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Abstract

To accelerate diffusion model inference, numerical solvers perform poorly at
extremely small steps, while distillation techniques often introduce complexity and
instability. This work presents an intermediate strategy, balancing performance and
cost, by learning ODE integration using loss functions derived from the derivative-
integral relationship, inspired by Monte Carlo integration and Picard iteration. From
a geometric perspective, the losses operate by gradually extending the tangent to
the secant, thus are named as secant losses. The target of secant losses is the
same as that of diffusion models, or the diffusion model itself, leading to great
training stability. By fine-tuning or distillation, the secant version of EDM achieves
a 10-step FID of 2.14 on CIFAR-10, while the secant version of SiT-XL/2 attains
a 4-step FID of 2.27 and an 8-step FID of 1.96 on ImageNet-256× 256. Code is
available at https://github.com/poppuppy/secant_expectation.

1 Introduction
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Figure 1: Formulation of secant
losses. We employ an ℓ2 loss be-
tween the learned secant and a tan-
gent at a random interior time point.
By estimating either the interior or
the end point, we derive two vari-
ants shown in (a) and (b).

Diffusion models [1, 2, 3, 4] generate images by reversely
denoising their noised versions, which can be formulated by
stochastic differential equations (SDEs) and the corresponding
probability flow ordinary differential equations (PF-ODEs) [4].
Over recent years, diffusion models have transformed the land-
scape of generative modeling, across multiple modalities such
as image [5, 6, 7, 8], video [9, 10, 11] and audio [12, 13, 14].
Despite their remarkable performance, a significant drawback
of diffusion models is their slow inference speed: they typically
require hundreds to thousands of number of function evalua-
tions (NFEs) to generate a single image. Considerable research
has focused on reducing the number of required steps, with
common approaches falling into categories including faster
samplers [15, 16, 17, 18] for diffusion SDEs or PF-ODEs, and
diffusion distillation [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35] methods that distill pretrained diffusion
models to few-step generators. However, faster samplers ex-
perience significant performance degradation when operating
with a small number of function evaluations (typically fewer
than 10 NFEs). Meanwhile, distillation approaches frequently
introduce substantial computational overhead, complex training
procedures, or training instabilities. Additionally, they some-
times face risks of model collapse and over-smoothing in the generated outputs.
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Figure 2: Selected 8-step samples on ImageNet 256× 256.

In this work, we propose a simple intermediate solution to reduce the inference steps of diffusion
models through easy distillation or fine-tuning. A diffusion model constructs the PF-ODE by
fitting the derivative of the noised image with respect to time, as indicated by the green line in
Fig. 1. From a geometric perspective, we refer to the diffusion model as the tangent since it
describes the instantaneous rate of change of the noised image as the time difference approaches
zero. Correspondingly, we define the rate of change of the noised image between two time points
as the secant, marked in orange in the figure. Unlike diffusion models, we use neural networks to
model the secant function instead. Based on the observation that the secant is the average of all
tangents between two time points, we establish an integral equation as our loss function, termed
secant losses. This average is implemented by taking the expectation with respect to random time
variables in a Monte Carlo fashion. Since we can only sample one noised image for evaluating either
the secant or the tangent at each training iteration, we let the model estimate the other, inspired by
Picard iteration. Two scenarios for estimating the interior or the end point are shown in Fig. 1 (a)
and (b), respectively. This results in a straightforward loss formulation: the distance between the
learned secant with respect to two given time points and a tangent at a random intermediate time
between them, as presented at the top of Fig. 1. Intuitively, secant losses work by gradually extending
from the tangent to the secant. Unlike consistency models [33, 35, 34, 36], which either introduce
discretization errors or rely on explicit differentiation in loss calculation, our approach avoids explicit
differentiation while preserving accurate solutions at sufficiently small time intervals under mild
conditions. More importantly, the target of our secant losses is identical to that of diffusion models or
the diffusion model itself. This parallel to diffusion models provides significantly greater training
stability compared with consistency models.

We evaluate our method on CIFAR-10 [37] and ImageNet-256×256 [38] datasets, using EDM [6] and
SiT [39] as teacher diffusion models, respectively. Our experiments demonstrate that diffusion models
can be efficiently converted to their secant version, with significantly slower accuracy degradation
compared to conventional numerical solvers as the step number decreases. On CIFAR-10, our
approach achieves FID scores of 2.14 with 10 steps. For ImageNet-256 × 256 in latent space, we
obtain a 4-step FID of 2.78 and an 8-step FID of 2.33. With the guidance interval technique [40], the
performance is further improved to 2.27 with 4 steps and 1.96 with 8 steps.

2 Related Work

Few-step diffusion distillation and training. Reducing inference steps in diffusion models is
commonly achieved through distillation. As an application of knowledge distillation [41], direct
distillation methods [19, 20] generate noise-image pairs by sampling from a pretrained diffusion
model and train a one-step model on this synthetic dataset. Similarly, progressive distillation [21, 22]
iteratively trains the models to merge adjacent steps toward a one-step model. These methods often
introduce significant computational overhead due to extensive sampling or training costs. Adversarial
distillation approaches [23, 24, 25] apply GAN-style losses [42] to supervise the one-step distribution,
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potentially increasing training instability. Variational score distillation [26, 27, 28, 29, 30, 31, 32]
and score identity distillation [43, 44] also employ distribution-level distillation, while introduce
additional complexity due to the simultaneous optimization of two online models, and may potentially
result in over-smoothing artifacts in the generated outputs. Consistency distillation [33, 34, 35]
leverages the consistency property of PF-ODEs to train models to solve these equations directly,
but faces stability challenges [33, 35] and may require model customization [35]. While direct
training of consistency models [33, 45, 35] is feasible, they typically underperform consistency
distillation under high data variance [35]. Similarly, Shortcut Models [46] utilize the consistency
property as regularization in the loss function, which could be considered as simultaneously training
and distillation. Rectified flow [47, 48] adopts a multi-time training strategy aimed at gradually
straightening the trajectory of the PF-ODE. Similar to consistency models, our work also introduces
losses for both distillation and training. However, our loss function emphasizes local accuracy, which
enhances stability, though the accuracy decreases more at larger time intervals.

Fast diffusion samplers. Common numerical solvers, such as the Euler solver for PF-ODEs and
the Euler-Maruyama solver for SDEs, typically require hundreds to thousands of NFEs to sample
an image from diffusion models. Since SDEs involve greater randomness, samplers based on them
generally require much more NFEs to converge [2, 49, 4, 6, 50, 51, 52, 53]. Consequently, existing fast
samplers are usually based on PF-ODEs, including both training-free and learnable methods. Training-
free methods leverage mathematical tools to analyze and formulate the solving process. Examples
include high-order samplers like the Heun sampler [6], exponential samplers [15, 16, 17, 54, 55], and
parallel samplers [56, 57]. Despite their convenience, these methods struggle in low NFE scenarios.
Data-driven, learnable samplers enhance performance by training lightweight modules to learn
hyperparameters in the sampling process, such as coefficients [58], high-order derivatives [59], and
time schedules [18, 60, 61, 62, 63, 64]. However, both training-free and learned faster samplers still
experience significant performance degradation when the step count falls below ten. Our method is
also based on solving the diffusion ODE, and it degrades more gradually than conventional diffusion
samplers as the step count decreases. Our approach can be seen as an effective compromise between
fast samplers and diffusion distillation methods.

3 Diffusion Models

For simplicity, we review diffusion models within the flow matching framework [65, 47, 66]. Let pd
denote the data distribution, and x0 ∼ pd represent a data sample. Let z ∼ N (0, I) be a standard
Gaussian sample. The noised image with respect to x0 and z at time t is defined as xt = αtx0+σtz,
where t ∈ [0, 1] represents the intensity of added noise. For a given neural network vθ, the training
objective is formulated as:

LDiff(θ) = Ex0,z,t∥vθ(xt, t)− (α′
tx0 + σ′

tz)∥22, (1)
where α′

t and σ′
t are time derivatives. An established result from the literature on diffusion and flow

matching [65, 47, 66] is as follows:
Proposition 1. When LDiff(θ) reaches the minimum, the optimal solution v∗

θ(xt, t) is
v(xt, t) = Ex0,z(α

′
tx0 + σ′

tz|xt). (2)

And the associated PF-ODE
dxt

dt
= v(xt, t) (3)

is guaranteed to generate x0 ∼ pd at t = 0 starting from z ∼ N (0, I) at t = 1.

4 Learning Integral with Secant Expectation

In this section, we first introduce how to parametrize the model as the secant function. We then
explain our derivation of loss functions based on Monte Carlo integration and Picard iteration.

4.1 Secant Parametrization

Given the PF-ODE Eq. (3), to solve xs at time s starting from xt at time t, one calculates

xs = xt +

∫ s

t

v(xr, r)dr. (4)
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Algorithm 1 Secant Distillation by Estimating
the Interior Point (SDEI)

Input: dataset D, neural network fθ, teacher
diffusion model v, learning rate η
repeat
θ− ← θ
Sample x ∼ D, z ∼ N (0, I)
Sample t and s
Sample r ∼ U [0, 1], r ← t+ r(s− t)
xt ← tx+ (1− t)z
x̂r ← xt + (r − t)fθ−(xt, t, r)
vr ← v(x̂r, r)
L(θ) = Ex,z,t,s,r∥fθ(xt, t, s)− vr∥22
θ ← θ − η∇θL(θ)

until convergence

Algorithm 2 Secant Training by Estimating the
End Point (STEE)

Input: dataset D, neural network fθ, learning
rate η
repeat

θ− ← θ
Sample x ∼ D, z ∼ N (0, I)
Sample t and s
Sample r ∼ U [0, 1], r ← t+ r(s− t)
xr ← rx+ (1− r)z
x̂t ← xr + (t− r)fθ−(xr, r, t)
ur ← x− z
L(θ) = Ex,z,t,s,r∥fθ(x̂t, t, s)− ur∥22
θ ← θ − η∇θL(θ)

until convergence

We define the secant function from xt at time t to time s as

f(xt, t, s) =


v(xt, t), if t = s,

1

s− t

∫ s

t

v(xr, r)dr, if t ̸= s.
(5)

Since

f(xt, t, t) = lim
s→t

f(xt, t, s) = lim
s→t

1

s− t

∫ s

t

v(xr, r)dr = v(xt, t), (6)

f(xt, t, s) is continuous at s = t. And, we parametrize the neural network fθ(xt, t, s) to represent
this secant function. If fθ(xt, t, s) is trained accurately fitting f(xt, t, s), we can directly jump from
xt to xs using

xs = xt +

∫ s

t

v(xr, r)dr = xt + (s− t)fθ(xt, t, s). (7)

We choose this parameterization for its simplicity and clearer geometric interpretation, though other
similar formulations [34, 36, 46] would also be viable in practice.

4.2 Secant Expectation

Examining Eq. (5) from a probabilistic perspective, we have

f(xt, t, s) =
1

s− t

∫ s

t

v(xr, r)dr = Er∼U(t,s)v(xr, r), (8)

which indicates that we can calculate the integral 1
s−t

∫ s

t
v(xr, r)dr by uniformly sampling random

values of r ∼ U(t, s)2 and computing their average. However, during training, we cannot obtain a
large number of xr’s to calculate this integral accurately. We address this challenge by formulating
the integral as the optimal solution to a simple objective that involves only one xr at a time:

LNaïve(θ) = Ex0,z,r∼U(t,s)∥fθ(xt, t, s)− v(xr, r)∥22. (9)

This approach is inspired by the diffusion objective that leads from Eq. (1) to Eq. (2). Inspecting
Eq. (9), we observe that we can only access either xt or xr at each training step, but not both
simultaneously. To address this issue, we draw inspiration from Picard iteration by estimating one of
the solutions between xt and xr given the other. We refer to the family of obtained loss functions in
this way as secant losses. Specifically, one way is to sample xt = αtx0+σtz, and estimate xr using

x̂r = xt + (r − t)fθ−(xt, t, r), (10)

2We do not assume specific order relation between t and s, and we sightly abuse the notion r ∼ U(t, s) by
meaning r ∼ U(min{t, s},max{t, s}) for simplicity.

4



where θ− denotes the stop_gradient version of θ. This transforms the loss function in Eq. (9) into
LSDEI(θ) = Ex0,z,t,s,r∼U(t,s)∥fθ(xt, t, s)− v(xt + (r − t)fθ−(xt, t, r), r)∥22, (11)

where LSDEI stands for secant distillation by estimating the interior point, meaning we sample at the
end point t and estimate the interior solution at r. According to Eq. (6), we can also directly train the
few-step model by incorporating the diffusion loss termed as

LSTEI(θ) = Ex0,z,t,s,r∼U(t,s)∥fθ(xt, t, s)− fθ−(xt + (r − t)fθ−(xt, t, r), r, r)∥22
+λEx0,z,τ∥fθ(xτ , τ, τ)− (α′

τx0 + σ′
τz)∥22,

(12)

where λ is a constant to balance diffusion loss and secant loss, and τ is a time step indicating the
time sampling in the two parts is independent. Here STEI denotes secant training by estimating the
interior point.

Alternatively, we can sample xr = αrx0 + σrz and estimate the solution at t from r as
x̂t = xr + (t− r)fθ−(xr, r, t), (13)

which we term secant distillation by estimating the end point (SDEE). The loss from Eq. (9) then
becomes

LSDEE(θ) = Ex0,z,t,s,r∼U(t,s)∥fθ(xr + (t− r)fθ−(xr, r, t), t, s)− v(xr, r)∥22. (14)

In the above equation, since we directly use the sampled xr to evaluate v(xr, r), we can alternatively
use α′

rx0 + σ′
rz to estimate v(xr, r) like diffusion models do in Eq. (1) to Eq. (2). This leads to the

training version termed as secant training by estimating the end point (STEE):
LSTEE(θ) = Ex0,z,t,s,r∼U(t,s)∥fθ(xr + (t− r)fθ−(xr, r, t), t, s)− (α′

rx0 + σ′
rz)∥22. (15)

As theoretical justification for the above losses, we present the following theorems, which corresponds
to LSDEI(θ) and LSTEE(θ). The other two can be derived from these.
Theorem 2 (SDEI). Let fθ(xt, t, s) be a neural network, and v(xt, t) = E(α′

tx0+σ′
tz|xt). Assume

v(xt, t) is L-Lipschitz continuous in its first argument, i.e., ∥v(x1, t)− v(x2, t)∥2 ≤ L∥x1 − x2∥2
for all x1,x2 ∈ Rn, t ∈ [0, 1]. Then, for each fixed t, in a sufficient small neighborhood |s− t| ≤ h
for some h > 0, if LSDEI(θ) reaches its minimum, we have fθ(xt, t, s) = f(xt, t, s).
Theorem 3 (STEE). Let fθ(xt, t, s) be a neural network, and v(xt, t) = E(α′

tx0+σ′
tz|xt). Assume

fθ(xt, t, s) is L-Lipschitz continuous in its first argument, i.e., ∥fθ(x1, t, s) − fθ(x2, t, s)∥2 ≤
L∥x1 − x2∥2 for all x1,x2 ∈ Rn, t, s ∈ [0, 1]. Then, for each fixed [a, b] ⊆ [0, 1] with b − a
sufficiently small, if LSTEE(θ) reaches its minimum, we have fθ(xt, t, s) = f(xt, t, s) for any
[t, s] ⊆ [a, b].
Remark 4. There are notable differences between variants that estimate the interior or end point.
As illustrated in Fig. 1 (a), the estimation direction of x̂r aligns with the direction from xt to xs.
Consequently, Theorem 2 states that we can fix t and progressively move s further away. In contrast,
for variant (b), the direction between x̂t estimation and secant learning must be opposite. This
requires sampling time pairs where t and s can appear in any order for accurate estimation. As a
result, Theorem 3 shows that increasing the distance |s− t| is accompanied by expanding the interval
where t and s are randomly sampled rather than simply moving s. In short, t and s play symmetric
roles in scenario (b), whereas their roles can be asymmetric in scenario (a).

The proofs of the above theorems rely on properties of conditional expectation and techniques related
to the Picard-Lindelöf theorem, specifically by constructing a convergent sequence and applying the
Banach fixed-point theorem. Detailed proofs of the total four losses are provided in Appendix A.
We note that while the proofs only guarantee local accuracy, the expansion to larger time intervals
is achieved through a bootstrapping process. We provide illustrations of using LSDEI (Eq. (11)) for
distillation and LSTEE (Eq. (15)) for training in Algorithm 1 and Algorithm 2, respectively. And we
illustrate the other two in Appendix D.

Comparison with consistency models. To achieve the same objective of fitting the average velocity
(the secant), consistency models [33] (MeanFlow [67]) uses differentiation to construct its loss,
whereas our method uses integration. With identical model parameterization, the two methods can
be viewed as differential and integral counterparts. The above fundamental difference leads to the
following distinctive features of secant losses: i) Local accuracy. Consistency models rely on either
difference-based approximations of derivatives or explicit derivative terms in their loss functions,
which can lead to training instability. In contrast, our loss functions do not involve explicit derivatives,
and the solution is accurate when s is near to t.
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Table 1: Cost comparison among dif-
fusion loss and secant losses.

Loss Teacher #Forward #Backward

LDiff ✗ 1 1
LSDEI ✓ 3 1
LSTEI ✗ 4 2
LSDEE ✓ 3 1
LSTEE ✗ 2 1

𝑧

𝑥!

(a) Discrete sampling of 𝑡 
4-step sampling only

sampling range of 𝑠

𝑡

𝑧

𝑥!

sampling range of 𝑠

𝑡

(b) Continuous sampling of 𝑡
4-or-more step sampling support

𝑠 𝑠

Figure 4: Discrete vs. continuous sampling of t when estimat-
ing the interior point.

Figure 3: Standard deviation of in-
spected terms over training itera-
tions. The label format follows loss
type (inspected term). The target
stability of secant losses is signif-
icantly better than that of consis-
tency losses.

ii) Target stability. We refer to the stability of the prediction
target in the loss function as target stability. Under the flow
matching interpolant and model parametrization Eq. (5), we
compare diffusion loss Eq. 1, secant losses and consistency
loss [33, 34, 67]

LCT(θ) = ∥fθ(xt, t, s)−(α′
tx0+σ′

tz+(s−t) d
dt

fθ−(xt, t, s))∥2
(16)

and

LCD(θ) = ∥fθ(xt, t, s)−(v(xt, t)+(s−t) d
dt

fθ−(xt, t, s))∥2,
(17)

where CT and CD stand for consistency training and consis-
tency distillation, respectively. One can see that in consis-
tency losses, the item d

dtfθ−(xt, t, s) (or its discrete version
fθ− (xt,t,s)−fθ− (xt−∆t,t,s)

∆t ) is model-dependent and suscepti-
ble to numerical issues, which contributes to training instability.
In stark contrast, the target of secant losses is either identical to
the target of diffusion losses (α′

tx0 + σ′
tz), or the diffusion model itself (v(xt, t)). We illustrate the

standard deviation of different losses across training iterations in Fig. 3. This intrinsic target stability
provides a compelling explanation for the robust training performance observed with secant losses.

4.3 Practical Choices

Our proposed method is designed for simplicity and robustness, mirroring the design of standard
diffusion models. In general it uses: i) A simple time sampling strategy (following diffusion models),
ii) a standard loss weighting (following diffusion models), iii) a simple Mean Squared Error (MSE)
loss (following diffusion models), iv) a stable loss target discussed in Section 4.2. The strong parallels
between our method and standard diffusion models provide a powerful cue: if a standard diffusion
model loss works well on a given dataset, it is highly likely our secant losses will too. Here we will
discuss more practical designs in application.

Diffusion initialization. As explained in Remark 4, we can use a pretrained diffusion model as the
initialization such that fθ(xt, t, t) = v(xt, t), which largely accelerates the learning process.

Application of classifier-free guidance (CFG) [68]. For all the secant losses except LSTEE, we
can embed CFG as an additional input into the model [22]. Specifically, in the loss functions we
substitute v(xt, t) with

vg(xt, t) = vu(xt, t) + w(vc(xt, t)− vu(xt, t)), (18)

where w is the guidance scale, and the superscripts g, u and c stand for the model with guidance, the
unconditional model and the conditional model, respectively. In contrast, the treatment to LSTEE is
similar to training diffusion models. We can train unconditional and conditional models by randomly
dropping the class label, and apply CFG at inference via

fg
θ(xt, t, s) = fu

θ (xt, t, s) + w(f c
θ(xt, t, s)− fu

θ (xt, t, s)). (19)

Step intervals at each sampling step. Adjusting the step intervals may lead to better performance [6,
18]. While for simplicity, we always use uniform sampling steps. Specifically, if the number of steps
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is N , then the steps (t, s) are (N−i
N , N−i−1

N ), i = 0, ..., N − 1. We provide details of sampling in
Appendix F.

The sampling of t and s when estimating the interior point. Theorem 2 states that we can
fix t and randomly sample s. This enables few-step inference at a fixed step count N by setting
t ∈ {1, N−1

N , ..., i
N , ..., 1

N , 0} in training. When t = i
N , we randomly sample s ∈ [ i−1

N , i
N ]. However,

this approach constrains us to using exactly N steps during inference. Figure 4 (a) illustrates this with
an example where N = 4. If we attempt to use more NFEs, such as 2N , we cannot determine the
value of fθ(x 2N−1

2N
, 2N−1

2N , 2N−2
2N ) at the second step, as the model was not trained with t = 2N−1

2N .

Similarly, with fewer NFEs, such as N
2 , we cannot compute fθ(x1, 1,

N−2
N ) because the case where

t = 1 and s = N−2
N was not included in training. To enable a flexible step-accuracy trade-off in

LSDEI, we should continuously sample t, as shown in Figure 4 (b). This approach allows inference
with any number of NFEs greater than N . Furthermore, if the model is required to perform inversion
from images back to Gaussian noise, we should incorporate cases of s < t during training. The
sampling strategy of t and s can be chosen according to specific application requirements, due to the
limited model capacity. However, for variants that estimate the end point, the sampling of t and s
must be both continuous and bidirectional.

The sampling of r. In Eq. (8), we can alter the sampling distribution of r by

f(xt, t, s) =

∫ s

t

v(xr, r)pU(t,s)(r)dr

=

∫ s

t

v(xr, r)
pU(t,s)(r)

q(r)
q(r)dr

= Er∼q(r)v(xr, r)
pU(t,s)(r)

q(r)
,

(20)

where q(r) is another probability density function that has positive density value within the limits of
integration. This means we can unevenly sample r based on the importance, i.e., how we allocate the
training effort across different time intervals. We note that while importance sampling can reduce
variance, it is not the focus of our paper. The method used in this paper to reduce variance is to
employ a stable target.

Resource costs. As the loss formulations suggest, compared to the diffusion loss LDiff, our proposed
loss functions require additional computational resources for forward evaluation and/or backward
propagation. We summarize the computational costs in Table 1, and test the practical usage in
Appendix G.2.

5 Experiments

In this section, we first compare our method with other related approaches. Subsequently, we conduct
ablation studies to validate the design choices of the proposed loss functions.

5.1 Implementation Details

We conduct experiments on common used image generation datasets including CIFAR-10 [37] and
ImageNet-256× 256 [38]. For quantitative evaluation, we employ the Fréchet Inception Distance
(FID) [87] score for both datasets, with additional Inception Score (IS) metric for ImageNet-256×256.
There are UNet-based EDM [6] and transformer-based DiT [7] models involved in the experiments,
and we load the pretrained weights of EDM and SiT [39] for the two models respectively. More
details can be found in Appendix H.

5.2 Main Results

Overall Comparison. We conduct a comprehensive comparison among various few-step diffusion
approaches, including fast samplers, few-step distillation, and few-step training/fine-tuning methods.
The results are summarized in Tables 2 and 3. On CIFAR-10, our SDEI variant achieves interme-
diate performance between faster samplers and few-step distillation/training methods. Although
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Table 2: Unconditional image gen-
eration on CIFAR-10.

Method FID↓ Steps↓
Diffusion

DDPM [2] 3.17 1000
Score SDE (deep) [4] 2.20 2000
EDM [6] (Teacher) 1.97 35
Flow Matching [65] 6.35 142
Rectified Flow [47] 2.58 127

Fast Samplers

DPM-Solver [15] 4.70 10
DPM-Solver++ [16] 2.91 10
DPM-Solver-v3 [17] 2.51 10
DEIS [54] 4.17 10
UniPC [55] 3.87 10
LD3 [64] 2.38 10

Joint Training

Diff-Instruct [29] 4.53 1
DMD [27] 3.77 1
CTM [34] 1.87 2
SiD [43] 1.92 1
SiD2A [69] 1.5 1
SiM [70] 2.06 1

Few-step Distillation

KD [19] 9.36 1
PD [21] 4.51 2
DFNO [20] 3.78 1
2-Rectified Flow [47] 4.85 1
TRACT [71] 3.32 2
PID [72] 3.92 1
CD [33] 2.93 2
sCD [35] 2.52 2

Few-step Training/Tuning

iCT [73] 2.46 2
ECT [45] 2.11 2
sCT [35] 2.06 2
IMM [74] 1.98 2

SDEI (Ours) 3.23 4
2.14 10

Table 3: Class-conditional results on ImageNet-256× 256.

Method FID↓ IS↑ Steps↓ #Params

Diffusion

ADM [5] 10.94 100.98 250 554M
CDM [75] 4.88 158.71 8100 -
SimDiff [76] 2.77 211.8 512 2B
LDM-4 [8] 3.60 247.67 250 400M
U-DiT-L [77] 3.37 246.03 250 916M
U-ViT-H [78] 2.29 263.88 50 501M
DiT-XL/2 [7] 2.27 278.24 250 675M
SiT-XL/2 [39] (Teacher) 2.15 258.09 250 675M

Fast Samplers

Flow-DPM-Solver [79, 16] 3.76 241.18 8 675M
UniPC [55] 7.51 - 10 -
LD3 [64] 4.32 - 7 -

GAN

BigGAN [80] 6.95 171.4 1 112M
GigaGAN [81] 3.45 225.52 1 590M
StyleGAN-XL [82] 2.30 265.12 1 166M

Masked and AR

VQGAN [83] 15.78 78.3 1024 227M
MaskGIT [84] 6.18 182.1 8 227M
MAR-H [85] 1.55 303.7 256 943M
VAR-d30 [86] 1.97 334.7 10 2B

Few-step Training/Tuning

iCT [73] 20.3 - 2 675M
Shortcut Models [46] 7.80 - 4 675M
IMM (XL/2) [74] 7.77 - 1 675M

3.99 - 2 675M
2.51 - 4 675M
1.99 - 8 675M

STEI (Ours) 7.12 241.75 1 675M
4.41 242.00 2 675M
2.78 269.87 4 675M

+guidance interval [40] 2.27 273.76 4 675M
2.36 247.72 8 675M

+guidance interval [40] 1.96 276.12 8 675M
STEE (Ours) 3.02 274.00 4 675M

+guidance interval [40] 2.55 275.83 4 675M
2.33 274.47 8 675M

+guidance interval [40] 1.96 275.81 8 675M

consistency models [33, 45, 34, 35] demonstrate superior performance on this dataset, we observe
training instability issues. More notably, when scaling to ImageNet-256 × 256 with greater data
variation, these models diverge in our experiments3. In contrast, our proposed loss functions exhibit
consistent stability and rapid convergence, enabling efficient model distillation or fine-tuning that
requires merely 1% of the original SiT training duration (50K ∼ 100K versus 7M iterations). On the
larger-scale ImageNet-256× 256 dataset, our approach consistently outperforms fast samplers and
ranks second only to the recent IMM [74] in both 4-step and 8-step settings. Notably, for one-step
generation, STEI even surpasses both IMM and 4-step Shortcut Models [46]. By incorporating
interval CFG [40], our method further achieves a 4-step FID of 2.27 and an 8-step FID of 1.96, where
we simply ignore the guidance for the first step in 4-step generation and the first two steps in 8-step
generation. Fig. 2 showcases generated samples using 8 steps on ImageNet-256 × 256 with our
best-performing model. While both effective, our method differs from IMM: ours is grounded in the

3Due to training divergence of consistency models, we cite the iCT [73] result reported in [74].
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Table 4: The effect of the weighting
factor λ in LSTEI on ImageNet-256 ×
256 with 4 sampling steps.

λ FID↓ IS↑
0.1 3.96 206.14
0.5 3.15 232.15
1.0 2.84 249.57
2.0 3.96 213.56 Figure 5: The effect of λ in LSTEI on training dynamics.

exact solution of the PF-ODE (therefore the performance of our models is bounded by the teacher
model SiT[39]), whereas IMM relies on distribution-level losses [88]. For classifier-free guidance,
IMM follows Eq. (19), while STEI applies the integral-form CFG following Eq. (18). This difference
may explain our superior performance in one-step generation.

Comparison of secant losses. We evaluate the four types of secant losses proposed in Section 4 on
CIFAR-10 and ImageNet-256× 256 datasets. The result can be found at Table 7 in Appendix G. In
the absence of classifier-free guidance, similar trends emerge across both datasets. The distillation
variants generally demonstrate superior performance compared to the training counterparts, with
the exception of STEI on ImageNet-256× 256. Furthermore, variants with interior-point estimation
perform better and degrade more slowly as the step number decreases, which can be explained by
three aspects: i) Input correctness. For inner-point variants, the input to the training network is the
clean data xt, while in end-point variants, the input is the estimated x̂r. Fitting a fixed, clean input
distribution, is more efficient than fitting an input dependent of the model historical output. ii) Error
accumulation path, i.e., the path from clean data to the prediction destination. In inner-point variants,
the path is xt → xs, while in end-point variants it is xr → xt → xs. Generally, the path in end-point
variants is longer than that in inner-point variants. iii) Model capacity. As per Fig. 1 and Algorithm 2,
the end-point variants additionally require inversion, which costs part of the model capacity. With
classifier guidance applied, the performance gap narrows on ImageNet-256× 256, with the STEE
variant achieving the best 8-step FID of 2.33. Based on the computational costs presented in Table 1,
we recommend using LSDEI for distillation and LSTEE for training. These variants offer optimal
performance while minimizing both computational time and GPU memory requirements compared
to other methods.

5.3 Ablations

The loss weighting in LSTEI. We investigate the balancing factor λ in LSTEI, which comprises the
diffusion loss and the secant loss. Figure 5 illustrates the training dynamics of both losses (excluding
the λ factor in the secant loss). When λ increases from 0.1 to 1.0, we observe a reduction in the
secant loss while maintaining relatively stable diffusion loss levels. However, at λ = 2, the model
exhibits significant deterioration in diffusion loss, accompanied by increased instability in the secant
loss. The quantitative results presented in Table 4 confirm that λ = 1 achieves the optimal balance,
yielding the best overall performance.

Table 5: The effect of t, s sampling
on CIFAR-10 with 4 steps.

Gen. Inv. t sampling FID↓

✓ ✗ discrete 3.23
✓ ✓ discrete 3.63
✓ ✗ continuous 4.29
✓ ✓ continuous 5.47

The sampling of t and s in interior-point estimation. As
shown in Fig. 4, LSDEI and LSTEI offer flexibility in sampling
the time point t and s during training. Given the fixed model
capacity, different sampling strategies lead to varying perfor-
mance characteristics. For fixed N -step generation, discrete
sampling suffices; to enable step-performance trade-off, con-
tinuous sampling of t becomes necessary; to incorporate the
capability of inversion, bidirectional sampling (t < s and
t > s) is required. The results in Table 5 demonstrate that
the best performance is achieved with the discrete sampling
and generation-only configuration (first row), and each additional functionality comes at the cost of
decreased performance.
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Table 6: 4-step results of different r dis-
tributions on ImageNet-256× 256 with
LSDEI. We first sample r̃, and obtain
r = t+ (s− t)r̃.
r̃ distribution FID↓ IS↑
U(0, 1) 3.57 222.83
T N (0, 0.5, 0, 1) 3.84 215.57
T N (0.5, 0.5, 0, 1) 3.59 221.44
T N (1, 0.5, 0, 1) 3.71 216.93

The sampling of r. Following Eq. (20), we know that we
can use alternative distributions q(r) to sample r. Here we
investigate sampling strategies for r. The cases include
standard uniform sampling and biased sampling schemes
that favor positions closer to t, s or the midpoint s+t

2 .
These biased sampling strategies are implemented using
truncated normal distributions, denoted as T N (µ, σ, a, b)
where µ represents the mean, σ the standard deviation, and
[a, b] the truncated interval. Details are provided in Ap-
pendix E. As the results in Table 6 indicates, all sampling
strategies works comparable, and the uniform strategy
works slightly better than others.

Figure 6: Results of training
from scratch on ImageNet-256×
256. The guidance scale is 1.5.

Training from scratch. We evaluate the scalability and from-
scratch training capabilities of the secant loss using LSTEE as the
representative loss function. We conduct experiments with varying
model capacities, including DiT-S/2, DiT-B/2, DiT-L/2 and DiT-
XL/2. Figure 6 presents the evolution of FID scores during the
first 1000K training iterations, with a guidance scale of 1.5 used
at sampling phase. The results clearly show a correlation between
model capacity and generation quality, with larger architectures
consistently achieving superior performance. After extending the
training to 3000K iterations, our DiT-XL/2 model achieves an
8-step FID of 2.68, which is slightly higher than the fine-tuning
FID. This is expected, given that the training period of the teacher
model SiT [39] (7000K iterations) is significantly longer than our training duration.

6 Limitations

While our method can stably and rapidly convert a diffusion model into a few-step generator,
there is still a significant performance gap between 1-step and 8-step generation. Additionally, the
performance on ImageNet 256× 256 relies heavily on classifier-free guidance, and the theoretical
relationship between CFG and secant losses may be explored in future work. Lastly, our method
requires training data, which may present constraints in data-limited scenarios.

7 Conclusion

In this paper, we introduce a novel family of loss functions, termed secant losses, that efficiently
learn to integrate diffusion ODEs through Monte Carlo integration and Picard iteration. Our proposed
losses operate by estimating and averaging tangents to learn the corresponding secants. We present
both theoretical and intuitive interpretations of these secant losses, and empirically demonstrate their
robustness and efficiency on CIFAR-10 and ImageNet 256× 256 datasets.
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made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
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• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
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referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide experimental details in Appendix H.
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• The answer NA means that the paper does not include experiments.
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to make their results reproducible or verifiable.
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: We only provide the detailed settings and algorithm. We will make the code
public in the future.

Guidelines:
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the details in Appendix H.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to limited computing resources, we do not report error bars in the paper.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the details of computing resources in Appendix H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted conform the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This work is not yet ready for real applications, so it has little societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: We do not have data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The assets are properly credited, and the license and terms of use can be found
in the references.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: We will release new assets in the future.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not include experiments with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not include participant study.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLMs in this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendices

A Proofs

Proposition 1. When

LDiff(θ) = Ex0,z,t∥vθ(xt, t)− (α′
tx0 + σ′

tz)∥22
reaches its minimum, the optimal solution v∗

θ(xt, t) is

v(xt, t) = Ex0,z(α
′
tx0 + σ′

tz|xt).

Proof. Since

LDiff(θ) = Ex0,z,t∥vθ(xt, t)− (α′
tx0 + σ′

tz)∥22
= Ext,tEx0,z[∥vθ(xt, t)− (α′

tx0 + σ′
tz)∥22|xt]

= Ext,t[Ex0,z[∥vθ(xt, t)∥22|xt]− 2Ex0,z[⟨vθ(xt, t), α
′
tx0 + σ′

tz⟩|xt]

+ Ex0,z[∥α′
tx0 + σ′

tz∥22|xt]]

= Ext,t

(
∥vθ(xt, t)∥22 − 2Ex0,z[⟨vθ(xt, t), α

′
tx0 + σ′

tz⟩|xt]

+ Ex0,z[∥α′
tx0 + σ′

tz∥22|xt]
)

= Ext,t

(
∥vθ(xt, t)∥22 − 2⟨vθ(xt, t),Ex0,z[α

′
tx0 + σ′

tz|xt]⟩
+ Ex0,z[∥α′

tx0 + σ′
tz∥22|xt]

)
= Ext,t

(
∥vθ(xt, t)∥22 − 2⟨vθ(xt, t),v(xt, t)⟩+ ∥v(xt, t)∥22

−∥v(xt, t)∥22 + Ex0,z[∥α′
tx0 + σ′

tz∥22|xt]
)

= Ext,t

(
∥vθ(xt, t)− v(xt, t)∥22 − ∥v(xt, t)∥22 + Ex0,z[∥α′

tx0 + σ′
tz∥22|xt]

)
,

we have the optimal solution v∗
θ(xt, t) = v(xt, t).

The above is a basic result in literature of diffusion models [66]. We prove it here since it has close
relation to the following theorems.
Theorem 2 (SDEI). Let fθ(xt, t, s) be a neural network, and v(xt, t) = E(α′

tx0+σ′
tz|xt). Assume

v(xt, t) is L-Lipschitz continuous in its first argument, i.e., ∥v(x1, t)− v(x2, t)∥2 ≤ L∥x1 − x2∥2
for all x1,x2 ∈ Rn, t ∈ [0, 1]. Then, for each fixed t, in a sufficient small neighborhood |s− t| ≤ h
for some h > 0, if LSDEI(θ) reaches its minimum, we have fθ(xt, t, s) = f(xt, t, s).

Proof. We prove it in two steps.

First, we show that the following loss function

L⋆(θ) := Ex0,x1,s,t∥fθ(xt, t, s)−
1

s− t

∫ s

t

v(xt + (r − t)fθ−(xt, t, r), r)dr∥22 (21)

has the same derivative with respect to θ as LSDEI(θ).

Let x̂r = xt + (r − t)fθ−(xt, t, r), it follows since

∇θLSDEI(θ) = ∇θEx0,z,t,s

∫ s

t

∥fθ(xt, t, s)− v(x̂r, r)∥22dr

= ∇θEx0,z,t,s

∫ s

t

(∥fθ(xt, t, s)∥22 − 2⟨fθ(xt, t, s),v(x̂r, r)⟩+ ∥v(x̂r, r)∥22)dr

= ∇θEx0,z,t,s

(
(s− t)∥fθ(xt, t, s)∥22 − 2⟨f(xt, t, s),

∫ s

t

v(x̂r, r)dr⟩

+

∫ s

t

∥v(x̂r, r)∥22dr
)

= ∇θEx0,z,t,s(s− t)∥fθ(xt, t, s)−
1

s− t

∫ s

t

v(x̂r, r)dr∥22.
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Second, we show that L⋆(θ) = 0 implies fθ(xt, t, s) = f(xt, t, s) in each sufficient small neigh-
borhood of t. Using Picard iteration, we construct a sequence fn satisfying f0 = 0,fn+1 =
1

s−t

∫ s

t
v(xt + (r− t)fn(xt, t, r), r)dr. Without loss of generality, we may assume h > 0. We have

sup
s∈(t,t+h]

∥fn+1(xt, t, s)− f(xt, t, s)∥22

= sup
s∈(t,t+h]

1

(s− t)2
∥
∫ s

t

v(xt + (r − t)fn(xt, t, r), r)dr

−
∫ s

t

v(xt + (r − t)f(xt, t, r), r)dr∥22

≤ L sup
s∈(t,t+h]

1

(s− t)2
∥
∫ s

t

(r − t)(fn(xt, t, r)− f(xt, t, r))dr∥22

≤ L sup
s∈(t,t+h]

1

(s− t)2

∫ s

t

(r − t)2dr sup
r∈[t,t+h]

∥fn(xt, t, r)− f(xt, t, r)∥22

=
1

3
Lh sup

s∈(t,t+h]

∥fn(xt, t, s)− f(xt, t, s)∥22.

When s = t, we also have

∥fn+1(xt, t, s)− f(xt, t, s)∥22 =
1

3
Lh∥fn(xt, t, s)− f(xt, t, s)∥22.

Therefore, sup
s∈[t,t+h]

∥fn+1(xt, t, s)− f(xt, t, s)∥22 converges to 0 when 1
3Lh < 1, i.e., h < 3

L . This

means we find a neighborhood [t, t+ h] for each t, such that when LSDEI(θ) reaches its minimum,
we have fθ(xt, t, s) = f(xt, t, s).

Theorem 3 (STEE). Let fθ(xt, t, s) be a neural network, and v(xt, t) = E(α′
tx0+σ′

tz|xt). Assume
fθ(xt, t, s) is L-Lipschitz continuous in its first argument, i.e., ∥fθ(x1, t, s) − fθ(x2, t, s)∥2 ≤
L∥x1 − x2∥2 for all x1,x2 ∈ Rn, t, s ∈ [0, 1]. Then, for each fixed [a, b] ⊆ [0, 1] with b − a
sufficiently small, if LSTEE(θ) reaches its minimum, we have fθ(xt, t, s) = f(xt, t, s) for any
[t, s] ⊆ [a, b].

Proof. First, we show that LSTEE(θ) have the same derivative with respect to θ as the following loss
function

L⋆(θ) := Exr,s,t,r∼U(s,t)∥fθ(xr + (t− r)fθ−(xr, r, t), t, s)− v(xr, r)∥22. (22)

It follows since

∇θLSTEE(θ) = ∇θEx0,z,t,s

∫ s

t

∥fθ(xr + (t− r)fθ−(xr, r, t), t, s)− (α′
rx0 + σ′

rz)∥22dr

= ∇θExr,t,sEx0,z

∫ s

t

[∥fθ(xr + (t− r)fθ−(xr, r, t), t, s)− α′
rx0 + σ′

rz)∥22|xr]dr

= ∇θExr,t,s

∫ s

t

(Ex0,z[∥fθ(xr + (t− r)fθ−(xr, r, t), t, s)∥22|xr]

− 2Ex0,z[⟨fθ(xr + (t− r)fθ−(xr, r, t), t, s), α
′
rx0 + σ′

rz⟩|xr]

+ Ex0,z[∥α′
rx0 + σ′

rz∥22|xr])dr

= ∇θExr,t,s

∫ s

t

∥fθ(xr + (t− r)fθ−(xr, r, t), t, s)∥22dr

− 2

∫ s

t

⟨fθ(xr + (t− r)fθ−(xr, r, t), t, s),Ex0,z[α
′
rx0 + σ′

rz|xr]⟩dr

+

∫ s

t

Ex0,z[∥α′
rx0 + σ′

rz∥22|xr]dr
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= ∇θExr,t,s

∫ s

t

∥fθ(xr + (t− r)fθ−(xr, r, t), t, s)− v(xr, r)∥22dr.

Then, notice that when L⋆(θ) achieves its minimum, we have

L⋆⋆(θ) := ∥
∫ s

t

fθ(xr + (t− r)fθ−(xr, r, t), t, s)dr −
∫ s

t

v(xr, r)dr∥22 = 0. (23)

If not, denote gθ(xr, r, t, s) = fθ(xr + (t − r)fθ−(xr, r, t), t, s), and assume L⋆(θ) reaches the
minimum without

∫ s

t
gθ(xr, r, t, s)dr =

∫ s

t
v(xr, r)dr.

Let g̃θ(xr, r, t, s) = gθ(xr, r, t, s) +
1

s−t

∫ s

t
v(xr, r)dr − 1

s−t

∫ s

t
gθ(xr, r, t, s)dr, then we have∫ s

t

∥g̃θ(xr, r, t, s)− v(xr, r)∥22dr

=

∫ s

t

∥gθ(xr, r, t, s)− v(xr, r) +
1

s− t

∫ s

t

v(xr, r)dr −
1

s− t

∫ s

t

gθ(xr, r, t, s)dr∥22

=

∫ s

t

∥gθ(xr, r, t, s)− v(xr, r)∥22dr

+

∫ s

t

∥ 1

s− t

∫ s

t

v(xr, r)dr −
1

s− t

∫ s

t

gθ(xr, r, t, s)dr∥22dr

+ 2

∫ s

t

⟨gθ(xr, r, t, s)− v(xr, r),
1

s− t

∫ s

t

v(xr, r)dr −
1

s− t

∫ s

t

gθ(xr, r, t, s)dr⟩dr

=

∫ s

t

∥gθ(xr, r, t, s)− v(xr, r)∥22dr

+ (s− t)∥ 1

s− t

∫ s

t

v(xr, r)dr −
1

s− t

∫ s

t

gθ(xr, r, t, s)dr∥22

+ 2⟨
∫ s

t

(gθ(xr, r, t, s)− v(xr, r))dr,
1

s− t

∫ s

t

v(xr, r)dr −
1

s− t

∫ s

t

gθ(xr, r, t, s)dr⟩

=

∫ s

t

∥gθ(xr, r, t, s)− v(xr, r)∥22dr

− (s− t)∥ 1

s− t

∫ s

t

v(xr, r)dr −
1

s− t

∫ s

t

gθ(xr, r, t, s)dr∥22

<

∫ s

t

∥gθ(xr, r, t, s)− v(xr, r)∥22dr,

which is a contradictory.

Next, we prove that minimizing L⋆⋆(θ) implies fθ(xt, t, s) = f(xt, t, s) for all [t, s] ⊆ [a, b] ⊆
[0, 1], where b− a is sufficiently small.

Using Picard iteration, we construct a sequence fn satisfying f0 = 0,fn+1(xr + (t −
r)fn(xr, r, t), t, s) = f(xt, t, s).

When s ̸= t, we have

sup
t,s∈[a,b]

∥fn+1(xt, t, s)− f(xt, t, s)∥22

= sup
t,s∈[a,b]

1

s− t

∫ s

t

∥fn+1(xt, t, s)− f(xt, t, s)∥22dr

≤ sup
t,s∈[a,b]

1

s− t

∫ s

t

∥fn+1(xt, t, s)− fn+1(xr + (t− r)fn(xr, r, t), t, s)∥22dr

≤ L sup
t,s∈[a,b]

1

s− t

∫ s

t

∥xt − xr − (t− r)fn(xr, r, t)∥22dr

= L sup
t,s∈[a,b]

1

s− t

∫ s

t

∥xr + (t− r)fn(xr, r, t)− xr − (t− r)f(xr, r, t)∥22dr
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≤ L sup
t,s∈[a,b]

1

s− t

∫ s

t

|t− r|2dr sup
r,s∈[a,b]

∥fn(xr, r, t)− f(xr, r, t))∥22

= L sup
t,s∈[a,b]

(s− t)2

3
sup

r,s∈[a,b]

∥fn(xr, r, t)− f(xr, r, t))∥22

≤ 1

3
L(b− a)2 sup

t,s∈[a,b]

∥fn(xt, t, s)− f(xt, t, s))∥22.

Also when s = t, the inequality satisfies.

One can see with sufficiently small b − a, sup
t,s∈[a,b]

∥fn+1(xt, t, s) − f(xt, t, s)∥22 converges to

0. Hence, there exists a small interval, such that when LSTEE(θ) reaches the minimum, we have
fθ(xt, t, s) = f(xt, t, s).

Corollary 5 (STEI). Let fθ(xt, t, s) be a neural network, and let v(xt, t) be the true velocity field.
Assume v(xt, t) is L-Lipschitz continuous in its first argument. If LSTEI(θ) reaches its minimum, then
for any interval where |s− t| ≤ h and h < 3

L , we have fθ(xt, t, s) = f(xt, t, s).

Proof. The loss LSTEI(θ) is defined as a sum of a secant term and a diffusion term
LSTEI(θ) = E[∥fθ(xt, t, s)− fθ−(x̂r, r, r)∥22] + λE[∥fθ(xτ , τ, τ)− (α′

τx0 + σ′
τz)||22]

where x̂r = xt + (r − t)fθ−(xt, t, r). For LSTEI(θ) to reach the minimum, both two terms must
reach the minimum. By Proposition 1, the diffusion term achieves the minimum if and only if

fθ(xt, t, t) = E(α′
tx0 + σ′

tz|xt) = v(xt, t).

Substituting this result into the secant term, it becomes the one studied in the proof of Theorem 2.
The remainder of the proof follows identically.

Corollary 6 (SDEE). Let fθ(xt, t, s) be a neural network that is L-Lipschitz continuous in its first
argument. For any fixed interval [a, b] ⊆ [0, 1] with b− a sufficiently small, if LSDEE(θ) reaches its
minimum, then fθ(xt, t, s) = f(xt, t, s).

Proof. The SDEE loss is defined as
LSDEE(θ) = E[∥fθ(xr + (t− r)fθ−(xr, r, t), t, s)− v(xr, r)∥22].

This loss function is identical to the intermediate objective L∗(θ) analyzed in the proof of Theorem 3.
The proof, therefore, follows that of Theorem 3 directly.

B Derivations

B.1 Applying to EDM

The training objective of EDM [6] is

LEDM(θ) = Eσ,y,nw(σ)∥F θ(cin(σ) · (y+n), cnoise(σ))−
1

cout(σ)
(y− cskip(σ) · (y+n))∥22, (24)

where F θ is the neural network, w(σ) the loss weighting factor, cin(σ) = 1√
σ2+σ2

d

, cout(σ) =

σ·σd√
σ2+σ2

d

, cskip(σ) =
σ2
d

σ2+σ2
d

, cnoise = 1
4 ln(σ), and σd = 0.5 is the variance of the image data pd.

Since y ∼ pd, n ∼ N (0, σ2I), we can denote y by x0, n by σz in our notation. Then Eq. (24) can
be simplified to

LEDM(θ) = Eσ,x0,z
w(σ)

σ2
d

∥∥∥∥∥−σdF θ

(
1

σd

(
σd√

σ2 + σ2
d

x0 +
σ√

σ2 + σ2
d

σdz

)
, cnoise(σ)

)

−

(
− σ√

σ2 + σ2
d

x0 +
σd√

σ2 + σ2
d

σdz

)∥∥∥∥∥
2

2

.

(25)
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The Trigflow framework [35] demonstrates that if letting t = arctan( σ
σd

) and xt = cos(t)x0 +

sin(t)σdz where t ∈ [0, π
2 ], training with the simplified objective

LEDM(θ) = Ex0,z,t
w(t)

σ2
d

∥∥∥∥−σdF θ

(
xt

σd
, cnoise(σd · tan(t))

)
− (−sin(t)x0 + cos(t)σdz)

∥∥∥∥2
2

(26)

leads to the diffusion ODE

dxt

dt
= −σdF θ

(
xt

σd
, cnoise(σd · tan(t))

)
. (27)

As a result, to adapt the notions in Section 3 to the EDM loss, we can modify the range of time
to [0, π

2 ], substitute z with σdz and let v(xt, t) = −σdF θ

(
xt

σd
, cnoise(σd · tan(t))

)
, αt = cos(t),

σt = sin(t).

For practical choices in transferring EDM to the secant version, we simply set the loss weight
w(t)
σd

= 1. Besides, since t → 0 or t → π
2 makes cnoise(σd tan(t)) = 1

4 ln(σd tan(t)) → ∞, we
constrain t and s within the range of [0.001, π

2 − 0.00625].

B.2 Applying to SiT

The training objective of SiT [39]4 is the flow matching loss

LFM(θ) = Ex0,x1,t ∥vθ(xt, t)− (x1 − x0)∥22 . (28)

To adapt our notation to loss Eq. (28), we can substitute x0 with x1, and z with x0, and set αt = t
and σt = 1− t.

C Model Parametrization

C.1 The Secant Version of EDM

The parametrization is similar to that in CTM [34]. Specifically, we apply the same time embedder for
the extra s input as that employed for t. In each UNet block, we add affine layers for the s embedding,
which projects the s embedding into the AdaGN [5] parameters, akin to that for t embedding. The
resulting AdaGN parameters from both s and t are then added up. The weights of all the added layers
are randomly initialized.

C.2 The Secant Version of DiT

We clone (including the pretrained parameters) the time embedder of t as the s embedder. The original
time embedding is replaced with half of the summed embeddings from t and s. This design ensures
fθ(xt, t, t) = vθ(xt, t) when loading the pretrained SiT weights. For classifier-free guidance, we
add another time embedder for the CFG scale w, whose weights are randomly initialized.

We also tried the parametrization in Section C.1 for DiT, and find that the performances are compara-
ble. However, this implementation introduces significantly more parameters (∼ 226M), since the
module for producing AdaLN parameters is very large.

D Training Algorithms for STEI and SDEE

Similar to Algorithm 1 for LSDEI and Algorithm 2 for LSTEE, we provide the training algorithms with
LSTEI and LSDEE in Algorithm 3 and Algorithm 4, respectively.

4The loss configuration follows linear path and velocity prediction. Details can be found at https://
github.com/willisma/SiT.
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Algorithm 3 Secant Training by Estimating the Interior
Point (STEI)

Input: dataset D, neural network fθ, learning rate
η
repeat
θ− ← θ
Sample x ∼ D, z ∼ N (0, I)
Sample t and s
Sample r ∼ U [0, 1], r ← t+ r(s− t)
xt ← tx+ (1− t)z
x̂r ← xt + (r − t)fθ−(xt, t, r)
vr ← v(x̂r, r)
Sample τ ∈ U [0, 1]
xτ ← τx+ (1− τ)z
uτ ← x− z
L(θ) = Ex,z,t,s,r∥fθ(xt, t, s)− fθ(xr, r, r)∥22
+λEx0,z,τ∥fθ(xτ , τ, τ)− uτ∥22
θ ← θ − η∇θL(θ)

until convergence

Algorithm 4 Secant Distillation by Estimat-
ing the End Point (SDEE)

Input: dataset D, neural network fθ,
teacher diffusion model v, learning rate
η
repeat

θ− ← θ
Sample x ∼ D, z ∼ N (0, I)
Sample t and s ∼ U [0, 1]
Sample r ∼ U [0, 1], r ← t+ r(s− t)
xr ← rx+ (1− r)z
x̂t ← xr + (t− r)fθ−(xr, r, t)
L(θ) = Ex,z,t,s,r∥fθ(x̂t, t, s) −
v(xr, r)∥22
θ ← θ − η∇θL(θ)

until convergence

Algorithm 5 Sampling of t, s in SDEI and STEI
for EDM

Input: Gaussian distribution parameter Pmean
and Pstd, number of steps N , boundary con-
stants ϵ1 and ϵ2
Output: sampled time point t and s
Sample σ ∼ N (Pmean, Pstd)
t← arctan( σ

σd
)

Clip t into [ϵ1,
π
2 − ϵ2]

Round t to be discrete
Sample d ∼ U(0, 1

N )
s← t− d
Clip s into [ϵ1,

π
2 − ϵ2]

Algorithm 6 Sampling of t, s in SDEE and STEE
for EDM

Input: Gaussian distribution parameter Pmean
and Pstd, number of steps N , boundary con-
stants ϵ1 and ϵ2
Output: sampled time point t and s
Sample σ ∼ N (Pmean, Pstd)
t← arctan( σ

σd
)

Clip t into [ϵ1,
π
2 − ϵ2]

Sample d ∼ U(0, 1
N )

d← −d with probability of 0.5
s← t− d
Clip s into [ϵ1,

π
2 − ϵ2]

Algorithm 7 Sampling of t, s in SDEI and STEI
for DiT

Input: number of steps N
Output: sampled time point t and s
Sample d ∼ U(0, 1

N )
Sample t ∼ U(0, 1− d)
Round t to be discrete (SDEI only)
s← t+ d

Algorithm 8 Sampling of t, s in SDEE and STEE
for DiT

Input: number of steps N
Output: sampled time point t and s
Sample d ∼ U(0, 1

N )
Sample t ∼ U(0, 1− d)
s← t+ d
Swap t and s with probability of 0.5

E Sampling Time Points During Training

Sampling t and s for EDM. We sample σ from the Gaussian proposal distribution with Pmean = −1.0
and Pstd = 1.4 [35], which we find sightly better than the default configuration of Pmean = −1.2 and
Pstd = 1.2 in EDM [6], and derive t by t = arctan( σ

σd
). Then, we sample the distance d = |s− t|

by d ∼ U(0, 1
N ), where N is the pre-set number of steps. If the loss estimates the interior point,

we round the sampled t to be discrete; while for losses that estimate the end point, we randomly
multiply −1 to d with a probability of 0.5. Finally, we get s by s = t− d. The sampling processes
are illustrated in Algorithm 5 and Algorithm 6.
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Figure 7: Uniform distribution and truncated normal distribution under different µ values.

Sampling t and s for DiT. We first sample the distance d = |s − t| by d ∼ U(0, 1
N ). Then, we

sample t by t ∼ U(0, 1− d). If estimating the interior point, we round t to be discrete and derive s
by s = t+ d; if estimating the end point, we get s by s = t+ d and randomly swap t and s with a
probability of 0.5. The sampling strategies are illustrated in Algorithm 7 and Algorithm 8.

Sampling r. The default sampling strategy for r follows a uniform distribution between the endpoints
t and s. Specifically, we first draw r̃ ∼ U(0, 1) from a standard uniform distribution, then obtain r
through the linear transformation r = t+ r̃(s− t).

In our ablation studies, we explore alternative sampling strategies using the truncated normal distribu-
tion. Specifically, we sample r̃ from a truncated normal distribution r̃ ∼ T N (µ, σ, 0, 1), where the
distribution is confined to the interval [0, 1]. The value of r is then obtained through the same linear
transformation r = t+ r̃(s− t). Let q̃(r̃) denote the probability density function of T N (µ, σ, 0, 1).
Assuming s ̸= t without loss of generality, we can derive

r ∼ q(r) =
1

|s− t|
q̃(
r − t

s− t
). (29)

Then Eq. (20) becomes

f(xt, t, s) = Er∼q(r)v(xr, r)
pU(t,s)(r)

q(r)

= Er̃∼q̃(r̃)v(xr, r)

1
|s−t|
1

|s−t| q̃(r̃)

= Er̃∼q̃(r̃)v(xr, r)
1

q̃(r̃)
.

(30)

The probability distributions of r̃ under different µ values are illustrated in Fig. 7.

F Sampling Algorithms at Inference

For simplicity, we always sample adjacent time steps with uniform spacing. The sampling process
differs between STEE-trained models and those trained with SDEI, STEI, or SDEE, due to their
distinct handling of classifier-free guidance. The detailed sampling processes are presented in
Algorithm 9 and Algorithm 10.

Algorithm 9 Sampling Using Models Trained with SDEI, STEI and SDEE
Input: model fθ, number of steps N , guidance scale w
Output: sampled image x0

Sample x1 ∼ N (0, I)
for i = 0 to N − 1 do
xN−i−1

N
← xN−i

N
− 1

N fθ(xN−i
N

, N−i
N , N−i−1

N , w)

end for
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Table 7: The performance comparison of secant losses on CIFAR-10 and ImageNet-256× 256.

CIFAR-10 ImageNet-256× 256
Type Steps FID↓ FID↓ IS↑ FID (w/ CFG)↓ IS (w/ CFG)↑

SDEI 1 22.67 43.49 54.40 8.97 253.25
SDEI 2 5.88 20.83 93.17 4.81 257.56
SDEI 4 3.23 14.21 116.03 3.11 258.81
SDEI 8 2.27 9.14 139.69 2.46 248.36
STEI 1 36.87 38.44 56.60 7.12 241.75
STEI 2 9.21 21.10 95.77 4.41 241.99
STEI 4 4.04 10.91 135.03 2.78 269.87
STEI 8 2.59 7.64 157.03 2.36 274.72
SDEE 4 10.19 19.99 96.87 3.96 247.20
SDEE 8 3.18 9.46 136.97 2.46 258.94
STEE 4 10.55 22.82 83.87 3.02 274.00
STEE 8 3.78 12.98 110.03 2.33 274.47

Algorithm 10 Sampling Using Models Trained with STEE
Input: model fθ, number of steps N , guidance scale w
Output: sampled image x0

Sample x1 ∼ N (0, I)
for i = 0 to N − 1 do

if w > 1 then
fθ(xN−i

N
, N−i

N , N−i−1
N ) ← fu

θ (xN−i
N

, N−i
N , N−i−1

N ) + w(f c
θ(xN−i

N
, N−i

N , N−i−1
N ) −

fu
θ (xN−i

N
, N−i

N , N−i−1
N )

end if
xN−i−1

N
← xN−i

N
− 1

N fθ(xN−i
N

, N−i
N , N−i−1

N )

end for

G Additional Quantitative Results

G.1 Additional Performance

For a detailed comparison among secant losses, we provide more results on CIFAR-10 and ImageNet-
256× 256 in Table 7.

G.2 Training Efficiency

In practical application, methods like continuous-time CMs [33, 35] and MeanFlow [67] require
analytical Jacobian-vector product (JVP) operations to compute the loss. This imposes a significant
computational burden, especially in PyTorch. To provide a direct comparison, we benchmark the
training speed and memory usage under the same EDM setup (the batch size is 512 on 8 A100 GPUs
with 64 per GPU) on CIFAR-10. The results are shown in Table 8.

H Experimental Settings

The detailed experimental configurations are presented in Table 9. Basically, we follow the settings
of EDM and SiT. Except for STEE on ImageNet-256× 256, we multiply the learning rate by a factor
of 0.1. For CIFAR-10 dataset, we use the DDPM++ architecture, and adopts the Trigflow framework.
For ImageNet-256 × 256, we cache the latent codes on disk, and for simplicity we disable the
horizontal flip data augmentation. For SDEI, STEI and SDEE, we embed CFG scale as a conditional
input to the model, with the CFG range [1, 2] for 4-step and 8-step models and [1, 2.5] for 1-step
and 2-step ones. In the experiment concerning training from scratch on ImageNet-256 × 256, we
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Table 8: Comparison on training efficiency among different approaches.

Method Training Speed (sec/KIMG) Memory Usage (G, Per GPU)

EDM [6] (teacher diffusion model) 0.57 8.69
MeanFlow [67] 1.04 38.73
SDEI 0.91 9.64
STEI 1.42 16.95
SDEE 0.91 9.64
STEI 0.72 9.34

Table 9: Experimental settings of four loss functions on different models and datasets.

CIFAR-10 ImageNet-256 × 256
SDEI STEI SDEE STEE SDEI STEI SDEE STEE

Model Setting
Architecture DDPM++ DDPM++ DDPM++ DDPM++ DiT-XL/2 DiT-XL/2 DiT-XL/2 DiT-XL/2
Params (M) 55 55 55 55 675 675 675 675
σd 0.5 0.5 0.5 0.5 - - - -
cnoise(t)

1
4 ln(σd tan t) 1

4 ln(σd tan t) 1
4 ln(σd tan t) 1

4 ln(σd tan t) t t t t
Boundary ϵ1 0.001 0.001 0.001 0.001 - - - -
Boundary ϵ2 0.00625 0.00625 0.00625 0.00625 - - - -
Initialization EDM EDM EDM EDM SiT-XL/2 SiT-XL/2 SiT-XL/2 SiT-XL/2
Training Setting
Precision fp32 fp32 fp32 fp32 fp16 fp16 fp16 fp16
Dropout 0 0.2 0 0.2 0 0 0 0
Optimizer RAdam RAdam RAdam RAdam AdamW AdamW AdamW AdamW
Optimizer ϵ 1e-8 1e-8 1e-8 1e-8 1e-8 1e-8 1e-8 1e-8
β1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
β2 0.99 0.99 0.99 0.99 0.999 0.999 0.999 0.999
Learning Rate 1e-4 1e-4 1e-4 1e-4 1e-5 1e-5 1e-5 1e-4
Weight Decay 0 0 0 0 0 0 0 0
Batch Size 512 512 512 512 256 256 256 256
Training iters 100K 100k 100k 100k 100K 100k 100k 100k
t, s sampling discrete discrete continuous continuous discrete continuous continuous continuous
r sampling Uniform Uniform Uniform Uniform Uniform Uniform Uniform Uniform
EMA Rate 0.99929 0.99929 0.99929 0.99929 0.9999 0.9999 0.9999 0.9999
Label Dropout - - - - - 0.1 - 0.1
Embed CFG - - - - ✓ ✓ ✓ ✗
x-flip ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

maintain identical settings to those specified in the STEE column, while only disable the pretrained
weights and alter the model size. To calculate the FID and IS score at evaluation, we use the codebase
provided in MAR [85] for simplicity. All the experiments can be done on a sever with 8 NVIDIA
A100 GPUs.

I More Visualizations

Additional visualization results are presented for both datasets. For CIFAR-10 dataset, we provide
4-step and 8-step results using LSDEI in Fig. 8 and Fig. 9, respectively. For ImageNet-256 × 256,
extended visualizations of 8-step generation using LSTEE are displayed in Fig. 10 and Fig. 11.
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Figure 8: Uncurated 4-step samples on unconditional CIFAR-10.
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Figure 9: Uncurated 8-step samples on unconditional CIFAR-10.
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Figure 10: Uncurated 8-step samples on ImageNet-256×256. Guidance scale is 2.1, and the guidance
of first two steps is ignored.
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Figure 11: Uncurated 8-step samples on ImageNet-256×256. Guidance scale is 2.1, and the guidance
of first two steps is ignored.
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