
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

DENOTS: STABLE DEEP NEURAL ODES FOR TIME
SERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural CDEs provide a natural way to process the temporal evolution of irregular
time series. The number of function evaluations (NFE) is these systems’ natural
analog of depth (the number of layers in traditional neural networks). It is usually
regulated via solver error tolerance: lower tolerance means higher numerical pre-
cision, requiring more integration steps. However, lowering tolerances does not
adequately increase the models’ expressiveness. We propose a simple yet effective
alternative: scaling the integration time horizon to increase NFEs and ”deepen“
the model. Increasing the integration interval causes uncontrollable growth in
conventional vector fields, so we also propose a way to stabilize the dynamics via
Negative Feedback (NF). It ensures provable stability without constraining flexibil-
ity. It also implies robustness: we provide theoretical bounds for Neural ODE risk
using Gaussian process theory. Experiments on four open datasets demonstrate
that our method, DeNOTS, outperforms existing approaches — including recent
Neural RDEs and state space models, — achieving up to 20% improvement in
metrics. DeNOTS combines expressiveness, stability, and robustness, enabling
reliable modelling in continuous-time domains.

1 INTRODUCTION

Neural Controlled Differential Equations (CDEs) Kidger et al. (2020) provide a natural way to
process irregular time series. CDEs are Ordinary Differential Equations (ODEs), where the derivative
depends on an external input signal. Neural CDEs utilize a Neural Network (NN) as the ODE’s
dynamics function. It is well-known that increasing NN depth (number of layers) leads to higher
expressiveness Gripenberg (2003); Lu et al. (2017); Yarotsky (2017), i.e., widens the class of functions
the NN may represent Gühring et al. (2020). According to the original Neural ODE paper Chen et al.
(2018), the natural analogue of NN depth is the number of function evaluations (NFE). Naturally, we
hypothesise that a larger NFE results in a better Neural CDE model.

NFE is primarily controlled by the solver tolerance, which defines the acceptable error level during
numerical integration Dormand & Prince (1980). Lowering this tolerance increases the required
number of integration steps and NFE. However, prior work mostly sidesteps this topic: the expres-
siveness gains from higher precision are often minimal in practice. The problem here is that, as
we will show, boosting expressiveness on a fixed integration interval necessitates larger l2 weight
norms, which harms training stability. Instead, we propose scaling the integration time. This method
improves expressiveness while reducing the required weight norms. We refer to it as Scaled Neural
CDE (SNCDE).

Upon investigating the proposed time-scaling procedure, we found that longer integration intervals
can introduce uncontrollable trajectory growth, which must also be addressed. A very intuitive
approach to constraining the trajectory is adding Negative Feedback (NF). Prior work implemented
it by subtracting the current hidden state from the dynamics function De Brouwer et al. (2019).
However, as we demonstrate, such a technique causes ”forgetfulness“: the influence of older states
constantly decays, and the model cannot retain important knowledge throughout the sequence. This
effect is akin to the one experienced by classic Recurrent Neural Networks (RNN), remedied by
Long Short-Term Memory (LSTM) Hochreiter & Schmidhuber (1997) and Gated Recurrent Units
(GRU) Chung et al. (2014). We demonstrate that our novel NF does not suffer from ”forgetfulness“.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Table 1: Properties comparison for SNCDEs with different vector fields.

Stability Error bounds Long-term memory
SNCDE Vector Field (Th. 4.4/Fig. 4) (Th. 4.5/Tab. 5) (Th. 4.9/Tab. 4)

Unstable (No NF/Tanh/ReLU) No No Yes
Sync-NF (orig. GRU-ODE) Yes Yes No
DeNOTS (Anti-NF, ours) Yes Yes Yes

Time series models possess another crucial property: we work with discrete observations instead
of the true continuous process. The models cannot analyse the system during the resulting inter-
observation gaps, accumulating epistemic uncertainty in the final representation Blasco et al. (2024).
Estimating such uncertainty has been a topic of interest for decades Golubev & Krymova (2013).
Without additional modifications, it piles up with time, and the theoretical variance of the final
prediction becomes proportional to sequence length. High variance makes the model vulnerable to
various adversarial samples Cohen et al. (2019). In our case, the model is vulnerable to attacks that
increase the intervals between input sequence elements by randomly dropping observations.

To overcome the aforementioned challenges, this work introduces DeNOTS — Stable Deep Neural
ODEs for Time Series. Instead of lowering tolerances, we scale the time interval. Larger time frames
destabilise integration, so we include a novel Negative Feedback (NF) mechanism. Our NF enables
stability and better expressiveness while maintaining long-term memory. Moreover, we prove that the
discretisation uncertainty does not accumulate in DeNOTS’s final hidden state: it is ∼ O(1) w.r.t. the
number of observations. Figure 1 compares various approaches to increasing NFEs for expressivity
on a synthetic dataset.

Overall, our main contributions are as follows:

• The idea of deliberately scaling integration time to improve the model’s representation power.
We show that lowering tolerances for expressiveness does not adequately address theoretical
limitations, providing minimal gains. SNCDE naturally circumvents these limitations, thus
enhancing the representation power of the model and significantly boosting metrics.

• The antisynchronous NF mechanism (updates and NF are activated in anti-phase), which
stabilises hidden trajectories on larger time scales but keeps the model flexible in practice.
All alternatives have crucial flaws, as summarized in Table 1: non-stable dynamics are
challenging to train, and synchronous NF tends to ”forget“ important information.

• Theoretical analysis of the effect of discretisation on our model, certifying that epistemic
uncertainty does not accumulate in our prediction. We also provide an analytical bound for
our case of cubic spline interpolation.

• A quantitative experimental study, comparing DeNOTS to modern baselines on four open
datasets. We demonstrate that our method excels in all settings.

In Section 2 we introduce the general framework of our method. Sections 3, 4 discuss the main
contributions of our approach in detail. Section 5 provides our experimental results. Section 6 sums
up our paper. We moved the Related Works section to Appendix A to save space.

2 METHOD

Representation learning for non-uniform time series. We focus on solving downstream tasks for
time series with global, sequence-wise targets (binary/multiclass/regression). Let S = {(tk,xk)}nk=1
be the analysed sequence, where t1 < t2 < . . . < tn ∈ R are the time stamps and xk ∈ Ru are the
feature-vectors of the corresponding observations. The task is to predict the correct target from S.

For convenience, we assume t1 = 0, and denote tn ≜ T . The sequence S is passed through the
backbone to obtain an embedding h ∈ Rv , which, supposedly, characterises S as a whole. Finally, a
linear head is used to transform h into the prediction ŷ.

Neural CDEs. Neural CDEs provide an elegant way to deal with non-uniform time series. Formally,
these methods integrate the following Cauchy problem for specific initial conditions h0, vector

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 1: R2 vs Log-NFEs on
the Pendulum dataset for various
methods of increasing NFEs: -
T for lowering tolerance, -S for
increasing time scale; for vari-
ous vector fields (VF): Tanh —
MLP with tanh activation; No
NF — vanilla GRU VF, Sync
NF — GRU-ODE VF, Anti NF —
our version. The curves were
drawn via Radial Basis Function
interpolation.

4.2 4.4 4.6 4.8 5.0 5.2 5.4
Log NFE

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
et

ric
 R

2

Tanh-S
No NF-S

Sync-NF-S
Anti-NF-S (ours)

Tanh-T
No NF-T

Sync-NF-T
Anti-NF-T

field (VF) gθ, and an interpolation of the input sequence x̂(t):

Dynamics:

{
h(0) = h0;
dh(t)
dt = gθ(x̂(t),h(t)).

Solution: h(t) : [0, T]→ Rv. (1)

The output of our backbone is h ≜ h(T). We use a modified GRU cell Chung et al. (2014) for gθ,
and, following Kidger et al. (2020), interpolate the input data using natural cubic splines.

t1 t2 t... tn
t

x1 x2

x...

xn
x̂(t)=
SplineS(t)

h(t)

output

dh=GRU(x̂(t),-h(t))dt

dt

input sequence

h(tn)

S={(tk,xk)}k

lin

ŷ

prediction

interpolator

NODE

head
h0

(time-scaled)
1

2

3

4

Figure 2: Scheme of the proposed DeNOTS
method. The large red minus sign (−) represents
our NF.

Our DeNOTS approach. The scheme of the
DeNOTS method is presented in Figure 2. It
consists of the following steps:

1. Preprocess the input sequence with
time scaling: tk ← D

M tk, whereD,M
are hyperparameters.

2. Interpolate the multivariate features
{xk}k to get x̂(t), t ∈ [0, T] using cu-
bic splines Kidger et al. (2020).

3. Integrate the Neural ODE with Nega-
tive Feedback (Anti-NF) starting from
h0 over x̂(t) to get h ≜ h(T).

4. Pass the final hidden state h through
the linear layer to get the prediction ŷ.

Our contributions revolve around two key ideas: time-scaling and a novel anti-phase negative feedback
(Anti-NF) mechanism, which jointly address the limitations of existing Neural CDE approaches.
In the following sections, we present a detailed description of the DeNOTS framework and the
corresponding theoretical analysis supplemented with proofs in Appendix B. To aid clarity, we
illustrate each theoretical result with numerical experiments.

3 TIME SCALING

As mentioned in the introduction, we argue that scaling time benefits expressiveness. By expres-
siveness, we roughly mean the broadness of the class of functions that our network can represent.
Formally, our model F maps the continuous input data trajectory x̂(·) : [0, T] → Ru to a hidden
state h ≜ h(T) ∈ Rv, i.e. F : C([0, T],Ru)→ Rv. We describe the class of functions F in terms
of Lipschitz constants, where F is LF -Lipschitz, if:

∥F (x̂1)− F (x̂2)∥2 ≤ ρ(x̂1, x̂2)LF , where ρ(x̂1, x̂2) ≜
∫ T

0

∥x̂1(t)− x̂2(t)∥2dt. (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Table 2: AUROC for Bump synthetic dataset results
for two vector fields: Tanh-activated and ReLU-activated
MLPs. The columns represent different ways to increase
NFE: ”Default“ – with no modifications, ”Tolerance“ – for
lowered tolerances, and ”Scale“ – for increased time scale.

VF Default Tolerance Scale

Tanh 0.77± 0.02 0.90± 0.01 0.99± 0.00
ReLU 0.89± 0.01 0.85± 0.01 0.91± 0.05

0 10 20 30
Time Scale

1

2

3

4

l 2
 n

or
m

Figure 3: l2 norms of weights vs time
scale D for the tanh vector field on the
Pendulum dataset.

Note that in this section, for simplicity, we assume that h(0) = 0v . To broaden the class of functions
the model may represent, we must increase LF . We can explicitly bound LF , using T and the
Lipschitz constants of gθ:
Theorem 3.1. Suppose, that the function gθ is Lipschitz w.r.t. x̂,h with constants Mx,Mh respec-
tively. Then, F is LF -Lipschitz with LF = Mx

Mh
(eMhT − 1).

Consequently, one way to boost expressivity is to increase Mh, corresponding to the weights’ norms.
Larger weight norms induce saturation for bounded activations such as tanh or sigmoid Ven &
Lederer (2021) or ”dying“ for unbounded activations such as ReLU Lu et al. (2019), destabilising
training in both cases. Alternatively, scaling T makes the model exponentially more expressive
without increasing the magnitude of weights. We refer to Neural CDEs with time scaling as ”Scaled
Neural CDEs“ (SNCDEs). Formally, time scaling means we set tk ← D

M tk, where D > 0 is a
hyperparameter and M > 0 is a dataset-specific normalising constant, introduced to make values
of D comparable across benchmarks.

According to Theorem 3.1, if we fix LF to the desired value, a larger D allows for a lower Mh.
Figure 3 illustrates that increasing D indeed lowers the l2 norms of weights. Furthermore, we
empirically validate the stabilising benefits of time scaling for a synthetic task of classifying 1D
functions into bumps or constant-zero ones. As demonstrated by Table 2, models with larger time
scales perform better than ones with lower tolerances. Further experiments on this topic are in
Section 5 and Appendix C.5.

4 NEGATIVE FEEDBACK

DeNOTS also modifies the form of the dynamics function: it carefully pushes the hidden trajectory
towards zero by including negative feedback in the derivative. NF provides numerous benefits, which
we motivate in theory and with practical experiments on synthetic data, as summarized in Table 1.

We model NF by the following simplified differential equation, a specific case within the dynamics (1):
dh(t)

dt
= gθ(x̂(t),h(t)) = afθ(x̂(t),h(t))− bh(t), a, b ∈ R. (3)

The values of a and b determine the relative magnitude of the NF term and the overall scale of
the derivative. For clarity, our theoretical analysis focuses on scalar-valued a and b, which suffice
to demonstrate the key properties. Extending the analysis to vector-valued parameters introduces
substantial technical complexity without offering additional insight.

To conduct our analysis, we need to constrain the function fθ and the values a, b, Lh:
Assumption 4.1. (1) The function fθ from (3) is Lipschitz w.r.t. both x̂ and h with constants Lx, Lh

correspondingly, and (2) it is equal to zero for zero vectors fθ(0u,0v) = 0v .
Assumption 4.2. The values of a, b, Lh are constrained by the following:

a ∈ (0, 1), b ∈ (0, 1), Lh ∈ (0, 1), aLh < b. (4)

In practice, the right-hand side of 3 is a slightly modified version of the classic GRU architec-
ture Chung et al. (2014). Specifically, we work with the last step in the GRU block, which is:

h̃ = GRU(x̂,h(t)) = (1− z)⊙ n+ z⊙ h, (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Table 3: Various options of GRU-based NF, with their derivations from (5) (col. 2), the corresponding
vector fields (col.3), a, b constraints in terms of (3) (col. 4), and the resulting form of Assumption 4.2.

Name Derivation from (5) Vector Field, gθ a, b constr. Assumption 4.2

No NF GRU(x̂(t),h(t)) (1− z)⊙ n+ z⊙ h a− b = 1 (✗)
Sync-NF GRU(x̂(t),h(t))− h(t) (1− z)⊙ (n− h) a− b = 0 (✓), Lh < 1
Anti-NF GRU(x̂(t),−h(t)) (1− z)⊙ n− z⊙ h a+ b = 1 (∼), aLh < 1− a

where z is the output of a sigmoid-RNN layer, n is the output of a tanh-RNN layer from previous
steps of the GRU, and h̃ is the final output of the GRU layer. The full specification of the GRU
architecture is located in Appendix C.2.

We consider three NF options, with their names, derivation from the GRU (5), and the corresponding
vector fields provided in columns 1-3 of Table 3. Rewriting each of these variants in terms of (3), we
get three individual sets of constraints for a, b, presented in the fourth column of Table 3. Next, we
substitute these constraints into (4) in the last column of Table 3. We analyse whether Assumption 4.2
stands in practice for Sync-NF and Anti-NF in Appendix C.6. Each considered variant of SNCDE
with NF is described in detail below.

No NF. The GRU model is used as-is for the vector field of Neural CDE1. The combination of (5)
with (3) implies b < 0, i.e. positive feedback. Assumption 4.2 never stands for No-NF, since b < 0.
We later show that such a vector field severely destabilises the trajectory on larger values of D (see
Section 4.1).

Sync-NF. The GRU-ODE version, proposed in De Brouwer et al. (2019), which subtracts h from (5).
Here, both the update term n and the NF term −h are activated simultaneously, with z affecting
only the overall scale of the derivative, so we refer to this version as Sync-NF. The l2 norms of the
weights are smaller on longer integration intervals (as we concluded in the previous section), so
Assumption 4.2 always stands for Sync-NF. The Sync-NF version without time scaling (D = 1) is
equivalent to GRU-ODE2 De Brouwer et al. (2019). As its authors prove, the corresponding trajectory
is constrained to [−1,+1]. Moreover, it does not regulate the scale of NF relative to the update,
implying that, intuitively, the model may ”forget“ prior knowledge (see Section 4.3).

Anti-NF (DeNOTS, ours). We pass −h instead of h to the GRU layer. In our version, the NF
and update terms are activated separately, with z regulating the scale of NF relative to the update,
so we refer to this version as Anti-NF. The validity of (4) for Anti-NF depends on the value of a.
Consequently, our model can disable the ”forgetting“ effect by increasing a, which is learnable and
even adaptive, since it corresponds to z from the GRU (5).

4.1 STABILITY

A crucial issue to consider when working with ODEs is stability analysis Boyce et al. (1969); Oh
et al. (2024). On longer time frames, unstable ODEs may have unbounded trajectories even with
reasonable weight norms, which is detrimental to training due to saturation Ioffe & Szegedy (2015)
or ”dying“ Lu et al. (2019) of activations. The equation (1) depends on an input signal x̂(t), so we
approach stability analysis in terms of control systems theory Sontag & Wang (1995):
Definition 4.3. We call the ODE (1) input-to-state stable, if there exist two continuous functions: an
increasing γ(·) with γ(0) = 0, and β(·, ·), increasing in the first argument, β(0, ·) = 0 and strictly
decreasing in the second argument, β(·, t) →

t→∞
0, such that:

∥h(t)∥2 ≤ β(∥h0∥2, t) + γ(∥x̂∥∞). (6)

Intuitively, equation (6) means that for any bounded x̂ the trajectory remains bounded and stable.
Theorem 4.4. The ODE (3) under assumptions 4.1, 4.2 is input-to-state stable.

1From here on: GRU refers to the recurrent network; the SNCDE with GRU as the dynamics is ”No NF“.
2From here on: GRU-ODE refers to the corresponding NCDE without time scaling (D = 1).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

0 10
Time

0.0

2.5

5.0
h

2

1e7
No NF-20, R2=-6e+06

0 10
Time

0

10

20
Tanh-20, R2=0.48

0 10
Time

0

100

200

ReLU-20, R2=-1e+04

0 10
Time

0

2

Sync-NF-20, R2=0.73

0 10
Time

0

5

Anti-NF-20, R2=0.83

Figure 4: Trajectories for various vector fields on the Pendulum dataset, with D = 20. The
corresponding R2 values on test are provided in the title above each graph.

Thus, the Sync-NF and Anti-NF models are stable. We test the benefits of Theorem 4.4 in practice,
presenting the trajectory norms ∥h(t)∥2 for D = 20 along with the metrics in Figure 4. Non-
stable vector fields, such as No-NF and MLP-based ones with ReLU and Tanh activations, induce
uncontrolled growth and achieve poor R2 due to unstable training. The tanh-activated vector field
is less prone to instability, since the corresponding derivative is bounded. The SNCDE remains
stable for both Sync-NF and Anti-NF, and the corresponding metrics are significantly better. Notably,
Anti-NF slightly outperforms Sync-NF: we argue this is due to a more flexible trajectory.

4.2 ERROR BOUNDS

The approximation x̂(t) of the true unknown x(t) from discrete observations is a source of errors. As
we will show below, NF significantly helps reduce the effect of these errors. The form (3) allows us
to measure how this discrepancy affects the quality of our final embedding h(T).

We assume that x(t) is a realisation of a Gaussian process (GP) Kolmogorov (1941); Stein (2012),
dense in the space of continuous functions. Cubic spline interpolation used in our algorithm and
in Kidger et al. (2020) is a limit case of GP regression Golubev & Krymova (2013).

Let x(t) be a stationary zero-mean u-dimensional GP with the covariance function
K(·, ·) = {Ki(·, ·)}i and independent components:

Ex(t) = 0; E [x(t1)⊙ x(t2)] = K(t1, t2) = K(t2 − t1); E [xi(t) · xj(t)] = 0 for i ̸= j. (7)

Here, the symbol ⊙ denotes component-wise multiplication, and lower indexing xi denotes
i-th component of a vector. Suppose that we also know the values of x at timestamps
0 = t1 < t2 < . . . < tn = T ∈ R. Let x̂(t) be the corresponding maximum a posteriori predic-
tor Kolmogorov (1941). We introduce two types of uniform error bounds:

σ2
PW ≜ E ∥x̂(t)− x(t)∥22 ≤ σ̄

2
PW, σ2

INT ≜
∫ tk+1

tk

E ∥x̂(t)− x(t)∥22 dt ≤ σ̄
2
INT, (8)

where σ̄INT, σ̄PW are the pointwise and the interval error bounds, constants independent of t and k.
The pointwise expression is more convenient; however, the interval one is often tighter. We will now
estimate how much of the variance from (8) accumulates in the final hidden state:
Theorem 4.5. Robustness (Gaussian Process standpoint). Along with (3) under Assumptions 4.1, 4.2,
consider analogous ODE dynamics for a realization of the actual GP x(t) instead of its MAP
approximation x̂(t), with the dynamics dh∗

dt = afθ(x(t),h
∗(t))− bh∗(t), and starting condi-

tions h∗(0) = h(0) = h0. Then, depending on whether we are working with the point-wise or
the interval errors (8), we can write different bounds on the variance, accumulating in h.

Pointwise bound: E∥h(tn)− h∗(tn)∥22 ≤
(

aLx

b− aLh

)2

σ̄2
PW. (9)

Interval bound:
1

n

∫ T

0

E ∥h(t)− h∗(t)∥22 dt ≤
(

aLx

b− aLh

)2

σ̄2
INT. (10)

The errors (9) and (10) are independent of the number of observations n. Consequently, uncertainty
does not accumulate in our final hidden state.

We empirically validate the benefits of Theorem 4.5 with drop attacks (dropping a fraction of input
tokens and replacing them with NaNs) on the Pendulum dataset. According to Table 5 (first row), all

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

SNCDEs are robust to drop attacks, with NF versions outperforming No NF. The Sync-NF model
is slightly better than Anti-NF, likely due to a larger b − aLh, but that difference is insignificant
compared to other baselines. Additional analysis of tightness of (9), (10) is in Appendix B.4.7.

4.2.1 ERROR BOUNDS FOR SPECIFIC COVARIANCE FUNCTIONS

Most prior theoretical results on GP interpolation are devised for the case of uniform sequences.
However, they can be extended to irregular data, assuming that the resulting error increases in
response to stretching intervals δk ≜ tk+1 − tk. Then, the upper and lower bounds for uniform
sequences are also valid for irregular sequences, given that instead of the regular step δ ≡ δk we take
the largest interval δmax ≜ maxk({δk}k), or the smallest one δmin ≜ mink({δk}k) respectively.

Additionally, prior work Kolmogorov (1941) assumes that the considered sequences are infinite.
However, the authors of Zaytsev & Burnaev (2017) demonstrated that the results for infinite sequences
empirically hold for finite ones. Indeed, a typical kernel decays exponentially, so distant observations
negligibly impact the resulting error.

Given the reasoning above, the following assumption does not limit the applicability of our conclu-
sions, while allowing us to devise GP error bounds:
Assumption 4.6. The considered sequence S is infinite, and the covariance function is such that
increasing interval sizes increases the interval error from 8.

Lemma 4.7. For some ξ > 0, Q > 0, consider the spectral density 3: Fi(ω) =
Q

ω4+ξ4 . Then, under
Assumption 4.6, the interval error σ2

INT(ξ) from (8) has the following asymptotic:

4π4
√
3

63
uQδ4min ≤ lim

ξ→0
σ2

INT(ξ) ≤
4π4
√
3

63
uQδ4max.

Corollary 4.8. Plugging the above into (10), we get the tight upper bound for cubic splines x̂(t):

1

n

∫ T

0

E ∥h(t)− h∗(t)∥22 dt ≤
(

aLx

b− aLh

)2
4π4
√
3

63
uQδ4max.

4.3 LONG-TERM MEMORY

Despite the implications of Theorems 4.4,4.5, strong negative feedback might not always be beneficial.
We found that its usage may also induce ”forgetting“ – the model may lose important prior knowledge.

Unfortunately, the concept of “importance“ may vary dataset-to-dataset, or even sample-to-sample,
a good model should adaptively pick out such knowledge on its own, so defining forgetfulness is a
difficult task. That said, we opt for a simpler definition, which generally aligns with our understanding:
a model is ”forgetful“, if the influence of older trajectory parts constantly decays. Such decay leads
to limited long-term memory of previous states.

Equipped with the above definition, we can prove that a strict negative feedback induces such
forgetfulness:

Theorem 4.9. For the ODE (3) under Assumptions 4.1, 4.2 it holds that: d
dτ

∥∥∥dh(t+τ)
dhi(t)

∥∥∥
2
< 0.

The above implies that a shift in the beginning of the trajectory will not significantly influence the
end of the trajectory. Fortunately, our Anti-NF model can adapt the relative values of a, b to reduce or
disable forgetfulness, making it more flexible. On the other hand, the Sync-NF model does not have
this liberty: for Lh < 1, the Assumption 4.2 always holds, so it will always forget prior values.

To illustrate the forgetting effect, we conduct experiments on a synthetic Sine-Mix dataset to compare
Anti-NF’s forgetfulness to Sync-NF’s and classic RNNs. Each sequence consists of two equal-length
sine waves with different frequencies, joined continuously at the mid-point. The target is to predict
the frequency of the first wave, which is trivial unless the model forgets the beginning of the sequence.
After 5 training epochs, the Sync-NF version solves the task with a mere R2 = 0.3, while the

3At the limit ξ → 0, the mean of the resulting GP tends to a natural cubic spline Golubev & Krymova (2013).
The parameter Q here represents our a priori beliefs about the data variance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 4: R2 on the SineMix dataset, averaged over five runs.

RNN GRU Tanh ReLU No-NF Sync-NF Anti-NF

-0.3 0.8 1 1 1 0.3 1

Table 5: The models’ R2 for C (change) and D (drop) attacks on Pendulum dataset. The suffix
indicates the fraction of altered tokens: 0.85 for Drop and 0.01 for change. The columns represent the
models: TF, RF for Temp- and RoFormer, NCDE/NRDE for the original Neural CDE/RDE models,
and the last three columns present SNCDEs (Scaled Neural CDEs, D = 5) with three different vector
fields. The full picture, given by the set of fractions vs metric curves, is provided in Appendix C.8.

Attack TF RF Mamba NCDE NRDE GRU No NF Sync-NF Anti-NF

D-0.85 0.16 0.31 0.36 0.02 0.20 0.27 0.40 0.64 0.61
C-0.01 -0.29 -0.29 -0.46 -0.97 -0.11 0.37 0.51 0.61 0.64

versions with all other vector fields, including Anti-NF, completed the task perfectly each time.
Simultaneously, the vanilla RNN cell failed the task completely, while the GRU architecture was
able to solve it rather well, indicating that Sync-NF’s observed forgetfulness is akin to that of classic
recurrent networks.

On the other hand, forgetfulness could make the model more robust: time series often evolve quickly,
so forgetting irrelevant observations may be beneficial Cao et al. (2019). To gauge this effect, we
measure our method’s performance on perturbed sequences, with a small fraction replaced by standard
Gaussian noise. The results are provided in Table 5 (row 2). Indeed, all the possibly forgetful models,
i.e., the SNCDE versions and the GRU, are in the lead. Adding NF boosts robustness: Sync-NF
and Anti-NF significantly outperform No-NF. Sync-NF performs slightly worse than Anti-NF. We
hypothesise this is because the attack is uniformly distributed across the sequence: the corrupted
tokens may appear closer to the end, in which case the Sync-NF model performs worse due to
forgetfulness.

5 MAIN EXPERIMENTS

Table 6: Pearson correlation between log-NFE and
the corresponding metric (R2 for Pendulum and
Sine-2, and AUROC for Sepsis), for various vector
fields. In a pair X/Y , X indicates the statistic for
reducing tolerance, Y — the statistic for increasing
time scale. Values ≥ 0.7 are highlighted in bold.

Pendulum Sepsis Sine-2

Tanh 0.3/-0.6 0.3/0.8 0.4/0.7
ReLU 0.1/-0.6 0.3/-0.09 0.07/0.6
No NF 0.4/-0.5 0.3/-0.1 0.09/-0.5
Sync-NF 0.4/0.8 0.5/-0.4 0.5/1.0
Anti-NF 0.5/0.9 0.5/0.8 0.4/1.0

We tested the individual properties of DeNOTS
in Sections 3, 4. Here, we present a general
picture, measuring the quality of our method
on downstream tasks, and extensively testing
our main expressiveness claim. Due to space
limitations, we moved the datasets’ and models’
descriptions, further details, and some additional
experiments to Appendix C.

Classification/Regression. To test our
model’s overall performance, we compare it to
other baseline models (including the Sync-NF
vector field) on various tasks. The results are
provided in Table 7. Our model is ranked first
across all the considered datasets.

Scale expressiveness. Next, we extensively test our main claim: combining SNCDE with Anti-NF
(DeNOTS) is the best way to increase the model’s expressiveness. However, measuring expressiveness
seems non-trivial at first glance. Fortunately, in our setup, expressiveness is quantified by model
performance, as we explain in Appendix C.4.

We measure the Pearson correlation coefficient between log-NFE and the metric value for increasing
precision or scaling time with various vector fields — different approaches to increasing expressive-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 7: Main results on the four considered datasets. Best models are highlighted in bold, second-
best are underlined. Values are highlighted identically, if their difference is less than half of their joint
variance (12

√
σ2
1 + σ2

2). We present an average over three runs. For the two SNCDEs (Scaled Neural
CDEs), specifically Sync-NF and DeNOTS (Anti-NF), D is selected based on the validation set.

Backbone UWGL InsectSound Pendulum Sepsis

GRU 0.5± 0.1 0.3± 0.2 0.73± 0.03 0.838± 0.004
TempFormer 0.78± 0.03 0.43± 0.02 0.59± 0.08 0.89± 0.02
RoFormer 0.74± 0.04 0.29± 0.02 0.61± 0.02 0.924± 0.004
Mamba 0.71± 0.07 0.41± 0.03 0.61± 0.03 0.829± 0.004
GRU-ODE 0.4± 0.3 0.18± 0.03 0.6± 0.05 0.925± 0.003
Neural CDE 0.82± 0.03 0.145± 0.001 0.76± 0.02 0.880± 0.006
Neural RDE 0.79± 0.03 0.212± 0.004 0.78± 0.03 ✗a

Sync-NF SNCDE 0.811± 0.002 0.39± 0.09 0.77± 0.01 0.932± 0.003
DeNOTS (ours)b 0.82± 0.03 0.44± 0.02 0.79± 0.02 0.937± 0.005

aDiverges: Neural RDEs cannot handle large numbers of features, as admitted by its authors.
bDeNOTS corresponds to the SNCDE with the Anti-NF vector field.

ness. The results are presented in Table 6. Indeed, DeNOTS is the only model that reliably displays a
strong correlation on all three datasets. Further demonstrations can be found in Appendix C.5.

6 CONCLUSIONS

We propose a novel approach to increasing Neural ODE expressiveness in the time series domain,
backed by theoretical and empirical evidence. Instead of lowering tolerances, we scale the integration
interval, boosting metrics while keeping the l2 norms of weights low. However, time scaling
destabilises conventional vector fields, so we modify the dynamics function to include Negative
Feedback. NF brings provable stability and robustness benefits, which hold in practice. Although
prior versions of NF also possess these qualities, they have issues with long-term memory due to less
flexible dynamics and strict trajectory constraints. In contrast, our Anti-NF preserves expressiveness
and avoids forgetting. Combined with time scaling, this results in superior performance across four
open time series benchmarks, outperforming recent Neural RDEs and state space models.

Limitations and Future Work. DeNOTS, like all Neural ODE methods, has a long execution time
due to a high-level implementation; future work could develop faster differentiable ODE libraries.
Additionally, it would be interesting to adapt the novel concept of scaling integration time to other
domains, such as event sequences, text, images, or tabular data.

Reproducibility statement. Our code is available at https://anonymous.4open.
science/r/denots_iclr2026-400E/. It contains automated scripts to download all our
datasets, and uses popular frameworks to make it recognisable to a wide audience of ML researchers,
reproducing all our baselines in these frameworks. A detailed description of the datasets can be found
in Appendix C.1. The baselines are described in Appendix C.2. More information about our pipeline
can be found in Appendix C.3.

REFERENCES

Jason Ansel and Pytorch 2 team. PyTorch 2: Faster Machine Learning Through Dynamic Python
Bytecode Transformation and Graph Compilation. In 29th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 2 (ASPLOS
’24). ACM, April 2024.

Txus Blasco, J. Salvador Sánchez, and Vicente Garcı́a. A survey on uncertainty quantification in
deep learning for financial time series prediction. Neurocomputing, 576:127339, 2024. ISSN
0925-2312.

9

https://anonymous.4open.science/r/denots_iclr2026-400E/
https://anonymous.4open.science/r/denots_iclr2026-400E/

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

William E Boyce, Richard C DiPrima, and Charles W Haines. Elementary differential equations and
boundary value problems, volume 9. Wiley New York, 1969.

Weipeng Cao, Zhong Ming, Zhiwu Xu, Jiyong Zhang, and Qiang Wang. Online sequential extreme
learning machine with dynamic forgetting factor. IEEE access, 7:179746–179757, 2019.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in NeurIPS, 31, 2018.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. In NIPS 2014 Workshop on Deep Learning,
December 2014, 2014.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In international conference on machine learning, pp. 1310–1320. PMLR, 2019.

Carl De Boor and Carl De Boor. A practical guide to splines, volume 27. springer New York, 1978.

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. Gru-ode-bayes: Continuous
modeling of sporadically-observed time series. Advances in NeurIPS, 32, 2019.

John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. Journal of
computational and applied mathematics, 6(1):19–26, 1980.

William Falcon and The PyTorch Lightning team. PyTorch Lightning, March 2019.

Peter K Friz and Nicolas B Victoir. Multidimensional stochastic processes as rough paths: theory
and applications, volume 120. Cambridge University Press, 2010.

Georgii Ksenofontovich Golubev and Ekaterina A Krymova. On interpolation of smooth processes
and functions. Problems of Information Transmission, 49(2):127–148, 2013.

Gustaf Gripenberg. Approximation by neural networks with a bounded number of nodes at each
level. Journal of approximation theory, 122(2):260–266, 2003.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Ingo Gühring, Mones Raslan, and Gitta Kutyniok. Expressivity of deep neural networks. arXiv
preprint arXiv:2007.04759, 34, 2020.

Charles A Hall and W Weston Meyer. Optimal error bounds for cubic spline interpolation. Journal
of Approximation Theory, 16(2):105–122, 1976.

Douglas M Hawkins. The problem of overfitting. Journal of chemical information and computer
sciences, 44(1):1–12, 2004.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of The 32nd International Conference on Machine
Learning, pp. 448–456, 2015.

Qiyu Kang, Yang Song, Qinxu Ding, and Wee Peng Tay. Stable neural ode with lyapunov-stable
equilibrium points for defending against adversarial attacks. Advances in Neural Information
Processing Systems, 34:14925–14937, 2021.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations
for irregular time series. Advances in NeurIPS, 33:6696–6707, 2020.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Andrey Kolmogorov. Interpolation and extrapolation of stationary random sequences. Izvestiya
Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 5:3, 1941.

Marten Lienen and Stephan Günnemann. torchode: A parallel ODE solver for pytorch. In The
Symbiosis of Deep Learning and Differential Equations II, NeurIPS, 2022.

Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. uwave: Accelerometer-based
personalized gesture recognition and its applications. Pervasive and Mobile Computing, 5(6):
657–675, 2009.

Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. Dying relu and initialization: Theory
and numerical examples. arXiv preprint arXiv:1903.06733, 2019.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of
neural networks: A view from the width. Advances in neural information processing systems, 30,
2017.

Stefano Massaroli, Michael Poli, Michelangelo Bin, Jinkyoo Park, Atsushi Yamashita, and Hajime
Asama. Stable neural flows. arXiv preprint arXiv:2003.08063, 2020.

Matthew Middlehurst, Patrick Schäfer, and Anthony Bagnall. Bake off redux: a review and exper-
imental evaluation of recent time series classification algorithms. Data Mining and Knowledge
Discovery, 38(4):1958–2031, 2024.

James Morrill, Patrick Kidger, Lingyi Yang, and Terry Lyons. Neural controlled differential equations
for online prediction tasks. arXiv preprint arXiv:2106.11028, 2021a.

James Morrill, Cristopher Salvi, Patrick Kidger, and James Foster. Neural rough differential equations
for long time series. In International Conference on Machine Learning, pp. 7829–7838. PMLR,
2021b.

YongKyung Oh, Dong-Young Lim, and Sungil Kim. Stable neural stochastic differential equations in
analyzing irregular time series data. arXiv preprint arXiv:2402.14989, 2024.

YongKyung Oh, Seungsu Kam, Jonghun Lee, Dong-Young Lim, Sungil Kim, and Alex Bui.
Comprehensive review of neural differential equations for time series analysis. arXiv preprint
arXiv:2502.09885, 2025.

Dmitry Osin, Igor Udovichenko, Viktor Moskvoretskii, Egor Shvetsov, and Evgeny Burnaev. Ebes:
Easy benchmarking for event sequences. arXiv preprint arXiv:2410.03399, 2024.

Matthew A Reyna, Christopher S Josef, Russell Jeter, Supreeth P Shashikumar, M Brandon Westover,
Shamim Nemati, Gari D Clifford, and Ashish Sharma. Early prediction of sepsis from clinical data:
the physionet/computing in cardiology challenge 2019. Critical care medicine, 48(2):210–217,
2020.

Ivan Dario Jimenez Rodriguez, Aaron Ames, and Yisong Yue. Lyanet: A lyapunov framework for
training neural odes. In International conference on machine learning, pp. 18687–18703. PMLR,
2022.

Eduardo D Sontag and Yuan Wang. On characterizations of the input-to-state stability property.
Systems & Control Letters, 24(5):351–359, 1995.

Michael L Stein. Interpolation of spatial data: some theory for kriging. Springer Science & Business
Media, 2012.

Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu Chen, and Yupeng Gao. Is robustness the
cost of accuracy?–a comprehensive study on the robustness of 18 deep image classification models.
In Proceedings of the European conference on computer vision (ECCV), pp. 631–648, 2018.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Aaron Tuor, Jan Drgona, and Draguna Vrabie. Constrained neural ordinary differential equations
with stability guarantees. arXiv preprint arXiv:2004.10883, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

AW van der Vaart and JH van Zanten. Rates of contraction of posterior distributions based on gaussian
process priors. Annals of Statistics, 36(3):1435–1463, 2008.

Leni Ven and Johannes Lederer. Regularization and reparameterization avoid vanishing gradients in
sigmoid-type networks. arXiv preprint arXiv:2106.02260, 2021.

Omry Yadan. Hydra - a framework for elegantly configuring complex applications. Github, 2019.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural networks, 94:
103–114, 2017.

Alexey Zaytsev and Evgeny Burnaev. Minimax approach to variable fidelity data interpolation. In
Artificial Intelligence and Statistics, pp. 652–661. PMLR, 2017.

Alexey Zaytsev, Evgenya Romanenkova, and Dmitry Ermilov. Interpolation error of gaussian process
regression for misspecified case. In Conformal and Probabilistic Prediction and Applications, pp.
83–95. PMLR, 2018.

Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer Hawkes
process. In International conference on machine learning, pp. 11692–11702. PMLR, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

APPENDICES

A Related works 14

B Theory 14

B.1 Time scaling . 14

B.2 Negative Feedback Model . 15

B.3 Stability . 16

B.4 Error Bounds . 17

B.4.1 Setting . 17

B.4.2 Robustness theorem . 17

B.4.3 Assumptions . 18

B.4.4 Error bounds . 19

B.4.5 Proof of special case of Assumption B.5. 24

B.4.6 Validation of Assumption B.5 . 25

B.4.7 Bound Tightness . 26

B.5 Long-term Memory . 26

C Experiments 28

C.1 Datasets . 28

C.2 Backbones . 29

C.3 Pipeline . 30

C.3.1 Training . 30

C.3.2 Embeddings . 30

C.4 Expressivity discussion . 31

C.5 NFE-Correlation experiments . 31

C.6 Negative Feedback Strength . 32

C.7 Forecasting . 34

C.7.1 Pendulum Angles . 34

C.7.2 Sine-2 Dataset . 34

C.8 Full attack results . 35

C.9 Computational Resources . 36

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A RELATED WORKS

Neural ODEs for time-series. Neural ODEs provide an elegant way to take the sequence irregu-
larity into account Oh et al. (2025). The representation evolves simultaneously with the observed
system Chen et al. (2018). For example, GRU-ODE-Bayes De Brouwer et al. (2019) used Bayesian
methods to account for missing observations optimally. To constrain the hidden trajectory to [−1, 1],
its authors introduced a strict NF, subtracting the current hidden state from the derivative.

As an improvement, the authors of Kidger et al. (2020) proposed to combine Neural ODEs with
the theory of CDEs Friz & Victoir (2010) for time series classification. Instead of embedding the
input data into the starting point, Neural CDEs interpolate it, using the resulting function to guide the
trajectory. On the other hand, the original Neural CDEs from Kidger et al. (2020) are not sensitive
to the irregularity of time intervals. So, the authors append the time difference as a separate feature.
Moreover, these models have high memory usage. The controlling NN has to generate a matrix,
which implies a weight dimension of ∼ d3, where d is the dimensionality of the input features,
instead of d2 for conventional models, such as RNNs. DeNOTS employs a GRU cell as its dynamics,
making it more memory efficient than Neural CDE, and sensitive to input time intervals, which is
crucial for scaling time.

Stability. Neural ODE stability is a well-researched topic. Prior work has approached it through
adding specialized loss terms Kang et al. (2021); Rodriguez et al. (2022), constraining the form of the
vector field Massaroli et al. (2020) or the eigenvalues of the NN weights Tuor et al. (2020). However,
very little work has been done for Neural CDEs, since the problem is significantly complicated by
the presence of an external ”control signal“. Most notably, Morrill et al. (2021b) processes the input
sequence in a windowed fashion, aggregating each window into a certain set of features to reduce
length, while Morrill et al. (2021a) highlights the importance of selecting a continuous interpolant for
the well-posedness of the initial-value problem. We prove that our CDE-type model is input-to-state
stable, providing a significantly more general and formal result.

Gaussian process interpolation errors. Our theoretical analysis investigates discretisation uncer-
tainty, which manifests as GP variance. This involves estimating the squared error of an integral over
a linear function of a GP with multiple outputs. For a specific assumption, we have a reasonable
estimate of the quadratic risk that follows from Golubev & Krymova (2013). While alternatives
exist Stein (2012); van der Vaart & van Zanten (2008); Zaytsev et al. (2018), they are unsuitable for
our setting, with an additional ODE layer on top.

B THEORY

To enhance the reader experience, we duplicate all relevant statements and discussions from the main
body in the Appendix, preserving reference numbering.

B.1 TIME SCALING

Our model F maps the continuous input data trajectory x̂(·) : [0, T] → Ru to a hidden
state h ≜ h(T) ∈ Rv, i.e. F : C([0, T],Ru) → Rv. We describe the class of functions F in
terms of Lipschitz constants, where F is LF -Lipschitz, if:

∥F (x̂1)− F (x̂2)∥2 ≤ ρ(x̂1, x̂2)LF , where ρ(x̂1, x̂2) ≜
∫ T

0

∥x̂1(t)− x̂2(t)∥2dt. (2)

In this section, for simplicity, we assume that h(0) = 0v. To broaden the class of functions the
model may represent, we must increase LF . We can explicitly bound LF , using T and the Lipschitz
constants of gθ:

Theorem (3.1). Suppose, that the function gθ is Lipschitz w.r.t. x̂,h with constants Mx,Mh respec-
tively. Then, F is LF -Lipschitz in the sense of (2), where LF = Mx

Mh
(eMhT − 1):

∥F (x̂1)− F (x̂2)∥2 ≤ ρ(x̂1, x̂2)
Mx

Mh
(eMhT − 1).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Proof. Suppose, h1,h2 are the trajectories, corresponding to x̂1, x̂2, respectively:
dhi

dt
= gθ(x̂i(t),hi(t)).

We introduce the following notation for convenience:

∆(t) ≜ h1(t)− h2(t).

Then, we can write the following differential equation for ∆:
d∆

dt
= gθ(x̂1(t),h1(t))− gθ(x̂2(t),h2(t)). (11)

The absolute derivative of the norm is always lower or equal to the norm of the derivative, according
to the Cauchy-Schwartz inequality:∣∣∣∣ ddt∥∆∥2

∣∣∣∣ = ∣∣∣∣ ddt√∆ ·∆
∣∣∣∣ = ∆ ·∆′

∥∆∥2
≤ ∥∆∥2 · ∥∆

′∥2
∥∆∥2

= ∥∆′∥2,

where we denote ∆′ ≜ d
dt∆. Consequently, taking the norm of (11), we get:

∥gθ(x̂1(t),h1(t))− gθ(x̂2(t),h2(t))∥2 = ∥∆′∥2 ≥
∣∣∣∣ ddt∥∆∥2

∣∣∣∣ ≥ d

dt
∥∆∥2.

Now we use the Lipschitzness of gθ:
d

dt
∥∆∥2 ≤ ∥x̂1(t)− x̂2(t)∥2Mx + ∥∆∥2Mh.

Suppose that ∥∆(t)∥2 = C(t)eMht. Substituting, we get:
d

dt
∥∆∥2 = C ′eMht +MhCe

Mht ≤ ∥x̂1(t)− x̂2(t)∥2Mx + CMhe
Mht,

where C ′ ≜ dC
dt . We isolate dC to integrate the resulting expression:

dC ≤ ∥x̂1(t)− x̂2(t)∥2Mxe
−Mhtdt =⇒

∫ T

t=0

dC ≤
∫ T

t=0

∥x̂1(t)− x̂2(t)∥2Mxe
−Mhtdt.

Finally, we bound the integral on the right:∫ T

t=0

dC = C(T)− C(0) ≤
∫ T

t=0

∥x̂1(t)− x̂2(t)∥2Mxe
−Mhtdt

≤Mx

(∫ T

t=0

∥x̂1(t)− x̂2(t)∥2dt

)(∫ T

t=0

e−Mhtdt

)

≤ ρ(x̂1, x̂2)Mx
1

Mh
(1− e−MhT).

Since ∥∆(0)∥2 = 0, we have C(0) = 0. Substituting into ∥∆(t)∥2 = C(t)eMht, we get the desired
expression.

B.2 NEGATIVE FEEDBACK MODEL

We model NF by the following simplified differential equation, a specific case within the dynamics (1):
dh

dt
= gθ(x̂(t),h(t)) = afθ(x̂(t),h(t))− bh(t), a, b ∈ R. (3)

The values of a and b determine the relative magnitude of the NF term and the overall scale of
the derivative. For clarity, our theoretical analysis focuses on scalar-valued a and b, which suffice
to demonstrate the key properties. Extending the analysis to vector-valued parameters introduces
substantial technical complexity without offering additional insight.

To conduct our analysis, we need to constrain the function fθ and the values a, b, Lh:
Assumption (4.1). (1) The function fθ from (3) is Lipschitz w.r.t. both x̂ and h with constants Lh, Lx,
and (2) it is equal to zero for zero vectors fθ(0u,0v) = 0v .
Assumption (4.2). The values of a, b, Lh are constrained by the following:

a ∈ (0, 1), b ∈ (0, 1), Lh ∈ (0, 1), aLh < b. (4)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

B.3 STABILITY

As mentioned in the main text, we approach stability analysis through control systems theory Sontag
& Wang (1995). For clarity, we write out the definitions and theorems used in greater detail. First, we
introduce the comparison function classes that are used in the stability definition:
Definition B.1. Let K,L,KL denote the following classes of functions:

• A continuous function γ : R+ → R+ is said to belong to the comparison class K, if it is
increasing with γ(0) = 0.

• A continuous function γ : R+ → R+ is said to belong to the comparison class L, if it is
strictly decreasing with γ(t)→ 0, t→∞.

• A continuous function γ : R+ → R+ is said to belong to the comparison class K∞, if it
belongs to K and is unbounded.

• A continuous function β : R2
+ → R+ is said to belong to the comparison class KL, if

β(·, t) ∈ K,∀t > 0, and β(r, ·) ∈ L,∀r > 0.

Now, we can formulate the definition of stability in the control-systems sense:
Definition B.2. A system (1) is said to be input-to-state stable (ISS), if there exist γ ∈ K, and
β ∈ KL, s.t.:

∥h(t)∥2 ≤ β(∥h0∥2, t) + γ(∥x̂∥∞). (6)

Just like with traditional ODE stability, instead of directly testing the definition, it is often more
convenient to construct an ISS-Lyapunov function:
Definition B.3. A smooth function V : Rv → R+ is called an ISS-Lyapunov function, if there exist
functions ψ1, ψ2 ∈ K∞ and α, χ ∈ K, s.t.

ψ1(∥h∥2) ≤ V (h) ≤ ψ2(∥h∥2),∀h ∈ Rv, (12)

and
∀h : ∥h∥2 ≥ χ(∥x∥2)→ ∇V · gθ ≤ −α(∥h∥2). (13)

The connection between Definitions B.2 and B.3 is given by the following lemma Sontag & Wang
(1995):
Lemma B.4. The ODE (1) is ISS, if and only if a corresponding ISS-Lyapunov function exists.

Now, using the facts formulated above, we can proceed to proving Theorem 4.4:
Theorem (4.4). The ODE (3) under Assumptions 4.1, 4.2 is input-to-state stable.

Proof. Let us build a corresponding ISS-Lyapunov function. According to Lemma B.4, this proves
ISS. Consider V (h) ≜ 1

2∥h∥
2
2. Equation (12) evidently stands (e.g. ψ1,2(∥h∥2) ≡ 1

2∥h∥
2
2). The

gradient of the squared half-norm is the vector itself: ∇V = h. So, to test (13), we can bound the
corresponding dot-product:

(∇V,gθ) = (h, afθ − bh) ≤ a∥h∥2∥fθ∥2 − b∥h∥22.

Using Assumption 4.1, we can bound ∥fθ∥2:

∥fθ(x̂,h)∥2 = ∥fθ(x̂,h)− fθ(x̂,0v) + fθ(x̂,0v)− fθ(0u,0v) + fθ(0u,0v)∥2
≤ ∥fθ(x̂,h)− fθ(x̂,0v)∥2 + ∥fθ(x̂,0v)− fθ(0u,0v)∥2 + ∥fθ(0u,0v)∥2
≤ Lh∥h∥2 + Lx∥x̂∥2 + 0.

Now we have:

(∇V, gθ) ≤ a∥h∥2(Lh∥h∥2 + Lx∥x̂∥2)− b∥h∥22 = (aLh − b)∥h∥22 + aLx∥x̂∥2∥h∥2. (14)

The final expression is a quadratic polynomial. The coefficient next to ∥h∥22 is negative, according
to (4). Consequently, it will decrease for large-enough values of ∥h∥2, which allows us to construct
functions χ, α, satisfying (13). For some fixed ε ∈ (0, 1), consider the following function:

χ(r) ≜
aLx

b− aLh
r(1− ε)−1; χ−1(r) =

b− aLh

aLx
(1− ε)r.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Then, for any h : ∥h∥2 ≥ χ(∥x̂∥2), which is in our case equivalent to ∥x̂∥2 ≤ χ−1(∥h∥2), we can
bound (14):

(∇V, gθ) ≤ (aLh − b)∥h∥22 + aLx∥x̂∥2∥h∥2

≤ (aLh − b)∥h∥22 + aLx
b− aLh

aLx
(1− ε)∥h∥22

= −ε(b− Lha)∥h∥22 ≜ −α(∥h∥2).

Since b − Lha > 0, the functions we have constructed lie in the correct classes: α, χ ∈ K.
Consequently, V is a valid ISS-Lyapunov function, which implies that our system is ISS-stable.

B.4 ERROR BOUNDS

B.4.1 SETTING

Let x(t) be a stationary zero-mean u-dimensional Gaussian process (GP) with the covariance function
K(·, ·) = {Ki(·, ·)} and independent components:

Ex(t) = 0,

E [x(t1)⊙ x(t2)] = K(t1, t2),

E [xi(t) · xj(t)] = 0 for i ̸= j,

K(t1, t2) = K(t2 − t1),

(7)

where the symbol ⊙ denotes component-wise multiplication, and lower indexing xi denotes vector
components.

Suppose we know the values of (7) at timestamps 0 = t1 < t2 . . . < tn = T ∈ R. Consider the
corresponding maximum a posteriori predictor x̂(t):

x̂(t) = argmax
x(t)

p [x(t)|x(t1) = x1, . . . ,x(tn) = xn] .

We seek to devise two types of uniform error bounds for the predictor:

σ2
PW ≜ E ∥x̂(t)− x(t)∥22 ≤ σ̄

2
PW, σ2

INT ≜
∫ tk+1

tk

E ∥x̂(t)− x(t)∥22 dt ≤ σ̄
2
INT, (8)

where σ̄INT, σ̄PW are the pointwise and the interval error bounds, constants independent of t and k.
The pointwise expression is more convenient; however, the interval one is often tighter.

B.4.2 ROBUSTNESS THEOREM

We will now estimate, how much of the variance from (8) accumulates in the final hidden state:
Theorem (4.5). Robustness (Gaussian Process standpoint). Along with (3) under Assump-
tions 4.1, 4.2 consider analogous ODE dynamics for a realization of the actual Gaussian Process x(t)
(instead of its MAP approximation x̂(t)):{

dh∗

dt = afθ(x(t),h
∗(t))− bh∗(t),

h∗(0) = h(0) = h0.

Then, depending on whether we are working with point-wise or interval errors, we can write different
bounds on the variance, accumulating in bh.

For the pointwise bound:

E∥h(tn)− h∗(tn)∥22 ≤
(
σ̄PWaLx

b− aLh

)2

. (9)

For the interval bound:

1

n

∫ T

0

E ∥h(t)− h∗(t)∥22 dt ≤
(
σ̄INTaLx

b− aLh

)2

. (10)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Proof. Consider the time-derivative of the squared error norm, multiplied by 1
2 for convenience:

1

2

d

dt
∥h(t)− h∗(t)∥22 =

(
d(h(t)− h∗(t))

dt
,h(t)− h∗(t)

)
=

= (a(fθ(x̂(t),h(t))− fθ(x(t),h
∗(t)))− b(h(t)− h∗(t)),h(t)− h∗(t)) =

= a(fθ(x̂(t),h(t))− fθ(x(t),h
∗(t)), δh(t))− b∥δh(t)∥22 =

≤ a(Lh ∥δh∥22 + Lx ∥δx(t)∥2 ∥δh∥2)− b ∥δh∥
2
2 =

= (aLh − b) ∥δh∥22 + aLx ∥δx(t)∥2 ∥δh∥2 , (15)

where we introduce the following notation for conciseness:

δh(t) ≜ h(t)− h∗(t),

δx(t) ≜ x̂(t)− x(t).

If we have a pointwise bound on E ∥δx(t)∥22, the expression from (15) can be upper bounded by a
quadratic function, where the multiplier aLh − b next to the squared term is negative, since aLh < b.
It turns negative for larger ∥δh(t)∥2:

if ∥δh∥2 >
aLxσ̄PW

b− aLh
, then (aLh − b) ∥δh(t)∥22 + LxσPW ∥δh(t)∥2 < 0

=⇒ 1

2
E
d

dt
∥h(t)− h∗(t)∥22 ≤ 0,

which proves half of this theorem.

However, if we only have an interval error bound, we are forced to integrate (15) on the inter-
val [t1 = 0, tn = T]:

1

2

∫ T

0

d

dt
∥h(t)− h∗(t)∥22 dt ≤

∫ T

0

∥δh(t)∥22 (aLh − b)dt+
∫ T

0

Lx ∥δx(t)∥2 ∥δh(t)∥2 dt. (16)

Let us rewrite the last term, dropping all constants, and use the Cauchy–Schwarz inequality for
integrals: ∫ T

0

∥δx(t)∥2 ∥δh(t)∥2 dt ≤

√∫ T

0

∥δx(t)∥22 dt
∫ T

0

∥δh(t)∥22 dt ≜ XH
√
k,

where we introduced the following notation:

X2 ≜
∫ T

0

∥δx(t)∥22 dt, H2 ≜
∫ T

0

∥δh(t)∥22 dt.

In light of that, let’s rewrite (16):
1

2

(
∥δh(T)∥22 − ∥δh(0)∥

2
2

)
=

1

2
∥δh(T)∥22 ≤ (aLh − b)H2 + aLxXH

√
k.

The right-hand side is a quadratic function with respect to H; again, the multiplier next to the squared
term is negative. Simultaneously, the left-hand side is positive, being a norm. Together, this means
that H needs to be in between the roots of this quadratic function to satisfy the positivity constraints:

0 ≤ H ≤ aLxX
√
k

b− aLh
.

We conclude the proof by taking the expectation of the square and factoring in the interval bound,
which transforms into EX2 ≤ σ̄2

INT due to linearity.

B.4.3 ASSUMPTIONS

To simplify the analysis, we make two assumptions about the nature of the sequences we are working
with. However, they do not limit the applicability of our results.

Most prior theoretical results are devised for the case of uniform sequences. To extend the bounds
towards irregular data, we assume that changing interval sizes predictably changes the resulting error:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Assumption B.5. Let S = {(tk,xk)}k be a given irregular time series. We construct an al-
ternative time series S̃ = {(t̃k,xk)}k, with an additional (possibly negative) margin r, such
that tm − tm+1 < r < +∞, introduced between the m-th and m+ 1-th points:

∀k
{
t̃k = tk, k ≤ m;

t̃k = tk + r, k > m.

Consider the pointwise errors (8) for the original S and modified S̃ sequences: σ2 and σ̃2, respectively.
We assume they relate as follows:

∀t ∈ R
{
σ2(t) ≤ σ̃2(t̃) for r > 0,

σ2(t) ≥ σ̃2(t̃) for r < 0,

where t̃ = t+ I[t > tm+1]r, and I denotes the indicator function.

The respective covariance determines the amount of information each observation provides about the
unknown value. If all covariances decrease, the variance of x̂ will increase and vice versa. We have
also empirically tested this assumption in Appendix B.4.6, and consider a specific theoretical setting
where this assumption holds in Appendix B.4.5.

Assumption B.5 is formulated for pointwise errors, however similar conclusions for interval errors
follow as corollaries:

Corollary B.6. Under the notation of Assumption B.5, the corresponding interval errors relate
similarly:

∀k
{
σ2
k ≤ σ̃2

k for r > 0,

σ2
k ≥ σ̃2

k for r < 0.

Finally, we can extend all the devised error bounds to irregular sequences.

Corollary B.7. Consider an irregular time series S = {(tk,xk)}. Let δmin, δmax be the minimum
and maximum intervals between observations of S, respectively:

δmin = min
k

(tk − tk−1),

δmax = max
k

(tk − tk−1).

Consider also two regular series, with δmin, δmax as the inter-observation intervals:

Smin = {(kδmin,xk)}k,
Smax = {(kδmax,xk)}k.

Then, under the assumption B.5, their interval errors (8) relate as follows:

σ2
min,INT ≤ σ2

k ≤ σ2
max,INT ∀ k.

We also make another common assumption:

Assumption B.8. The input sequence is infinite:

k = −∞, . . . ,−2,−1, 0, 1, 2, . . . ,+∞.

Prior work Zaytsev & Burnaev (2017) demonstrated that the results for infinite sequences empirically
hold for finite ones. Indeed, since a typical kernel decays with an exponential speed, distant
observations negligibly impact the resulting error.

B.4.4 ERROR BOUNDS

In this section, we will work under the uniform-grid assumption: according to Corrolary B.7, all the
results devised under this assumption can be extended to irregular sequences:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Assumption B.9. The sequence S is uniform:

tk+1 − tk = δ, ∀ k.

The optimal estimator for a uniform infinite grid is well-known Kolmogorov (1941):

x̂(t) = δ

∞∑
k=−∞

K(t− kδ)⊙ x(kδ), (17)

where optimal K is a symmetric kernel that depends on a spectral density. This form allows us to
deduce analytical error bounds. For this purpose, we generalise the results from Zaytsev & Burnaev
(2017) to multiple dimensions:
Lemma B.10. Let F(ω) denote the spectral density of Gaussian process from (7):

F(ω) =

∫ ∞

−∞
exp(2πiωt)K(t)dt.

In this notation, under AssumptionsB.8, B.9, and if all components of K are equal, the following
holds:

E∥x̂(t)− x(t)∥2 = u

∫ ∞

−∞
F (ω)

∣∣∣∣∣∣1−
∑
k ̸=0

e2iπω(t−tk)K(t− tk)

∣∣∣∣∣∣
2

dω,

where K(t) ≡ Ki(t), and F (ω) ≡ Fi(ω) are the components of the kernel function and the spectral
density, respectively.

Proof. Let us start with expanding the square:

E∥x̂(t)− x(t)∥2 = E[x̂T (t)x̂(t)]− 2E[x̂T (t)x(t)] + E[xT (t)x(t)].

Now, we consider the terms one by one, substituting (17) and rewriting in terms of spectral density.
The first term gives:

E[x̂T (t)x̂(t)] = h2u

∞∑
k,l=−∞

K(t− tk)K(t− tl)K(tk − tl) =

=

∫ ∞

−∞
F (ω)

h2u ∞∑
k,l=−∞

K(t− tk)K(t− tl)e2πiω(tl−tk)

 dω. (18)

The second one:

2E[x̂T (t)x(t)] = 2hu

∞∑
k=−∞

K2(t− tk) =

=

∫ ∞

−∞
F (ω)

(
2hu

∞∑
k=−∞

K(t− tk)e2πiω(t−tk)

)
dω. (19)

And, finally, the third one:

E[xT (t)x(t)] = K(0)u = u

∫ ∞

−∞
F (ω) dω. (20)

After factoring out the spectral density integral, the terms (18), 19 and (20) are the expansion of a
binomial: ∣∣∣∣∣1− h

∞∑
k=−∞

K(t− tk)e2πiω(t−tk)

∣∣∣∣∣
2

= 12 − 2h

∞∑
k=−∞

K(t− tk)e2πiω(t−tk)+

+

(
h

∞∑
k=−∞

K(t− tk)e2πiω(t−tk)

)2

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

With Lemma B.10, all other results can be taken directly from Zaytsev & Burnaev (2017), taking
into account that x(t) is u-dimensional. We recount select findings from this paper: the general error
form, an analytic error expression for a specific kernel, and the minimax error bound.
Theorem B.11. Under the assumptions from Lemma B.10, the error σ2

INT from (8), may be written in
the following form:

σ2
INT = uδ

∫ ∞

−∞
F (ω)

(
(1− K̂(ω))2 +

∞∑
k=−∞

K̂

(
ω +

k

δ

))
dω (21)

= uδ

∫ ∞

−∞
F (ω)

∑
k ̸=0 F (ω + k

δ)∑∞
k=−∞ F (ω + k

δ)
dω, (22)

where K̂ is the Fourier transform of K.

The error (21) does not depend on the interval number. This is due to the inherent symmetry of an
infinite uniform grid: all intervals are identical from the perspective of the covariance function.

Given (21), we can calculate this error for our scenario of cubic spline interpolation. Consider the
covariance functions (for some θ > 0, Q > 0):

∀ i = 1, . . . , u : Ki(t) =
Q

ω4 + θ4
. (23)

At the limit θ → 0, the mean of the resulting Gaussian Processes tends to a natural cubic spline Gol-
ubev & Krymova (2013). We estimate the corresponding interval error σ2

INT(θ) at θ → 0, which can
be interpreted as the interval error for natural cubic spline interpolation:
Lemma (4.7). Under Assumptions B.5,B.8, for the covariance function (23) the interval error σ2

INT(θ)
from (8) has the following asymptotic:

lim
θ→0

σ2
INT(θ) =

4π4
√
3

63
δ4Qu.

Proof. We will analytically calculate (21) using techniques from calculus and complex analysis:

I(ξ, δ) ≜
∫ ∞

−∞
F (ω)

∑
k ̸=0 F (ω + k

δ)∑∞
k=−∞ F (ω + k

δ)
dω ≜

∫ ∞

−∞
g(ω, ξ, δ)dω, (24)

where the spectral density F is given by 23. Specifically, for splines, we are interested in the following
limit:

σ2
S ≜ uδ lim

ξ→0
I(ξ, δ) =? (25)

First, we will calculate the infinite sums. After substituting (23) into (24), the integrand will contain:∑
k

Q

(ω + k
δ)

4 + ξ4
= . . . (26)

To calculate this, we devise a general expression for the sum of 4th-degree shifted reciprocals:∑
k

1

(k + a)4 + b4
= . . . ,

for some a, b, using complex analysis. Consider the following function:

fR4(z) =
π cot(πz)

(z + a)4 + b4
.

It’s poles are zd = −a+ b√
2
(±1± i) from the denominator, and z ∈ Z from the cotangent; all poles

are simple ones, and can be calculated using the l’Hopital rule:

Res(fR4, z0) =
AR4(z0)

B′
R4(z0)

,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Re

Im

ΓR

-R R

ɣε

Figure 5: Semicircle contour

where fR4 = AR4/BR4; FR4, G
′
R4 are analytic at z0. Applying this formula:

Res(fR4, zd) =
π cot(πzd)

4(zd + a)3
,

Res(fR4, k) =
1

(k + a)4 + b4

According to the Residuals Theorem, the sum of all poles is zero, so:∑
k

1

(k + a)4 + b4
= −

∑
zd

π cot(πzd)

4(zd + a)3
≜ S4(a, b).

The specific value of S4 is rather unsightly, so we leave it out. Applying this to our case (26):∑
k

Q

(ω + k
δ)

4 + ξ4
= Qδ4

∑
k

1

(ωδ + k)4 + (ξδ)4
= Qδ4S4(ωδ, ξδ).

The integrand from (24) can be re-written as:

g = F (ω)

(
1− F (ω)

S4(ωδ, ξδ)Qδ4
)

)
.

Its limit at ξ → 0 is bounded for all values of ω:

lim
ξ→0

g(ξ, ω, δ) = Qδ4π4−2z4 sin
2 (z) + 3z4 − 3 sin4 (z)

z8 (cos (2z) + 2)
,

where we denote z = πδω. This value has a finite limit at ω = 0 (equal to Qδ4π4

45); the numerator is
fourth degree, the denominator is 8th, so it is integrable on R. This implies that, according to the
Lebesgue dominance theorem, we can move the limit from (25) under the integral sign:

σ2
S = lim

ξ→0
I(ξ, δ) =

∫ ∞

−∞
lim
ξ→0

g(ω, ξ, δ) =

= Qδ3π3

∫ ∞

−∞

−2z4 sin2 (z) + 3z4 − 3 sin4 (z)

z8 (cos (2z) + 2)
dz.

Now all that’s left is to compute the integral:∫ ∞

−∞

−2z4 sin2 (z) + 3z4 − 3 sin4 (z)

z8 (cos (2z) + 2)
dz ≜

∫ ∞

−∞
g̃(z)dz = . . .

Again, we use tools from complex analysis. To calculate it, we consider the contour, illustrated by
Figure 5: from −R to −ε on the real axis, along a small semicircle γε around 0, then again along the
real axis from ε to R, and finally along a large semicircle ΓR.

The function is analytic on the contour, so we can apply the residue theorem:(∫ ε

−R

+

∫
γε

+

∫ R

ε

+

∫
ΓR

)
g̃(z)dz = 2πi

∑
poles

Res(g̃, pole).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

The integrand has a removable singularity at z = 0, so it is bounded in the vicinity of 0. Thus, the
integral along γε vanishes as ε → 0. The integral along ΓR vanishes, since the power of z in the
denominator of g̃ is larger than that of the numerator by four (8 vs 4). We are left with:

p.v.
∫ ∞

−∞
g̃(z)dz = 2πi

∑
poles

Res(g̃, pole). (27)

The integrand has simple poles at cos(2z) = −2:

cos(2z) = −2 ⇐⇒ z±n ≜
±i log(2−

√
3) + π

2
+ πn n ∈ Z.

We are interested in the poles in the upper-half space, so since log(2 −
√
3) < 0, we choose

zn ≜ z−n . Again, using the l’Hopital rule, we can evaluate the residues at these poles; using symbolic
calculations to simplify the resulting expressions, we achieve:

Res(g̃, zn) = −
9
√
3i

8

(
πn+ π

2 −
i log (2−

√
3)

2

)8 .

According to (27), we now need to sum these residues:

σ2
S = Qδ4π32πi

∞∑
n=−∞

− 9
√
3i

8

(
πn+ π

2 −
i log (2−

√
3)

2

)8

 (28)

The sum from (28) can be calculated analytically, using complex analysis. We introduce the nota-

tion c ≜ π
2 −

i log (2−
√
3)

2 for convenience:∑
n

1

(πn+ c)8
= . . . ,

The sum appears as the sum of residues of the function:

fR8(z) ≜
cot(z)

(z + c)8
.

Indeed, the residues at poles of cot, for z = πn n ∈ Z, are:

Res(fR8, n) = (z − πn)
1

z−πn +O(z − πn)
(πn+ c)8

=
1

(πn+ c)8
.

According to the residue theorem, their sum is minus the residue of the remaining pole at − c
π :∑

n

1

(πn+ c)8
= −Res

(
fR8,−

c

π

)
. (29)

It is an 8th-order pole, so its residue is given by:

Res(fR8, 0) =
1

7!
lim

z→−c/π

d7

dz7
(z8fR8(z)) = −

16

567
.

Substituting it first into (29), and then into (28), we get the final result:

σ2
S = Qδ4π32π

9
√
3

8

16

567
=

4
√
3π4Qδ4

63
.

We devised a tight error bound for the interval error: indeed, the expression from Lemma 4.7 turns to
equality for uniform sequences. It is also important to highlight, that pointwise bounds exist for the
non-GP, deterministic setting (and can be plugged into (9), supposing that x is degenerate) Hall &
Meyer (1976); De Boor & De Boor (1978), the optimal one being:

∥x̂(t)− x(t)∥ ≤ 5

384
|δ|4∥x(4)∥.

However, they are not tight: the actual error evidently depends on the distance to the closest
observation, which is impossible for σ̄PW since it does not depend on time.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

B.4.5 PROOF OF SPECIAL CASE OF ASSUMPTION B.5.

Consider an exponential covariance function k(x, y) = exp (−|x− y|). If y > x and we consider
y′ = y + s for s > 0, then k(x, y′) = k(x, y) exp(−s). Below we denote δ = exp(−s). By
construction δ < 1.

We construct optimal Gaussian process prediction at a point x. Our sample of observations consists
of two sets of points: X1 = {x1, . . . , xn}, X2 = {xn+1, . . . , xm}. For our design of experiments,
it holds that for i > n xi > xk, k = 1, n, xi > x. We shift X2 by s > 0 to get Xs

2 = {xn+1 +
s, . . . , xm + s}.
Let us define the covariance matrices involved in risk evaluation. Self-covariances at X1 is A,
self-covariances defined at X2 is D, and cross-covariances between X1 and X2 is B. Then, after
changing X2 to Xs

2 , A and D don’t change, and B is multiplied by δ.

Let us denote the vector of covariances between x and X1 and X2 as a and d correspondingly. After
changing X2 to Xs

2 , a doesn’t change, and d is multiplied by δ.

The squared risk for the prediction at point x has the form:

σ2(x) = k(x, x)− kTK−1k.

Here k is a concatenation of a and d, and

K =

(
A B
BT D

)
.

After shifting of X2, kδ is a concatenation of a and δd, and

Kδ =

(
A δB
δBT D

)
.

and the corresponding risk:
σ2
δ (x) = k(x, x)− kT

δ K
−1
δ kδ.

Using the block-inversion formula, we get:

K−1
δ =

(
A−1 + δ2A−1BS−1BTA−1 −δA−1BS−1

−δS−1BTA−1 S−1

)
,

here S = D − δ2BTA−1B.

Then,

kTK−1k = aTA−1a+ (BTA−1a− d)TS−1(BTA−1a− d),

kT
δ K

−1
δ kδ = aTA−1a+ (BTA−1a− d)T δ2S−1(BTA−1a− d).

It is clear that δ2S−1 =
(
D
δ2 −B

TA−1B
)−1

.

Let us prove the following Lemma:
Lemma B.12. Consider a positive definite matrix D and 0 < δ < 1. Then for an arbitrary vector x
and a symmetric matrix U such that (D − U)−1 and (D/δ2 − U)−1 exist, it holds that:

xT (D − U)−1x ≥ xT

(
D

δ2
− U

)−1

x.

Proof. For an arbitrary vector x let us define the function:

F (δ) = xT

(
D

δ2
− U

)−1

x.

Using the derivative of the inverse matrix formula:

∂F (δ)

∂δ
= 2xT

(
D

δ2
− U

)−T
D

δ3

(
D

δ2
− U

)−1

x.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Let x̃ =
(
D
δ2 − U

)−1
x. Then,

∂F (δ)

∂δ
= 2x̃T D

δ3
x̃.

Given that D is a positive definite matrix, it holds that:

∂F (δ)

∂δ
> 0.

So, the proposition of Lemma holds, as with decreasing δ, we decrease the functional value given
that the derivative is positive.

Substituting U = BTA−1B and applying Lemma B.12, we get:

kTK−1k = aTA−1a+ (BTA−1a− d)TS−1(BTA−1a− d) ≥
kT
δ K

−1
δ kδ = aTA−1a+ (BTA−1a− d)T δ2S−1(BTA−1a− d).

So, σ2
δ (x) > σ2(x), meaning that the risk increases after the shift.

B.4.6 VALIDATION OF ASSUMPTION B.5

The assumption was tested for the common quadratic kernel:

K(δt) = e−(δt)2/2.

The procedure is outlined in Algorithm 1 and is also available as a Python script in our paper’s
repository. It randomly chooses sequence length, sequence times, displacement amount, and location,
and calculates the variance of a Gaussian Process fitted to the generated sequence at a random time.
Finally, it asserts that the sequence with increased intervals has an error bigger than the initial one.
The loop successfully runs for 1000 iterations, suggesting that the hypothesis typically holds under
natural settings.

Algorithm 1: Monte Carlo hypothesis testing.

loop
n← randint(5, 300)
r ← rand()
mark iteration-start
{tk}nk=1 ← sort(rand(n))
t1 ← 0
tn ← 1
i← randint(1, N − 1)
{t̃k}k ← {t1, . . . , ti−1, ti + r, . . . , tn + r}
K ← cov({ti − tj}i,j)
K̃ ← cov({t̃i − t̃j}i,j)
t← rand()
t̃← t
if ti < t then
t̃← t+ r

end if
if Singular(K) or Singular(K̃) then

goto iteration-start
end if
k ← cov({tk − t}k)
k̃ ← cov({t̃k − t̃}k)
D ← cov(0)− quad(K, k)
D̃ ← cov(0)− quad(K̃, k̃)
assert D < D̃

end loop

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

B.4.7 BOUND TIGHTNESS

To analyse the tightness of bounds from Theorem 4.5, we provide specific examples, which adhere to
our assumptions while achieving the formulated bounds.

Example 1. To simplify analysis, assume u = v = 1; a similar example may be provided for the
multidimensional case. Consider the following scenario:

dh

dt
= A+ (1− ε/2)h− (1 + ε/2)h, h(0) = 0; (30)

x̂(t) ≡ A; a = 1; b = 1 + ε/2;Lh = 1− ε/2;Lx = 1. (31)

In this case, b− aLh = ε > 0. The solution is:

h(t) =
−Ae−εt +A

ε
.

On the other hand, suppose the true value of x is also constant, x(t) ≡ B ∈ R. Then, the correspond-
ing ”true“ solution is given by:

h∗(t) =
−Be−εt +B

ε
.

Then, the errors (9), (10) from Theorem 4.5 can be calculated analytically:

E[h(t)− h∗(t)]2 =

(
(A−B) (1− e−εt)

ε

)2

→ (A−B)2

ε2
, t→∞;∫ t2

t1

E[h(t)− h∗(t)]2dt =
∫ t2

t1

(
(A−B) (1− e−εt)

ε

)2

dt→ 1

ε2
(t2 − t1)(A−B)2, t1 →∞.

They match the corresponding bounds. Note, that to illustrate the asymptotic of the interval bound,
we consider t1 > 0, and calculate limit of the interval bound at t1 → ∞ (instead of integrating
on [0, T]). This allows us to show how the bound behaves on large values of t.

B.5 LONG-TERM MEMORY

Theorem (4.9). For the ODE (3) under Assumptions 4.1, 4.2, the following holds:

d

dτ

∥∥∥∥dh(t+ τ)

dhi(t)

∥∥∥∥
2

< 0.

Proof. First, we denote χ ≜ dh(t+τ)
dhi(t)

. Instead of considering d
dτ ∥χ∥2, we consider the derivative of

the squared norm 1
2

d
dτ ∥χ∥

2
2. These two expressions will have the same sign, and the derivative of the

squared norm can be conveniently rewritten:

1

2

d

dτ
∥χ∥22 =

(
d

dτ

dh(t+ τ)

dhi(t)
, χ

)
.

Since the functions we are working with are continuous, we may re-order the derivative, achieving:(
d

dτ

dh(t+ τ)

dhi(t)
, χ

)
=

(
d

dhi(t)

dh(t+ τ)

dτ
, χ

)
. (32)

Now we can expand dh(t+τ)
dτ , using (3), and differentiate it w.r.t. hi(t):

d

dhi(t)

dh(t+ τ)

dτ
=

d

dhi(t)
(afθ(x̂(t+ τ),h(t+ τ))− bh(t+ τ)) = aJχ− bχ,

where J is the Jacobain of fθ w.r.t. h. Plugging this into (32), we get:

1

2

d

dτ
∥χ∥22 = (aJχ− bχ, χ) = aχTJTχ− b∥χ∥22. (33)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

According to Assumption 4.1, the spectral norm of J is no greater than Lh. Consequently, the
maximum eigenvalue of J is also ≤ Lh. We know from linear algebra that a quadratic form cannot
stretch a vector’s norm more than its max eigenvalue, so:

χTJTχ ≤ Lh∥χ∥22. (34)

Finally, putting (33) together with (34), we achieve:

aχTJTχ− b∥χ∥22 ≤ Lha∥χ∥22 − b∥χ∥22 = ∥χ∥22(Lha− b).

This expression is negative, according to (4).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

0.00 0.25 0.50 0.75 1.00
0.0

0.1

0.2

0.3

Figure 6: A sample from the bump dataset

0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

Figure 7: Sine-Mix dataset sample.

C EXPERIMENTS

C.1 DATASETS

Below is a detailed description of each dataset:

• The PhysioNet Sepsis 4 dataset Reyna et al. (2020), released under the CC-BY 4.0 license.
Most of the values are missing, with only 10% present. Sequences are relatively short,
ranging from 8 to 70 elements, with a median length of 38. The target variable indicates
whether the patient developed sepsis, meaning it’s binary and highly unbalanced, so we
measure AUROC. This dataset is also used by the original NCDE paper Kidger et al. (2020),
making it a valuable addition to our benchmark. Following the NCDE paper, we only
consider the first 72 hours of a patient’s stay.

• Two datasets from the Time Series Classification archive 5 Middlehurst et al. (2024) (with
no explicit license specified): the U-Wave Gesture Library Liu et al. (2009) and the Insect
Sound dataset6. These datasets were processed identically: the timestamps were taken to be
evenly spaced between 0 and 1, and 30% of each sequence was replaced with NaNs. They
both have a multiclass label, so we use the Accuracy metric.

• A synthetic Pendulum dataset, with the dampening coefficient as the target Osin et al.
(2024) (with no explicit license specified) — regression task. Sequences are irregular,
containing 10% missing values, with lengths varying from approximately 200 to 400
elements, the median length being 315.

• The Pendulum (regular and irregular versions) and Sine-2 datasets with forecasting as the
target, see Appendix C.7.

• The Bump dataset for Section 3. The task is binary classification: between bump func-
tions (35) with ζ = 20 and constant-zero functions. Figure 6 demonstrates a positive sample
from this dataset.

• The SineMix dataset. The task is to predict the frequency of the first of two sine waves,
joined at mid-point as in Figure 7. Consequently, this is a regression label, we use R2 score.

ψζ(x) =

{
exp

(
1

(ζx)2−1

)
if |(ζx)| < 1;

0 if |(ζx)| ≥ 1
(35)

The choice of metrics and activation functions for each dataset is dictated by the nature of the task.
The correspondence between tasks, activation functions, and metrics is given by Table 8.

4https://physionet.org/content/challenge-2019/1.0.0/
5https://www.timeseriesclassification.com/
6https://www.timeseriesclassification.com/description.php?Dataset=

InsectSound

28

https://physionet.org/content/challenge-2019/1.0.0/
https://www.timeseriesclassification.com/
https://www.timeseriesclassification.com/description.php?Dataset=InsectSound
https://www.timeseriesclassification.com/description.php?Dataset=InsectSound

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Table 8: Table with Metrics and Activations, corresponding to various tasks.

Task Binary Classification Multiclass Classification Regression

Activation Sigmoid SoftMax None
Metric AUROC Accuracy R2 Score

This choice of datasets allows us to test the considered models in multiple challenging areas: long
sequences, irregular sequences, and sequences with many missing values and scarce data. The code
for generating each dataset is provided in our repository.

C.2 BACKBONES

RNN. The recurrent networks are all single-layer and one-directional, with 32 hidden channels. For
GRU Chung et al. (2014) we use the standard PyTorch implementation:

r = σ(Wirx+ bir +Whrh+ bhr);

z = σ(Wizx+ biz +Whzh+ bhz);

n = tanh(Winx+ bin + r⊙ (Whnh+ bhn));

h̃ = (1− z)⊙ n+ z⊙ h.

We use the standard GRU notation: h for the previous hidden state, x for the current input, h′ for the
new hidden state; ⊙ denotes the Hadamard product. For the vanilla RNN, we use a simple one-layer
tanh-activated network:

h̃ = tanh(Wihx+ bih +Whhh+ bhh).

Transformers. We use the Pytorch implementation of the Transformer Encoder layer. The two
versions differ in their positional embeddings: RoFormer uses rotary embeddings Su et al. (2024)
(provided by TorchTune), and TempFormer uses temporal sine-based embeddings, as proposed by
the Transformer Hawkes paper Zuo et al. (2020).

Mamba. The Mamba model we use is Mamba2 Gu & Dao (2023) from the Mamba SSM library 7,
which we employ without significant modifications.

Neural CDE, RDE. To reproduce the results as closely as possible, we use TorchCDE 8 for the
Neural CDE method Kidger et al. (2020). Specifically, we implemented the example for irregular
sequence classification from their repository. For Neural RDE Morrill et al. (2021b), we pre-process
the data using the original Signatory package, provided by the authors 9, with depth set to 2.

GRU-ODE. As the model for GRU-ODE De Brouwer et al. (2019), we simply take a Neural CDE
with the Sync-NF vector field, without time scaling.

DeNOTS. DeNOTS is slower than other non-ODE methods; however, we argue this is an imple-
mentation issue. Neural ODEs received much less attention than State-Space Models, Transformers,
or RNNs. We use the TorchODE library Lienen & Günnemann (2022). Although it is faster than the
original implementation Chen et al. (2018), it still requires work, being built almost single-handedly
by its main contributor.

Backpropagation is done via the AutoDiff method, which is faster than Adjoint backpropagation.
However, it is also more memory-consuming. We fix the tolerance to 10−3 and use the adaptive
DOPRI5 solver. The normalizing constant M we use for time scaling (tk ← D

M tk) is set to the
median size of the timeframe across the dataset. Our version of cubic spline interpolation skips NaN
values, interpolating only between present ones. All-zero channels are set to a constant zero. For the
DeNOTS versions that use the GRU Cell as their dynamics function:

7https://github.com/state-spaces/mamba
8https://github.com/patrick-kidger/torchcde
9https://github.com/patrick-kidger/signatory

29

https://github.com/state-spaces/mamba
https://github.com/patrick-kidger/torchcde
https://github.com/patrick-kidger/signatory

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

• For no negative feedback, we use the GRU as-is;

• For Anti-NF, we pass −h instead of h to a standard PyTorch GRU.

• For Sync-NF, we subtract the current hidden from the derivative.

GRU turns out to be a surprisingly convenient framework for incorporating negative feedback.

For the non-GRU-based vector fields, specifically Tanh and ReLU, we used two consecutive linear
layers separated by the corresponding activations. The tanh model also includes an activation at the
end. The ReLU version does not have a final activation; otherwise, it could not decay any hidden-state
components.

Model size. All the considered models are small, with hidden sizes fixed to 32. This is done delib-
erately to facilitate reproducibility and reduce experimentation time. The remaining hyperparameters
are chosen so that the total number of learnable parameters is comparable to or greater than that of
DeNOTS: everywhere except Sepsis that means setting the number of layers to 1. On Sepsis, we
use 4 layers for Transformers and 32 layers for Mamba. The specific numbers of parameters for each
model on each of our main datasets are provided in Table 9.

Table 9: The number of parameters for each model on all our main datasets.

DeNOTS GRU NCDE NRDE Mamba RoFormer TempFormer

Pendulum 3552 3552 4352 7616 8120 137664 137664
UWGL 3648 3648 5440 11968 8152 137504 137504
InsectSound 3456 3456 3264 4352 8088 137632 137632
Sepsis 339264 339264 3809088 ✗ 367776 662080 662080

C.3 PIPELINE

We provide our repository with automated scripts to download and preprocess all datasets, as well
as to train and evaluate all the considered models, using popular frameworks such as Pytorch Ansel
& team (2024) (Caffe2 license), Pytorch Lightning Falcon & The PyTorch Lightning team (2019)
(Apache License 2.0) and Hydra Yadan (2019) (MIT License) to make the process familiar to most
AI researchers. The YAML configs, containing all the hyperparameters, are also provided in the
repository to facilitate reproducibility. The documentation clearly explains the steps necessary to
reproduce all considered experiments.

C.3.1 TRAINING

All training uses the Adam method Kingma (2014), with the learning rate fixed to 10−3 and other
parameters left default. The whole model, consisting of the head and the backbone, is trained end-to-
end. The head consists of a linear layer and an activation function. We do not set an upper bound for
epochs, stopping only when the validation metric stops improving. The choice of head’s activation,
loss, and specific metrics depends on the considered task, as outlined in Table 10.

Table 10: Head activation, loss, and metric choice for each downstream task.

Task Activation Loss Metric
Regression - Mean squared error R2

Binary Sigmoid Binary cross-entropy AUROC
Multiclass Softmax Cross-entropy Accuracy

C.3.2 EMBEDDINGS

Before passing {xk}k to the backbone, we apply Batch Normalization Ioffe & Szegedy (2015). For a
fairer baseline comparison, time intervals tk − tk−1 are also included in the embeddings in the same
way as other numerical features.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

For the Sepsis dataset, the considered numerical features represent medical variables and are thus
presumably more complex than the physical coordinate/acceleration data from the other datasets. To
account for this, we inflate each of them to a dimension of 100 using a trainable linear layer before
the backbone. Besides, this dataset has static features, which we use as the starting points where
applicable. Additionally, since Sepsis is closer to event sequences than time series, we fill the NaN
values with zeros prior to passing it to the baselines, indicating ”no-event“ (this includes the SNCDE
models).

On all the other datasets, NaN values for the models that do not support missing values were replaced
via forward/backward filling.

C.4 EXPRESSIVITY DISCUSSION

Here, we explain why measuring expressivity with the downstream metric is a valid approach.
Theoretically, the total error can be decomposed into three terms Gühring et al. (2020):

1. The approximation error. We are forced to consider only a limited parametric family of
estimator functions. This directly measures the expressivity of the chosen parametric model,
which is the focus of our work.

2. The estimation error. We can only calculate the empirical risk, on a finite and imperfect
training set, instead of the true one. This measures the generalization quality you speak of.

3. The training error. The optimization problems in deep learning are usually complex and
non-convex. We can only solve such problems approximately, via iterative techniques with
a finite number of steps.

To minimise the influence of the training error, we do not limit the number of epochs, stopping
optimization only when the validation metric stops increasing.

Overfitting. Next, it is the consensus that the more expressive models suffer more from overfit-
ting Hawkins (2004), i.e. generalize worse. We verify that our models adhere to this by performing
the following experiment. We construct a smaller version of the Pendulum dataset; its training
set is 1/32 of the original one, and compare the DeNOTS model with various values of D on this
benchmark. The results are provided in Table 11. The overfitting effect is observed very clearly:
the ”shallow“ D = 1 model achieves higher metrics on the test set than D = 10, and the ranking is
reversed on the train set.

Table 11: Results on the Pendulum small dataset for two versions of the DeNOTS model with various
time scales (D = 1, 10).

Scale Test R2 Test MSE Train R2 Train MSE

D = 1 0.479± 0.006 0.178± 0.002 0.62± 0.096 0.124± 0.029
D = 10 0.437± 0.049 0.192± 0.017 0.738± 0.115 0.089± 0.043

To sum up, we have ruled out the training and estimation errors in our NFE-Metric correlation
experiments, so we conclude that high correlation implies that time scaling benefits expressivity.

C.5 NFE-CORRELATION EXPERIMENTS

This section focuses on the relationship between the Number of Function Evaluations (NFE) logarithm
and the respective metrics. In addition to Pearson correlation from Table 6, measuring linear
dependence, we also present Spearman correlation in Table 12, measuring monotonicity. Finally, the
log-NFE-metric graphs in Figures 8, 9 illustrate these relationships. The best results of each model
are displayed in Table 13.

Our model shows excellent performance on all the presented benchmarks. As for the other approaches:

• Increasing tolerance to increase NFE does not reliably improve the models’ performance;
the NFE-metric correlation is mostly weak.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Table 12: Spearman correlation test between log-NFE and metric, for various vector fields. The first
number indicates the statistic for reducing tolerances, the second one — the statistic for increasing
time scale. Values ≥ 0.7 are highlighted in bold.

Pendulum Sepsis Sine-2

Tanh 0.1/-0.2 0.2/0.7 0.6/0.6
ReLU 0.4/-0.7 0.4/0.03 0.1/0.5
No NF 0.4/-0.7 0.4/-0.6 0.3/-0.3
Sync-NF 0.4/0.7 0.4/-0.4 0.4/0.9
Anti-NF 0.5/0.9 0.5/0.7 0.3/1.0

5.0 5.5 6.0 6.5 7.0
Log NFE

0.90

0.91

0.92

0.93

0.94

M
et

ric
 A

UR
OC

Tanh-T
ReLU-T
No NF-T

Sync-NF-T
Anti-NF-T
Tanh-S

ReLU-S
No NF-S

Sync-NF-S
Anti-NF-S (ours)

Figure 8: AUROC vs Log-NFEs on the Sepsis dataset for various methods of increasing NFEs (-T for
lowering tolerance, -S for increasing time scale); for various vector fields (Tanh, ReLU — MLP with
Tanh and ReLU activations respectively; No NF — vanilla GRU vector field, Sync NF — GRU-ODE
vector field, Anti NF — our version). The curves were drawn via Radial Basis Function interpolation.

• Increasing depth for non-stable vector fields does not consistently increase expressiveness.
• The Sync-NF seems to suffer from forgetfulness on larger depths for Sepsis (especially

evident from Figure 8).

Notably, the ReLU-T model performs surprisingly well on Sepsis, beating even Anti-NF-S. However,
Relu-T’s performance on Pendulum and Sine-2 is inferior, and its NFE-metric correlation is low even
on Sepsis, so this does not invalidate our conclusions.

C.6 NEGATIVE FEEDBACK STRENGTH

In this section, we analyse whether the equation (4) holds for Anti-NF or Sync-NF in practice.
Specifically, we will use the following lemma:

Lemma C.1. If the Jacobian J ≜
(

∂fi
∂hj

)
i,j

satisfies:

∥Jh∥
∥h∥

≤ Lh, ∀h ∈ H,

and the setH is connected, then the function f is Lh-Lipschitz onH.

It follows from the generalized mean-value theorem (for vector-valued functions with vector argu-
ments).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

4.0 4.5 5.0 5.5 6.0
Log NFE

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
et

ric
 R

2

Tanh-T
ReLU-T
No NF-T

Sync-NF-T
Anti-NF-T
Tanh-S

ReLU-S
No NF-S

Sync-NF-S
Anti-NF-S (ours)

Figure 9: R2 vs Log-NFEs on the Sine-2 dataset for various methods of increasing NFEs (-T for
lowering tolerance, -S for increasing time scale); for various vector fields (Tanh, ReLU — MLP with
Tanh and ReLU activations respectively; No NF — vanilla GRU vector field, Sync NF — GRU-ODE
vector field, Anti NF — our version). The curves were drawn via Radial Basis Function interpolation.

Table 13: Best results of each vector field in the ablation study. The winner is highlighted in bold,
the second-best is underlined; if the distance to (second-)best is less than half the joint variance
(
√
σ2
1 + σ2

2), the result is highlighted in the same fashion.

Pendulum Sepsis Sine-2

Tanh-T 0.697 ± 0.007 0.919 ± 0.002 0.6 ± 0.04
ReLU-T -20.0 ± 20.0 0.94 ± 0.002 0.58 ± 0.08
No NF-T 0.68 ± 0 0.923 ± 0.003 0.27 ± 0.05
Sync-NF-T 0.68 ± 0.04 0.93 ± 0.004 0.47 ± 0.05
Anti-NF-T 0.69 ± 0.03 0.927 ± 0.003 0.39 ± 0.02

Tanh-S 0.7 ± 0.09 0.934 ± 0.002 0.88 ± 0.06
ReLU-S -50.0 ± 60.0 0.9364 ± 0.0007 0.7 ± 0.1
No NF-S 0.65 ± 0.02 0.92 ± 0.01 0.46 ± 0.01
Sync-NF-S 0.77 ± 0.01 0.934 ± 0.004 0.96 ± 0.03
Anti-NF-S 0.79 ± 0.03 0.937 ± 0.005 0.988 ± 0.002

Consequently, we need to test:

For Sync-NF :
∥Jh∥
∥h∥

≤ 1; (36)

For Anti-NF :
∥Jh∥
∥h∥

a ≤ b. (37)

For Anti-NF, the expression contains the values a, b, which we model with the component-wise mean
of 1− z, z, respectively. We refer to the left-hand sides of (36), (37) as the update strengths, and the
right-hand side as the NF strengths. In these terms, we need to test whether the update strength is less
than the NF strength.

Figures 10, 11 present our results. The Sync-NF model satisfies our assumptions throughout the
trajectory: the update strength is constantly less than 1. The Anti-NF model mostly adheres to (37).
However, due to significant variances, the vector field must not always be subject to (37), allowing it
to disable the NF effect at will.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

0.2 0.4 0.6 0.8 1.0
Time frac.

0.0

0.2

0.4

0.6

0.8

1.0

NF Strength
Update Strength

Figure 10: NF and update strength vs fraction of
total time passed for the Sync-NF vector field. A
constant-1 line represents the NF strength, while
for the update strength, we average the results
over five runs, illustrating variance via tinting.

0.2 0.4 0.6 0.8 1.0
Time frac.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7 NF strength

Update strength

Figure 11: NF and update strength vs fraction
of total time passed for the Anti-NF vector field.
The NF and the update strengths are calculated
by averaging over the corresponding values, so
we provide variance via tinting for both of them.

C.7 FORECASTING

Our forecasting task consists of both interpolation and extrapolation, in a simplified setting:

• Extrapolation. The second half of the input sequence is discarded;

• Interpolation In the first half, every second element is also discarded.

The task is to reconstruct the discarded elements. Each element is a real number, so forecasting is a
regression task in our case. We measure the quality of the solutions using the R2 metric. Specifically,
we consider two forecasting datasets: Pendulum-Angles and Sine-2.

C.7.1 PENDULUM ANGLES

The Pendulum-Angles dataset is the task of forecasting the angle of the pendulum, generated similarly
to our synthetic Pendulum dataset. The specifics of the original Pendulum dataset were described in
Appendix C.1. To compare our models’ ability to handle irregular data, we consider two versions of
observation time sampling: with observations on a regular grid or appearing according to a Poisson
random process.

Table 14: Results on the Pendulum-Angles dataset.

Dataset DeNOTS Neural CDE Latent ODE RoFormer TempFormer

Irregular 0.994 ± 0.001 0.985 ± 0.003 0.981 ± 0.002 0.979 ± 0.001 0.961 ± 0.005
Regular 0.996 ± 0.001 0.998 ± 0.001 0.996 ± 0.001 0.99 ± 0.001 0.971 ± 0.003

The results are presented in Table 14. DeNOTS is best at handling irregular sampling intervals.
However, when times are sampled regularly, Neural CDE slightly outperforms our method.

C.7.2 SINE-2 DATASET

The Sine-2 dataset is a synthetic dataset for forecasting, with each sequence the sum of two sine
waves with different frequencies, as illustrated by Figure 12.

This dataset is convenient because it allows us to single out expressivity: we use it in our NFE-Metric
correlation experiments. Although it is evidently rather difficult, it is perfectly solvable since it does
not contain any noise. Consequently, any increase in expressivity must directly cause an increase

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

0.0 0.2 0.4 0.6 0.8 1.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 12: A sample from the Sine-2 dataset.

in metrics. This is precisely what we observe in Table 6 from the main text, and in Table 12 and
Figure 9 from Appendix C.5.

C.8 FULL ATTACK RESULTS

Here, we provide the complete graphs for both the Change and the Drop attack from Table 5. They
are presented by Figures 13, 14. The conclusions are the same as those we provide in the main text,
made only more evident by the dynamic. The attacks were each repeated for five different seeds, for
five versions of the weights, totalling 25 runs per point, and then averaged over. Using this, we also
provide the variance via tinting.

0.8 0.85 0.9 0.95
Attack Scale

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R2
 S

co
re

Drop
RNN
TempFormer
RoFormer
Mamba
Neural CDE
Neural RDE
DeNOTS-5 (No NF)
DeNOTS-5 (Sync-NF)
DeNOTS-5 (Anti-NF)

Figure 13: R2 vs fraction of dropped tokens on the Pendulum dataset, on the test set. The dropped
tokens are replaced with NaNs. The models are very robust to these attacks, probably because the
initial sequences contained NaNs.

Additionally, we test how the value of D affects the robustness of our models. This is presented in
Figures 15, 16. Increasing depth lowers robustness, which is in line with the consensus. Prior work

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

0.005 0.01 0.02 0.04
Attack Scale

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

R2
 S

co
re

Change
RNN
TempFormer
RoFormer
Mamba
Neural CDE
Neural RDE
DeNOTS-5 (No NF)
DeNOTS-5 (Sync-NF)
DeNOTS-5 (Anti-NF)

Figure 14: R2 vs fraction of tokens, changed to standard Gaussian noise, on the Pendulum dataset,
for the test split. We use the log-scale for the x-axis, because all the considered models are very
sensitive to these attacks.

indicates that the more accurate models with higher metrics often perform worse under adversarial
attacks than those with lower metrics Su et al. (2018). Increased accuracy often requires increased
expressiveness and sensitivity, which directly impacts robustness. Consequently, this demonstration
supports our claim that larger values of D correspond to more expressive models.

0.8 0.85 0.9 0.95
Attack Scale

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

R2
 S

co
re

Drop

DeNOTS-2 (Anti-NF)
DeNOTS-5 (Anti-NF)
DeNOTS-10 (Anti-NF)
DeNOTS-20 (Anti-NF)

Figure 15: R2 vs fraction of dropped tokens on
the Pendulum dataset, on the test set, for various
values of D. The dropped tokens are replaced
with NaNs.

0.005 0.01 0.02 0.04 0.08
Attack Scale

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

R2
 S

co
re

Change
DeNOTS-2 (Anti-NF)
DeNOTS-5 (Anti-NF)
DeNOTS-10 (Anti-NF)
DeNOTS-20 (Anti-NF)

Figure 16: R2 vs fraction of tokens, changed to
standard Gaussian noise, on the Pendulum dataset,
for the test split, for various values of D. We use
the log scale for the x-axis because all the consid-
ered models are susceptible to these attacks.

C.9 COMPUTATIONAL RESOURCES

Due to the small hidden sizes (32) and limited number of layers (1 in most cases), all the considered
models occupy little video memory and fit on an Nvidia GTX 1080 Ti. All the datasets fit into RAM
(occupying no more than several Gb on disk). We set a limit of 200Gb RAM in our Docker container,
however a significantly smaller one would do (we estimate 32Gb should be enough). We also allocate
16 CPUs for our container, but since most of the training happens on a GPU, these are not necessary,
one could make do with 4-8 cores.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Each experiment takes from a few minutes to a few hours of compute time, depending on hyper-
parameters (specifically, D and tolerance for DeNOTS) and the dataset (Pendulum being the most
expensive). Overall, we estimate that approximately 100 experiments need to be performed to repro-
duce our results, with a mean time of 30m, which translates to ∼ 50 hours of compute on an Nvidia
1080Ti in total. Our cluster houses 3 such video cards, allowing us to perform the computations in
parallel, speeding up the process.

Notably, a substantial amount of experiments were not included in the final version due to hypothesis
testing and bugs, so the real compute is closer to ∼ 500 hours.

37

	Introduction
	Method
	Time Scaling
	Negative Feedback
	Stability
	Error Bounds
	Error bounds for specific covariance functions

	Long-term memory

	Main Experiments
	Conclusions
	Related works
	Theory
	Time scaling
	Negative Feedback Model
	Stability
	Error Bounds
	Setting
	Robustness theorem
	Assumptions
	Error bounds
	Proof of special case of Assumption B.5.
	Validation of Assumption B.5
	Bound Tightness

	Long-term Memory

	Experiments
	Datasets
	Backbones
	Pipeline
	Training
	Embeddings

	Expressivity discussion
	NFE-Correlation experiments
	Negative Feedback Strength
	Forecasting
	Pendulum Angles
	Sine-2 Dataset

	Full attack results
	Computational Resources

