - ten (71%) 
con�nue to support a way for undocumented immigrants to gain legal 
status if certain requirements are met.

Predicted Answer:
A substan�al majority ( 71 % ) of the public says that undocumented 
immigrants who meet certain requirements should be allowed to stay in 
the U.S. legally.

Figure 9: Examples for OpenCQA tasks.

F COT CHART-TO-TABLE EXAMPLES

Question: Generate underlying data table of the chart. Answer with detailed steps.

Answer:
<comment># Identify the key categories or tick label in the chart, set to Y.</comment>\n
<step>Y = Rank | F | M\n</step>\n
<comment># Retrieve and record the values corresponding to each element in Y, set to the 
corresponding element names.</comment>\n
<step>Rank=[AssocProf, AsstProf, Instructor, Professor] F=[9643.00, 9235.00, 4512.33, 
0.00] M=[7142.14, 7007.08, 6634.80, 5826.48]</step>\n
<comment># Organize the extracted values into a structured table with columns 
representing the categories, set to Answer.</comment>\n
<step>Answer = Rank | F | M\nAssocProf | 9643.00 | 7142.14\nAsstProf | 9235.00 | 
7007.08\nInstructor | 4512.33 | 6634.80\nProfessor | 0.00 | 5826.48</step>

Question: Generate underlying data table of the chart. Answer with detailed steps.

Answer:
<comment># Identify the key categories or tick label in the chart, set to Y.</comment>\n
<step>Y = Building | SUM(Phone)\n</step>\n
<comment># Retrieve and record the values corresponding to each element in Y, set to the 
corresponding element names.</comment>\n
<step>Building=[Barton, Krieger, NEB] SUM(Phone)=[33.7%, 43.2%, 23.2%]</step>\n
<comment># Organize the extracted values into a structured table with columns 
representing the categories, set to Answer.</comment>\n
<step>Answer = Building | SUM(Phone)\nBarton | 33.7%\nKrieger | 43.2%\nNEB | 
23.2%</step>

Question: Generate underlying data table of the chart. Answer with detailed steps.

Answer:
<comment># Identify the key categories or tick label in the chart, set to Y.</comment>\n
<step>Y = Rank | F | M\n</step>\n
<comment># Retrieve and record the values corresponding to each element in Y, set to the 
corresponding element names.</comment>\n
<step>Rank=[AssocProf, AsstProf, Instructor, Professor] F=[9643.00, 9235.00, 4512.33, 
0.00] M=[7142.14, 7007.08, 6634.80, 5826.48]</step>\n
<comment># Organize the extracted values into a structured table with columns 
representing the categories, set to Answer.</comment>\n
<step>Answer = Rank | F | M\nAssocProf | 9643.00 | 7142.14\nAsstProf | 9235.00 | 
7007.08\nInstructor | 4512.33 | 6634.80\nProfessor | 0.00 | 5826.48</step>

Question: Generate underlying data table of the chart. Answer with detailed steps.

Answer:
<comment># Identify the key categories or tick label in the chart, set to Y.</comment>\n
<step>Y = Building | SUM(Phone)\n</step>\n
<comment># Retrieve and record the values corresponding to each element in Y, set to the 
corresponding element names.</comment>\n
<step>Building=[Barton, Krieger, NEB] SUM(Phone)=[33.7%, 43.2%, 23.2%]</step>\n
<comment># Organize the extracted values into a structured table with columns 
representing the categories, set to Answer.</comment>\n
<step>Answer = Building | SUM(Phone)\nBarton | 33.7%\nKrieger | 43.2%\nNEB | 
23.2%</step>

Figure 10: Two Examples of COT answers for Chart-to-Table instruction-following dataset.

Examples from the Chart-to-Table instruction-following dataset are shown in Figure 10. The CoT
(Chain-of-Thought) answer involves a multi-step reasoning process, ultimately generating the re-
quired table.

G DETAILS OF CHARTBASE

In this section, we report more detailed results of ChartBase.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

G.1 INSTRUCTION

We design various instruction templates to randomly select from for the chart2text and chart2table
tasks, increasing expression diversity. Table 12 and Table 13 illustrate a portion of the instruction
templates for chart2table and chart2text tasks, respectively.

Table 12: A portion of the instruction templates for the Chart-to-Table task.

Instruction Template

Extract and organize the data from the chart into a clear and concise table.
Create a detailed table reflecting the exact data points and categories shown in the chart.
Reconstruct the chart’s data into a structured table, ensuring all elements are captured.
Translate the chart into a data table with precise values and labels as displayed.
Convert the charted information into a comprehensive table, including all relevant details.
Develop a tabular summary that encapsulates all the quantitative information from the chart.
Compile the data depicted in the chart into a well-organized table for easy interpretation.
Arrange the information contained within the chart into a methodical and detailed data table.
Replicate the chart’s information accurately in table format, with corresponding data entries.
Catalog the chart data into a table, mirroring the exact figures and trends shown.
Transcribe the visual data points from the chart into a systematic table format.

G.2 VISUAL PROMPT

When creating a Visual Prompt dataset, we primarily follow two steps:

STEP1: Make questions and get bounding boxes. Step one is to identify the relevant elements
and their bounding boxes based on the question. First, we generate the corresponding queries and
answers according to the predefined question templates. For example, when generating a query
about finding the maximum value in a bar chart, we construct the appropriate question and locate the
maximum value in the chart. Since the dataset we are using includes the bounding box coordinates
for each chart element, we can identify the element corresponding to the answer by referencing the
question and find the bounding box coordinates for the bar representing the maximum value.

STEP2: Generate Visual Prompts According to Bounding Boxes Automatically. Step two is
to automate the generation of the visual prompt using the bounding box. Here, we basically follow
the rules in ViPLLaVA (Cai et al., 2024b). In our visual Prompt datasets, because we only have
bounding boxes of each chart instead of pixel-level mask annotations, we only choose following
visual prompt types: arrow, triangle, ellipsis, scribble, and bounding box. For the arrow, we make
sure that the head of the arrow lies within [(-W2 , -H2 ),(W2 , H

2 )] space, where W ,H are the width
and height of the image, respectively. For the triangle, We randomly select three points within the
bounding box and connect them in sequence to form a triangle. For ellipse, the lengths along the
semi-major and semi-minor axes are inherited from the bounding box size, where we enlarge the
ellipse with a ratio between [1,1.5]. For scribble, we simulate human-like drawings using Bézier
curves Farin (2014). This process begins by randomly selecting three points within the object mask,
which serve as the anchors for the quadratic Bézier curve. The generated Bézier curve is then
composited onto the image using the previously mentioned alpha blending technique to produce a
merged image with the scribble serving as a visual prompt. Lastly, we use bounding box coordinates
to draw relevant bounding boxes as visual prompts.

Figure 11 shows examples for each type of visual prompt.

G.3 CHATGPT GENERATION PROMPT

We show the question templates in the Visual Prompt Dataset in Table 15.
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Table 13: A portion of the instruction templates for the Chart-to-Text task.

Instruction Template for Brief Description

Describe the image concisely.
Provide a brief description of the given image.
Offer a succinct explanation of the picture presented.
Summarize the visual content of the image.
Give a short and clear explanation of the subsequent image.
Share a concise interpretation of the image provided.
Present a compact description of the photo’s key features.
Relay a brief
clear account of the picture shown.
Render a clear and concise summary of the photo.

Instruction Template for Detailed Description

Describe the following image in detail.
Provide a detailed description of the given image.
Give an elaborate explanation of the image you see.
Share a comprehensive rundown of the presented image.
Offer a thorough analysis of the image.
Explain the various aspects of the image before you.
Clarify the contents of the displayed image with great detail.
Characterize the image using a well-detailed description.
Break down the elements of the image in a detailed manner.
Walk through the important details of the image.

(a) Arrow (b) Ellipsis

(c) Bounding Box (d) Triangle

Figure 11: Four Types of Visual Prompt: Arrow, Ellipsis, Bounding Box, Triangle
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Table 14: A portion of question templates in Visual Prompt Dataset

Question Template for Reasoning

What is the sum of {first x axis} and {second x axis} in this chart?
What is the difference of {first x axis} and {second x axis} in this chart? What is the mean
value of {first x axis} and {second x axis} in this chart?
What is the total sum of all the elements in this chart?
What is the mean value of all the elements in this chart?
What is the sum of {first x axis} in {first y axis} and {second x axis} in {second y axis}
in this chart?
What is the mean value of {first x axis} in {first y axis} and {second x axis} in
{second y axis} in this chart?
What is the difference of {first x axis} in {first y axis} and {second x axis} in
{second y axis} in this chart?

Question Template for Extremum

What is the maximum value in this bar chart?
What is the minimum value in this bar chart?
What is the maximum value in this line chart?
What is the minimum value in this line chart?
What is the maximum value in this pie chart?
What is the minimum value in this pie chart?

Question Template for Determine Range

What is the range of values in this bar chart?
What is the range of values in this line chart?
What is the range of values in this pie chart?

Question Template for Data Retrieval

How many bars are there in this bar chart?
How many pieces are there in this pie chart?
What is the value of {x axis} in this chart?
What is the value of {x axis} in {y axis}?

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 15: Prompt ChatGPT to generate multi-turn question-answer pairs based on underlying tables
of charts to construct OCR-aware Data Prompt Dataset.

Prompt for multi-turn question-answering generation

You are an AI visual assistant that excels at chart figures. You are provided with a text
description (chart summary) of a chart image and raw data values about the same chart.
You don’t have access to the actual image. Your task is to design question-answer pair(s)
between a person (User) inquiring about the chart image and you (Assistant) responding to
their questions.
Below are requirements for generating the question-answer pair(s):
- The answers should be a single word or phrase, and in a tone that a visual AI assistant is
seeing the chart figure and answering the question.
- Ask diverse questions and give corresponding answers. Include questions asking about (1)
various comparative aspects of chart image data, relationships between data points, changes
over time or categories, and presence within specific ranges. (2) various numerical knowl-
edge of chart data, including sums, differences, averages, medians, ratios, and statistical
evaluations within the context of chart elements like legend labels and axis ticks or statistical
measures like standard deviation, variance, and correlation and so on.
- The conversation should include at least 2-3 turns of questions and answers.
- Only include questions that have definite answers:(1) one can see in the chart figure that the
question asks about and can answer confidently; (2) one can determine confidently from the
chart figure that it is not in the chart figure. Do not ask any question that cannot be answered
confidently.
- In addition, you are provided with some examples of question-answer pair(s) between a user
and you(assistant).
[In context examples]
The chart description: [Description about chart figure]
The raw data: [Underlying data table]
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