
DENOTS: STABLE DEEP NEURAL ODES
FOR TIME SERIES

Ilya Kuleshov∗
Applied AI Institute
Moscow, Russia

Evgenia Romanenkova
Applied AI Institute
Moscow, Russia

Vladislav Zhuzhel
Applied AI Institute
Moscow, Russia

Galina Boeva
Applied AI Institute
Moscow, Russia

Evgeni Vorsin
Innotech
Moscow, Russia

Alexey Zaytsev
Applied AI Institute
Moscow, Russia

ABSTRACT

Neural Controlled Differential Equations (Neural CDEs) provide a principled
framework for modelling irregular time series in continuous time. Their number of
function evaluations (NFEs) acts as a natural analogue of depth in discrete neural
networks and is typically controlled indirectly via solver tolerances. However,
tightening tolerances increases numerical precision without necessarily improving
expressiveness. We propose a simple alternative: scaling the integration time
horizon to increase NFEs and thereby “deepen” the model. Since enlarging the
interval can cause uncontrolled growth in standard vector fields, we introduce
a Negative Feedback (NF) mechanism that ensures provable stability without
limiting flexibility. We further establish general risk bounds for Neural CDEs and
quantify discretization error using Gaussian process theory, improving robustness
to integration and interpolation error. On four public benchmarks, our method,
DeNOTS, outperforms existing approaches—including Neural RDEs and state
space models—by up to 20%. DeNOTS combines expressiveness, stability, and
robustness for reliable continuous-time modelling.

1 INTRODUCTION

Neural Controlled Differential Equations (CDEs) Kidger et al. (2020) provide a natural way to
process irregular time series. CDEs are Ordinary Differential Equations (ODEs), where the derivative
depends on an external input signal. Neural CDEs utilize a Neural Network (NN) as the ODE’s
dynamics function. It is well-known that increasing NN depth (number of layers) leads to higher
expressiveness Gripenberg (2003); Lu et al. (2017); Yarotsky (2017), i.e., widens the class of functions
the NN may represent Gühring et al. (2020). According to the original Neural ODE paper Chen et al.
(2018), the natural analogue of NN depth is the number of function evaluations (NFE). Naturally, we
hypothesise that a larger NFE results in a better Neural CDE model.

NFE is primarily controlled by the solver tolerance, which defines the acceptable error level during
numerical integration Dormand & Prince (1980). Lowering this tolerance increases the required
number of integration steps and NFE. However, prior work mostly sidesteps this topic: the expres-
siveness gains from higher precision are often minimal in practice. The problem here is that, as
we will show, boosting expressiveness on a fixed integration interval necessitates larger l2 weight
norms, which harms training stability. Instead, we propose scaling the integration time. This method
improves expressiveness while reducing the required weight norms. We refer to it as Scaled Neural
CDE (SNCDE).

Upon investigating the proposed time-scaling procedure, we found that longer integration intervals
can introduce uncontrollable trajectory growth, which must also be addressed. A very intuitive
approach to constraining the trajectory is adding Negative Feedback (NF). Prior work implemented
it by subtracting the current hidden state from the dynamics function De Brouwer et al. (2019).

∗Corresponding author: i.kuleshov@applied-ai.ru.

1

Table 1: Properties comparison for SNCDEs with different vector fields.

Stability Error bounds Long-term memory
SNCDE Vector Field (Th. 4.4/Fig. 4) (Th. 4.5/Tab. 5) (Th. 4.8/Tab. 4)

Unstable (No NF/Tanh/ReLU) No No Yes
Sync-NF (orig. GRU-ODE) Yes Yes No
DeNOTS (Anti-NF, ours) Yes Yes Yes

However, as we demonstrate, such a technique causes ”forgetfulness“: the influence of older states
constantly decays, and the model cannot retain important knowledge throughout the sequence. This
effect is akin to the one experienced by classic Recurrent Neural Networks (RNN), remedied by
Long Short-Term Memory (LSTM) Hochreiter & Schmidhuber (1997) and Gated Recurrent Units
(GRU) Chung et al. (2014). We demonstrate that our novel NF does not suffer from ”forgetfulness“.

Neural differential equation-based models possess another crucial property: we cannot calculate
the solution perfectly, forcing us to approximate the true continuous process via discrete steps. We
have to discretise the time series, so the models cannot analyse the system during the resulting
inter-observation gaps, accumulating epistemic uncertainty in the final representation Blasco et al.
(2024). Estimating such uncertainty has been a topic of interest for decades Golubev & Krymova
(2013). Differential equation solvers also introduce discretisation errors, since they simulate a
difference equation instead of the continuous differential one Hairer et al. (1993). Without additional
modifications, the error accumulates with time, and the theoretical variance of the final prediction
becomes proportional to sequence length.

To overcome the aforementioned challenges, this work introduces DeNOTS — Stable Deep Neural
ODEs for Time Series. Instead of lowering tolerances, we scale the time interval. Larger time frames
destabilise integration, so we include a novel Negative Feedback (NF) mechanism. Our NF enables
stability and better expressiveness while maintaining long-term memory. Moreover, we prove that the
discretisation uncertainty does not accumulate in DeNOTS’s final hidden state: it is ∼ O(1) w.r.t. the
number of observations. Figure 1 compares various approaches to increasing NFEs for expressivity
on a synthetic dataset.

Overall, our main contributions are as follows:

• The idea of deliberately scaling integration time to improve the model’s representation power.
We show that lowering tolerances for expressiveness does not adequately address theoretical
limitations, providing minimal gains. SNCDE naturally circumvents these limitations, thus
enhancing the representation power of the model and significantly boosting metrics.

• The antisynchronous NF mechanism (updates and NF are activated in anti-phase), which
stabilises hidden trajectories on larger time scales but keeps the model flexible in practice.
All alternatives have crucial flaws, as summarized in Table 1: non-stable dynamics are
challenging to train, and synchronous NF is too restricitve, and tends to ”forget“ important
information.

• Theoretical analysis of the effect of discretisation on our model, certifying that the numerical
error does not accumulate in our prediction. We also provide a tight analytical bound for the
interpolation risk of natural cubic splines.

• A quantitative experimental study, comparing DeNOTS to modern baselines on four open
datasets. We demonstrate that our method excels in all settings.

In Section 2 we introduce the general framework of our method. Sections 3, 4 discuss the main
contributions of our approach in detail. Section 5 provides our experimental results. Section 6 sums
up our paper. We moved the Related Works section to Appendix A to save space.

2 METHOD

Representation learning for non-uniform time series. We focus on solving downstream tasks for
time series with global, sequence-wise targets (binary/multiclass/regression). Let S = {(tk,xk)}nk=1

2

Figure 1: R2 vs Log-NFEs on
the Pendulum dataset for various
methods of increasing NFEs: -
T for lowering tolerance, -S for
increasing time scale; for vari-
ous vector fields (VF): Tanh —
MLP with tanh activation; No
NF — vanilla GRU VF, Sync
NF — GRU-ODE VF, Anti NF —
our version. The curves were
drawn via Radial Basis Function
interpolation.

4.2 4.4 4.6 4.8 5.0 5.2 5.4
Log NFE

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
et

ric
 R

2

Tanh-S
No NF-S

Sync-NF-S
Anti-NF-S (ours)

Tanh-T
No NF-T

Sync-NF-T
Anti-NF-T

be the analysed sequence, where t1 < t2 < . . . < tn ∈ R are the time stamps and xk ∈ Ru are the
feature-vectors of the corresponding observations. The task is to predict the correct target from S.

For convenience, we assume t1 = 0, and denote tn ≜ T . The sequence S is passed through the
backbone to obtain an embedding h ∈ Rv , which, supposedly, characterises S as a whole. Finally, a
linear head is used to transform h into the prediction ŷ.

Neural CDEs. Neural CDEs provide an elegant way to deal with non-uniform time series. Formally,
these methods integrate the following Cauchy problem for specific initial conditions h0, vector
field (VF) gθ, and an interpolation of the input sequence x̂(t):

Dynamics:

{
h(0) = h0;
dh(t)
dt = gθ(x̂(t),h(t)).

Solution: h(t) : [0, T]→ Rv. (1)

The output of our backbone is h ≜ h(T). We use a modified GRU cell Chung et al. (2014) for gθ,
and, following Kidger et al. (2020), interpolate the input data using natural cubic splines.

The DeNOTS approach: schematically presented in Figure 2, it consists of the following steps.

1. Preprocess the input sequence with
time scaling: tk ← D

M tk, where
D,M are hyperparameters.

2. Interpolate the multivariate features
{xk}k to get x̂(t), t ∈ [0, T] using
cubic splines Kidger et al. (2020).

3. Integrate the Neural ODE with Neg-
ative Feedback (Anti-NF) starting
from h0 over x̂(t) to get h ≜ h(T).

4. Pass the final hidden state h through
the linear layer to get the prediction ŷ.

t1 t2 t... tn
t

x1 x2

x...

xn
x̂(t)=
SplineS(t)

h(t)

output

dh=GRU(x̂(t),-h(t))dt

dt

input sequence

h(tn)

S={(tk,xk)}k

lin

ŷ

prediction

interpolator

NODE

head
h0

(time-scaled)
1

2

3

4

Figure 2: Scheme of the proposed DeNOTS method.
The large red minus sign (−) represents our NF.

Our contributions revolve around two key ideas: time-scaling and a novel anti-phase negative feedback
(Anti-NF) mechanism, which jointly address the limitations of existing Neural CDE approaches.
In the following sections, we present a detailed description of the DeNOTS framework and the
corresponding theoretical analysis supplemented with proofs in Appendix B. To aid clarity, we
illustrate each theoretical result with numerical experiments.

3 TIME SCALING

As mentioned in the introduction, we argue that scaling time benefits expressiveness. By expres-
siveness, we mean the broadness of the class of functions that our network can represent. Now, we
introduce several definitions.

3

Differentially definable mappings from trajectories F . We say that Fg ∈ F , if there exists an
ODE with the vector field g(x(t),h(t)) : Ru × Rv → Rv, with the starting condition h(0) = h0

and the solution h(t) : R→ Rv: d
dth(t) = g(h(t),x(t)), such that Fg(x(·),h0; t) = h(t). Not all

functions on trajectories can be represented this way.

Start-corrected differentially-definable mappings, i.e. the elements of F , minus their initial state
h0: F̊ = {F̊g(x(·),h0; t) = Fg(x(·),h0; t)− h0|Fg ∈ F}. Since we set h0 = 0 in most practical
cases, the distinction is rather technical; it is here mostly to account for Lipschitzness w.r.t. h, as we
will see below.

Lipschitz constraints. We introduce two ways to constrain this class with Lipschitz constants: with
g being Mx,Mh-Lipschitz

F̊g(Mx,Mh) = {F̊g ∈ F̊|g −Mx,Mh-lipschitz w.r.t. x,h},

and with F̊g(. . . ; t) being Lx(t), Lh(t)-lipschitz, where Lx(t), Lh(t) : R→ R+:

F̊F (Lx(·), Lh(·)) = {F̊g ∈ F̊|F̊g − Lx(t), Lh(t)-lipschitz w.r.t. x(·),h0},

where Lipschitzness w.r.t. x(·) is meant in terms of L2 function norms: ∥x(·)∥L2 =
√∫
∥x(t)∥22dt.

Intuitively, F̊g(Mx,Mh) represents all mappings that our NCDE can learn, given a Lipschitz-
constrained Neural Network g, while F̊F (Lx(·), Lh(·)) represents all the possible Lipschitz-
mappings that we may want to learn.

Equipped with the above definitions, we can formulate the following:

Theorem 3.1 (Expressiveness). The classes F̊g(Mx,Mh) and F̊F (Lx(·), Lh(·)) are equal, given
the following relations between their arguments:

Lx(t) =Mx

√
1

2Mh
(e2Mht − 1);Lh(t) = eMht − 1.

As a corollary, given an Mx,Mh-Lipschitz NN g, we can represent all the Lx, Lh-Lipschitz
(differentially-definable, start-corrected) F , and only them. Consequently, one way to boost ex-
pressivity is to increase Mh, corresponding to the weights’ norms. Larger weight norms induce
saturation for bounded activations such as tanh or sigmoid Ven & Lederer (2021) or ”dying“ for
unbounded activations such as ReLU Lu et al. (2019), destabilising training in both cases. Alterna-
tively, scaling T makes the model exponentially more expressive without increasing the magnitude
of weights. We refer to Neural CDEs with time scaling as ”Scaled Neural CDEs“ (SNCDEs).
Formally, time scaling means we set tk ← D

M tk, where D > 0 is a hyperparameter and M > 0 is a
dataset-specific normalising constant, introduced to make values ofD comparable across benchmarks.

According to Theorem 3.1, if we fix LF to the desired value, a larger D allows for a lower Mh.
Figure 3 illustrates that increasing D indeed lowers the l2 norms of weights. Furthermore, we
empirically validate the stabilising benefits of time scaling for a synthetic task of classifying 1D
functions into bumps or constant-zero ones. As demonstrated by Table 2, models with larger time
scales perform better than ones with lower tolerances1. Further experiments on this topic are in
Section 5 and Appendix C.6.

4 NEGATIVE FEEDBACK

DeNOTS also modifies the form of the dynamics function: it carefully pushes the hidden trajectory
towards zero by including negative feedback in the derivative. NF provides numerous benefits, which
we motivate in theory and with practical experiments on synthetic data, as summarized in Table 1.

1This is clearly observed for models with Tanh activations, but less so for ReLU-activated ones, which fail
to reach perfect quality: likely due to decreased training stability of unlimited vector fields, amplified by time
scaling.

4

Table 2: AUROC for Bump synthetic dataset results for two
vector fields: Tanh-activated and ReLU-activated MLPs.
The columns represent different ways to increase NFE: ”De-
fault“ – with no modifications, ”Tolerance“ – for lowered
tolerances, and ”Scale“ – for increased time scale.

VF Default Tolerance Scale

Tanh 0.77± 0.02 0.90± 0.01 0.99± 0.00
ReLU 0.89± 0.01 0.85± 0.01 0.91± 0.05

0 10 20 30
Time Scale

1

2

3

4

l 2
 n

or
m

Figure 3: l2 norms of weights vs time
scaleD for the tanh vector field on the
Pendulum dataset.

We model NF by the following differential equation, a specific case within the dynamics (1)2:

dh(t)

dt
= gθ(x̂(t),h(t)) = afθ(x̂(t),h(t))− bh(t), a, b ∈ R. (2)

The values of a and b determine the relative magnitude of the NF term and the overall scale of
the derivative. For clarity, our theoretical analysis focuses on scalar-valued a and b, which suffice
to demonstrate the key properties. Extending the analysis to vector-valued parameters introduces
substantial technical complexity without offering additional insight.

To conduct our analysis, we need to constrain the function fθ and the values a, b, Lh:
Assumption 4.1. (1) The function fθ from (2) is Lipschitz w.r.t. both x̂ and h with constants Lx, Lh

correspondingly, and (2) it is equal to zero for zero vectors fθ(0u,0v) = 0v .
Assumption 4.2. The values of a, b, Lh are constrained by the following:

a ∈ (0, 1), b ∈ (0, 1), Lh ∈ (0, 1), aLh < b. (3)

In practice, the right-hand side of 2 is a slightly modified version of the classic GRU architec-
ture Chung et al. (2014). Specifically, we work with the last step in the GRU block, which is:

h̃ = GRU(x̂,h(t)) = (1− z)⊙ n+ z⊙ h, (4)

where z is the output of a sigmoid-RNN layer, n is the output of a tanh-RNN layer from previous
steps of the GRU, and h̃ is the final output of the GRU layer. The full specification of the GRU
architecture is located in Appendix C.2.

We consider three NF options, with their names, derivation from the GRU (4), and the corresponding
vector fields provided in columns 1-3 of Table 3. Rewriting each of these variants in terms of (2), we
get three individual sets of constraints for a, b, presented in the fourth column of Table 3. Next, we
substitute these constraints into (3) in the last column of Table 3. We analyse whether Assumption 4.2
stands in practice for Sync-NF and Anti-NF in Appendix C.7. Each considered variant of SNCDE
with NF is described in detail below.

No NF. The GRU model is used as-is for the vector field of Neural CDE3. The combination of (4)
with (2) implies b < 0, i.e. positive feedback. Assumption 4.2 never stands for No-NF, since b < 0.
We later show that such a vector field severely destabilises the trajectory on larger values of D (see
Section 4.1).

Sync-NF. The GRU-ODE version, proposed in De Brouwer et al. (2019), which subtracts h from (4).
Here, both the update term n and the NF term −h are activated simultaneously, with z affecting
only the overall scale of the derivative, so we refer to this version as Sync-NF. The l2 norms of the
weights are smaller on longer integration intervals (as we concluded in the previous section), so

2Note, that setting a = 1; b = 0 brings us back to the general NN-defined vector field (1), so this constraint
does not limit applicability. The real constraint is introduced by Assumption 4.2, but our Anti-NF does not
necessarily adhere to it, as analysed in Section 4.3 and Appendix C.7

3From here on: GRU refers to the recurrent network; the SNCDE with GRU as the dynamics is ”No NF“.

5

Table 3: Various options of GRU-based NF, with their derivations from (4) (col. 2), the corresponding
vector fields (col.3), a, b constraints in terms of (2) (col. 4), and the resulting form of Assumption 4.2.

Name Derivation from (4) Vector Field, gθ a, b constr. Assumption 4.2

No NF GRU(x̂(t),h(t)) (1− z)⊙ n+ z⊙ h a− b = 1 (✗)
Sync-NF GRU(x̂(t),h(t))− h(t) (1− z)⊙ (n− h) a− b = 0 (✓), Lh < 1
Anti-NF GRU(x̂(t),−h(t)) (1− z)⊙ n− z⊙ h a+ b = 1 (∼), aLh < 1− a

0 10
Time

0.0

2.5

5.0

h
2

1e7
No NF-20, R2=-6e+06

0 10
Time

0

10

20
Tanh-20, R2=0.48

0 10
Time

0

100

200

ReLU-20, R2=-1e+04

0 10
Time

0

2

Sync-NF-20, R2=0.73

0 10
Time

0

5

Anti-NF-20, R2=0.83

Figure 4: Trajectories for various vector fields on the Pendulum dataset, with D = 20. The
corresponding R2 values on test are provided in the title above each graph.

Assumption 4.2 always stands for Sync-NF. The Sync-NF version without time scaling (D = 1) is
equivalent to GRU-ODE4 De Brouwer et al. (2019). As its authors prove, the corresponding trajectory
is constrained to [−1,+1]. Moreover, it does not regulate the scale of NF relative to the update,
implying that, intuitively, the model may ”forget“ prior knowledge (see Section 4.3).

Anti-NF (DeNOTS, ours). We pass −h instead of h to the GRU layer. In our version, the NF
and update terms are activated separately, with z regulating the scale of NF relative to the update,
so we refer to this version as Anti-NF. The validity of (3) for Anti-NF depends on the value of a.
Consequently, our model can disable the ”forgetting“ effect by increasing a, which is learnable and
even adaptive, since it corresponds to z from the GRU (4). Setting a = 1, b = 0 lifts the NF constraint
altogether, turning (2) into a generic Neural CDE: dh

dt = fθ.

4.1 STABILITY

A crucial issue to consider when working with ODEs is stability analysis Boyce et al. (1969); Oh
et al. (2024). On longer time frames, unstable ODEs may have unbounded trajectories even with
reasonable weight norms, which is detrimental to training due to saturation Ioffe & Szegedy (2015)
or ”dying“ Lu et al. (2019) of activations. The equation (1) depends on an input signal x̂(t), so we
approach stability analysis in terms of control systems theory Sontag & Wang (1995):

Definition 4.3. We call the ODE (1) input-to-state stable, if there exist two continuous functions: an
increasing γ(·) with γ(0) = 0, and β(·, ·), increasing in the first argument, β(0, ·) = 0 and strictly
decreasing in the second argument, β(·, t) →

t→∞
0, such that:

∥h(t)∥2 ≤ β(∥h0∥2, t) + γ(∥x̂∥∞). (5)

Intuitively, equation (5) means that for any bounded x̂ the trajectory remains bounded and stable.

Theorem 4.4. The ODE (2) under assumptions 4.1, 4.2 is input-to-state stable.

Thus, the Sync-NF and Anti-NF models are stable. We test the benefits of Theorem 4.4 in practice,
presenting the trajectory norms ∥h(t)∥2 for D = 20 along with the metrics in Figure 4. Non-
stable vector fields, such as No-NF and MLP-based ones with ReLU and Tanh activations, induce
uncontrolled growth and achieve poor R2 due to unstable training. The tanh-activated vector field
is less prone to instability, since the corresponding derivative is bounded. The SNCDE remains
stable for both Sync-NF and Anti-NF, and the corresponding metrics are significantly better. Notably,
Anti-NF slightly outperforms Sync-NF: we argue this is due to a more flexible trajectory.

4From here on: GRU-ODE refers to the corresponding NCDE without time scaling (D = 1).

6

4.2 ERROR BOUNDS

Until now, we have assumed that the Neural Differential Equation (1) which our method models
can be solved perfectly. Unfortunately, due to physical restrictions of our computational devices,
obtaining the perfect solution is impossible. We are forced to discretise the continuous processes that
we work with, which introduces certain errors into our calculations:

• Discretisation of the input process x̂(t) introduces the interpolation error. The interpolation
error is a property of the interpolation routine.

• Discretisation of the numerical integration process introduces the integration error. The
integration error is a property of the differential equation solver.

It is a well-known result Hairer et al. (1993), that the global numerical integration error is exponential
w.r.t. time. In a sense, we observe precisely that in Figure 3, where the hidden norms explode for
non-stable vector fields. The exponential accumulation of error significantly hampers the time-scaling
routine that we propose, so training such models becomes close to impossible. Fortunately, our stable
Anti-NF and Sync-NF models, adhering to Assumption 4.2, do not accumulate the numerical error in
their final hidden state.

To devise the theoretical results of this section, we need to introduce the ”perfect“ Neural CDE,
calculated without any errors:

h∗(0) = h0;
dh∗(t)

dt
= afθ(x(t),h

∗(t))− bh∗(t). (6)

Then, both the integration and the interpolation errors may be modelled via the following ”imperfect“
ODE, often referred to as the ”Modified Vector Field“ Reich (1999):

h(0) = h0;
dh(t)

dt
= afθ(x(t),h(t))− bh(t) + ξ(t), (7)

where ξ(t) is a random vector, which represents the momentary deviation of our numerical ODE
from the true one. For further theoretical considerations, we introduce two types of bounds on ξ(t):

Pointwise: E ∥ξ(t)∥22 ≤ ξ
2
PW,∀0 ≤ t ≤ T ; Interval:

1

T

∫ T

0

E ∥ξ(t)∥22 dt ≤ ξ
2
INT. (8)

For each of the introduced bounds, we can devise an estimate for the error in the final hidden state:
Theorem 4.5. Error Bounds (Robustness). Consider the differential equations (6),(7), under
Assumptions 4.1, 4.2 Then, depending on whether we are working with the pointwise or the interval
errors (8), we can write different bounds on the variance, accumulating in h.

Pointwise bound: E∥h(T)− h∗(T)∥22 ≤
(

a

b− aLh

)2

ξ2PW. (9)

Interval bound:
1

T

∫ T

0

E ∥h(t)− h∗(t)∥22 dt ≤
(

a

b− aLh

)2

ξ2INT. (10)

The errors (9) and (10) are independent of the total integration time T . Consequently, the error
does not accumulate in our final hidden state. Additional analysis of tightness of (9), (10) is in
Appendix B.4.1.

Numerical integration error is directly connected to our momentary deviation ξ(t), and, as we
mentioned above, the benefits of NF for solution stability are already validated by Figure 3. However,
the relation of interpolation error to ξ is less straightforward, we discuss it in the following section.

4.2.1 INTERPOLATION ERROR

Say, x̂(t) is the cubic spline interpolation of the input time series. For analytic purposes, we also
introduce the true (unobserved) value of the input process, x(t). Similar to (8), we consider two types
of interpolation errors:

∥x̂(t)− x(t)∥22 ≤ σ
2
PW,

∫ tk+1

tk

∥x̂(t)− x(t)∥22 dt ≤ σ
2
INT. (11)

7

Given the absence of other errors, the momentary deviation ξ(t) is connected to ∥x− x̂∥ via the Lx

Lipschitz coefficient, with ξPW/INT = LxσPW/INT, so we may focus on estimating the σ-errors.
The bound for the pointwise error of cubic spline interpolation is a well-known result De Boor &
De Boor (1978):

∥x(t)− x̂(t)∥ ≤ 5

384
δ4max∥x(4)(t)∥, (12)

where x(4) is the fourth derivative of the input trajectory, and δmax is the maximum step between
observations. Assuming that ∥x(4)∥ is bounded, we can plug (12) directly into (8) (remebering to
include Lx).

However, the bound (12) is not tight due to the nature of cubic splines. The bound may correctly
approximate the error in the middle of inter-observation gaps, but the error decreases to zero as
we move towards each observation. For a more precise point of view, we can estimate the interval
error from (11). We base our interval error estimation on Gaussian Process (GP) theory: the authors
of Golubev & Krymova (2013) proved that, under certain conditions, cubic splines can be seen as a
limit case of Gaussian Process regression. Using an approach, similar to that of Zaytsev & Burnaev
(2017), we were able to devise a tight bound for such a Gaussian Process limit, which we provide in
the following lemma:
Lemma 4.6. For some ξ > 0, Q > 0, say that x̂(t) is a Gaussian Process with the spectral density 5:
Fi(ω) =

Q
ω4+ξ4 . Also, assume that the considered sequence S is infinite, and the GP covariance

function is such that increasing interval sizes increases the expectation of the interval error from (11).
Then, the interval error Eσ2

INT(ξ) has the following asymptotic:

4π4
√
3

63
uQδ4min ≤ lim

ξ→0
Eσ2

INT(ξ) ≤
4π4
√
3

63
uQδ4max.

A full version of the reasoning behind the above Lemma is provided in the Appendix.
Corollary 4.7. Plugging the above into (10), we get the tight upper bound for cubic splines x̂(t):

1

n

∫ T

0

E ∥h(t)− h∗(t)∥22 dt ≤
(

aLx

b− aLh

)2
4π4
√
3

63
uQδ4max.

To test the effect of interpolation error on our models, we perform drop attacks (dropping a fraction
of input tokens and replacing them with NaNs) on the Pendulum dataset. According to Table 5 (first
row), all SNCDEs are robust to drop attacks, with NF versions outperforming No NF. The Sync-NF
model is slightly better than Anti-NF, likely due to a larger b−aLh, but that difference is insignificant
compared to other baselines.

4.3 LONG-TERM MEMORY

Despite the implications of Theorems 4.4,4.5, strong negative feedback might not always be beneficial.
We found that its usage may also induce ”forgetting“ – the model may lose important prior knowledge.

Unfortunately, the concept of “importance“ may vary dataset-to-dataset, or even sample-to-sample,
a good model should adaptively pick out such knowledge on its own, so defining forgetfulness is a
difficult task. That said, we opt for a simpler definition, which generally aligns with our understanding:
a model is ”forgetful“, if the influence of older trajectory parts constantly decays. Such decay leads
to limited long-term memory of previous states.

Equipped with the above definition, we can prove that a strict negative feedback induces such
forgetfulness:

Theorem 4.8. For the ODE (2) under Assumptions 4.1, 4.2 it holds that: d
dτ

∥∥∥dh(t+τ)
dhi(t)

∥∥∥
2
< 0.

The above implies that a shift in the beginning of the trajectory will not significantly influence the
end of the trajectory. Fortunately, our Anti-NF model can adapt the relative values of a, b to reduce or
disable forgetfulness, making it more flexible. On the other hand, the Sync-NF model does not have
this liberty: for Lh < 1, the Assumption 4.2 always holds, so it will always forget prior values. We
further analyse this in Appendix C.7.

5At the limit ξ → 0, the mean of the resulting GP tends to a natural cubic spline Golubev & Krymova (2013).
The parameter Q here represents our a priori beliefs about the data variance.

8

Table 4: R2 on the SineMix dataset, averaged over five runs.

RNN GRU Tanh ReLU No-NF Sync-NF Anti-NF

-0.3 0.8 1 1 1 0.3 1

Table 5: The models’ R2 for C (change) and D (drop) attacks on Pendulum dataset. The suffix
indicates the fraction of altered tokens: 0.85 for Drop and 0.01 for change. The columns represent the
models: TF, RF for Temp- and RoFormer, NCDE/NRDE for the original Neural CDE/RDE models,
and the last three columns present SNCDEs (Scaled Neural CDEs, D = 5) with three different vector
fields. The full picture, given by the set of fractions vs metric curves, is provided in Appendix C.9.

Attack TF RF Mamba NCDE NRDE GRU No NF Sync-NF Anti-NF

D-0.85 0.16 0.31 0.36 0.02 0.20 0.27 0.40 0.64 0.61
C-0.01 -0.29 -0.29 -0.46 -0.97 -0.11 0.37 0.51 0.61 0.64

To illustrate the forgetting effect, we conduct experiments on a synthetic Sine-Mix dataset to compare
Anti-NF’s forgetfulness to Sync-NF’s and classic RNNs. Each sequence consists of two equal-length
sine waves with different frequencies, joined continuously at the mid-point. The target is to predict
the frequency of the first wave, which is trivial unless the model forgets the beginning of the sequence.
The results are in Table 4. After 5 training epochs, the Sync-NF version achieves only R2 = 0.3,
while the versions with all other vector fields, including Anti-NF, completed the task perfectly each
time. Simultaneously, the vanilla RNN cell failed the task completely, while the GRU architecture
was able to solve it rather well, indicating that Sync-NF’s observed forgetfulness is akin to that of
classic recurrent networks.

On the other hand, forgetfulness could make the model more robust: time series often evolve quickly,
so forgetting irrelevant observations may be beneficial Cao et al. (2019). To gauge this effect, we
measure our method’s performance on perturbed sequences, with a small fraction replaced by standard
Gaussian noise. The results are provided in Table 5 (row 2). Indeed, all the possibly forgetful models,
i.e., the SNCDE versions and the GRU, are in the lead. Adding NF boosts robustness: Sync-NF
and Anti-NF significantly outperform No-NF. Sync-NF performs slightly worse than Anti-NF. We
hypothesise this is because the attack is uniformly distributed across the sequence: the corrupted
tokens may appear closer to the end, in which case the Sync-NF model performs worse due to
forgetfulness.

5 MAIN EXPERIMENTS

Table 6: Pearson correlation between log-NFE and
the corresponding metric (R2 for Pendulum and
Sine-2, and AUROC for Sepsis), for various vector
fields. In a pair X/Y , X indicates the statistic for
reducing tolerance, Y — the statistic for increasing
time scale. Values ≥ 0.7 are highlighted in bold.

Pendulum Sepsis Sine-2

Tanh 0.3/-0.6 0.3/0.8 0.4/0.7
ReLU 0.1/-0.6 0.3/-0.09 0.07/0.6
No NF 0.4/-0.5 0.3/-0.1 0.09/-0.5
Sync-NF 0.4/0.8 0.5/-0.4 0.5/1.0
Anti-NF 0.5/0.9 0.5/0.8 0.4/1.0

We tested the individual properties of DeNOTS
in Sections 3, 4. Here, we present a general
picture, measuring the quality of our method
on downstream tasks, and extensively testing
our main expressiveness claim. Due to space
limitations, we moved the datasets’ and models’
descriptions, further details, and some additional
experiments to Appendix C.

Classification/Regression. To test our
model’s overall performance, we compare it to
other baseline models (including the Sync-NF
vector field) on various tasks. The results are
provided in Table 7. Our model is ranked first
across all the considered datasets.

Scale expressiveness. Next, we extensively test our main claim: combining SNCDE with Anti-NF
(DeNOTS) is the best way to increase the model’s expressiveness. However, measuring expressiveness

9

Table 7: Table with performance ranks (lower is better), built on our results. The rank of each
backbone is one plus the number of other backbones, the score of which is better according to
a one-sided T-test on the corresponding mean and deviations, with the p-value cutoff set to 0.1.
Therefore, lower is better, a rank of 1.0 means that there are no better baselines, and the one in
question is the best.

Backbone UWGL InsectSound Pendulum Sepsis Mean
DeNOTS (ours) 1 1 1 1 1.0
Sync-NF SNCDE (ours) 1 1 2 1 1.25
TempFormer 4 1 6 5 4.0
Neural CDE 1 8 2 5 4.0
Neural RDE 1 6 1 9 4.25
RoFormer 5 5 6 3 4.75
GRU 8 1 4 7 5.0
Mamba 6 1 6 8 5.25
GRU-ODE 8 7 6 3 6.0

seems non-trivial at first glance. Fortunately, in our setup, expressiveness is quantified by model
performance, as we explain in Appendix C.5.

We measure the Pearson correlation coefficient between log-NFE and the metric value for increasing
precision or scaling time with various vector fields — different approaches to increasing expressive-
ness. The results are presented in Table 6. Indeed, DeNOTS is the only model that reliably displays a
strong correlation on all three datasets. Further demonstrations can be found in Appendix C.6.

6 CONCLUSIONS

We propose a novel approach to increasing Neural ODE expressiveness in the time series domain,
backed by theoretical and empirical evidence. Instead of lowering tolerances, we scale the integration
interval, boosting metrics while keeping the l2 norms of weights low. However, time scaling
destabilises conventional vector fields, so we modify the dynamics function to include Negative
Feedback. NF brings provable stability and robustness benefits, which hold in practice. Although
prior versions of NF also possess these qualities, they have issues with long-term memory due to less
flexible dynamics and strict trajectory constraints. In contrast, our Anti-NF preserves expressiveness
and avoids forgetting. Combined with time scaling, this results in superior performance across four
open time series benchmarks, outperforming recent Neural RDEs and state space models.

Limitations and Future Work. Neural CDE methods are fundamentally sequential, as they rep-
resent continuous-time dynamics through stepwise evolution that resists full parallelization. This
intrinsic characteristic results in longer runtimes compared to architectures built for parallel computa-
tion. In DeNOTS, time scaling amplifies this effect by increasing the number of required update steps,
exchanging additional computation for greater expressive capacity. Crucially, DeNOTS delivers
strong empirical results, partly justifying the added cost by converting deeper sequential processing
into tangible performance gains. Nevertheless, future research on Neural CDEs should emphasize
scalable designs that retain their expressive strengths while enabling more parallel execution—much
like the field’s transition from recurrent models to Transformers. Some inefficiency could also be
attributed to a high-level implementation, which also needs work. Finally, it could be interesting to
adapt the novel concept of scaling integration time to other domains, such as event sequences, text,
images, or tabular data.

Reproducibility statement. Our code is available at https://github.com/Ilykuleshov/
denots_iclr2025. It contains automated scripts to download all our datasets, and uses popular
frameworks to make it recognisable to a wide audience of ML researchers, reproducing all our
baselines in these frameworks. A detailed description of the datasets can be found in Appendix C.1.
The baselines are described in Appendix C.2. More information about our pipeline can be found in
Appendix C.3.

10

https://github.com/Ilykuleshov/denots_iclr2025
https://github.com/Ilykuleshov/denots_iclr2025

ACKNOWLEDGMENTS

The work was supported by the grant for research centers in the field of AI provided by the
Ministry of Economic Development of the Russian Federation in accordance with the agreement
000000C313925P4F0002 and the agreement №139-10-2025-033.

REFERENCES

Jason Ansel and Pytorch 2 team. PyTorch 2: Faster Machine Learning Through Dynamic Python
Bytecode Transformation and Graph Compilation. In 29th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 2 (ASPLOS
’24). ACM, April 2024.

Txus Blasco, J. Salvador Sánchez, and Vicente Garcı́a. A survey on uncertainty quantification in
deep learning for financial time series prediction. Neurocomputing, 576:127339, 2024. ISSN
0925-2312.

William E Boyce, Richard C DiPrima, and Charles W Haines. Elementary differential equations and
boundary value problems, volume 9. Wiley New York, 1969.

Weipeng Cao, Zhong Ming, Zhiwu Xu, Jiyong Zhang, and Qiang Wang. Online sequential extreme
learning machine with dynamic forgetting factor. IEEE access, 7:179746–179757, 2019.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in NeurIPS, 31, 2018.

Ricky TQ Chen, Brandon Amos, and Maximilian Nickel. Neural spatio-temporal point processes.
arXiv preprint arXiv:2011.04583, 2020.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. In NIPS 2014 Workshop on Deep Learning,
December 2014, 2014.

Carl De Boor and Carl De Boor. A practical guide to splines, volume 27. springer New York, 1978.

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. Gru-ode-bayes: Continuous
modeling of sporadically-observed time series. Advances in NeurIPS, 32, 2019.

John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. Journal of
computational and applied mathematics, 6(1):19–26, 1980.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. Advances in neural
information processing systems, 32, 2019.

William Falcon and The PyTorch Lightning team. PyTorch Lightning, March 2019.

Peter K Friz and Nicolas B Victoir. Multidimensional stochastic processes as rough paths: theory
and applications, volume 120. Cambridge University Press, 2010.

Georgii Ksenofontovich Golubev and Ekaterina A Krymova. On interpolation of smooth processes
and functions. Problems of Information Transmission, 49(2):127–148, 2013.

Gustaf Gripenberg. Approximation by neural networks with a bounded number of nodes at each
level. Journal of approximation theory, 122(2):260–266, 2003.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Ingo Gühring, Mones Raslan, and Gitta Kutyniok. Expressivity of deep neural networks. arXiv
preprint arXiv:2007.04759, 34, 2020.

Ernst Hairer, Gerhard Wanner, and Syvert P Nørsett. Solving ordinary differential equations I:
Nonstiff problems. Springer, 1993.

11

Charles A Hall and W Weston Meyer. Optimal error bounds for cubic spline interpolation. Journal
of Approximation Theory, 16(2):105–122, 1976.

Douglas M Hawkins. The problem of overfitting. Journal of chemical information and computer
sciences, 44(1):1–12, 2004.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of The 32nd International Conference on Machine
Learning, pp. 448–456, 2015.

Qiyu Kang, Yang Song, Qinxu Ding, and Wee Peng Tay. Stable neural ode with lyapunov-stable
equilibrium points for defending against adversarial attacks. Advances in Neural Information
Processing Systems, 34:14925–14937, 2021.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations
for irregular time series. Advances in NeurIPS, 33:6696–6707, 2020.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Andrey Kolmogorov. Interpolation and extrapolation of stationary random sequences. Izvestiya
Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 5:3, 1941.

Marten Lienen and Stephan Günnemann. torchode: A parallel ODE solver for pytorch. In The
Symbiosis of Deep Learning and Differential Equations II, NeurIPS, 2022.

Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. uwave: Accelerometer-based
personalized gesture recognition and its applications. Pervasive and Mobile Computing, 5(6):
657–675, 2009.

Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. Dying relu and initialization: Theory
and numerical examples. arXiv preprint arXiv:1903.06733, 2019.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of
neural networks: A view from the width. Advances in neural information processing systems, 30,
2017.

Stefano Massaroli, Michael Poli, Michelangelo Bin, Jinkyoo Park, Atsushi Yamashita, and Hajime
Asama. Stable neural flows. arXiv preprint arXiv:2003.08063, 2020a.

Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime Asama. Dissecting
neural odes. Advances in Neural Information Processing Systems, 33:3952–3963, 2020b.

Matthew Middlehurst, Patrick Schäfer, and Anthony Bagnall. Bake off redux: a review and exper-
imental evaluation of recent time series classification algorithms. Data Mining and Knowledge
Discovery, 38(4):1958–2031, 2024.

James Morrill, Patrick Kidger, Lingyi Yang, and Terry Lyons. Neural controlled differential equations
for online prediction tasks. arXiv preprint arXiv:2106.11028, 2021a.

James Morrill, Cristopher Salvi, Patrick Kidger, and James Foster. Neural rough differential equations
for long time series. In International Conference on Machine Learning, pp. 7829–7838. PMLR,
2021b.

YongKyung Oh, Dong-Young Lim, and Sungil Kim. Stable neural stochastic differential equations in
analyzing irregular time series data. arXiv preprint arXiv:2402.14989, 2024.

YongKyung Oh, Seungsu Kam, Jonghun Lee, Dong-Young Lim, Sungil Kim, and Alex Bui.
Comprehensive review of neural differential equations for time series analysis. arXiv preprint
arXiv:2502.09885, 2025.

12

Dmitry Osin, Igor Udovichenko, Viktor Moskvoretskii, Egor Shvetsov, and Evgeny Burnaev. Ebes:
Easy benchmarking for event sequences. arXiv preprint arXiv:2410.03399, 2024.

Sebastian Reich. Backward error analysis for numerical integrators. SIAM Journal on Numerical
Analysis, 36(5):1549–1570, 1999.

Matthew A Reyna, Christopher S Josef, Russell Jeter, Supreeth P Shashikumar, M Brandon Westover,
Shamim Nemati, Gari D Clifford, and Ashish Sharma. Early prediction of sepsis from clinical data:
the physionet/computing in cardiology challenge 2019. Critical care medicine, 48(2):210–217,
2020.

Ivan Dario Jimenez Rodriguez, Aaron Ames, and Yisong Yue. Lyanet: A lyapunov framework for
training neural odes. In International conference on machine learning, pp. 18687–18703. PMLR,
2022.

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in NeurIPS, 32, 2019.

Eduardo D Sontag and Yuan Wang. On characterizations of the input-to-state stability property.
Systems & Control Letters, 24(5):351–359, 1995.

Michael L Stein. Interpolation of spatial data: some theory for kriging. Springer Science & Business
Media, 2012.

Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu Chen, and Yupeng Gao. Is robustness the
cost of accuracy?–a comprehensive study on the robustness of 18 deep image classification models.
In Proceedings of the European conference on computer vision (ECCV), pp. 631–648, 2018.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Aaron Tuor, Jan Drgona, and Draguna Vrabie. Constrained neural ordinary differential equations
with stability guarantees. arXiv preprint arXiv:2004.10883, 2020.

AW van der Vaart and JH van Zanten. Rates of contraction of posterior distributions based on gaussian
process priors. Annals of Statistics, 36(3):1435–1463, 2008.

Leni Ven and Johannes Lederer. Regularization and reparameterization avoid vanishing gradients in
sigmoid-type networks. arXiv preprint arXiv:2106.02260, 2021.

Omry Yadan. Hydra - a framework for elegantly configuring complex applications. Github, 2019.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural networks, 94:
103–114, 2017.

Alexey Zaytsev and Evgeny Burnaev. Minimax approach to variable fidelity data interpolation. In
Artificial Intelligence and Statistics, pp. 652–661. PMLR, 2017.

Alexey Zaytsev, Evgenya Romanenkova, and Dmitry Ermilov. Interpolation error of gaussian process
regression for misspecified case. In Conformal and Probabilistic Prediction and Applications, pp.
83–95. PMLR, 2018.

Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer Hawkes
process. In International conference on machine learning, pp. 11692–11702. PMLR, 2020.

13

APPENDICES

A Related works 15

B Theory 15

B.1 Time scaling . 15

B.2 Negative Feedback Model . 19

B.3 Stability . 19

B.4 Error Bounds . 20

B.4.1 Bound Tightness . 22

B.5 GP Interpolation Error . 23

B.5.1 GP Assumptions . 23

B.5.2 Interpolation Error bounds . 24

B.5.3 Proof of special case of Assumption B.5. 28

B.5.4 Validation of Assumption B.5 . 30

B.6 Long-term Memory . 30

C Experiments 32

C.1 Datasets . 32

C.2 Backbones . 33

C.3 Pipeline . 34

C.3.1 Training . 34

C.3.2 Embeddings . 34

C.4 Full Results . 35

C.5 Expressivity discussion . 35

C.6 NFE-Correlation experiments . 36

C.7 Negative Feedback Strength . 36

C.8 Forecasting . 38

C.8.1 Pendulum Angles . 38

C.8.2 Sine-2 Dataset . 39

C.9 Full attack results . 39

C.10 Computational Resources . 39

14

A RELATED WORKS

Neural ODEs for time-series. Neural ODEs provide an elegant way to take the sequence irregu-
larity into account Oh et al. (2025). The representation evolves simultaneously with the observed
system Chen et al. (2018). For example, GRU-ODE-Bayes De Brouwer et al. (2019) used Bayesian
methods to account for missing observations optimally. To constrain the hidden trajectory to [−1, 1],
its authors introduced a strict NF, subtracting the current hidden state from the derivative.

As an improvement, the authors of Kidger et al. (2020) proposed to combine Neural ODEs with
the theory of CDEs Friz & Victoir (2010) for time series classification. Instead of embedding the
input data into the starting point, Neural CDEs interpolate it, using the resulting function to guide the
trajectory. On the other hand, the original Neural CDEs from Kidger et al. (2020) are not sensitive
to the irregularity of time intervals. So, the authors append the time difference as a separate feature.
Moreover, these models have high memory usage. The controlling NN has to generate a matrix,
which implies a weight dimension of ∼ d3, where d is the dimensionality of the input features,
instead of d2 for conventional models, such as RNNs. DeNOTS employs a GRU cell as its dynamics,
making it more memory efficient than Neural CDE, and sensitive to input time intervals, which is
crucial for scaling time.

Stability. Neural ODE stability is a well-researched topic. Prior work has approached it through
adding specialized loss terms Kang et al. (2021); Rodriguez et al. (2022), constraining the form of the
vector field Massaroli et al. (2020a) or the eigenvalues of the NN weights Tuor et al. (2020). However,
very little work has been done for Neural CDEs, since the problem is significantly complicated by
the presence of an external ”control signal“. Most notably, Morrill et al. (2021b) processes the input
sequence in a windowed fashion, aggregating each window into a certain set of features to reduce
length, while Morrill et al. (2021a) highlights the importance of selecting a continuous interpolant for
the well-posedness of the initial-value problem. We prove that our CDE-type model is input-to-state
stable, providing a significantly more general and formal result.

Time. To escape the instability, introduced by possibly large time frames, most prior works enforce
time to be roughly [0, 1] by setting it directly Chen et al. (2018); Rubanova et al. (2019); Dupont
et al. (2019), re-parametrizing it Chen et al. (2020) or predicting it within tight bounds Massaroli
et al. (2020b). Others devise models invariant to time transforms Kidger et al. (2020). To the best of
our knowledge, all existing works do not consider time to be an important hyperparameter.

Gaussian process interpolation errors. Our theoretical analysis investigates discretisation uncer-
tainty, which manifests as GP variance. This involves estimating the squared error of an integral over
a linear function of a GP with multiple outputs. For a specific assumption, we have a reasonable
estimate of the quadratic risk that follows from Golubev & Krymova (2013). While alternatives
exist Stein (2012); van der Vaart & van Zanten (2008); Zaytsev et al. (2018), they are unsuitable for
our setting, with an additional ODE layer on top.

B THEORY

To enhance the reader experience, we duplicate all relevant statements and discussions from the main
body in the Appendix, preserving reference numbering.

B.1 TIME SCALING

As mentioned in the introduction, we argue that scaling time benefits expressiveness. By expres-
siveness, we mean the broadness of the class of functions that our network can represent. Now, we
introduce several definitions.

Differentially definable mappings from trajectories F . We say that Fg ∈ F , if there exists an
ODE with the vector field g(x(t),h(t)) : Ru × Rv → Rv, with the starting condition h(0) = h0

and the solution h(t) : R→ Rv: d
dth(t) = g(h(t),x(t)), such that Fg(x(·),h0; t) = h(t). Not all

functions on trajectories can be represented this way.

15

Start-corrected differentially-definable mappings, i.e. the elements of F , minus their initial state
h0: F̊ = {F̊g(x(·),h0; t) = Fg(x(·),h0; t)− h0|Fg ∈ F}. Since we set h0 = 0 in most practical
cases, the distinction is rather technical; it is here mostly to account for Lipschitzness w.r.t. h, as we
will see below.

Lipschitz constraints. We introduce two ways to constrain this class with Lipschitz constants: with
g being Mx,Mh-Lipschitz

F̊g(Mx,Mh) = {F̊g ∈ F̊|g −Mx,Mh-lipschitz w.r.t. x,h},

and with F̊g(. . . ; t) being Lx(t), Lh(t)-lipschitz, where Lx(t), Lh(t) : R→ R+:

F̊F (Lx(·), Lh(·)) = {F̊g ∈ F̊|F̊g − Lx(t), Lh(t)-lipschitz w.r.t. x(·),h0},

where Lipschitzness w.r.t. x(·) is meant in terms of L2 function norms: ∥x(·)∥L2
=
√∫
∥x(t)∥22dt.

Intuitively, F̊g(Mx,Mh) represents all mappings that our NCDE can learn, given a Lipschitz-
constrained Neural Network g, while F̊F (Lx(·), Lh(·)) represents all the possible Lipschitz-
mappings that we may want to learn.

Equipped with the above definitions, we can formulate the following:

Theorem (3.1). The classes F̊g(Mx,Mh) and F̊F (Lx(·), Lh(·)) are equal, given the following
relations between their arguments:

Lx(t) =Mx

√
1

2Mh
(e2Mht − 1);Lh(t) = eMht − 1.

Proof. We conduct the proof in two steps: first proving the subset relation F̊g(Mx,Mh) ⊆
F̊F (Lx(·), Lh(·)), and then the converse F̊F (Lx(·), Lh(·)) ⊆ F̊g(Mx,Mh). Together, these re-
lations will imply equality of the two considered classes.

Subset relation. First, we prove the relation F̊g(Mx,Mh) ⊆ F̊F (Lx(·), Lh(·)). Let’s consider an
Mx,Mh-Lipschitz g, and prove that the corresponding F̊ is Lx, Lh-Lipschitz.

Say, we have two trajectories, x1(t),x2(t), each producing their repsective h1,2(t), with h1(0) ̸=
h2(0). The distance between the corresponding F̊ -s will be given by:

∥(F (x1,h0, t)− F (x1,h0, 0))− (F (x2,h0, t)− F (x2,h0, 0))∥ ≜ ∥∆(t)∥,
where we denote the expression under the norm by ∆ for brevity. The absolute derivative of the norm
is always less or equal to the norm of the derivative, which can be proven using the Cauchy-Schwartz
inequality:

d

dt
∥∆∥2 ≤

∣∣∣∣ ddt∥∆∥2
∣∣∣∣ = ∣∣∣∣ ddt√∆ ·∆

∣∣∣∣ = ∆ ·∆′

∥∆∥2
≤ ∥∆∥2 · ∥∆

′∥2
∥∆∥2

= ∥∆′∥2 =

Here ∆′ is the derivative of ∆ w.r.t. t. We can write it using g, the starting points cancel out:

= ∥∆′(t)∥2 = ∥g(x1(t),h1(t))− g(x2(t),h2(t))∥2 =

We add and subtract a ”mixed“ term g(x1(t),h2(t)):

= ∥g(x1(t),h1(t))− g(x1(t),h2(t)) + g(x1(t),h2(t))− g(x2(t),h2(t))∥2 ≤
The norm of that sum may be bounded using the triangle rule:

≤ ∥g(x1(t),h1(t))− g(x1(t),h2(t))∥2 + ∥g(x1(t),h2(t))− g(x2(t),h2(t))∥2 ≤
And both of these two norm-terms can now be bounded by the Lipschitz property:

≤Mx∥x1 − x2∥2 +Mh∥h1 − h2∥2 =

We add and subtract h1(0)− h2(0) ≜ ∆0 in the second term:

Mx∥x1 − x2∥2 +Mh∥h1(t)− h2(t)− (h1(0)− h2(0)) + (h1(0)− h2(0))∥2 ≤

16

We now notice that we can substitute ∆ in the second term, and upper-bound it with the triangle
inequality

≤Mx∥x1 − x2∥2 +Mh∥∆∥2 +Mh∥∆0∥2,
where we denote ∆0 ≜ h1(0)− h2(0).

Putting the above reasoning together, we are left with the differential inequality:
d

dt
∥∆∥ ≤Mx∥x1 − x2∥+Mh∥∆∥+Mh∥∆0∥.

Using the standard ODE trick, we assume that ∆(t) = C(t)eMht, and substitute this into the
inequality:

d

dt
∥∆∥ = dC

dt
eMht + C(t)Mhe

Mht ≤Mx∥x1 − x2∥+MhC(t)e
Mht +Mh∥∆0∥.

The terms MhC(t)e
Mht cancel out:

dC

dt
eMht ≤Mx∥x1 − x2∥+Mh∥∆0∥.

Now, we separate the variables, and integrate from τ = 0 to t :

∫ t

τ=0

dC = C(t)− C(0) ≤
(
Mx

∫ t

τ=0

∥x1(τ)− x2(τ)∥e−Mhτdτ

)
+

+Mh∥∆0∥
∫ t

τ=0

e−Mhτdτ.

The integral without x1,2(t) can be integrated analytically:

∫ t

τ=0

e−Mhτdτ =
1

Mh

(
1− e−Mht

)
.

The integral with x1,2 can be bounded using Cauchy-Schwartz:

∫ t

τ=0

∥x1(τ)− x2(τ)∥e−Mhτdτ ≤

≤

√∫ t

τ=0

∥x1(τ)− x2(τ)∥2dτ

√∫ t

τ=0

e−2Mhτdτ

The first term is the L2-distance between the two input signals, we denote it as ρ(x1,x2); the second
one can be integrated analytically:

∫ t

τ=0

e−2Mhτdτ =
1

2Mh

(
1− e−2Mht

)
.

As a starting condition, we know that ∆(0) = 0 (since it is start-corrected), so C(0) = 0. Now we
have an inequality for C(t):

C(t) ≤ ∥∆0∥2
(
1− e−Mht

)
+Mxρ(x1,x2)

√
1

2Mh
(1− e−2Mht).

Multiplying it by eMht gives us the inequality for ∆(t):

∥∆(t)∥ ≤ ∥∆0∥2
(
eMht − 1

)
+Mxρ(x1,x2)

√
1

2Mh
(e2Mht − 1).

To get the individual expression for Lx, we simply set ∆0 to zero. To get the expression for Lh, we
set ρ to zero.

17

Superset relation. Now we prove the converse relationship: F̊F (Lx(·), Lh(·)) ⊆ F̊g(Mx,Mh).

Assume that we have F ∈ F̊F (Lx(·), Lh(·)), where for some Mx,Mh:

Lx(t) =Mx

√
1

2Mh
(e2Mht − 1);Lh(t) = eMht − 1.

We need to prove that the corresponding g is Mx,Mh-Lipschitz.

We start with the x component. Consider two input trajectories x1 ̸= x2, and equal starting points
h1 = h2 = h0. Since F is Lipschitz, we can write the following inequality:

∥F̊ (x1,h0)− F̊ (x2,h0)∥ ≜ ∥∆∥ ≤ ρ(x1,x2)Mx

√
1

2Mh
(e2Mht − 1)

Here, we will also denote the difference between these trajectories by ∆:

F̊ (x1,h0)− F̊ (x2,h0) = ∆.

We square the Lipschitz inequality, and take the derivative w.r.t. t:

2(∆g,∆) ≤ M2
x

2Mh

(
dρ2

dt

(
e2Mht − 1

)
+ ρ2

d

dt

(
e2Mht − 1

))
.

Here, we use the notation ∆g = g(x1(t),h1(t)) − g(x2(t),h2(t)). The derivatives of ρ2 and(
e2Mht − 1

)
are easily calculated analytically:

dρ2

dt
= ∥x1(t)− x2(t)∥2.

d

dt

(
e2Mht − 1

)
= 2Mhe

2Mht.

We substitute these expressions:

2(∆g,∆) ≤ M2
x

2Mh

(
∥x1(t)− x2(t)∥2.

(
e2Mht − 1

)
+ ρ22Mhe

2Mht.
)
.

Now we divide the above by t, and take the limit at t→ 0.

lim
t→0

2(∆g,
1

t
∆) ≤ lim

t→0

M2
x

2Mh

(
∥x1(t)− x2(t)∥2

1

t

(
e2Mht − 1

)
+

1

t
ρ22Mhe

2Mht

)
We calculate the limits for terms with 1

t :

lim
t→0

1

t
∆ = ∆g(0);

lim
t→0

1

t

(
e2Mht − 1

)
= 2Mh;

lim
t→0

1

t
ρ2 = ∥x1(0)− x2(0)∥2.

The limit for the other terms is achieved by simply setting t = 0:

2(∆g(0),∆g(0)) ≤ M2
x

2Mh

(
∥x1(0)− x2(0)∥22Mh + ∥x1(0)− x2(0)∥22Mh

)
.

Simplifying, we get:

∥g(x1(0),h0)− g(x2(0),h0)∥2 ≤Mx∥x1(0)− x2(0)∥2.

Since the choice of x1(0),x2(0),h0 is arbitrary, the above implies that g is Mx-Lipschitz.

18

Now for the h component. We follow a very similar approach, but this time the input trajectories
are the same x1 = x2 = x, while the starting points are not h1 ̸= h2. Therefore, since F is Lipschitz,
we can write the following inequality:

∥F̊ (x,h1; t)− F̊ (x,h2; t)∥ ≜ ∥∆(t)∥ ≤ ∥∆0∥
(
eMht − 1

)
.

Here, ∆0 ≜ h1 − h2. Again, we take the square and differentiate w.r.t. t:

2(∆,∆g) ≤ ∥∆0∥22
(
eMht − 1

)
Mhe

Mht.

Divide by t and take the limit at t→ 0:

2∥∆g∥2 ≤ ∥∆0∥22Mh.

Since the choice of x,h1,h2 is arbitrary, we have proven that g is Mh-Lipschitz.

This concludes the proof of Theorem 3.1.

As a corollary, given an Mx,Mh-Lipschitz NN g, we can represent all the Lx, Lh-Lipschitz
(differentially-definable, start-corrected) F , and only them.

B.2 NEGATIVE FEEDBACK MODEL

We model NF by the following simplified differential equation, a specific case within the dynamics (1):

dh

dt
= gθ(x̂(t),h(t)) = afθ(x̂(t),h(t))− bh(t), a, b ∈ R. (2)

The values of a and b determine the relative magnitude of the NF term and the overall scale of
the derivative. For clarity, our theoretical analysis focuses on scalar-valued a and b, which suffice
to demonstrate the key properties. Extending the analysis to vector-valued parameters introduces
substantial technical complexity without offering additional insight.

To conduct our analysis, we need to constrain the function fθ and the values a, b, Lh:
Assumption (4.1). (1) The function fθ from (2) is Lipschitz w.r.t. both x̂ and h with constants Lh, Lx,
and (2) it is equal to zero for zero vectors fθ(0u,0v) = 0v .
Assumption (4.2). The values of a, b, Lh are constrained by the following:

a ∈ (0, 1), b ∈ (0, 1), Lh ∈ (0, 1), aLh < b. (3)

B.3 STABILITY

As mentioned in the main text, we approach stability analysis through control systems theory Sontag
& Wang (1995). For clarity, we write out the definitions and theorems used in greater detail. First, we
introduce the comparison function classes that are used in the stability definition:
Definition B.1. Let K,L,KL denote the following classes of functions:

• A continuous function γ : R+ → R+ is said to belong to the comparison class K, if it is
increasing with γ(0) = 0.

• A continuous function γ : R+ → R+ is said to belong to the comparison class L, if it is
strictly decreasing with γ(t)→ 0, t→∞.

• A continuous function γ : R+ → R+ is said to belong to the comparison class K∞, if it
belongs to K and is unbounded.

• A continuous function β : R2
+ → R+ is said to belong to the comparison class KL, if

β(·, t) ∈ K,∀t > 0, and β(r, ·) ∈ L,∀r > 0.

Now, we can formulate the definition of stability in the control-systems sense:
Definition B.2. A system (1) is said to be input-to-state stable (ISS), if there exist γ ∈ K, and
β ∈ KL, s.t.:

∥h(t)∥2 ≤ β(∥h0∥2, t) + γ(∥x̂∥∞). (5)

19

Just like with traditional ODE stability, instead of directly testing the definition, it is often more
convenient to construct an ISS-Lyapunov function:

Definition B.3. A smooth function V : Rv → R+ is called an ISS-Lyapunov function, if there exist
functions ψ1, ψ2 ∈ K∞ and α, χ ∈ K, s.t.

ψ1(∥h∥2) ≤ V (h) ≤ ψ2(∥h∥2),∀h ∈ Rv, (13)

and
∀h : ∥h∥2 ≥ χ(∥x∥2)→ ∇V · gθ ≤ −α(∥h∥2). (14)

The connection between Definitions B.2 and B.3 is given by the following lemma Sontag & Wang
(1995):

Lemma B.4. The ODE (1) is ISS, if and only if a corresponding ISS-Lyapunov function exists.

Now, using the facts formulated above, we can proceed to proving Theorem 4.4:

Theorem (4.4). The ODE (2) under Assumptions 4.1, 4.2 is input-to-state stable.

Proof. Let us build a corresponding ISS-Lyapunov function. According to Lemma B.4, this proves
ISS. Consider V (h) ≜ 1

2∥h∥
2
2. Equation (13) evidently stands (e.g. ψ1,2(∥h∥2) ≡ 1

2∥h∥
2
2). The

gradient of the squared half-norm is the vector itself: ∇V = h. So, to test (14), we can bound the
corresponding dot-product:

(∇V,gθ) = (h, afθ − bh) ≤ a∥h∥2∥fθ∥2 − b∥h∥22.

Using Assumption 4.1, we can bound ∥fθ∥2:

∥fθ(x̂,h)∥2 = ∥fθ(x̂,h)− fθ(x̂,0v) + fθ(x̂,0v)− fθ(0u,0v) + fθ(0u,0v)∥2
≤ ∥fθ(x̂,h)− fθ(x̂,0v)∥2 + ∥fθ(x̂,0v)− fθ(0u,0v)∥2 + ∥fθ(0u,0v)∥2
≤ Lh∥h∥2 + Lx∥x̂∥2 + 0.

Now we have:

(∇V, gθ) ≤ a∥h∥2(Lh∥h∥2 + Lx∥x̂∥2)− b∥h∥22 = (aLh − b)∥h∥22 + aLx∥x̂∥2∥h∥2. (15)

The final expression is a quadratic polynomial. The coefficient next to ∥h∥22 is negative, according
to (3). Consequently, it will decrease for large-enough values of ∥h∥2, which allows us to construct
functions χ, α, satisfying (14). For some fixed ε ∈ (0, 1), consider the following function:

χ(r) ≜
aLx

b− aLh
r(1− ε)−1; χ−1(r) =

b− aLh

aLx
(1− ε)r.

Then, for any h : ∥h∥2 ≥ χ(∥x̂∥2), which is in our case equivalent to ∥x̂∥2 ≤ χ−1(∥h∥2), we can
bound (15):

(∇V, gθ) ≤ (aLh − b)∥h∥22 + aLx∥x̂∥2∥h∥2

≤ (aLh − b)∥h∥22 + aLx
b− aLh

aLx
(1− ε)∥h∥22

= −ε(b− Lha)∥h∥22 ≜ −α(∥h∥2).

Since b − Lha > 0, the functions we have constructed lie in the correct classes: α, χ ∈ K.
Consequently, V is a valid ISS-Lyapunov function, which implies that our system is ISS-stable.

B.4 ERROR BOUNDS

To devise the theoretical results of this section, we need to introduce the ”perfect“ Neural CDE,
calculated without any errors:

h∗(0) = h0;
dh∗(t)

dt
= afθ(x(t),h

∗(t))− bh∗(t). (6)

20

Then, both the integration and the interpolation errors may be modelled via the following ”imperfect“
ODE, often referred to as the ”Modified Vector Field“ Reich (1999):

h(0) = h0;
dh(t)

dt
= afθ(x(t),h(t))− bh(t) + ξ(t), (7)

where ξ(t) is a random vector, which represents the momentary deviation of our numerical ODE
from the true one. For further theoretical considerations, we introduce two types of bounds on ξ(t):

Pointwise: E ∥ξ(t)∥22 ≤ ξ
2
PW,∀t; Interval:

1

tb − ta

∫ tb

ta

E ∥ξ(t)∥22 dt ≤ ξ
2
INT,∀ta < tb. (8)

For each of the introduced bounds, we can devise an estimate for the error in the final hidden state:
Theorem (4.5). Error Bounds (Robustness). Consider the differential equations (6),(7), under
Assumptions 4.1, 4.2 Then, depending on whether we are working with the pointwise or the interval
errors (8), we can write different bounds on the variance, accumulating in h.

Pointwise bound: E∥h(T)− h∗(T)∥22 ≤
(

a

b− aLh

)2

ξ2PW. (9)

Interval bound:
1

T

∫ tb

ta

E ∥h(t)− h∗(t)∥22 dt ≤
(

a

b− aLh

)2

ξ2INT. (10)

Proof. Consider the time-derivative of the squared error norm, multiplied by 1
2 for convenience:

1

2

d

dt
∥h(t)− h∗(t)∥22 =

(
d(h(t)− h∗(t))

dt
,h(t)− h∗(t)

)
=

= (aδf − bδh + ξ, δh) =

= a(δf + ξ, δh)− b∥δh∥22 =

≤ a(Lh ∥δh∥22 + ∥ξ∥ ∥δh∥2)− b ∥δh∥
2
2 =

= (aLh − b) ∥δh∥22 + a ∥ξ∥2 ∥δh∥2 , (16)

where we introduce the following notation for conciseness:

δf ≜ fθ(x,h)− fθ(x,h
∗)

δh ≜ h(t)− h∗(t),

δx ≜ x̂(t)− x(t).

If we have a pointwise bound on E ∥ξ∥22, the expression from (16) can be upper bounded by a
quadratic function, where the multiplier aLh − b next to the squared term is negative, since aLh < b.
It turns negative for larger ∥δh∥2:

if ∥δh∥2 >
aξPW

b− aLh
, then (aLh − b) ∥δh∥22 + ξPW ∥δh∥2 < 0

=⇒ 1

2
E
d

dt
∥h(t)− h∗(t)∥22 ≤ 0,

which proves half of this theorem.

However, if we only have an interval error bound, we are forced to integrate (16) on the interval [0, T]:

1

2

∫ T

0

d

dt
∥h(t)− h∗(t)∥22 dt ≤

∫ T

0

∥δh(t)∥22 (aLh − b)dt+
∫ T

0

∥ξ(t)∥2 ∥δh(t)∥2 dt. (17)

Let us rewrite the last term, dropping all constants, and use the Cauchy–Schwarz inequality for
integrals: ∫ T

0

∥ξ(t)∥2 ∥δh(t)∥2 dt ≤

√∫ T

0

∥ξ(t)∥22 dt
∫ T

0

∥δh(t)∥22 dt ≜ RH,

21

where we introduced the following notation:

R2 ≜
∫ T

0

∥ξ(t)∥22 dt, H2 ≜
∫ T

0

∥δh(t)∥22 dt.

In light of that, let’s rewrite (17):

1

2

(
∥δh(T)∥22 − ∥δh(0)∥

2
2

)
=

1

2
∥δh(T)∥22 ≤ (aLh − b)H2 + aRH

√
k,

where we used δh(0) = 0. The right-hand side is a quadratic function with respect to H; again, the
multiplier next to the squared term is negative. Simultaneously, the left-hand side is positive, being
a norm. Together, this means that H needs to be in between the roots of this quadratic function to
satisfy the positivity constraints:

0 ≤ H ≤ aR
√
k

b− aLh
.

We square the above, and then substitute R,H in:∫ T

0

∥δh(t)∥22 ≤
(

a

b− aLh

)2 ∫ T

0

∥ξ(t)∥22 dt.

Dividing by T and taking the expectation (which we may move under the integral due to linearity),
we get:

1

T

∫ T

0

E ∥δh(t)∥22 ≤
(

a

b− aLh

)2
1

T

∫ T

0

E ∥ξ(t)∥22 dt ≤
(

a

b− aLh

)2

ξINT.

B.4.1 BOUND TIGHTNESS

To analyse the tightness of bounds from Theorem 4.5, we provide specific examples, which adhere to
our assumptions while achieving the formulated bounds.

Example 1. To simplify analysis, assume u = v = 1; a similar example may be provided for the
multidimensional case. Consider the following scenario:

dh

dt
= A+ (1− ε/2)h− (1 + ε/2)h, h(0) = 0; (18)

x̂(t) ≡ A; a = 1; b = 1 + ε/2;Lh = 1− ε/2;Lx = 1. (19)

In this case, b− aLh = ε > 0. The solution is:

h(t) =
−Ae−εt +A

ε
.

On the other hand, suppose the true value of x is also constant, x(t) ≡ B ∈ R. Then, the correspond-
ing ”true“ solution is given by:

h∗(t) =
−Be−εt +B

ε
.

Then, the errors (9), (10) from Theorem 4.5 can be calculated analytically:

E[h(t)− h∗(t)]2 =

(
(A−B) (1− e−εt)

ε

)2

→ (A−B)2

ε2
, t→∞;∫ t2

t1

E[h(t)− h∗(t)]2dt =
∫ t2

t1

(
(A−B) (1− e−εt)

ε

)2

dt→ 1

ε2
(t2 − t1)(A−B)2, t1 →∞.

They match the corresponding bounds. Note, that to illustrate the asymptotic of the interval bound,
we consider t1 > 0, and calculate limit of the interval bound at t1 → ∞ (instead of integrating
on [0, T]). This allows us to show how the bound behaves on large values of t.

22

B.5 GP INTERPOLATION ERROR

Now, let’s devise the Gaussian Process interval-error estimates. Let x(t) be a stationary zero-
mean u-dimensional Gaussian process (GP) with the covariance function K(·, ·) = {Ki(·, ·)} and
independent components:

Ex(t) = 0,

E [x(t1)⊙ x(t2)] = K(t1, t2),

E [xi(t) · xj(t)] = 0 for i ̸= j,

K(t1, t2) = K(t2 − t1),

(20)

where the symbol ⊙ denotes component-wise multiplication, and lower indexing xi denotes vector
components.

Suppose we know the values of (20) at timestamps 0 = t1 < t2 . . . < tn = T ∈ R. Consider the
corresponding maximum a posteriori predictor x̂(t):

x̂(t) = argmax
x(t)

p [x(t)|x(t1) = x1, . . . ,x(tn) = xn] .

We seek to devise two types of uniform error bounds for the predictor:

σ2
PW ≜ E ∥x̂(t)− x(t)∥22 ≤ σ̄

2
PW, σ2

INT ≜
∫ tk+1

tk

E ∥x̂(t)− x(t)∥22 dt ≤ σ̄
2
INT, (21)

where σ̄INT, σ̄PW are the pointwise and the interval error bounds, constants independent of t and k.
The pointwise expression is more convenient; however, the interval one is often tighter.

B.5.1 GP ASSUMPTIONS

To simplify the analysis, we make two assumptions about the nature of the sequences we are working
with. However, they do not limit the applicability of our results.

Most prior theoretical results are devised for the case of uniform sequences. To extend the bounds
towards irregular data, we assume that changing interval sizes predictably changes the resulting error:
Assumption B.5. Let S = {(tk,xk)}k be a given irregular time series. We construct an al-
ternative time series S̃ = {(t̃k,xk)}k, with an additional (possibly negative) margin r, such
that tm − tm+1 < r < +∞, introduced between the m-th and m+ 1-th points:

∀k
{
t̃k = tk, k ≤ m;

t̃k = tk + r, k > m.

Consider the pointwise errors (21) for the original S and modified S̃ sequences: σ2 and σ̃2, respec-
tively. We assume they relate as follows:

∀t ∈ R
{
σ2(t) ≤ σ̃2(t̃) for r > 0,

σ2(t) ≥ σ̃2(t̃) for r < 0,

where t̃ = t+ I[t > tm+1]r, and I denotes the indicator function.

The respective covariance determines the amount of information each observation provides about the
unknown value. If all covariances decrease, the variance of x̂ will increase and vice versa. We have
also empirically tested this assumption in Appendix B.5.4, and consider a specific theoretical setting
where this assumption holds in Appendix B.5.3.

Assumption B.5 is formulated for pointwise errors, however similar conclusions for interval errors
follow as corollaries:
Corollary B.6. Under the notation of Assumption B.5, the corresponding interval errors relate
similarly:

∀k
{
σ2
k ≤ σ̃2

k for r > 0,

σ2
k ≥ σ̃2

k for r < 0.

23

Finally, we can extend all the devised error bounds to irregular sequences.
Corollary B.7. Consider an irregular time series S = {(tk,xk)}. Let δmin, δmax be the minimum
and maximum intervals between observations of S, respectively:

δmin = min
k

(tk − tk−1),

δmax = max
k

(tk − tk−1).

Consider also two regular series, with δmin, δmax as the inter-observation intervals:

Smin = {(kδmin,xk)}k,
Smax = {(kδmax,xk)}k.

Then, under the assumption B.5, their interval errors (21) relate as follows:

σ2
min,INT ≤ σ2

k ≤ σ2
max,INT ∀ k.

We also make another common assumption:
Assumption B.8. The input sequence is infinite:

k = −∞, . . . ,−2,−1, 0, 1, 2, . . . ,+∞.

Prior work Zaytsev & Burnaev (2017) demonstrated that the results for infinite sequences empirically
hold for finite ones. Indeed, since a typical kernel decays with an exponential speed, distant
observations negligibly impact the resulting error.

B.5.2 INTERPOLATION ERROR BOUNDS

In this section, we will work under the uniform-grid assumption: according to Corrolary B.7, all the
results devised under this assumption can be extended to irregular sequences:
Assumption B.9. The sequence S is uniform:

tk+1 − tk = δ, ∀ k.

The optimal estimator for a uniform infinite grid is well-known Kolmogorov (1941):

x̂(t) = δ

∞∑
k=−∞

K(t− kδ)⊙ x(kδ), (22)

where optimal K is a symmetric kernel that depends on a spectral density. This form allows us to
deduce analytical error bounds. For this purpose, we generalise the results from Zaytsev & Burnaev
(2017) to multiple dimensions:
Lemma B.10. Let F(ω) denote the spectral density of Gaussian process from (20):

F(ω) =

∫ ∞

−∞
exp(2πiωt)K(t)dt.

In this notation, under AssumptionsB.8, B.9, and if all components of K are equal, the following
holds:

E∥x̂(t)− x(t)∥2 = u

∫ ∞

−∞
F (ω)

∣∣∣∣∣∣1−
∑
k ̸=0

e2iπω(t−tk)K(t− tk)

∣∣∣∣∣∣
2

dω,

where K(t) ≡ Ki(t), and F (ω) ≡ Fi(ω) are the components of the kernel function and the spectral
density, respectively.

Proof. Let us start with expanding the square:

E∥x̂(t)− x(t)∥2 = E[x̂T (t)x̂(t)]− 2E[x̂T (t)x(t)] + E[xT (t)x(t)].

24

Now, we consider the terms one by one, substituting (22) and rewriting in terms of spectral density.
The first term gives:

E[x̂T (t)x̂(t)] = h2u

∞∑
k,l=−∞

K(t− tk)K(t− tl)K(tk − tl) =

=

∫ ∞

−∞
F (ω)

h2u ∞∑
k,l=−∞

K(t− tk)K(t− tl)e2πiω(tl−tk)

 dω. (23)

The second one:

2E[x̂T (t)x(t)] = 2hu

∞∑
k=−∞

K2(t− tk) =

=

∫ ∞

−∞
F (ω)

(
2hu

∞∑
k=−∞

K(t− tk)e2πiω(t−tk)

)
dω. (24)

And, finally, the third one:

E[xT (t)x(t)] = K(0)u = u

∫ ∞

−∞
F (ω) dω. (25)

After factoring out the spectral density integral, the terms (23), 24 and (25) are the expansion of a
binomial: ∣∣∣∣∣1− h

∞∑
k=−∞

K(t− tk)e2πiω(t−tk)

∣∣∣∣∣
2

= 12 − 2h

∞∑
k=−∞

K(t− tk)e2πiω(t−tk)+

+

(
h

∞∑
k=−∞

K(t− tk)e2πiω(t−tk)

)2

With Lemma B.10, all other results can be taken directly from Zaytsev & Burnaev (2017), taking
into account that x(t) is u-dimensional. We recount select findings from this paper: the general error
form, an analytic error expression for a specific kernel, and the minimax error bound.
Theorem B.11. Under the assumptions from Lemma B.10, the error σ2

INT from (21), may be written
in the following form:

σ2
INT = uδ

∫ ∞

−∞
F (ω)

(
(1− K̂(ω))2 +

∞∑
k=−∞

K̂

(
ω +

k

δ

))
dω (26)

= uδ

∫ ∞

−∞
F (ω)

∑
k ̸=0 F (ω + k

δ)∑∞
k=−∞ F (ω + k

δ)
dω, (27)

where K̂ is the Fourier transform of K.

The error (26) does not depend on the interval number. This is due to the inherent symmetry of an
infinite uniform grid: all intervals are identical from the perspective of the covariance function.

Given (26), we can calculate this error for our scenario of cubic spline interpolation. Consider the
covariance functions (for some θ > 0, Q > 0):

∀ i = 1, . . . , u : Ki(t) =
Q

ω4 + θ4
. (28)

At the limit θ → 0, the mean of the resulting Gaussian Processes tends to a natural cubic spline Gol-
ubev & Krymova (2013). We estimate the corresponding interval error σ2

INT(θ) at θ → 0, which can
be interpreted as the interval error for natural cubic spline interpolation:

25

Lemma (4.6). Under Assumptions B.5,B.8, for the covariance function (28) the interval error σ2
INT(θ)

from (21) has the following asymptotic:

lim
θ→0

σ2
INT(θ) =

4π4
√
3

63
δ4Qu.

Proof. We will analytically calculate (26) using techniques from calculus and complex analysis:

I(ξ, δ) ≜
∫ ∞

−∞
F (ω)

∑
k ̸=0 F (ω + k

δ)∑∞
k=−∞ F (ω + k

δ)
dω ≜

∫ ∞

−∞
g(ω, ξ, δ)dω, (29)

where the spectral density F is given by 28. Specifically, for splines, we are interested in the following
limit:

σ2
S ≜ uδ lim

ξ→0
I(ξ, δ) =? (30)

First, we will calculate the infinite sums. After substituting (28) into (29), the integrand will contain:∑
k

Q

(ω + k
δ)

4 + ξ4
= . . . (31)

To calculate this, we devise a general expression for the sum of 4th-degree shifted reciprocals:∑
k

1

(k + a)4 + b4
= . . . ,

for some a, b, using complex analysis. Consider the following function:

fR4(z) =
π cot(πz)

(z + a)4 + b4
.

It’s poles are zd = −a+ b√
2
(±1± i) from the denominator, and z ∈ Z from the cotangent; all poles

are simple ones, and can be calculated using the l’Hopital rule:

Res(fR4, z0) =
AR4(z0)

B′
R4(z0)

,

where fR4 = AR4/BR4; FR4, G
′
R4 are analytic at z0. Applying this formula:

Res(fR4, zd) =
π cot(πzd)

4(zd + a)3
,

Res(fR4, k) =
1

(k + a)4 + b4

According to the Residuals Theorem, the sum of all poles is zero, so:∑
k

1

(k + a)4 + b4
= −

∑
zd

π cot(πzd)

4(zd + a)3
≜ S4(a, b).

The specific value of S4 is rather unsightly, so we leave it out. Applying this to our case (31):∑
k

Q

(ω + k
δ)

4 + ξ4
= Qδ4

∑
k

1

(ωδ + k)4 + (ξδ)4
= Qδ4S4(ωδ, ξδ).

The integrand from (29) can be re-written as:

g = F (ω)

(
1− F (ω)

S4(ωδ, ξδ)Qδ4
)

)
.

Its limit at ξ → 0 is bounded for all values of ω:

lim
ξ→0

g(ξ, ω, δ) = Qδ4π4−2z4 sin
2 (z) + 3z4 − 3 sin4 (z)

z8 (cos (2z) + 2)
,

26

Re

Im

ΓR

-R R

ɣε

Figure 5: Semicircle contour

where we denote z = πδω. This value has a finite limit at ω = 0 (equal to Qδ4π4

45); the numerator is
fourth degree, the denominator is 8th, so it is integrable on R. This implies that, according to the
Lebesgue dominance theorem, we can move the limit from (30) under the integral sign:

σ2
S = lim

ξ→0
I(ξ, δ) =

∫ ∞

−∞
lim
ξ→0

g(ω, ξ, δ) =

= Qδ3π3

∫ ∞

−∞

−2z4 sin2 (z) + 3z4 − 3 sin4 (z)

z8 (cos (2z) + 2)
dz.

Now all that’s left is to compute the integral:∫ ∞

−∞

−2z4 sin2 (z) + 3z4 − 3 sin4 (z)

z8 (cos (2z) + 2)
dz ≜

∫ ∞

−∞
g̃(z)dz = . . .

Again, we use tools from complex analysis. To calculate it, we consider the contour, illustrated by
Figure 5: from −R to −ε on the real axis, along a small semicircle γε around 0, then again along the
real axis from ε to R, and finally along a large semicircle ΓR.

The function is analytic on the contour, so we can apply the residue theorem:(∫ ε

−R

+

∫
γε

+

∫ R

ε

+

∫
ΓR

)
g̃(z)dz = 2πi

∑
poles

Res(g̃, pole).

The integrand has a removable singularity at z = 0, so it is bounded in the vicinity of 0. Thus, the
integral along γε vanishes as ε → 0. The integral along ΓR vanishes, since the power of z in the
denominator of g̃ is larger than that of the numerator by four (8 vs 4). We are left with:

p.v.
∫ ∞

−∞
g̃(z)dz = 2πi

∑
poles

Res(g̃, pole). (32)

The integrand has simple poles at cos(2z) = −2:

cos(2z) = −2 ⇐⇒ z±n ≜
±i log(2−

√
3) + π

2
+ πn n ∈ Z.

We are interested in the poles in the upper-half space, so since log(2 −
√
3) < 0, we choose

zn ≜ z−n . Again, using the l’Hopital rule, we can evaluate the residues at these poles; using symbolic
calculations to simplify the resulting expressions, we achieve:

Res(g̃, zn) = −
9
√
3i

8

(
πn+ π

2 −
i log (2−

√
3)

2

)8 .

According to (32), we now need to sum these residues:

σ2
S = Qδ4π32πi

∞∑
n=−∞

− 9
√
3i

8

(
πn+ π

2 −
i log (2−

√
3)

2

)8

 (33)

27

The sum from (33) can be calculated analytically, using complex analysis. We introduce the nota-

tion c ≜ π
2 −

i log (2−
√
3)

2 for convenience:∑
n

1

(πn+ c)8
= . . . ,

The sum appears as the sum of residues of the function:

fR8(z) ≜
cot(z)

(z + c)8
.

Indeed, the residues at poles of cot, for z = πn n ∈ Z, are:

Res(fR8, n) = (z − πn)
1

z−πn +O(z − πn)
(πn+ c)8

=
1

(πn+ c)8
.

According to the residue theorem, their sum is minus the residue of the remaining pole at − c
π :∑

n

1

(πn+ c)8
= −Res

(
fR8,−

c

π

)
. (34)

It is an 8th-order pole, so its residue is given by:

Res(fR8, 0) =
1

7!
lim

z→−c/π

d7

dz7
(z8fR8(z)) = −

16

567
.

Substituting it first into (34), and then into (33), we get the final result:

σ2
S = Qδ4π32π

9
√
3

8

16

567
=

4
√
3π4Qδ4

63
.

We devised a tight error bound for the interval error: indeed, the expression from Lemma 4.6 turns to
equality for uniform sequences. It is also important to highlight, that pointwise bounds exist for the
non-GP, deterministic setting (and can be plugged into (9), supposing that x is degenerate) Hall &
Meyer (1976); De Boor & De Boor (1978), the optimal one being:

∥x̂(t)− x(t)∥ ≤ 5

384
|δ|4∥x(4)∥.

However, they are not tight: the actual error evidently depends on the distance to the closest
observation, which is impossible for σ̄PW since it does not depend on time.

B.5.3 PROOF OF SPECIAL CASE OF ASSUMPTION B.5.

Consider an exponential covariance function k(x, y) = exp (−|x− y|). If y > x and we consider
y′ = y + s for s > 0, then k(x, y′) = k(x, y) exp(−s). Below we denote δ = exp(−s). By
construction δ < 1.

We construct optimal Gaussian process prediction at a point x. Our sample of observations consists
of two sets of points: X1 = {x1, . . . , xn}, X2 = {xn+1, . . . , xm}. For our design of experiments,
it holds that for i > n xi > xk, k = 1, n, xi > x. We shift X2 by s > 0 to get Xs

2 = {xn+1 +
s, . . . , xm + s}.
Let us define the covariance matrices involved in risk evaluation. Self-covariances at X1 is A,
self-covariances defined at X2 is D, and cross-covariances between X1 and X2 is B. Then, after
changing X2 to Xs

2 , A and D don’t change, and B is multiplied by δ.

Let us denote the vector of covariances between x and X1 and X2 as a and d correspondingly. After
changing X2 to Xs

2 , a doesn’t change, and d is multiplied by δ.

The squared risk for the prediction at point x has the form:

σ2(x) = k(x, x)− kTK−1k.

28

Here k is a concatenation of a and d, and

K =

(
A B
BT D

)
.

After shifting of X2, kδ is a concatenation of a and δd, and

Kδ =

(
A δB
δBT D

)
.

and the corresponding risk:
σ2
δ (x) = k(x, x)− kT

δ K
−1
δ kδ.

Using the block-inversion formula, we get:

K−1
δ =

(
A−1 + δ2A−1BS−1BTA−1 −δA−1BS−1

−δS−1BTA−1 S−1

)
,

here S = D − δ2BTA−1B.

Then,

kTK−1k = aTA−1a+ (BTA−1a− d)TS−1(BTA−1a− d),

kT
δ K

−1
δ kδ = aTA−1a+ (BTA−1a− d)T δ2S−1(BTA−1a− d).

It is clear that δ2S−1 =
(
D
δ2 −B

TA−1B
)−1

.

Let us prove the following Lemma:
Lemma B.12. Consider a positive definite matrix D and 0 < δ < 1. Then for an arbitrary vector x
and a symmetric matrix U such that (D − U)−1 and (D/δ2 − U)−1 exist, it holds that:

xT (D − U)−1x ≥ xT

(
D

δ2
− U

)−1

x.

Proof. For an arbitrary vector x let us define the function:

F (δ) = xT

(
D

δ2
− U

)−1

x.

Using the derivative of the inverse matrix formula:

∂F (δ)

∂δ
= 2xT

(
D

δ2
− U

)−T
D

δ3

(
D

δ2
− U

)−1

x.

Let x̃ =
(
D
δ2 − U

)−1
x. Then,

∂F (δ)

∂δ
= 2x̃T D

δ3
x̃.

Given that D is a positive definite matrix, it holds that:

∂F (δ)

∂δ
> 0.

So, the proposition of Lemma holds, as with decreasing δ, we decrease the functional value given
that the derivative is positive.

Substituting U = BTA−1B and applying Lemma B.12, we get:

kTK−1k = aTA−1a+ (BTA−1a− d)TS−1(BTA−1a− d) ≥
kT
δ K

−1
δ kδ = aTA−1a+ (BTA−1a− d)T δ2S−1(BTA−1a− d).

So, σ2
δ (x) > σ2(x), meaning that the risk increases after the shift.

29

B.5.4 VALIDATION OF ASSUMPTION B.5

The assumption was tested for the common quadratic kernel:

K(δt) = e−(δt)2/2.

The procedure is outlined in Algorithm 1 and is also available as a Python script in our paper’s
repository. It randomly chooses sequence length, sequence times, displacement amount, and location,
and calculates the variance of a Gaussian Process fitted to the generated sequence at a random time.
Finally, it asserts that the sequence with increased intervals has an error bigger than the initial one.
The loop successfully runs for 1000 iterations, suggesting that the hypothesis typically holds under
natural settings.

Algorithm 1 Monte Carlo hypothesis testing.
loop
n← randint(5, 300)
r ← rand()
mark iteration-start
{tk}nk=1 ← sort(rand(n))
t1 ← 0
tn ← 1
i← randint(1, N − 1)
{t̃k}k ← {t1, . . . , ti−1, ti + r, . . . , tn + r}
K ← cov({ti − tj}i,j)
K̃ ← cov({t̃i − t̃j}i,j)
t← rand()
t̃← t
if ti < t then
t̃← t+ r

end if
if Singular(K) or Singular(K̃) then

goto iteration-start
end if
k ← cov({tk − t}k)
k̃ ← cov({t̃k − t̃}k)
D ← cov(0)− quad(K, k)
D̃ ← cov(0)− quad(K̃, k̃)
assert D < D̃

end loop

B.6 LONG-TERM MEMORY

Theorem (4.8). For the ODE (2) under Assumptions 4.1, 4.2, the following holds:

d

dτ

∥∥∥∥dh(t+ τ)

dhi(t)

∥∥∥∥
2

< 0.

Proof. First, we denote χ ≜ dh(t+τ)
dhi(t)

. Instead of considering d
dτ ∥χ∥2, we consider the derivative of

the squared norm 1
2

d
dτ ∥χ∥

2
2. These two expressions will have the same sign, and the derivative of the

squared norm can be conveniently rewritten:

1

2

d

dτ
∥χ∥22 =

(
d

dτ

dh(t+ τ)

dhi(t)
, χ

)
.

Since the functions we are working with are continuous, we may re-order the derivative, achieving:(
d

dτ

dh(t+ τ)

dhi(t)
, χ

)
=

(
d

dhi(t)

dh(t+ τ)

dτ
, χ

)
. (35)

30

Now we can expand dh(t+τ)
dτ , using (2), and differentiate it w.r.t. hi(t):

d

dhi(t)

dh(t+ τ)

dτ
=

d

dhi(t)
(afθ(x̂(t+ τ),h(t+ τ))− bh(t+ τ)) = aJχ− bχ,

where J is the Jacobain of fθ w.r.t. h. Plugging this into (35), we get:

1

2

d

dτ
∥χ∥22 = (aJχ− bχ, χ) = aχTJTχ− b∥χ∥22. (36)

According to Assumption 4.1, the spectral norm of J is no greater than Lh. Consequently, the
maximum eigenvalue of J is also ≤ Lh. We know from linear algebra that a quadratic form cannot
stretch a vector’s norm more than its max eigenvalue, so:

χTJTχ ≤ Lh∥χ∥22. (37)

Finally, putting (36) together with (37), we achieve:

aχTJTχ− b∥χ∥22 ≤ Lha∥χ∥22 − b∥χ∥22 = ∥χ∥22(Lha− b).

This expression is negative, according to (3).

31

0.00 0.25 0.50 0.75 1.00
0.0

0.1

0.2

0.3

Figure 6: A sample from the bump dataset

0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

Figure 7: Sine-Mix dataset sample.

C EXPERIMENTS

C.1 DATASETS

Below is a detailed description of each dataset:

• The PhysioNet Sepsis 6 dataset Reyna et al. (2020), released under the CC-BY 4.0 license.
Most of the values are missing, with only 10% present. Sequences are relatively short,
ranging from 8 to 70 elements, with a median length of 38. The target variable indicates
whether the patient developed sepsis, meaning it’s binary and highly unbalanced, so we
measure AUROC. This dataset is also used by the original NCDE paper Kidger et al. (2020),
making it a valuable addition to our benchmark. Following the NCDE paper, we only
consider the first 72 hours of a patient’s stay.

• Two datasets from the Time Series Classification archive 7 Middlehurst et al. (2024) (with
no explicit license specified): the U-Wave Gesture Library Liu et al. (2009) and the Insect
Sound dataset8. These datasets were processed identically: the timestamps were taken to be
evenly spaced between 0 and 1, and 30% of each sequence was replaced with NaNs. They
both have a multiclass label, so we use the Accuracy metric.

• A synthetic Pendulum dataset, with the dampening coefficient as the target Osin et al.
(2024) (with no explicit license specified) — regression task. Sequences are irregular,
containing 10% missing values, with lengths varying from approximately 200 to 400
elements, the median length being 315.

• The Pendulum (regular and irregular versions) and Sine-2 datasets with forecasting as the
target, see Appendix C.8.

• The Bump dataset for Section 3. The task is binary classification: between bump func-
tions (38) with ζ = 20 and constant-zero functions. Figure 6 demonstrates a positive sample
from this dataset.

• The SineMix dataset. The task is to predict the frequency of the first of two sine waves,
joined at mid-point as in Figure 7. Consequently, this is a regression label, we use R2 score.

ψζ(x) =

{
exp

(
1

(ζx)2−1

)
if |(ζx)| < 1;

0 if |(ζx)| ≥ 1
(38)

The choice of metrics and activation functions for each dataset is dictated by the nature of the task.
The correspondence between tasks, activation functions, and metrics is given by Table 8.

6https://physionet.org/content/challenge-2019/1.0.0/
7https://www.timeseriesclassification.com/
8https://www.timeseriesclassification.com/description.php?Dataset=

InsectSound

32

https://physionet.org/content/challenge-2019/1.0.0/
https://www.timeseriesclassification.com/
https://www.timeseriesclassification.com/description.php?Dataset=InsectSound
https://www.timeseriesclassification.com/description.php?Dataset=InsectSound

Table 8: Table with Metrics and Activations, corresponding to various tasks.

Task Binary Classification Multiclass Classification Regression

Activation Sigmoid SoftMax None
Metric AUROC Accuracy R2 Score

This choice of datasets allows us to test the considered models in multiple challenging areas: long
sequences, irregular sequences, and sequences with many missing values and scarce data. The code
for generating each dataset is provided in our repository.

C.2 BACKBONES

RNN. The recurrent networks are all single-layer and one-directional, with 32 hidden channels. For
GRU Chung et al. (2014) we use the standard PyTorch implementation:

r = σ(Wirx+ bir +Whrh+ bhr);

z = σ(Wizx+ biz +Whzh+ bhz);

n = tanh(Winx+ bin + r⊙ (Whnh+ bhn));

h̃ = (1− z)⊙ n+ z⊙ h.

We use the standard GRU notation: h for the previous hidden state, x for the current input, h′ for the
new hidden state; ⊙ denotes the Hadamard product. For the vanilla RNN, we use a simple one-layer
tanh-activated network:

h̃ = tanh(Wihx+ bih +Whhh+ bhh).

Transformers. We use the Pytorch implementation of the Transformer Encoder layer. The two
versions differ in their positional embeddings: RoFormer uses rotary embeddings Su et al. (2024)
(provided by TorchTune), and TempFormer uses temporal sine-based embeddings, as proposed by
the Transformer Hawkes paper Zuo et al. (2020).

Mamba. The Mamba model we use is Mamba2 Gu & Dao (2023) from the Mamba SSM library 9,
which we employ without significant modifications.

Neural CDE, RDE. To reproduce the results as closely as possible, we use TorchCDE 10 for the
Neural CDE method Kidger et al. (2020). Specifically, we implemented the example for irregular
sequence classification from their repository. For Neural RDE Morrill et al. (2021b), we pre-process
the data using the original Signatory package, provided by the authors 11, with depth set to 2.

GRU-ODE. As the model for GRU-ODE De Brouwer et al. (2019), we simply take a Neural CDE
with the Sync-NF vector field, without time scaling.

DeNOTS. DeNOTS is slower than other non-ODE methods; however, we argue this is an imple-
mentation issue. Neural ODEs received much less attention than State-Space Models, Transformers,
or RNNs. We use the TorchODE library Lienen & Günnemann (2022). Although it is faster than the
original implementation Chen et al. (2018), it still requires work, being built almost single-handedly
by its main contributor.

Backpropagation is done via the AutoDiff method, which is faster than Adjoint backpropagation.
However, it is also more memory-consuming. We fix the tolerance to 10−3 and use the adaptive
DOPRI5 solver. The normalizing constant M we use for time scaling (tk ← D

M tk) is set to the
median size of the timeframe across the dataset. Our version of cubic spline interpolation skips NaN
values, interpolating only between present ones. All-zero channels are set to a constant zero. For the
DeNOTS versions that use the GRU Cell as their dynamics function:

9https://github.com/state-spaces/mamba
10https://github.com/patrick-kidger/torchcde
11https://github.com/patrick-kidger/signatory

33

https://github.com/state-spaces/mamba
https://github.com/patrick-kidger/torchcde
https://github.com/patrick-kidger/signatory

• For no negative feedback, we use the GRU as-is;

• For Anti-NF, we pass −h instead of h to a standard PyTorch GRU.

• For Sync-NF, we subtract the current hidden from the derivative.

GRU turns out to be a surprisingly convenient framework for incorporating negative feedback.

For the non-GRU-based vector fields, specifically Tanh and ReLU, we used two consecutive linear
layers separated by the corresponding activations. The tanh model also includes an activation at the
end. The ReLU version does not have a final activation; otherwise, it could not decay any hidden-state
components.

Model size. All the considered models are small, with hidden sizes fixed to 32. This is done delib-
erately to facilitate reproducibility and reduce experimentation time. The remaining hyperparameters
are chosen so that the total number of learnable parameters is comparable to or greater than that of
DeNOTS: everywhere except Sepsis that means setting the number of layers to 1. On Sepsis, we
use 4 layers for Transformers and 32 layers for Mamba. The specific numbers of parameters for each
model on each of our main datasets are provided in Table 9.

Table 9: The number of parameters for each model on all our main datasets.

DeNOTS GRU NCDE NRDE Mamba RoFormer TempFormer

Pendulum 3552 3552 4352 7616 8120 137664 137664
UWGL 3648 3648 5440 11968 8152 137504 137504
InsectSound 3456 3456 3264 4352 8088 137632 137632
Sepsis 339264 339264 3809088 ✗ 367776 662080 662080

C.3 PIPELINE

We provide our repository with automated scripts to download and preprocess all datasets, as well
as to train and evaluate all the considered models, using popular frameworks such as Pytorch Ansel
& team (2024) (Caffe2 license), Pytorch Lightning Falcon & The PyTorch Lightning team (2019)
(Apache License 2.0) and Hydra Yadan (2019) (MIT License) to make the process familiar to most
AI researchers. The YAML configs, containing all the hyperparameters, are also provided in the
repository to facilitate reproducibility. The documentation clearly explains the steps necessary to
reproduce all considered experiments.

C.3.1 TRAINING

All training uses the Adam method Kingma (2014), with the learning rate fixed to 10−3 and other
parameters left default. The whole model, consisting of the head and the backbone, is trained end-to-
end. The head consists of a linear layer and an activation function. We do not set an upper bound for
epochs, stopping only when the validation metric stops improving. The choice of head’s activation,
loss, and specific metrics depends on the considered task, as outlined in Table 10.

Table 10: Head activation, loss, and metric choice for each downstream task.

Task Activation Loss Metric
Regression - Mean squared error R2

Binary Sigmoid Binary cross-entropy AUROC
Multiclass Softmax Cross-entropy Accuracy

C.3.2 EMBEDDINGS

Before passing {xk}k to the backbone, we apply Batch Normalization Ioffe & Szegedy (2015). For a
fairer baseline comparison, time intervals tk − tk−1 are also included in the embeddings in the same
way as other numerical features.

34

Table 11: Main results on the four considered datasets. Best models are highlighted in bold, second-
best are underlined. Values are highlighted identically, if their difference is less than half of their joint
variance (12

√
σ2
1 + σ2

2). We present an average over three runs. For the two SNCDEs (Scaled Neural
CDEs), specifically Sync-NF and DeNOTS (Anti-NF), D is selected based on the validation set.

Backbone UWGL InsectSound Pendulum Sepsis

GRU 0.5± 0.1 0.3± 0.2 0.73± 0.03 0.838± 0.004
TempFormer 0.78± 0.03 0.43± 0.02 0.59± 0.08 0.89± 0.02
RoFormer 0.74± 0.04 0.29± 0.02 0.61± 0.02 0.924± 0.004
Mamba 0.71± 0.07 0.41± 0.03 0.61± 0.03 0.829± 0.004
GRU-ODE 0.4± 0.3 0.18± 0.03 0.6± 0.05 0.925± 0.003
Neural CDE 0.82± 0.03 0.145± 0.001 0.76± 0.02 0.880± 0.006
Neural RDE 0.79± 0.03 0.212± 0.004 0.78± 0.03 ✗a

Sync-NF SNCDE 0.811± 0.002 0.39± 0.09 0.77± 0.01 0.932± 0.003
DeNOTS (ours)b 0.82± 0.03 0.44± 0.02 0.79± 0.02 0.937± 0.005

aDiverges: Neural RDEs cannot handle large numbers of features, as admitted by its authors.
bDeNOTS corresponds to the SNCDE with the Anti-NF vector field.

For the Sepsis dataset, the considered numerical features represent medical variables and are thus
presumably more complex than the physical coordinate/acceleration data from the other datasets. To
account for this, we inflate each of them to a dimension of 100 using a trainable linear layer before
the backbone. Besides, this dataset has static features, which we use as the starting points where
applicable. Additionally, since Sepsis is closer to event sequences than time series, we fill the NaN
values with zeros prior to passing it to the baselines, indicating ”no-event“ (this includes the SNCDE
models).

On all the other datasets, NaN values for the models that do not support missing values were replaced
via forward/backward filling.

C.4 FULL RESULTS

In this section, we present the full results of all our models, which were used to build the ranks from
Table 7. The results are given in Table 11.

C.5 EXPRESSIVITY DISCUSSION

Here, we explain why measuring expressivity with the downstream metric is a valid approach.
Theoretically, the total error can be decomposed into three terms Gühring et al. (2020):

1. The approximation error. We are forced to consider only a limited parametric family of
estimator functions. This directly measures the expressivity of the chosen parametric model,
which is the focus of our work.

2. The estimation error. We can only calculate the empirical risk, on a finite and imperfect
training set, instead of the true one. This measures the generalization quality you speak of.

3. The training error. The optimization problems in deep learning are usually complex and
non-convex. We can only solve such problems approximately, via iterative techniques with
a finite number of steps.

To minimise the influence of the training error, we do not limit the number of epochs, stopping
optimization only when the validation metric stops increasing.

Overfitting. Next, it is the consensus that the more expressive models suffer more from overfit-
ting Hawkins (2004), i.e. generalize worse. We verify that our models adhere to this by performing
the following experiment. We construct a smaller version of the Pendulum dataset; its training
set is 1/32 of the original one, and compare the DeNOTS model with various values of D on this
benchmark. The results are provided in Table 12. The overfitting effect is observed very clearly:

35

the ”shallow“ D = 1 model achieves higher metrics on the test set than D = 10, and the ranking is
reversed on the train set.

Table 12: Results on the Pendulum small dataset for two versions of the DeNOTS model with various
time scales (D = 1, 10).

Scale Test R2 Test MSE Train R2 Train MSE

D = 1 0.479± 0.006 0.178± 0.002 0.62± 0.096 0.124± 0.029
D = 10 0.437± 0.049 0.192± 0.017 0.738± 0.115 0.089± 0.043

To sum up, we have ruled out the training and estimation errors in our NFE-Metric correlation
experiments, so we conclude that high correlation implies that time scaling benefits expressivity.

C.6 NFE-CORRELATION EXPERIMENTS

This section focuses on the relationship between the Number of Function Evaluations (NFE) logarithm
and the respective metrics. In addition to Pearson correlation from Table 6, measuring linear
dependence, we also present Spearman correlation in Table 13, measuring monotonicity. Finally, the
log-NFE-metric graphs in Figures 8, 9 illustrate these relationships. The best results of each model
are displayed in Table 14.

Table 13: Spearman correlation test between log-NFE and metric, for various vector fields. The first
number indicates the statistic for reducing tolerances, the second one — the statistic for increasing
time scale. Values ≥ 0.7 are highlighted in bold.

Pendulum Sepsis Sine-2

Tanh 0.1/-0.2 0.2/0.7 0.6/0.6
ReLU 0.4/-0.7 0.4/0.03 0.1/0.5
No NF 0.4/-0.7 0.4/-0.6 0.3/-0.3
Sync-NF 0.4/0.7 0.4/-0.4 0.4/0.9
Anti-NF 0.5/0.9 0.5/0.7 0.3/1.0

Our model shows excellent performance on all the presented benchmarks. As for the other approaches:

• Increasing tolerance to increase NFE does not reliably improve the models’ performance;
the NFE-metric correlation is mostly weak.

• Increasing depth for non-stable vector fields does not consistently increase expressiveness.
• The Sync-NF seems to suffer from forgetfulness on larger depths for Sepsis (especially

evident from Figure 8).

Notably, the ReLU-T model performs surprisingly well on Sepsis, beating even Anti-NF-S. However,
ReLU-T’s performance on Pendulum and Sine-2 is inferior, and its NFE-metric correlation is low
even on Sepsis, so this does not invalidate our conclusions. We argue that although ReLU activations
can lead to dying gradients, potentially destabilizing training, and although the unbounded nature of
this vector field (VF) may in principle cause exponential growth in the hidden state, such behavior
is not inevitable. The Sepsis dataset is somewhat atypical: approximately 90% of the observations
are missing. As a result, the effective sequence length is substantially shorter, which alleviates some
stability concerns, allowing the model to increase ℓ2 weight norms without consequence.

C.7 NEGATIVE FEEDBACK STRENGTH

In this section, we analyse whether the equation (3) holds for Anti-NF or Sync-NF in practice.
Specifically, we will use the following lemma:

Lemma C.1. If the Jacobian J ≜
(

∂fi
∂hj

)
i,j

satisfies:

∥Jh∥
∥h∥

≤ Lh, ∀h ∈ H,

36

5.0 5.5 6.0 6.5 7.0
Log NFE

0.90

0.91

0.92

0.93

0.94

M
et

ric
 A

UR
OC

Tanh-T
ReLU-T
No NF-T

Sync-NF-T
Anti-NF-T
Tanh-S

ReLU-S
No NF-S

Sync-NF-S
Anti-NF-S (ours)

Figure 8: AUROC vs Log-NFEs on the Sepsis dataset for various methods of increasing NFEs (-T for
lowering tolerance, -S for increasing time scale); for various vector fields (Tanh, ReLU — MLP with
Tanh and ReLU activations respectively; No NF — vanilla GRU vector field, Sync NF — GRU-ODE
vector field, Anti NF — our version). The curves were drawn via Radial Basis Function interpolation.

4.0 4.5 5.0 5.5 6.0
Log NFE

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
et

ric
 R

2

Tanh-T
ReLU-T
No NF-T

Sync-NF-T
Anti-NF-T
Tanh-S

ReLU-S
No NF-S

Sync-NF-S
Anti-NF-S (ours)

Figure 9: R2 vs Log-NFEs on the Sine-2 dataset for various methods of increasing NFEs (-T for
lowering tolerance, -S for increasing time scale); for various vector fields (Tanh, ReLU — MLP with
Tanh and ReLU activations respectively; No NF — vanilla GRU vector field, Sync NF — GRU-ODE
vector field, Anti NF — our version). The curves were drawn via Radial Basis Function interpolation.

37

Table 14: Best results of each vector field in the ablation study. The winner is highlighted in bold,
the second-best is underlined; if the distance to (second-)best is less than half the joint variance
(
√
σ2
1 + σ2

2), the result is highlighted in the same fashion.

Pendulum Sepsis Sine-2

Tanh-T 0.697 ± 0.007 0.919 ± 0.002 0.6 ± 0.04
ReLU-T -20.0 ± 20.0 0.94 ± 0.002 0.58 ± 0.08
No NF-T 0.68 ± 0 0.923 ± 0.003 0.27 ± 0.05
Sync-NF-T 0.68 ± 0.04 0.93 ± 0.004 0.47 ± 0.05
Anti-NF-T 0.69 ± 0.03 0.927 ± 0.003 0.39 ± 0.02

Tanh-S 0.7 ± 0.09 0.934 ± 0.002 0.88 ± 0.06
ReLU-S -50.0 ± 60.0 0.9364 ± 0.0007 0.7 ± 0.1
No NF-S 0.65 ± 0.02 0.92 ± 0.01 0.46 ± 0.01
Sync-NF-S 0.77 ± 0.01 0.934 ± 0.004 0.96 ± 0.03
Anti-NF-S 0.79 ± 0.03 0.937 ± 0.005 0.988 ± 0.002

and the setH is connected, then the function f is Lh-Lipschitz onH.

It follows from the generalized mean-value theorem (for vector-valued functions with vector argu-
ments).

Consequently, we need to test:

For Sync-NF :
∥Jh∥
∥h∥

≤ 1; (39)

For Anti-NF :
∥Jh∥
∥h∥

a ≤ b. (40)

For Anti-NF, the expression contains the values a, b, which we model with the component-wise mean
of 1− z, z, respectively. We refer to the left-hand sides of (39), (40) as the update strengths, and the
right-hand side as the NF strengths. In these terms, we need to test whether the update strength is less
than the NF strength.

Figures 10, 11 present our results. The Sync-NF model satisfies our assumptions throughout the
trajectory: the update strength is constantly less than 1. The Anti-NF model mostly adheres to (40).
However, due to significant variances, the vector field must not always be subject to (40), allowing it
to disable the NF effect at will.

C.8 FORECASTING

Our forecasting task consists of both interpolation and extrapolation, in a simplified setting:

• Extrapolation. The second half of the input sequence is discarded;
• Interpolation In the first half, every second element is also discarded.

The task is to reconstruct the discarded elements. Each element is a real number, so forecasting is a
regression task in our case. We measure the quality of the solutions using the R2 metric. Specifically,
we consider two forecasting datasets: Pendulum-Angles and Sine-2.

C.8.1 PENDULUM ANGLES

The Pendulum-Angles dataset is the task of forecasting the angle of the pendulum, generated similarly
to our synthetic Pendulum dataset. The specifics of the original Pendulum dataset were described in
Appendix C.1. To compare our models’ ability to handle irregular data, we consider two versions of
observation time sampling: with observations on a regular grid or appearing according to a Poisson
random process.

The results are presented in Table 15. DeNOTS is best at handling irregular sampling intervals.
However, when times are sampled regularly, Neural CDE slightly outperforms our method.

38

0.2 0.4 0.6 0.8 1.0
Time frac.

0.0

0.2

0.4

0.6

0.8

1.0

NF Strength
Update Strength

Figure 10: NF and update strength vs fraction of
total time passed for the Sync-NF vector field. A
constant-1 line represents the NF strength, while
for the update strength, we average the results
over five runs, illustrating variance via tinting.

0.2 0.4 0.6 0.8 1.0
Time frac.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7 NF strength

Update strength

Figure 11: NF and update strength vs fraction
of total time passed for the Anti-NF vector field.
The NF and the update strengths are calculated
by averaging over the corresponding values, so
we provide variance via tinting for both of them.

Table 15: Results on the Pendulum-Angles dataset.

Dataset DeNOTS Neural CDE Latent ODE RoFormer TempFormer

Irregular 0.994 ± 0.001 0.985 ± 0.003 0.981 ± 0.002 0.979 ± 0.001 0.961 ± 0.005
Regular 0.996 ± 0.001 0.998 ± 0.001 0.996 ± 0.001 0.99 ± 0.001 0.971 ± 0.003

C.8.2 SINE-2 DATASET

The Sine-2 dataset is a synthetic dataset for forecasting, with each sequence the sum of two sine
waves with different frequencies, as illustrated by Figure 12.

This dataset is convenient because it allows us to single out expressivity: we use it in our NFE-Metric
correlation experiments. Although it is evidently rather difficult, it is perfectly solvable since it does
not contain any noise. Consequently, any increase in expressivity must directly cause an increase
in metrics. This is precisely what we observe in Table 6 from the main text, and in Table 13 and
Figure 9 from Appendix C.6.

C.9 FULL ATTACK RESULTS

Here, we provide the complete graphs for both the Change and the Drop attack from Table 5. They
are presented by Figures 13, 14. The conclusions are the same as those we provide in the main text,
made only more evident by the dynamic. The attacks were each repeated for five different seeds, for
five versions of the weights, totalling 25 runs per point, and then averaged over. Using this, we also
provide the variance via tinting.

Additionally, we test how the value of D affects the robustness of our models. This is presented in
Figures 15, 16. Increasing depth lowers robustness, which is in line with the consensus. Prior work
indicates that the more accurate models with higher metrics often perform worse under adversarial
attacks than those with lower metrics Su et al. (2018). Increased accuracy often requires increased
expressiveness and sensitivity, which directly impacts robustness. Consequently, this demonstration
supports our claim that larger values of D correspond to more expressive models.

C.10 COMPUTATIONAL RESOURCES

Due to the small hidden sizes (32) and limited number of layers (1 in most cases), all the considered
models occupy little video memory and fit on an Nvidia GTX 1080 Ti. All the datasets fit into RAM
(occupying no more than several Gb on disk). We set a limit of 200Gb RAM in our Docker container,

39

0.0 0.2 0.4 0.6 0.8 1.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 12: A sample from the Sine-2 dataset.

0.8 0.85 0.9 0.95
Attack Scale

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R2
 S

co
re

Drop
RNN
TempFormer
RoFormer
Mamba
Neural CDE
Neural RDE
DeNOTS-5 (No NF)
DeNOTS-5 (Sync-NF)
DeNOTS-5 (Anti-NF)

Figure 13: R2 vs fraction of dropped tokens on the Pendulum dataset, on the test set. The dropped
tokens are replaced with NaNs. The models are very robust to these attacks, probably because the
initial sequences contained NaNs.

however a significantly smaller one would do (we estimate 32Gb should be enough). We also allocate
16 CPUs for our container, but since most of the training happens on a GPU, these are not necessary,
one could make do with 4-8 cores.

Each experiment takes from a few minutes to a few hours of compute time, depending on hyper-
parameters (specifically, D and tolerance for DeNOTS) and the dataset (Pendulum being the most
expensive). Overall, we estimate that approximately 100 experiments need to be performed to repro-
duce our results, with a mean time of 30m, which translates to ∼ 50 hours of compute on an Nvidia
1080Ti in total. Our cluster houses 3 such video cards, allowing us to perform the computations in
parallel, speeding up the process.

Notably, a substantial amount of experiments were not included in the final version due to hypothesis
testing and bugs, so the real compute is closer to ∼ 500 hours.

40

0.005 0.01 0.02 0.04
Attack Scale

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

R2
 S

co
re

Change
RNN
TempFormer
RoFormer
Mamba
Neural CDE
Neural RDE
DeNOTS-5 (No NF)
DeNOTS-5 (Sync-NF)
DeNOTS-5 (Anti-NF)

Figure 14: R2 vs fraction of tokens, changed to standard Gaussian noise, on the Pendulum dataset,
for the test split. We use the log-scale for the x-axis, because all the considered models are very
sensitive to these attacks.

0.8 0.85 0.9 0.95
Attack Scale

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

R2
 S

co
re

Drop

DeNOTS-2 (Anti-NF)
DeNOTS-5 (Anti-NF)
DeNOTS-10 (Anti-NF)
DeNOTS-20 (Anti-NF)

Figure 15: R2 vs fraction of dropped tokens on
the Pendulum dataset, on the test set, for various
values of D. The dropped tokens are replaced
with NaNs.

0.005 0.01 0.02 0.04 0.08
Attack Scale

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

R2
 S

co
re

Change
DeNOTS-2 (Anti-NF)
DeNOTS-5 (Anti-NF)
DeNOTS-10 (Anti-NF)
DeNOTS-20 (Anti-NF)

Figure 16: R2 vs fraction of tokens, changed to
standard Gaussian noise, on the Pendulum dataset,
for the test split, for various values of D. We use
the log scale for the x-axis because all the consid-
ered models are susceptible to these attacks.

41

	Introduction
	Method
	Time Scaling
	Negative Feedback
	Stability
	Error Bounds
	Interpolation error

	Long-term memory

	Main Experiments
	Conclusions
	Related works
	Theory
	Time scaling
	Negative Feedback Model
	Stability
	Error Bounds
	Bound Tightness

	GP Interpolation Error
	GP Assumptions
	Interpolation Error bounds
	Proof of special case of Assumption B.5.
	Validation of Assumption B.5

	Long-term Memory

	Experiments
	Datasets
	Backbones
	Pipeline
	Training
	Embeddings

	Full Results
	Expressivity discussion
	NFE-Correlation experiments
	Negative Feedback Strength
	Forecasting
	Pendulum Angles
	Sine-2 Dataset

	Full attack results
	Computational Resources

