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Abstract

Large Language Models (LLMs) suffer from001
huge number of parameters, which restricts002
their deployment on edge devices. Weight shar-003
ing is one promising solution that encourages004
weight reuse, effectively reducing memory us-005
age with less performance drop. However, cur-006
rent weight sharing techniques primarily focus007
on small-scale models like BERT and employ008
coarse-grained sharing rules, e.g., layer-wise.009
This becomes limiting given the prevalence of010
LLMs and sharing an entire layer or block obvi-011
ously diminishes the flexibility of weight shar-012
ing. In this paper, we present a perspective013
on head-wise shareable attention for large014
language models. We further propose two015
memory-efficient methods that share parame-016
ters across attention heads, with a specific focus017
on LLMs. Both of them use the same dynamic018
strategy to select the shared weight matrices.019
The first method directly reuses the pre-trained020
weights without retraining, denoted as Direct-021
Share. The second method first post-trains022
with constraint on weight matrix similarity and023
then shares, denoted as PostShare. Experimen-024
tal results reveal our head-wise shared models025
still maintain satisfactory capabilities, demon-026
strating the feasibility of fine-grained weight027
sharing applied to LLMs.028

1 Introduction029

Large Language Models (LLMs) have achieved030

breakthrough performance in a variety of natu-031

ral language processing tasks (Wei et al., 2022;032

Bubeck et al., 2023; Zhao et al., 2023). However,033

such remarkable capability typically comes at the034

cost of a substantial increase in the model size (Ka-035

plan et al., 2020). Thus, LLMs with billions of036

parameters (Brown et al., 2020; Touvron et al.,037

2023) are more resource-hungry despite a wide038

margin of superiority over small-scale models (De-039

vlin et al., 2018; Liu et al., 2019). This can also040

pose challenges for deployment on low-capability041

devices due to limited storage and GPU memory.042

To address the high memory requirements of 043

models, weight sharing (Takase and Kiyono, 2021; 044

Liu et al., 2023) aims to reuse the same param- 045

eters to achieve memory- and storage-efficiency 046

while preserving model performance. For small- 047

scale models, e.g., BERT, it is known that several 048

techniques (Lan et al., 2019; Liu et al., 2023) are 049

proposed to explore across-layer parameter sharing. 050

While, Zhang et al. (2022) demonstrate identical 051

weights across different layers are the main cause 052

of training instability and performance degradation. 053

Moreover, the effective of similar techniques at the 054

scale of LLMs remains uncertain. 055

Thus, we strive to solve this central question: 056

Can we design fine-grained weight sharing strat- 057

egy that can smoothly apply to large language 058

models? For an effective memory-efficient weight 059

sharing method tailored to LLMs, two key chal- 060

lenges must be tackled: a) the choice of shared 061

modules whose weights are reused; b) the trade-off 062

between reducing memory footprint and preserving 063

diverse capabilities. 064

In the preliminary work, we empirically evaluate 065

the feasibility of weight sharing across the atten- 066

tion heads in LLMs inspired by attention map (i.e., 067

attention scores) reuse. Subsequently, we intro- 068

duce our design of head-wise shareable attention 069

strategy. It is a simple and intuitive technique for 070

parameter sharing that can be implemented in a 071

few minutes. Specifically, given the pre-trained 072

weight matrices, we concatenate the weight ma- 073

trix W q and W k for each head to measure the co- 074

sine similarity that determines which heads can be 075

shared. Meanwhile, head-wise weight sharing pro- 076

motes parameter diversity in the layers, and thus 077

its performance degradation is acceptable when the 078

number of shared parameters is below 30%. Even 079

as weight sharing ratio increases rapidly, our pro- 080

posed constrained post-training method can narrow 081

the performance drop, which may necessitate addi- 082

tional time. 083
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In summary, our key contributions include:084

• We investigate the feasibility of head-wise085

weight sharing for large language models and086

propose two corresponding methods named Di-087

rectShare and PostShare.088

• The proposed DirectShare is time-efficient and089

retain a large portion of the performance when090

sharing ratio is below 30%. Complementarily,091

PostShare yields satisfactory performance via092

post-training, especially under large ratios.093

• Experiments show our proposal achieves compa-094

rable performance to the competitive memory-095

efficient methods. Additional analysis also indi-096

cates its efficiency in small-scale models.097

2 Related Works098

2.1 Memory-efficient Approaches for LLMs099

With the growing size of language models, several100

memory-efficient techniques are proposed to solve.101

One line to reducing the memory footprint involves102

network compression, like quantization (Bai et al.,103

2020; Tao et al., 2022), pruning (Yang et al., 2022;104

Tao et al., 2023) and knowledge distillation (Wu105

et al., 2023; Tan et al., 2023). However, when106

applied to LLMs, many approaches have become107

infeasible (Frantar and Alistarh, 2023). To recover108

accuracy, they require extensive post-training of109

the model (Dettmers et al., 2023; Sun et al., 2023).110

In addition to these conventional methods, re-111

searchers have also investigated more efficient vari-112

ations of the self-attention mechanism for LLMs113

(Kitaev et al., 2020; Lv et al., 2023). Reformer (Ki-114

taev et al., 2020) leverages sparsity in the attention115

layers to improve the efficiency on long sequences116

and with small memory use. Lightformer (Lv et al.,117

2023) deploys SVD weight transfer and parameter118

sharing, which can significantly reduce the parame-119

ters on the premise of ensuring model performance.120

In this paper, our focus is on weight sharing across121

attention heads.122

2.2 Weight Sharing123

Weight sharing is a widely used technique (Lan124

et al., 2019; Liu et al., 2023; Lv et al., 2023; Xu125

and McAuley, 2023) that aims to improve param-126

eter efficiency and reduce inference memory foot-127

print. Weight sharing enables model compression128

by eliminating redundant parameters and decouples129

computation and parameters by reusing the same130

parameters for multiple computations.131

Task-oriented Weight Sharing. One of the 132

prevalent tasks using weight sharing mechanisms 133

is nerual machine translation (NMT). Tied Trans- 134

former (Xia et al., 2019) considers model-level 135

sharing and shares the weights of the encoder 136

and decoder of an NMT model. Dabre and Fu- 137

jita (2019) proposes a method, which shares the 138

weights across all Transformer layers and keeps 139

performance in NMT. Besides, Chi et al. (2021) 140

bring the idea of ALBERT (Lan et al., 2019) to the 141

speech recognition task. 142

Layer-wise Weight Sharing. Universal Trans- 143

former (Dehghani et al., 2018) shares the weights 144

across all layers with a dynamic halting mechanism 145

and improves accuracy on several tasks. Subformer 146

(Reid et al., 2021) utilizes sandwich-style param- 147

eter sharing, which only shares the central layers 148

while leaving the first and last layers independent. 149

Takase and Kiyono (2021) study strategies to ex- 150

plore the best way to prepare parameters of M lay- 151

ers and assign them into N layers (1≤M≤N). 152

3 Motivation and Empirical Analysis 153

In this section, we analyze the feasibility of head- 154

wise weight sharing from the perspective of atten- 155

tion map reuse. 156

3.1 Attention Map Similarity: From 157

Layer-wise to Head-wise 158

Prior researches (Xiao et al., 2019; Ying et al., 159

2021; Bhojanapalli et al., 2021) demonstrate the 160

effectiveness of attention map reuse due to the high 161

similarity of attention scores between different lay- 162

ers (especially for adjacency layers). Motivated by 163

this, we delves into attention map similarity, specif- 164

ically transitioning from layer-wise to head-wise 165

analysis. To measure the evolution of the attention 166

maps over layers and heads, we use the cosine sim- 167

ilarity Scos. When Scos equals one, it means that 168

the attention maps are perfectly similar. Consid- 169

ering two specific self-attention layers, the cosine 170

similarity is calculated as follows: 171

Scos(Ap,Aq) =
AT
p Aq

∥Ap∥∥Aq∥
(1) 172

where Ap,Aq denote the attention map of layers p 173

and q. 174

We visualize the layer-wise and head-wise at- 175

tention map similarity across three task-specific 176

datasets: WMT14 (En-Fr) (Bojar et al., 2014), 177

CommonsenceQA (Talmor et al., 2019) and WSC 178
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Figure 1: (a) Layer-wise Attention Map Similarity. Taking the last layer as an example, the most similar attention
layer with it is marked with

√
. (b) Head-wise Attention Map Similarity.

√
mark the top n heads whose attention

maps that are most similar to the 6-th head in the last layer(n=the number of heads per layer). (c) Weight Matrix
Similarity. ⃝ mark the connection between attention map similarity and weight similarity.

(Levesque et al., 2012). As shown in Fig. 1(a) and179

(b), the degrees of similarity in attention scores180

computed in different layers and heads present a181

certain level of consistency across different tasks.182

In addition, we find that the cosine similarity values183

for pairs with high similarity are higher among dif-184

ferent heads compared to different layers. Specif-185

ically, the most similar self-attention layers reach186

a cosine similarity value of approximately 0.90,187

while in the case of head-wise comparisons, sev-188

eral pairs have a remarkable similarity of nearly189

0.99.190

One observation is that as the number of pa-191

rameters increases, modules with high similarity192

exhibit variations, particularly in the fine-grained193

(e.g., head-wise) comparisons within large-scale194

pre-trained language models. Existing approaches195

employ "learning to share" techniques to dynami-196

cally adjust the sharing strategy (Xiao et al., 2019)197

or use a uniform sharing strategy but train the mod-198

ified model from scratch (Ying et al., 2021; Shim199

et al., 2023). However, such strategies pay little200

attention on reusing attention map among heads201

and incur high computational costs for LLMs.202

3.2 From Attention Map Similarity to Weight203

Matrix Similarity204

Attention weight matrix similarity provides a com-205

plementary perspective to attention map similarity,206

since the attention scores are calculated based on207

the weight matrices W q,W k. Weight sharing is208

traditionally based on the assumption that overpa-209

rameterization is evident in large-scale Transformer210

models, i.e., the difference in weights decreases as 211

model size increases (Li et al., 2020). In this pa- 212

per, we explore a potential relationship between 213

attention map similarity and weight similarity. 214

As mentioned in Section 3.1, head-wise atten- 215

tion map similarity is higher than the cross-layer 216

similarity, while to the best of our knowledge, head- 217

wise attention map reuse is yet to be explored. This 218

might be attributed to the difficulty in finding an 219

optimal dynamic head-wise sharing strategy across 220

different tasks. One intuitive solution is to first 221

measure the attention map similarity between ev- 222

ery pair of heads in each dataset separately, and 223

then choose the overlapping modules to share. 224

Combined with the analysis of weight matrix 225

similarity, we have made a key discovery: given a 226

pre-trained LLM, by concatenating the weight ma- 227

trix W q and W k for each head to measure the co- 228

sine similarity, the most similar weight matrix cor- 229

responds to the overlapping modules with highly 230

similar attention maps observed across different 231

datasets. As illustrated in Fig. 1(b) and (c), deep 232

green circles mark the connection between atten- 233

tion map similarity and weight similarity. 234

This finding implies that attention heads with 235

high weight matrix similarity also demonstrate 236

analogous attention map similarity regardless of 237

the datasets and model size. Furthermore, since 238

different heads within the layer present sufficient 239

diversity (Zhou et al., 2021; Vig, 2019), we suppose 240

that weight sharing among these heads can result 241

in higher model behavior consistency compared to 242

layer-wise weight sharing. Thus, we further pro- 243
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Figure 2: ① DirectShare: Inspired by attention map reuse, directly share weight matrices across different heads
based on cosine similarity; ② PostShare: To balance the memory usage and the performance, implement post-
training with the constraint of weight matrix similarity and then share.

pose a simple yet effective method for head-wise244

weight sharing, especially validating its feasibility245

in large-scale models.246

4 Head-wise Shareable Attention247

Inspired by Section 3, we present a perspective on248

head-wise shareable attention for LLMs. Based249

on one straightforward yet effective weight sharing250

strategy, we propose two complementary methods,251

named DirectShare and PostShare. The overview252

of our proposal is presented in Figure 2.253

4.1 Head-wise Weight Sharing Strategy254

Multi-Head Attention (MHA) block is essentially255

a procedure that computes the relevance of each256

token in a sentence with respect to all other tokens.257

Let L be the number of input tokens and M be258

the number of attention heads in total. Given the259

input X ∈ RL×D, we can obtain queries, keys, and260

values in the i-th (1≤i≤M ) head via three weight261

matrices, denoted by W q
i ∈ RL×dq , W k

i ∈ RL×dk262

and W v
i ∈ RL×dv , respectively. D is the embed-263

ding dimension, and dq, dk(= dq), dv represent the264

dimensions of three weight matrices, respectively.265

To investigate the strategy of weight sharing ap-266

plied to all the above three weight matrices across267

heads for LLMs, we perform preliminary experi-268

ments in the choice of head-wise match functions269

Match(·,·). For the match functions, inputs are the270

weight matrices of head i, j and outputs are called271

matching scores m. The higher the score, the more272

likely it is to share parameters across the heads.273

m∗
i,j = Match(W ∗

i ,W
∗
j ), ∗ ∈ {q, k, v} (2)274

Based on our intuitive analysis in Section 3.2, we275

choose the cosine similarity between the concate-276
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Figure 3: Experiments performed on PIQA and Open-
BookQA using different head-wise match functions for
Baichuan 2-7B model.

nation matrix of W q
i and W k

i : 277

mq
i,j = mk

i,j = mv
i,j = Scos(W q

i ||W
k
i ,W

q
j ||W

k
j )

(3) 278

Besides, we try another five match functions to 279

compare: (1) Only W q
i used to measure the co- 280

sine similarity, i.e., m∗
i,j = Scos(W q

i ,W
q
j ); (2) 281

Only W k
i used to measure the cosine similarity, 282

i.e., m∗
i,j = Scos(W k

i ,W
k
j ); (3) Only W v

i used 283

to measure the cosine similarity, i.e., m∗
i,j = 284

Scos(W v
i ,W

v
j ); (4) Concatenate all the three 285

matrices and then calculate the cosine similarity, 286

i.e., m∗
i,j = Scos(W q

i ||W k
i ||W v

i ,W
q
j ||W k

j ||W v
j ); 287

(5) Separately use W q
i ,W

k
i ,W

v
i to measure the 288

cosine similarity and do weight sharing respec- 289

tively, i.e., m∗
i,j = Scos(W ∗

i ,W
∗
j ) and again 290

∗ ∈ {q, k, v}. 291

Figure 3 shows the results of our exploratory 292

study via DirectShare. As evidenced by the per- 293

formance curve, using separately weight sharing 294

causes a significant decline in performance com- 295

pared with sharing the three weight matrices to- 296

gether. And it is enough to do head-wise weight 297

sharing focusing only on the concatenation ma- 298
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trix of W q
i and W k

i , since it achieves a favorable299

trade-off between reducing memory footprint and300

maintaining performance.301

4.2 DirectShare302

In practice, we traverse all head pairs to compute303

matching scores on Equation 3 and for each head,304

select the one with the highest score to match.305

When M candidate head pairs prepared, we se-306

lect the top-N pairs in descending order according307

to the desired sharing ratio. Finally, we can share308

the weight matrices together between each selected309

attention head pairs. A detailed algorithm for our310

DirectShare is presented in Algorithm 1.311

Algorithm 1: DirectShare using Head-
wise Weight Sharing Strategy

Input: Sharing Ratio α, Weight Matrices of
the MHA {W ∗} , ∗ ∈ {q, k, v}

Output: The LLM after weight sharing
1 for layeri ← 2 to l do
2 for i← 1 to head_num do
3 match_index← -1
4 match_score← -1
5 for layerj ← 1 to layeri − 1 do
6 for j ← 1 to head_num do
7 Compute m∗

i,j using Eq. 3;
8 if m∗

i,j > match_score then
9 match_score←m∗

i,j

10 match_index← (layerj , j)

11 Get one candidate head pair
< i,match_index > for sharing;

12 Sort the matching scores in descending
order;

13 Select the top-N pairs according to α;
14 Share the weight matrices together between

each selected attention head pairs.

4.3 PostShare312

Although DirectShare demonstrates effectiveness313

in our experiments, we have also encountered no-314

ticeable performance drop in minor reading com-315

prehension datasets. To alleviate this problem, we316

propose PostShare, softly aligning model weights317

during the post-training process.318

With the same sharing strategy (Section 4.1),319

PostShare first selects the set of weight matrices320

to share. Next, we incorporate a regularization321

term into the loss function to constrain our post- 322

training process, encouraging selected weight ma- 323

trices more similar: 324

Lw =
1

N

N∑
n=1

 ∑
∗∈{q,k,v}

∥∥W ∗
n,i −W ∗

n,j

∥∥
2

 (4) 325

where N is the number of selected attention head 326

pairs <i,j> for sharing. With this regularization 327

weight loss, the proposed PostShare learn model 328

weights W by minimizing the following combined 329

loss function: 330

min
W
Lpost−training + γ × Lw (5) 331

where Lpost−training is the original post-training 332

loss, γ controls the strength of Lw. After the post- 333

training process, the corresponding weight matrices 334

can be shared as DirectShare does. Although post- 335

training indeed increases the time cost of weight 336

sharing, PostShare achieves stable and satisfactory 337

performance across different tasks when reducing 338

memory usage. 339

5 Experiments 340

5.1 Experimental Settings 341

Backbone Models. We evaluate DirectShare 342

and PostShare on two open-source LLMs: Llama 343

2 (Touvron et al., 2023) and Baichuan 2 (Baichuan, 344

2023) with 7B and 13B parameters. In PostShare, 345

we use English Wikipedia (Foundation) to post- 346

train the backbone models for weight sharing. 347

Evaluation. To comprehensively evaluate the 348

model capabilities, we experiment on five distinct 349

tasks: reasoning, understanding, language, knowl- 350

edge and examination. For consistent comparisons, 351

we deploy open-source LLM evaluation platform 352

OpenCompass (Contributors, 2023). 353

Baselines. Since existing weight sharing tech- 354

niques do not support LLMs, we compare Di- 355

rectShare against Magnitude Pruning (Zhu and 356

Gupta, 2017) and LLM-Pruner (Ma et al., 2023), 357

two influential works for model pruning. Certainly, 358

they are not directly comparable. To ensure fair- 359

ness in the experiments, both of them only prune 360

the multi-head attention module and thus compare 361

when the same number of parameters is reduced. 362

See Appendix A for additional information. 363
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5.2 Main Results364

5.2.1 Evaluation on DirectShare365

Logical and Common Sense Reasoning. In the366

domain of reasoning, we consider two Chinese367

natural language inference benchmarks and three368

English benchmarks: CMNLI (Xu et al., 2020),369

OCNLI (Hu et al., 2020), along with AX-b, AX-g370

and RTE from SuperGLUE (Wang et al., 2020).371

In Table 1, we show the results on the above372

five tasks of memory-efficient Llama 2 models.373

The corresponding results for Baichuan 2 models374

can be found in Appendix B.1. When applying a375

30% parameter sharing to Llama 2-7B, our Direct-376

Share can still maintain an average performance of377

99.51% across the five benchmarks, compared to378

the base model. With the same setting, the shared379

Llama 2-13B retains 99.21% performance. This380

suggests our finding of head-wise shareable atten-381

tion for LLMs indeed can work without significant382

performance degradation in reasoning tasks.383

The overall efficacy of our DirectShare rivals384

with the structured pruning results of LLM-Pruner,385

without any training. Moreover, our method is386

quite simple and fast, independent on the origi-387

nal training corpus, while structured pruning will388

nearly fail in the zero-shot generation tasks without389

dependencies (Ma et al., 2023).390

Ratio Method CMNLI OCNLI AX-b AX-g RTE

0% Llama 2-7B 32.98 33.12 53.53 55.34 49.82

10%
Magnitude 32.99 30.63 56.70 49.44 47.29

LLM-Pruner 32.99 33.75 57.61 50.00 48.38
DirectShare 33.00 32.50 54.17 51.97 50.90

30%
Magnitude 33.16 35.00 54.71 50.56 46.93

LLM-Pruner 32.99 31.25 56.34 52.53 48.74
DirectShare 33.33 32.50 57.07 51.69 49.10

0% Llama 2-13B 32.99 35.00 58.81 50.56 47.29

10%
Magnitude 32.82 33.12 51.99 50.56 48.38

LLM-Pruner 32.99 36.25 58.70 50.00 46.93
DirectShare 32.99 36.25 57.61 50.00 47.29

30%
Magnitude 33.78 33.75 46.65 50.00 51.99

LLM-Pruner 32.99 34.38 57.16 54.21 45.85
DirectShare 32.99 35.00 58.33 50.00 46.57

Table 1: Evaluation Results on Reasoning of the
Memory-efficient Llama 2-7B & Llama 2-13B.

Natural Language Understanding (NLU). In391

this field, we cover multiple tasks, including392

RACE (Lai et al., 2017) and OpenBookQA (Mi-393

haylov et al., 2018) for reading comprehension,394

CSL (Li et al., 2022) for content summary and395

TNEWS (Xu et al., 2020) for content analysis.396

Table 2 shows the detailed results of Direct- 397

Share applied in Llama 2 model family on these 398

benchmarks. We provide a more comprehensive 399

evaluation on Baichuan 2 models in Appendix B.2. 400

Compared to reasoning tasks, our experimental re- 401

sults unveil a notable performance decrease of ap- 402

proximately 30% in large-scale reading comprehen- 403

sion datasets when applying DirectShare to Llama 404

2-7B model. Beyond this, we discover that on 405

content summary and analysis tasks, DirectShare 406

manages to retain 94.23% of the performance ex- 407

hibited by the base model. The evaluation results 408

of Llama 2-13B align with those of Llama 2-7B 409

and we find the accuracy gap is larger as model 410

size increases. This trend also exists in Magnitude 411

Pruning and LLM-Pruner, even the performance 412

drop is larger: LLM-Pruner drops ≈ 3 points more 413

than ours on average while Magnitude Pruning is 414

outperformed by ours by a large margin. 415

To mitigate this degradation, some post-training 416

pruning methods like SparseGPT (Frantar and Al- 417

istarh, 2023) preserves accuracy via the weight 418

update procedure. Similarly, LLM-Pruner uses the 419

low-rank approximation (LoRA, Hu et al., 2021) to 420

post-train the pruned model. Motivated by this, our 421

PostShare proves to be beneficial, substantially im- 422

proving 17.80% accuracy, albeit at a certain amount 423

of time cost. For more details refer to Section 5.2.2. 424

However, this does not diminish the significance 425

of our DirectShare. The absence of post-training 426

allows us to better understand the feasibility of 427

head-wise weight sharing for LLMs. 428

Ratio Method RACE-
middle

RACE-
high OBQA CSL TNEWS

0% Llama 2-7B 33.15 35.51 31.80 55.62 20.22

10%
Magnitude 25.42 26.47 28.20 49.38 14.85

LLM-Pruner 28.20 30.73 27.20 53.12 19.76
DirectShare 28.34 28.96 28.20 54.37 20.86

30%
Magnitude 21.80 21.53 25.00 45.62 7.01

LLM-Pruner 21.52 22.21 26.80 50.00 10.20
DirectShare 21.45 21.53 26.00 51.25 20.22

0% Llama 2-13B 60.24 58.03 42.40 58.75 22.13

10%
Magnitude 22.42 21.78 27.40 51.25 15.39

LLM-Pruner 51.46 50.80 47.00 56.25 20.95
DirectShare 54.04 55.63 39.40 56.88 17.94

30%
Magnitude 21.80 22.01 28.80 46.25 4.19

LLM-Pruner 23.96 25.33 26.40 53.75 16.76
DirectShare 26.53 27.53 27.40 59.38 16.12

Table 2: NLU Abilities of the Memory-efficient Models.

Knowledge-related Tasks. We perform evalu- 429

ations regarding knowledge on various datasets: 430

WinoGrande (Levesque et al., 2012) about lan- 431

guage, BoolQ (Clark et al., 2019) testing knowl- 432
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Ratio Method WinoGrande BoolQ C-Eval MMLU RACE-middle RACE-high OBQA OBQA-fact

0% Llama 2-7B 54.04 70.67 32.20 46.69 33.15 35.51 31.8 42.2

30% DirectShare 50.18 54.43 26.24 26.53 21.45 21.53 26.00 27.60
PostShare 52.98 ↑ 2.80 66.57 ↑ 12.14 26.38 ↑ 0.14 33.36 ↑ 6.83 29.81 ↑ 8.36 29.45 ↑ 7.92 27.60 ↑ 1.60 33.60 ↑ 6.00

Table 3: Performance of Memory-efficient Llama 2-7B via PostShare. See Appendix C for results on Llama 2-13B.

edge question answering, C-Eval (Huang et al.,433

2023) and MMLU (Hendrycks et al., 2021) stand-434

ing for two comprehensive examination bench-435

marks. Table 4 summarizes the mean accuracies436

on those tasks after DirectShare applied to Llama437

2 models. See Appendix B.3 for the results based438

on Baichuan 2 models.439

As depicted in Table 4, DirectShare takes a clear440

advantage over other approaches in the field of ex-441

amination. Our chosen C-Eval and MMLU span di-442

verse disciplines to test both world knowledge and443

problem solving ability exclusively in a Chinese444

and English context, respectively. To make this445

more concrete, Figure 4 vividly contrasts the per-446

formance across different subjects based on Llama447

2-7B on C-Eval and MMLU. But we have to admit448

directly do weight sharing across attention heads449

results in a obvious decline in knowledge-related450

abilities, which can be solved in PostShare.451

Ratio Method WinoGrande BoolQ C-Eval MMLU

0% Llama 2-7B 54.04 70.67 32.20 46.69

10%
Magnitude 51.58 60.80 22.16 28.20

LLM-Pruner 52.98 66.09 22.31 38.11
DirectShare 52.63 67.74 28.75 43.43

30%
Magnitude 50.88 44.59 24.38 23.15

LLM-Pruner 50.88 54.77 22.82 25.16
DirectShare 50.18 54.43 26.24 26.53

0% Llama 2-13B 55.44 71.50 40.17 55.81

10%
Magnitude 49.82 62.32 22.52 27.54

LLM-Pruner 55.44 68.07 30.25 51.45
DirectShare 54.39 69.45 37.17 52.81

30%
Magnitude 49.12 56.45 23.99 22.86

LLM-Pruner 51.58 63.21 22.17 27.22
DirectShare 50.18 59.36 22.30 30.79

Table 4: Results on Knowledge-related Tasks of the
Memory-efficient Models.

5.2.2 Evaluation on PostShare452

Based on the evaluation conducted on DirectShare,453

we experiment on PostShare, with a special focus454

on those benchmarks where DirectShare experi-455

ences a large accuracy degradation.456

Table 3 reports how the performance improves457

with only 0.5 training epoch for Llama 2-7B model.458

Specifically, in the reading comprehension and459

Human
STEM

Social
Other

(a) MMLU

20
22
24
26
28
30

A
cc

ur
ac

y

Magnitude LLM-Pruner DirectShare

Human
STEM

Social
Other

Hard

(b) C-Eval

20
22
24
26
28
30

A
cc

ur
ac

y

Figure 4: Performance across Different Subjects based
on Llama 2-7B on C-Eval and MMLU.

knowledge-related tasks mentioned above, Post- 460

Share achieves 87.53% of the overall accuracy 461

attained by the original model. Most of the gap 462

between models after DirectShare and the origi- 463

nal counterparts can be narrowed via PostShare, 464

especially in BoolQ and RACE datasets. 465

Last, it is important to emphasize that here we 466

perform post-training with limited training corpus 467

and thus it runs the risk of overfitting when train- 468

ing only for one epoch. For example, PostShare 469

achieves the higher accuracy in BoolQ at 0.3 epoch 470

than at 0.5 epoch (68.29 vs. 66.57). In contrast, 471

as the training epoch increases from 0.5 to 0.9, the 472

accuracy in WinoGrande rises (52.98 vs. 54.39). It 473

means that due to the domain-constrained corpus, 474

overfitting to one specific dataset will potentially 475

compromise the capabilities in other tasks. The 476

in-depth analysis is provided in Appendix D.1. 477

5.3 Additional Analysis 478

Ablation on Impact of Different Head-wise 479

Matching Functions. For weight sharing, the 480

choice of shared heads is critical. In Figure 3, we 481

plot the performance curve on PIQA (Bisk et al., 482

2019) and OpenBookQA using different head-wise 483

match functions for Baichuan 2-7B model. And 484

the corresponding detailed results are presented in 485

Appendix D.2. Notably, using the cosine similarity 486

between the concatenation matrix of W q and W k 487

attains the most favorable outcomes. This may be 488

because it guarantees the maximum similarities be- 489

tween attention maps from the model before and 490

after weight sharing. Also, this choice is much 491

more stable and robust in some tasks like reading 492
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Method
Ratio=30% CMNLI OCNLI AX-b AX-g RTE Wino-

Grande BoolQ C-Eval MMLU RACE-
middle

RACE-
high OBQA OBQA-

fact CSL

DirectShare 33.33 32.50 57.07 51.69 49.10 50.18 54.43 26.24 26.53 21.45 21.53 26.00 27.60 51.25

DirectShare
+ 4bit GPTQ

34.61
↑ 1.28

30.63
↓ 1.87

57.79
↑ 0.72

47.47
↓ 4.22

49.82
↑ 0.72

49.12
↓ 1.06

51.95
↓ 2.48

21.88
↓ 4.34

25.38
↓ 1.15

21.24
↓ 0.21

21.33
↓ 0.20

23.40
↓ 2.60

26.60
↓ 1.00

50.00
↓ 1.25

Table 5: Weight Sharing and Quantization on Llama 2-7B.

comprehension(e.g., OpenBookQA).493

Robustness on the Model Size. In previous494

experiments, we adopt our approach in LLMs set-495

tings. Since small-scale models are not highly over-496

parameterized as large-scale models (Gao et al.,497

2023), we further verify the effectiveness of our498

method on smaller models like BERT-base, GPT2-499

small. For this analysis, we set the sharing ratio500

from 0% to 50% with a step of 10% for the fine-501

tuned GPT-small model on WMT-14 En-Fr dataset.502

As shown in Table 6, at a 50% sharing ratio, the503

GPT-small can still yield a BLEU score of 39.44504

without any post-training. Such kind of variance505

in performance is acceptable that to some degree506

proves our method is also suitable for small-scale507

models.508

Sharing Ratio 0% 10% 20% 30% 40% 50%

BLEU 43.62 42.49 41.95 41.34 39.96 39.44
Meteor 42.33 40.75 40.18 38.43 37.21 36.62

Table 6: Robustness on the Model Size via PostShare
(Performed on GPT2-small using WMT-14 En-Fr).

Combine Weight Sharing with Quantization.509

In terms of saving memory consumption, post-510

quantization employs the strategy of reducing preci-511

sion in the LLM parameters, while weight sharing512

aims to reduce the number of parameters. From513

these two different directions, we suppose inte-514

grating weight sharing and quantization may help515

towards even more memory reduction of LLMs.516

Hence, we choose GPTQ (Frantar et al., 2022) as a517

representative and test the effectiveness of applying518

two techniques in tandem. Specifically, we quan-519

tize Llama 2-7B model after 30% DirectShare to 4520

bit precision. As is reported in Table 5, they can be521

effectively combined with no more than 5 points522

performance drop.523

Combine PostShare with DirectShare. An-524

other interesting research finding is the combina-525

tion of our DirectShare and PostShare, where Post-526

Share can play a role in fast performance recovery527

for DirectShare. Specifically, if we set the shar-528

ing ratio to 30% and post-train only 0.5 epoch, the529

combination based on Llama 2-7B performs on par530

with the PostShare, as Figure 5 shows. It can also531

21.45

29.81
29.18

21.53

29.45 27.19

50.18
52.98 54.04

51.69

53.93
51.12

65.94
76.00

76.50
26.00

27.60

26.40

54.43

66.5768.96 26.24 26.38

27.65

Figure 5: Results in Various Benchmarks via Direct-
Share+PostShare based on Llama 2-7B model.

be seen that DirectShare+PostShare outperforms in 532

some specific datasets like BoolQ and WinoGrande, 533

which we speculate is due to the mitigation of over- 534

fitting problem in PostShare to some extent. 535

Visualization Study on the Shared Weights. 536

To provide a more detailed explanation of our ratio- 537

nale behind head-wise weight sharing, we conduct 538

a visualization study on the ratios of weight shar- 539

ing across the MHA layers in two models of dif- 540

ferent scales (see Appendix D.3). Results indicate 541

the shareable weights distribution across attention 542

heads is similar regardless of the sharing ratio. We 543

also observe a relative balanced sharing ratio across 544

MHA layers than layer-wise weight sharing, which 545

may seem counter-intuitive. However, we find such 546

fine-grained operation on weights has already been 547

used in model pruning (Sun et al., 2023; Ma et al., 548

2023), constantly superior to layer-wise pruning. 549

6 Conclusion 550

In this paper, we illustrate the feasibility of fine- 551

grained weight sharing strategy applied in LLMs, 552

namely, head-wise shareable attention. Conse- 553

quently, we propose two methods for head-wise 554

weight sharing called DirectShare and PostShare, 555

which are complementary in terms of time and per- 556

formance. Our DirectShare concentrates on a sim- 557

ple, no-training yet effective sharing strategy, per- 558

forming competitively with one of the state-of-the- 559

art model pruning methods. PostShare, on the other 560

hand, shows an impressive performance on keep- 561

ing LLM’s capabilities, needing to compromise on 562

time efficiency. Last, we hope our work inspires 563

researchers to explore better fine-grained weight 564

sharing techniques for memory-efficient LLMs. 565
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Limitations566

This paper primarily focuses on the head-wise567

weight sharing in Multi-Head Attention (MHA)568

block, inspired by the attention map similarity569

across heads. However, the Feed-Forward Network570

(FFN) block has more parameters compared to the571

MHA block. To further reduce the memory usage572

for LLMs, there is necessary to investigate the fea-573

sibility of applying weight sharing to FFN block.574

Subsequently, similar to exploration in MHA block,575

we should determine whether layer-wise weight576

sharing in FFN block is enough, otherwise fine-577

grained shared modules are needed to keep more578

performance. We leave it as future work.579

Furthermore, the computing resources limited580

our ability to conduct experiments on LLMs with581

a model size of more than 13B. Although we hy-582

pothesize that our approach can still work in larger583

models, which proves to have redundant parame-584

ters (Frantar and Alistarh, 2023), it is crucial to585

validate this hypothesis with further exploration.586
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A Implementation Details 852

In this section, we will provide additional informa- 853

tion about our experimental implementation. 854

A.1 For the Baseline 855

To our knowledge, there is no existing baseline for 856

our methods, due to the absence of prior research 857

on fine-grained weight sharing for LLMs. To pro- 858

vide a comprehensive demonstration of the effec- 859

tiveness of our DirectShare, we can only choose 860

another important memory-efficient method of a 861

different category for comparison. Here, we se- 862

lect two model pruning methods applied in LLMs: 863

one classical model pruning method Magnitude 864

Pruning and one state-of-the-art structured prun- 865

ing method LLM-Pruner. We do not consider 866

unstructured pruning methods in this paper since 867

they can not achieve real memory reduction with- 868

out specialized hardware or software. 869

Based on the results presented in Table 7, 8, 9, 870

it is evident that our DirectShare performs on par 871

with one of the prior best structured pruning meth- 872

ods regarding the overall performance, superior to 873

the standard magnitude pruning. Consequently, we 874

claim that designing such a fine-grained (i.e., head- 875

wise) weight sharing strategy with a specific focus 876

on LLMs is indeed simple but effective and this 877

would be a good direction for future work. 878

A.2 For the Post-training 879

For carrying out the post-training process, we em- 880

ploy the code framework from LLaMA-Factory 881
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repository1 with DeepSpeed ZeRO-12. The Adam882

optimizer with a learning rate of 5e-5 is used in883

our experiment and the parameter values assigned884

during training are β1 = 0.9 and β2 = 0.95. For885

Llama 2-7B model, we set the batch size to 32.886

While for Llama 2-13B model, the batch size of887

training is only 8 subject to the limited computa-888

tional resources. Besides, the maximum context889

size and γ are set to 4096 and 0.5, respectively.890

B Experimental Results based on891

Baichuan 2 Models892

We re-implement Magnitude Pruning and LLM-893

Pruner with their public code to accommodate894

Baichuan 2 models.895

B.1 Logical and Common Sense Reasoning896

Table 7 presents a comparison on five datasets897

about reasoning abilities for three memory-efficient898

methods performed on the Baichuan 2 models.899

Our results show that compared to NLU and900

knowledge-related abilities (listed in Table 8,9), Di-901

rectShare can indeed maintain its reasoning abili-902

ties to a large extent. Specifically, at 30% ratio, Di-903

rectShare remains competitive with LLM-Pruner.904

Ratio Method CMNLI OCNLI AX-b AX-g RTE

0% Baichuan 2-7B 33.37 41.88 51.90 50.28 57.40

10%
Magnitude 33.11 33.12 55.62 50.84 55.96

LLM-Pruner 37.31 40.62 49.18 50.00 60.65
DirectShare 33.00 41.25 49.55 51.12 60.29

30%
Magnitude 32.97 31.25 48.28 51.97 46.57

LLM-Pruner 34.20 34.38 47.55 50.84 51.26
DirectShare 32.97 30.63 54.71 51.69 49.82

0% Baichuan 2-13B 33.21 40.62 59.69 50.59 44.77

10%
Magnitude 33.21 31.25 55.62 48.60 46.93

LLM-Pruner 33.66 36.88 58.51 49.72 47.65
DirectShare 33.23 40.00 53.71 53.37 53.07

30%
Magnitude 33.21 30.00 50.91 48.03 43.32

LLM-Pruner 33.04 36.88 55.71 50.28 44.04
DirectShare 33.11 30.00 54.98 50.00 45.13

Table 7: Evaluation Results on Reasoning of the
Memory-efficient Baichuan 2-7B & Baichuan 2-13B.

B.2 Natural Language Understanding905

Table 8 presents the performance for each NLU906

task discussed in Section 5.2.1 when applying Di-907

rectShare to Baichuan 2 models. Consistent with908

the experiments on Llama 2-7B and Llama 2-13B909

1https://github.com/hiyouga/LLaMA-Factory
2Because of our designed special loss function in the post-

training stage, only DeepSpeed ZeRO-1 can work.

models, similar performance drop exists. Thus, at 910

the cost of post-training time, our PostShare can 911

narrow the gap observed across the majority of 912

datasets. With regard to individual datasets, it re- 913

mains to be seen if the gap can be largely recovered 914

given the best training epoch3. 915

Ratio Method RACE-
middle

RACE-
high OBQA CSL TNEWS

0% Baichuan 2-7B 51.04 52.63 32.20 66.25 28.60

10%
Magnitude 24.37 28.13 30.20 57.50 27.60

LLM-Pruner 25.42 35.36 32.60 61.25 26.05
DirectShare 50.49 48.46 28.20 63.75 26.23

30%
Magnitude 21.80 21.67 27.60 57.50 13.66

LLM-Pruner 22.56 22.67 27.40 53.12 21.31
DirectShare 25.14 23.44 27.60 52.50 18.40

0% Baichuan 2-13B 68.94 67.27 42.20 63.12 28.96

10%
Magnitude 25.56 26.33 26.20 45.62 11.38

LLM-Pruner 41.71 46.80 32.40 62.50 29.23
DirectShare 47.56 49.34 31.20 64.38 22.22

30%
Magnitude 24.58 24.58 25.40 50.62 6.65

LLM-Pruner 22.63 21.81 26.80 55.00 24.13
DirectShare 22.14 23.99 26.60 53.13 17.58

Table 8: NLU Abilities of the Memory-efficient Models.

B.3 Knowledge-related Tasks 916

The results of Baichuan 2 models on knowledge- 917

related tasks are shown in Table 9. Similar decline 918

appears in Llama 2-7B and Llama 2-13B models 919

as well. 920

Ratio Method WinoGrande BoolQ C-Eval MMLU

0% Baichuan 2-7B 54.04 63.30 56.19 54.65

10%
Magnitude 50.18 57.06 34.70 45.47

LLM-Pruner 50.53 59.30 48.14 51.78
DirectShare 51.58 58.01 50.41 49.96

30%
Magnitude 49.12 55.41 23.91 24.36

LLM-Pruner 51.23 48.93 22.11 25.62
DirectShare 51.58 51.53 21.86 24.05

0% Baichuan 2-13B 56.14 67.00 59.21 59.58

10%
Magnitude 50.53 40.55 25.22 25.55

LLM-Pruner 51.23 65.87 49.60 51.49
DirectShare 53.33 61.04 53.65 52.60

30%
Magnitude 50.18 50.09 25.35 24.66

LLM-Pruner 50.53 59.42 21.09 24.95
DirectShare 48.77 40.83 23.25 24.82

Table 9: Results on Knowledge-related Tasks of the
Memory-efficient Models.

3We speculate that it may be attributed to overfitting is-
sue. Furthermore, as the model size increases, it becomes
increasingly difficult to determine the optimal training epoch
for effectively mitigating overfitting.
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Ratio Method WinoGrande BoolQ C-Eval MMLU RACE-middle RACE-high OBQA OBQA-fact

0% Llama 2-13B 55.44 71.50 40.17 55.81 60.24 58.03 42.40 60.00

30% DirectShare 50.18 59.36 22.30 30.79 26.53 27.53 27.40 27.80
PostShare∗ 53.68 ↑ 3.50 71.25 ↑ 11.89 25.80 ↑ 3.50 33.90 ↑ 3.11 32.03 ↑ 3.30 29.07 ↑ 1.54 33.60 ↑ 6.20 38.80 ↑ 11.00

Table 10: Performance of the Memory-efficient Llama 2-13B via PostShare. * means choosing relatively good
performance across different training steps.

1 8 16 24 32
Layers

0.0
0.2
0.4
0.6
0.8
1.0

W
ei

gh
ts

 R
at

io

Llama 2-7B

unique weights shared weights

1 10 20 30 40
Layers

0.0
0.2
0.4
0.6
0.8
1.0

W
ei

gh
ts

 R
at

io
Llama 2-13B

1 8 16 24 32
Layers

0.0
0.2
0.4
0.6
0.8
1.0

W
ei

gh
ts

 R
at

io

Baichuan 2-7B

1 10 20 30 40
Layers

0.0
0.2
0.4
0.6
0.8
1.0

W
ei

gh
ts

 R
at

io

Baichuan 2-13B

(a) Sharing Ratio=20%

1 8 16 24 32
Layers

0.0
0.2
0.4
0.6
0.8
1.0

W
ei

gh
ts

 R
at

io

Llama 2-7B

1 10 20 30 40
Layers

0.0
0.2
0.4
0.6
0.8
1.0

W
ei

gh
ts

 R
at

io

Llama 2-13B

1 8 16 24 32
Layers

0.0
0.2
0.4
0.6
0.8
1.0

W
ei

gh
ts

 R
at

io
Baichuan 2-7B

1 10 20 30 40
Layers

0.0
0.2
0.4
0.6
0.8
1.0

W
ei

gh
ts

 R
at

io

Baichuan 2-13B

(b) Sharing Ratio=30%

Figure 6: Ratios of Weight Sharing across the MHA Layers in LLaMA2-7B/13B & Baichuan2-7B/13B.

C PostShare on Llama 2-13B Model921

In addition to Llama 2-7B, we also experiment with922

Llama 2-13B to evaluate PostShare (See Table 10).923

Compared to Llama 2-7B, the best training epoch924

on Llama 2-13B is much smaller: approximately925

hundreds of training steps is enough, otherwise it926

may suffer from overfitting issue. However, the927

overfitting problem seems to be obvious as model928

size increases, resulting in the challenge with re-929

gard to choosing the best training epoch.930

D More Analysis931

D.1 Overfitting Phenomenon in PostShare932

Figure 7 shows the performance curves on different933

kinds of datasets across various post-training steps.934

Remarkably, our PostShare requires no more than935

1 epoch that can push the selected weights closer936

for sharing while keeping the performance. How-937

ever, we observe the slight overfitting phenomenon938

in PostShare, i.e., the capabilities initially improve939

and then experience a slight decline. Besides, it940

is clear that the turning point about performance941

varies with datasets. Detailed statistical data are942

provided in Table 11.943
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Figure 7: Accuracy across Different Training Steps
during PostShare.

Epoch RACE-
middle

RACE-
high OBQA BoolQ PIQA Wino-

Grande

0.10 27.72 27.56 29.40 65.38 71.06 51.58
0.20 27.72 27.59 28.80 67.80 73.29 52.28
0.30 28.48 27.90 27.60 68.29 75.24 53.33
0.40 28.13 27.99 27.00 66.09 75.79 52.98
0.50 29.81 29.45 27.60 66.57 76.00 52.98
0.60 30.36 30.36 27.40 65.72 75.90 52.98
0.70 30.43 30.25 27.60 66.15 75.90 52.98
0.80 29.60 30.10 27.80 65.44 75.90 55.09
0.90 29.53 29.87 27.60 65.54 76.33 54.39
1.00 29.67 30.02 27.80 65.38 76.06 54.04

Table 11: Accuracy across Different Training Steps
during PostShare.
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Sharing Ratio 5% 10% 15% 20% 25% 30% 35% 40%

Dataset PIQA OBQA PIQA OBQA PIQA OBQA PIQA OBQA PIQA OBQA PIQA OBQA OBQA OBQA

Wq 74.92 29.2 74.97 27.5 73.29 27.8 70.89 27.7 64.64 27.5 58.43 25.5 24.4 25.7
Wk 74.92 28.7 74.27 27.6 71.71 27.7 70.35 27.6 68.77 27.6 64.36 27.2 27.6 26.9
Wv 74.92 28.1 74.48 27.7 73.29 26.7 70.46 28.5 68.39 25.6 60.17 23.1 23.9 22.5

Wq,W k,W v 71.71 27.6 63.55 27.8 54.03 26.8 50.16 24.5 51.41 25.5 51.09 25.5 29.0 25.3
Wq||W k||W v 74.59 34.7 74.59 30.0 73.45 30.3 70.73 28.2 66.59 27.6 63.33 27.6 27.1 25.0

Wq||W k(Ours) 75.84 33.9 75.30 28.2 74.54 27.5 73.01 27.3 69.37 27.5 65.56 28.0 27.6 28.6

Table 12: Results on PIQA and OBQA with Different Head-wise Matching Functions for Baichuan 2-7B model.

D.2 Impact of Different Head-wise Matching944

Functions945

The selection of shared heads plays a crucial role946

in weight sharing. An ablation experiment for this947

is shown in Table 12.948

D.3 Visualization Study on the Shared949

Weights950

As depicted in Figure 6, the distribution of ratios951

of shared weights across attention heads is similar952

regardless of the sharing ratio.953

E Generations from Models after Weight954

Sharing955

Table 13, 14 and 15 show more examples of the956

models after head-wise weight sharing. We present957

the generation results of both the shared model via958

DirectShare and PostShare.

Model Generated Responses

Llama 2-7B
w/ DirectShare

The future is going to be one that presents many
challenges, but also a great deal of opportunity.
Everybody knows this, and it’s why we have been
working so hard on the newest version of the
future. The problem with the future is that it’s not
always easy to see what you are doing wrong. It
can be difficult to find
Neural Sequential Model, especially transformers,
are a powerful tool for the analysis of time-series
data. surely, they can be used to predict the future.
Their use is not limited to the financial industry.
In this article, we will discuss the benefits and
limitations of the

Llama 2-7B
w/ PostShare

The future is going to be one that presents many
challenges, and the world will need a new
generation of leaders. The United Nations has
identified the following as key issues for the future:
Climate change, Food security, Energy security,
Water scarcity, Global health, Human rights,
International law, Peacekeeping, Sustainable
Neural Sequential Model, especially transformers,
is a type of artificial neural network that uses a
sequence of vectors to represent the input and
output. The model was introduced by Geoffrey
Hinton in 1987. It has been used for speech
recognition, handwriting recognition,

Table 13: Responses from Llama 2-7B (Sharing
Ratio=30%).

959

Model Generated Responses

Baichuan 2-7B
w/ DirectShare
(English)

There are many reasons to support why persever-
ance is of great importance. The first and fore-
most, it’s the only way you can get better at what
ever your doing! It also gives us an opportunity to
learn from our mistakes or
Her eyes shone with happiness. “I’m so happy to
see you,” She said, “and I am very proud of the
work that we have done together in this project
and it is a great honor for me as an artist because
there are many people who has been working on
these projects over the years but not all of them
were able to do what was needed from us at any
given time when things got out of hand or if they
had lost their way”

Baichuan 2-7B
w/ DirectShare
(Chinese)

如何健康的生活 1. 注意休息,保证睡眠。2.合
理饮食:多吃水果、蔬菜等。3.适当运动(如散
步) 4.保持乐观心态5.多饮水6.避免劳累7.不要
熬夜8.劳逸结合9.注意安全10.尊重生命

想要成功需要把握什么?1. 首先,要有一个好的
心态。2.其次,要有一定的经济基础3.接着就是
自己的实力了4. 最后一个条件是:自己一定要
努力!

Table 14: Responses from Baichuan 2-7B (Sharing
Ratio=30%).

Model Generated Responses Reference

GPT2-small
w/ PostShare

In the letter, Mr Snowden said he
believed the support of the intern-
ational community could persuade
the US government to abandon cr-
iminal charges against him.<to-fr>
Dans la lettre, M. le député a dit
que l’appui de la communauté
internationale pourrait convaincre
le gouvernement américain de
abandonner la charge pénale contre
lui.

Dans sa lettre, M. Snow-
den a écrit qu’il pensait
que le soutien de la com-
munauté internationale
pourrait persuader le
gouvernement améri-
cain d’abandonner
les charges pénales
retenues contre lui.

The letter extends an offer to coop-
erate with German authorities "wh-
en the difficulties of this humanita-
rian situation have been resolved."
<to-fr> La lettre élargit une invita-
tion à coopérer avec les autorités
allemands lorsque les difficultés
de cette situation humanitaire sont
réglées.

La lettre avance une of-
fre de coopération avec
les autorités allemandes
« lorsque les difficultés
de cette situation hu-
manitaire auront été ré-
solues ».

The first test plane was unveiled in
March and took flight for the first
time in September after months of
delays.<to-fr> Le premier étudiant
a été démontré en mars et a fait
l’avion pour la première fois après
des mois de retard.

Le premier avion
d’essai a été dévoilé
en mars et s’est envolé
pour la première fois
en septembre après des
mois de retard.

Table 15: Responses from GPT2-small (Sharing
Ratio=30%).
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