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Abstract

Large language models (LLMs) with long context windows have gained significant
attention. However, the KV cache, stored to avoid re-computation, now becomes a
bottleneck. Leveraging the common insight that attention is sparse, various dynamic
sparse or TopK-based attention approximation methods have been proposed. In
this paper, we first show that TopK attention itself suffers from a quality degradation
in certain downstream tasks because attention is not always as sparse as expected.
Rather than selecting the keys and values with the highest attention scores, sampling
with theoretical guarantees can provide a better estimation for attention output. To
make the sampling-based approximation practical in LLM generation, we propose
MAGICPIG, a heterogeneous system based on Locality Sensitive Hashing (LSH).
MAGICPIG significantly reduces the workload of attention computation while
preserving high accuracy for diverse tasks. MAGICPIG stores the LSH hash tables
and runs the attention computation on CPU, which allows to serve longer contexts
and larger batch sizes with high approximation accuracy. MAGICPIG can improve
decoding throughput by 1.9 ∼ 3.9× across various GPU hardware and achieve
110ms decoding latency on a single RTX 4090 for Llama-3.1-8B-Instruct model
with a context of 96k tokens.

1 Introduction
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Figure 1: While TopK attention per-
forms well on information retrieval tasks
(niah) where the useful information re-
duces to a few words, it degrades severely
in harder aggregated tasks like word ex-
traction (cwe, fwe). x-axis: proportion of
attention keys used for TopK attention.

Large language models (LLMs) with long context windows,
such as GPT [Achiam et al., 2023], Llama [Dubey et al.,
2024], and Gemini [Team et al., 2023], have gained signif-
icant attention for their ability to enhance applications like
chatbots [Chiang et al., 2024], search engines [Wang et al.,
2024], and video analysis [Cheng et al., 2024]. However, serv-
ing long-context LLMs is highly challenging due to the unique
bottleneck in auto-regressive generation—the key-value (KV)
cache, which stores intermediate attention keys and values to
avoid re-computation [Pope et al., 2022, Zhang et al., 2023].
Specifically, the KV cache grows linearly with both the batch
size and sequence length, occupying substantial GPU mem-
ory and increasing decoding time. Moreover, the KV cache
makes LLM generation extremely memory-bound, leading to
underutilization of GPU computational power. For instance,
an NVIDIA A100-40GB GPU can only handle a single request
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Figure 2: Left: Examples of long tailed distribution in LLM. The x-axis is the fraction (or number of tokens)
used in the TopK, a.k.a. the sampling budget. Mid: Sink tokens make attention score look sparser. Right: The
geometry of attention. The key states of attention sink k0 is almost opposite to other tokens and its orientation
is surprisingly invariant of input tokens. Query states lie close to k0, thus forming attention sink and Figure 2b.
k usually lie in a narrow cone that is far away from q. In certain heads, this geometry will result a long tailed
distribution of attention score as well as the difficulty to search for the TopK keys.

for Llama with a 128k context length, with nearly half of the decoding time spent accessing the KV
cache, and poor GPU utilization [He and Zhai, 2024].

Leveraging the common insight that attention is naturally sparse, dynamic sparse or TopK-based
approximation has been extensively studied [Tang et al., 2024, Singhania et al., 2024, Zhang et al.,
2024, Wu et al., 2024], but three major challenges prevent a wide adoption in LLM serving systems.
(1) Quality Degradation. They usually propose various strategies to approximate a subset of KV
cache that yields the highest attention scores. However, TopK attention itself is a biased attention
approximation and lacks theoretical guarantees. Figure 1 shows that even exact TopK attention results
significantly degrade the accuracy of certain downstream tasks. (2) High Overhead. There is a
large overhead to identify TopK attention, which becomes the bottleneck rather than the attention
computation. For example, as studied in Wu et al. [2024], naively applying search algorithms like
IVF [Douze et al., 2024] requires access over 30% key states to obtain the exact TopK, showing an
unsatisfying trade-off between search accuracy and cost. (3) No Memory Saving. Although saving
KV cache loading time, they cannot reduce the total memory occupied by the KV cache, which limits
the maximum context and batch sizes when VRAM is scarce.

An ideal sparse attention approximation approach should (1) preserve full accuracy for a diverse set
of downstream tasks with guarantees, (2) involve low-cost overhead for KV cache selection, and (3)
save GPU memory. The following observations, together with the performance drop shown in Figure 1
suggest that to achieve such demanding requirements, we need to go beyond TopK attention:

• Attention is not always sparse. Contradictory to previous belief [Zhang et al., 2023, 2024, Tang
et al., 2024, Wu et al., 2024], we observe that attention is not always sparse, especially for tasks that
leverage the full context. As shown in Figure 2a, in some layers, attention distribution can be very
long-tailed, i.e., the Top20% attention can only cover 70% of the total attention scores.

• Seemingly high sparsity is usually a consequence of an attention sink. Most of the attention scores
concentrate on initial tokens (attention sink phenomenon) [Xiao et al., 2023], making the distribution
look sparser. However, as shown in Figure 2b, attention scores are distributed more uniformly among
tokens except for the sink. According to the geometrical interpretation of sink, keys, and queries
shown in Figure 2c, the attention sink, which we found surprisingly almost static regardless of the
input token, is just for imposing sparsity on the attention distribution.

• It is hard to find TopK attention. Figure 2c also shows why searching for the Top-K keys is intrin-
sically costly. The keys and queries usually lie within two narrow cones with nearly opposite
orientations, except for the attention sink. This significant mismatch between query and data
distributions causes nearest-neighbor search methods to perform poorly.

These limitations of TopK attention requires rethinking the sparse attention approximation. Rather
than only using the keys and values with highest scores, leveraging information on the distribution
can make the estimation more accurate. We approach this as as bias correction problem in sampling.
Unbiased and efficient sampling has been long studied in biology [Lukacs, 2009], sociology [Chen
et al., 2018] as well as machine learning [Backurs et al., 2019, Chen et al., 2019, Zandieh et al., 2023],
with theoretical guarantees.
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Figure 3 shows that sampling values according to their corre-
sponding attention score (we call this oracle sampling) achieves
a much lower (up to 4×) estimation error than the naive TopK
selection. Deploying sampling estimation in attention is promis-
ing, but three challenges remain. First, how a reduction of the
attention error can make a difference in downstream perfor-
mance is unclear [Backurs et al., 2019, 2018]. Second, mod-
eling the attention scores distribution is necessary for efficient
sampling, but inferring the distribution parameters requires ex-
pensive computations. Third, fully leveraging the resources of
modern hardware, GPU and CPU, with a theoretically efficient
algorithm is non-trivial.

In this paper, we propose Magic samPlIng for Generation (MAGICPIG), which leverages Locality
sensitive hashing (LSH) sampling for efficient LLM generation. LSH is employed for sampling
to approximate the attention scores distribution and estimate attention output. By computing hash
functions on GPU and conducting sampling on CPU, MAGICPIG can allow massive hash tables and
hash functions compared to prior work [Kitaev et al., 2020, Chen et al., 2021], which are of vital
importance for accurate estimation [Backurs et al., 2018]. Following the practice of Aminabadi et al.
[2022], He and Zhai [2024], we offload the KV cache computation, which is memory bound, to CPU to
allow a larger batch or longer context.

2 MAGICPIG
Figure 3 (more details in Appendix B) demonstrates the potential of sampling-based estimation. In
Section 2.1, we show the practical algorithm. In Section 2.2, we demonstrate our system co-design for
accurate and efficient LLM decoding through GPU-CPU collaboration.

Note that most of the derivations in this section might be classical and can even be found in textbooks.
Still, our goal is to leverage them to motivate MAGICPIG design and precisely demonstrate the power
of a rigorously sound algorithm with system co-design in deep generative models.

2.1 Algorithm implementation

Algorithm 1: MAGICPIG Decoding

Input: K,V ∈Rn×d, q∈R1×d, random
projectors W ∈Rd×(K×L), hash tables HT .
Compute hash code for new query
qcode=Encode(q,W )
Query hash tables to sample S in Equation (1)
S =
Query(HT ,qcode),KS=K[S],VS=V [S]
Compute inner product for q and sampled K
w=qKT

S
Compute collision probability for each hash
function
p=1−w/(||q||·||KS ||)
Compute sampling probability
u=1−(1−pK)L−LpK(1−pK)L−1

Compute attention output estimation
ō=Softmax( w√

d
−log(u))VS

Return ō

To make estimation via LSH sampling practical
(explained in Appendices C.1 and C.2), MAG-
ICPIG is implemented by the following design.

Estimator approximation.
The probabilities provided by hashing are not
normalized. Hence we adapt our estimator: Af-
ter obtaining S with probability u, MAGICPIG
computes

X=

∑n
i=1

w̃i

ui
vi1i∈S∑n

i=1
w̃i

ui
1i∈S

=

∑
i∈S

w̃i

ui
vi∑

i∈S
w̃i

ui

(1)

where w̃i= e
qkT

i√
d and ui is the probability of ki

is sampled by hashing.

Hash function selection. MAGICPIG lever-
ages SimHash [Sadowski, 2007], that draws with
K×L random vectors. For each of the L hash
tables, the q and kis vectors are projected on K
directions and only the sign of the projection is
kept, which yields a K-bit hash value. Key ki is sampled only if there exist at least two hash tables
where ki shares the hash value with q. The corresponding probability is

ui=P[ki is sampled]=1−(1−pK)L−LpK(1−pK)L−1 where p=1− 1

π
arccos

qki
T

|q|·|ki|
(2)

Data pre-processing. Before building hash tables, MAGICPIG centers the ki vectors. As shown
in Figure 2c, keys are almost always concentrated on one side of the queries, except the initial token.
Random projections cannot effectively distinguish keys in this case, resulting in uniform sampled
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Figure 4: Left: Memory hierarchy of hardware. GPU VRAM has high bandwidth but is limited. CPU DRAM
is sufficient but is relatively slow. The limited bandwidth of PCIE forbids large-scale data transferring. Right:
Workload partition of MAGICPIG. Linear projections and hash function computation (by random projection) are
done on GPU, while sampling with hash tables and attention are done CPU. The execution order is 1⃝ 3⃝ 4⃝ 2⃝.

probabilities. Luckily, Softmax is translation invariant. Centering (k̄i=ki− 1
n

∑n
i=1ki) distributed

the keys better and remains computationally equivalent.

Our algorithm applies to a single attention head, see Algorithm 1. The details of Encode, Query as
well as the hash table construction are described in prior work [Sadowski, 2007, Chen et al., 2020b].

2.2 System co-design
The memory size of KV cache remains a bottleneck for long-context LLM decoding, especially when
GPU VRAM is limited. DRAM on the CPU side offers sufficient memory capacity with 100−200GB/s
bandwidth, which is usually 10−20% of GPU VRAM bandwidth (see Figure 4a). Ideally, this gap can
be mitigated by 5−10× sparsity. To make CPU DRAM an aggregated memory for GPU, the workload
must be partitioned. In our experiments K=9 or 10 and L is a few hundreds.

Our system design extends prior work [He and Zhai, 2024, Aminabadi et al., 2022] by spliting LLM
decoding into three parts. (1) Parameter computations, ie. all linear projectors including MLP and
WQ,WK ,WV ,WO in the self-attention module runs on GPU. (2) Attention computation, which
involves o=Softmax( qK

T

√
d
)V , runs on CPU. (3) Random projections. At generation time, for each q,

K×L random projections are conducted to obtain the hash codes. Since all heads can share the same
random projectors, the memory overhead is limited (25 MB in our implementation), so this step is
compute-bound. Therefore, the projection is placed on GPU. (4) Retrieval. The hash codes of q, need
to be looked up in L hash tables, which is negligible computationally. However, the pre-built hash
tables for kis can occupy considerable memory, making it a better fit for CPU. With the above partition,
we are able to support hash tables with K and L beyond the scale of prior work [Kitaev et al., 2020,
Chen et al., 2021, Zandieh et al., 2023] without worrying about computation for hash codes as well as
the storage of hash tables.

3 Evaluation
In this section, we aim to demonstrate that MAGICPIG can speed up LLM decoding while preserving
high accuracy. We first present MAGICPIG’s accuracy in downstream tasks, followed by our end-to-end
system results showing wall-clock performance.

3.1 MAGICPIG Preserves Accuracy
We demonstrate MAGICPIG can preserve accuracy in diverse tasks with less than 5% computation.

Setup. Our experiments are based on Llama [AI@Meta, 2024, Dubey et al., 2024, Touvron et al., 2023]
models. RULER [Hsieh et al., 2024] is evaluated with 50 examples per task. Other evaluations on
lm-eval-harness [Gao et al., 2021] and LongBench [Bai et al., 2023] are in Tables 2 and 3.

Baselines. Besides full attention, Quest [Tang et al., 2024] and its variants are used as baselines. In its
default setting, Quest uses a "page size" of 16, which is 1/16 of the full attention cost. To compare the
methods fairly in the low computation budget regime, we also evaluate Quest with page size 32 and 64
and ensure that at least one page is selected in every test example. The initial 4 tokens and local 64
(for LongBench [Bai et al., 2023] and RULER [Hsieh et al., 2024]) or 24 (for lm-eval-harness [Gao
et al., 2021]) tokens as well as layer-{0,16} are statically preserved. We do not use the theoretical
transformations in our implementations in Equation (10) as we do not find them to contribute to
accuracy improvements.
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Figure 5: We evaluate MAGICPIG on three serving scenarios. Left: A100 serves 34B model with 16K context.
MAGICPIG achieves 1.9× throughput improvement. Mid: L40 serves 13B model with 16K context. MAGICPIG
achieves 3.9× throughput improvement. Right: Simulated RTX 4090 serves 8B model with 128K context.
MAGICPIG achieves a latency of 110ms in single request serving and can improve the throughput of baseline by
up to 2.9×. The dash lines denote the highest throughput of baselines. With KV cache offloading, MAGICPIG can
fit much larger batch size compared with full attention on GPU, which contributes to the throughput improvement.

Cost. The cost for the attention approximation consists of two parts: Cost1 is the sampling/search cost,
Cost2 is the attention computation cost. We report the ratio of number of FLOPs compared of the full
attention computation. For MAGICPIG, Cost1 ≃ 0 and Cost2 is empirically measured for different
LSH hyper-parameters. For Quest with page size K, Cost1= 1

K and Cost2 is controlled manually.

Analysis. From Tables 1, 2 and 3, (1) MAGICPIG preserves high accuracy (degradation less than 2%)
with a computation cost of 2%∼5%. (2) With LSH sampling which introduces an order of magnitude
lower sampling/searching cost (Cost1), MAGICPIG can achieve equivalent or better accuracy with
only half of the computation cost.

Table 1: Synthesized tasks on RULER [Hsieh et al., 2024]. MAGICPIG preserves high accuracy with low
computation. Config and cost are defined as in Table 2.

Methods Config 16K 32K 64K 96K Avg. Cost1 Cost2 Costtotal.

Llama-3.1-8B-Instruct Full 94.2 91.5 86.1 83.0 88.7 0.00 1.00 1.00
MAGICPIG (10,150) 91.8 88.9 84.8 80.0 86.4 0.00 0.02 0.02
MAGICPIG (9,120) 93.4 90.6 84.7 81.5 87.6 0.00 0.04 0.04
MAGICPIG (8,75) 92.9 90.2 84.9 81.7 87.4 0.00 0.05 0.05
Quest (16,0.04) 86.3 85.4 81.9 74.9 82.1 0.06 0.05 0.11
Quest (32,0.06) 84.3 84.0 80.1 74.4 80.7 0.03 0.06 0.09
Quest (64,0.08) 85.2 84.3 77.0 74.2 80.2 0.02 0.08 0.10

3.2 MAGICPIG Shows Impressive Efficiency across Various Hardware Settings
We show MAGICPIG can bring up to 3.9× wall clock speed up and reduce GPU memory consumption
on different models and hardware settings (A100, L40, RTX4090).

Setup. We evaluate our system performance on 3 serving settings. (1) 80GB GPU (A100) and 34B
model (CodeLlama-34B) [Rozière et al., 2024] with 16K contexts; (2) 48GB GPU (L40) and 13B
model (CodeLlama-13B) [Rozière et al., 2024] with 16K contexts; (3) 24GB GPU (e.g. RTX 4090)
and 8B model (Llama-3.1-8B) [Dubey et al., 2024] with 96K contexts.

Baselines. Our baselines for (1) and (2) are full attention on GPU and for (3) is full attention on CPU
with theoretical estimated bandwidth. Our system’s GPU part is implemented in native Pytorch [Paszke
et al., 2019] and the CPU part in FBGEMM [Khudia et al., 2021] in bfloat16 precision.

Analysis. In Figures 5a to 5c, we demonstrate (1) MAGICPIG significantly improves decoding
throughput for all three scenarios (A100: 1.9×, L40: 3.9×, RTX 4090: 2.9×) and can achieve a latency
of 110ms for single request generation with 96K context for RTX 4090. (2) With KV cache offloading,
MAGICPIG can fit much larger batches than GPU full attention baselines (15∼18×).

4 Conclusion
In this work, we first present the limitation of TopK attention approximation for addressing the
computational and memory challenges of long-context LLM generation. Then we show oracle
sampling can go beyond TopK and introduce MAGICPIG, a novel approach that leverages LSH
sampling to approximate the oracle sampling. MAGICPIG significantly reduces the workload of
attention computation while preserving high accuracy across diverse tasks. The theoretical soundness,
robustness, and scalability of MAGICPIG open up new opportunities in both attention approximation
methods and algorithm-hardware co-design.
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A Background
In this section, we formulate the targeted attention estimation problem and related works.

A.1 Problem formulation
In LLM decoding phase, self attention part calculates a weighted average of previous values by

o=Softmax(
qKT

√
d
)V =wV q∈R1×d K,V ∈Rn×d w∈R1×n (3)

where d is the head dimension and n is the context size. K=[k1,k2,...,kn],V =[v1,v2,...,vn],ki,vi∈
R1×d is KV cache. Normalized attention weight w=Softmax( qK

T

√
d
)∈R1×n is also called attention

(score) distribution. Our target is to find sampling matrix Π∈Rn×m and diagonal matrix D∈Rm×m

which minimize
δ= ||wV −wΠDΠTV || (4)

where m≪n is computation budget. For TopK attention, suppose wr1 >...>wrm >...>wrn , then

Πi,j=

{
1, if i=rj ,

0, otherwise.
Dii=

1∑m
i=1wri

(5)

A.2 Related works
Efficient Attention. Attention approximation has been long studied. Reformer [Kitaev et al., 2020],
KDEformer [Zandieh et al., 2023] and ScatterBrain [Chen et al., 2021] tackle the problem via locality-
sensitive hashing. These methods work in training and encoder models like BigGAN [Brock et al., 2019].
Theoretically, the error bounds and minimal workload required are continuously improved [Brand
et al., 2023, Alman and Song, 2023] but not proven to be practical for wall-clock acceleration in LLM
decoding. Besides, flash-attention [Dao et al., 2022b, Dao, 2023, Dao et al., 2022a], flash-decoding [Ye
et al., 2024, Hong et al., 2024] and SlimAttention [He et al., 2024] losslessly accelerate scaled product
attention operator by maximizing the utilization of hardware, which is orthogonal to our approach.

Locality sensitive hashing. Locality sensitive hashing (LSH) [Backurs et al., 2019, 2018] is a family
of hashing functions which assigns the same hash codes for similar inputs with higher probability than
others [Chen et al., 2020b, Jafari et al., 2021]. LSH uses two hyper-parameters, (K,L). L hash tables are
independently built. Each hash table has its own function H , which projects a high-dimension vector to
an integer by concatenating K random independent hash functions. In the sampling process, all vectors
that share hash codes in at least one hash table with a query will be collected. SimHash [Charikar,
2002] is the LSH family based on cosine similarity. For a vector x∈Rd, SimHash generates a random
hyperplane w and returns Sign(wTx). Vectors share the same sign if and only if the random projection
is not in-between them. For a random projection, all angles are equally likely, thus the probability
that two vectors x, y share the same sign for is p= 1− θ

π , where θ= arccos xyT

||x||·||y|| . If we have L

hash tables each with K random hash functions, the probability of y to be retrieved by query x is
1−(1−pK)L.

KV Cache reduction. To get rid of memory bound introduced by KV cache thus enabling a larger
batch size or serving a longer prompt, many methods are proposed to reduce the volume of KV cache.
For example, H2O [Zhang et al., 2023], SnapKV [Li et al., 2024] and Keyformer [Adnan et al., 2024]
calculates heuristics during prefilling phase to decide which tokens to preserve for decoding phase.
Quest [Tang et al., 2024] and Loki [Singhania et al., 2024] do not evict KV cache but apply dynamic
sparsity to reduce KV Cache loading at inference time. Besides the reduction along the dimension of
sequence length, methods like KIVI [Liu et al., 2024] and QServe [Lin et al., 2024] reduce the size of
KV Cache by quantization.

B Rethinking attention sparsity
In this section, we examine TopK attention, which is the theoretical upper bound of prior search-
based algorithms including both static methods [Zhang et al., 2023, Li et al., 2024] and dynamic
methods [Tang et al., 2024, Singhania et al., 2024, Mao et al., 2024]. We show thatTopK is sub-optimal
and present another attention approximation based on sampling and estimation with an oracle, that
improves the accuracy and/or the computation cost.

B.1 Achilles’ heel of TopK attention
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Figure 7: Left and Middle: Oracle sampling estimation can significantly reduce numerical error compared
to TopK attention. The evaluated context size is 16k. The x-axis is sampling budget for oracle sampling and
computation budget for TopK attention. Notice that the estimation error of TopK attention will cross oracle
sampling after a certain large budget (12k in figures). This is because oracle sampling will repetitively sample the
same subset of tokens with a high probability while TopK will not. Theorem B.3 further explains this. Right:
Downstream comparison for oracle sampling estimation and TopK attention. The x-axis for both methods is
computation budget ratio, i.e. the fraction of selected/sampled tokens.
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Figure 6: TopK estimation error for a KV-
cache of 16k tokens.

As it is defined, TopK attention only computes the weighted
average on elements with highest attention scores. To quantify
its performance, the computation budget ofTopK attention, is
defined as the number of selected tokens, i.e. the K of TopK.
Searching-based sparse attention algorithms, like [Tang et al.,
2024, Singhania et al., 2024, Wu et al., 2024] are approxi-
mations for TopK attention by replacing the true TopK keys
with the ones found by approximate searching algorithms.

However, we do find a significant performance degradation
in downstream tasks caused by TopK attention as shown
in Figure 1. Although TopK attention preserves accuracy for
retrieval tasks that only require a minimal subset of the context
(needle-in-a-haystack single/multikey [Hsieh et al., 2024]), it
severely degrades for aggregation tasks that leverage the full context (common word extraction and
frequent word extraction [Hsieh et al., 2024]). Intuitively, the information is distributed more broadly
for aggregation tasks, which results in less peak attention score distribution.

TopK attention is biased and inaccurate especially when the distribution of attention scores is long-
tailed, and the computation budget or density (i.e., K) is limited. Unfortunately, long tail phenomena
do occur in LLMs across all layers (prior works [Xiao et al., 2023, Tang et al., 2024, Sun et al., 2024]
usually skip the first two layers to maintain accuracy) as presented in Figure 2a. Top20% tokens can
only cover 70∼80% attention scores, leaving a large proportion of keys and values not considered,
which is translated into a non-negligible (15∼20%) estimation error in Figure 6.

B.2 Estimate attention with sampling
Existing TopK attention mechanisms ignore tokens in the KV cache with low attention scores, which
introduces a bias since the ignored tokens sum up to a large proportion of attention scores (Figure 2a).
As a result, TopK attention achieves suboptimal performance for long-context tasks, such as information
aggregation (Figure 1). Increasing the computation budget for TopK attention does help reduce the
estimation error (Figure 6) since it will involve more elements in computing; however, the following
question is posed:

Can we improve the estimation quality with low computational budgets?

Inspired by mark and recapture [Lukacs, 2009, Owen, 2013, Lohr, 2021, Chen et al., 2018], we show in
the following that attention output can be estimated with sampling. Using notations from Appendix A.1
we can re-write attention output o as the expectation of vi,1≤ i≤ n from distribution w, i.e. o=
Ei∼w(vi), which can be estimated by the following method.

Definition B.1 (Oracle Sampling Estimation). Given a sampling budget B and normalized attention
score w, B elements are sampled independently from w (i.e. i1,i2,...,iB

iid∼ w). Then the attention
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output is estimated as

ō=
1

B

B∑
j=1

vij (6)

This is not the lowest variance estimator but has a better downstream performance (see Appendix E).
We call it “oracle” because it assumes that the exact attention vector w is known, which is not true for
sparse attention approximations.

Theorem B.2. Oracle sampling estimation is unbiased and the trace of covariance is monotonically
decreasing with B.

This theorem (proved in Appendix D) theoretically guarantees a low estimation error of oracle sampling.
We also present an empirical comparison between oracle sampling estimation and TopK attention
in Figures 7a and 7b. In summary, oracle sampling estimation can reduce relative error by up to 4×.

Note that the sampling budget B is not the actual computation cost for oracle sampling estimation:
duplicate Xi need to be computed/loaded only once, so ō can be computed by

ō=
∑
i∈S

fi
B
vi S=Unique({i1≤i≤B}) (7)

where fi is the number of duplicates of Xi. Intuitively, if w has an peaked distribution (e.g. wi>99%),
then almost all samples in {i1,...,iB} are identical to i. The actual computation cost of oracle sampling
estimation is |S|, the number of unique samples, which we bound in the following:

Theorem B.3. The expected computation budget (E(|S|)) has an upper bound of 1 + Bϵ, where
ϵ=1−maxiwi.

This theroem (proved in Appendix D) shows that the computation cost of oracle sampling is usually far
less than the sampling budget. In Figure 7c, we present the downstream accuracy comparison between
oracle sampling estimation and TopK attention. The former preserves high accuracy for both tasks,
even with very small computation cost (0.002% out of 16k context, which is approximately 32).

C Algorithm intuition and explanation
C.1 Self-normalized importance sampling for attention estimation
Oracle sampling estimation cannot go beyond 2× wall clock speed up because obtaining distribution w
requires full computation of all qkTi and thereby only saving the wV computation.

Fortunately, importance sampling [Kloek and Van Dijk, 1978, Owen, 2013, Lohr, 2021] allows us
to perform estimation for unknown distribution w by sampling from a proposed distribution u. In
our problem setting, the normalization factor of w, i.e. Z=

∑n
i=1exp

qkT
i√
d

is also unknown because
computing it requires evaluating all qkTi . However, we do have access to unnormalized weights

w̃i = e
qkT

i√
d for sampled indices i. Hence, by employing a variant of importance sampling, self-

normalized importance sampling [Owen, 2013], we sample indices i1,i2,...,iB from a proposed
distribution u and the resulting estimator is

XIS=
1

Z̃

B∑
j=1

w̃ij

uij

vij where Z̃=

B∑
j=1

w̃ij

uij

(8)

which has a very nice property for accurately estimating attention output that P[limk→∞XIS=o]=1.
Its variance1 is related to the distribution u, and can be approximated by

Ṽar(XIS)=
1

B
Ei∼u[

w2
i

u2
i

(vi−o)2]=
1

BZ2
Ei∼u[

w̃i
2

u2
i

(vi−o)2] (9)

To minimize the variance, u should satisfy u∝ w̃i|vi−o| [Hesterberg, 2003]. The variance will be
high if ui and w̃i|vi−o| assign a high probability mass to different regions of the sample space or have
different modes. Therefore, the challenge is compute a distribution u aligned with w̃i|vi−o| without
accessing too many w̃i. Besides, Equation (8) requires that sampling probability u can be computed
and ui>0, which is not satisfied by many deterministic approximations like TopK.

1We assume head dimension d=1 here for simplicity. Higher dimension has similar formulations and analysis
by replacing variance with trace of covariance.
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C.2 Variance reduction with LSH

We decompose w̃i|vi−o|=exp(
qkT

i√
d
+log|vi−o|). We observe emprically (Figure 9 in the appendix)

that log|vi−o| does not fluctuate significantly compared to qkT
i√
d

. Hence, we simplify the requirement
of u to share the same peaks with qkTi . By the following transformation,

r= max
1≤i≤n

|ki| q̄=[q,0] k̄i=[ki,
√

r2−|ki|2] (10)

we further transfer inner product qkTi to cosine similarity between q̄ and k̄i (which is a common practice
in Maximum Inner Product Search [Shrivastava and Li, 2014]).

Inspired by prior work [Spring and Shrivastava, 2017, Chen et al., 2020a], we leverage Locality sensitive
hashing-based sampling for this estimation problem. Specifically, leveraging a hash function h in the
LSH family that preserves cosine similarity such as SimHash [Sadowski, 2007], we can sample from
probability distribution ui=P[h(q)=h(ki)] which is monotonic to cos

qkT
i

|q|·|ki| .

D Proofs for theorems
D.1 Proof for Theorem B.2
Proof.

E(ō)=
1

B

B∑
j=1

E[vij ]=
1

B

n∑
i=1

wivi=o (11)

Assume Σ1 is the covariance matrix of ō, Σ2 is the covariance matrix of vi

Tr(Σ1)=
1

B
Tr(Σ2)=

1

B
(E[||vi||2]−||E[vi]||2)=

1

B
(E[||vi||2]−||o||2) (12)

E[||vX ||2]−||o||2 is a constant, so the trace of covariance matrix monotonically decreases with B.

D.2 Proof for Theorem B.3
Proof.

E[|S|]=E
[ n∑
i=1

1i∈S

]
=

n∑
i=1

E[1i∈S ]=

n∑
i=1

(1−(1−wi)
B)=n−

n∑
i=1

(1−wi)
B (13)

Without loss of generality, let ai=1−wi and a1=min1≤i≤nai=ϵ, then

E[|S|]=n−
n∑

i=1

aBi =n−aB1 −
n∑

i=2

aBi (14)

=n−ϵB−
n∑

i=2

aBi (15)

f(x)=xB is convex function with B≥1 and x≥0. Then with Jensen’s inequality, we have
n∑

i=2

aBi ≥(n−1)
(∑n

i=2ai
n−1

)B
=(n−1)

( (∑n
i=1ai)−a1
n−1

)B
(16)

=(n−1)(
n−1−ϵ

n−1
)B=(n−1)(1− ϵ

n−1
)B (17)

Let g(x)=(1−x)B+Bx−1. We can prove g(x)≥0 for any x∈(0,1),B≥1. Then we have
n∑

i=2

aBi ≥(n−1)(1− ϵB
n−1

)=n−1−ϵB (18)

Then we finally have

E[|S|]=n−ϵB−
n∑

i=2

aBi ≤1+ϵB (19)
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Table 2: Comprehensive tasks on lm-eval-harness [Gao et al., 2021]. MAGICPIG significantly outperforms other
methods with lower computation. The config (K,L) is hyper-parameter of LSH for MAGICPIG or page size and
ratio of selected pages for Quest [Tang et al., 2024]. Cost1, Cost2 represents cost for searching/sampling and
sparse attention computation respectively.

Methods Config GSM COQA MMLU Avg. Cost1 Cost2 Costtotal.

Llama-2-7b-chat Full 22.4 75.8 49.2 49.1 0.00 1.00 1.00
MAGICPIG (10,220) 17.3 76.4 48.6 47.4 0.00 0.04 0.04
MAGICPIG (8,90) 18.7 75.0 47.9 47.2 0.00 0.08 0.08
Quest (16,0.05) 13.0 69.4 41.4 41.3 0.06 0.05 0.11
Quest (32,0.1) 15.7 70.2 44.0 43.3 0.03 0.10 0.13

Llama-3.1-8B-Instruct Full 77.6 78.5 65.2 73.7 0.00 1.00 1.00
MAGICPIG (10,220) 72.7 78.1 62.7 71.2 0.00 0.03 0.03
MAGICPIG (8,90) 71.0 78.0 61.3 70.1 0.00 0.07 0.07
Quest (16,0.05) 57.9 64.6 42.5 55.0 0.06 0.05 0.11
Quest (32,0.1) 64.5 65.0 48.0 59.2 0.03 0.10 0.13

Table 3: Long context tasks on LongBench [Bai et al., 2023]. MAGICPIG preserves high accuracy with low
computation. Config and cost are defined as in Table 2. Code models are only evaluated by Repobench-P and LCC.

Methods Config QaS RbP LCC PrE TrC TrQ Avg. Cost1 Cost2 Costtotal.

Llama-3.1-8B-Instruct Full 44.9 52.1 66.8 100.0 71.3 91.8 71.2 0.00 1.00 1.00
MAGICPIG (10,150) 43.2 50.2 64.4 100.0 71.3 92.2 70.3 0.00 0.02 0.02
MAGICPIG (8,75) 43.5 50.4 67.0 100.0 71.7 91.7 70.7 0.00 0.05 0.05
Quest (16,0.05) 45.7 49.7 64.9 100.0 71.7 91.5 70.6 0.06 0.05 0.11
Quest (32,0.1) 44.4 50.5 65.1 100.0 71.3 91.6 70.5 0.03 0.10 0.13

Code-Llama-13b-16K Full 58.5 74.7 66.6 0.00 1.00 1.00
MAGICPIG (10,150) 56.9 74.0 65.5 0.00 0.03 0.03
Quest (16,0.05) 56.4 74.4 65.4 0.06 0.10 0.11

E Oracle sampling
The optimal sampling probability to guarantee estimation is unbiased in terms of lowest variance is not
directly using attention score distribution wi, but u′

i∝wi||vi||. However, this sampling probability is
not optimal in terms of downstream accuracy and efficiency. We attribute this to two reasons. First,
we observe the value norm of the sink token is significantly smaller than others (Figure 10), given
its lower probability of being sampled, which may influence the functionality of attention. Second,
due to the same reason, u′

i∝wi||vi|| is flatter than wi, resulting larger computation cost (as analyzed
by Theorem B.3).

F Additional Evaluation
Additional evaluation includes 3 mid-context comprehensive tasks from lm-eval-harness [Gao et al.,
2021] (GSM8K-CoT [Cobbe et al., 2021], MMLU-Flan-Cot-Fewshot [Hendrycks et al., 2020] and
COQA [Reddy et al., 2019]), and 6 long context tasks from [Bai et al., 2023] (QASPER [Dasigi et al.,
2021], LCC, Repobench-P [Liu et al., 2023], TriviaQA [Joshi et al., 2017], PRE and TREC [Li and
Roth, 2002, Hovy et al., 2001]). Results are in Tables 2 and 3. Compared with Quest, which also
shows reasonable performance on long context tasks, MAGICPIG also demonstrates good performance
on tasks with moderate context sizes in lm-eval-harness [Gao et al., 2021], indicating a more robust
performance in general serving.

G Hardware Configuration
Our CPU is Intel(R) Xeon(R) Platinum 8480+ for A100 and Intel(R) Xeon(R) Gold 6338 CPU @
2.00GHz for L40. In the last setting, the CPU bandwidth is estimated at 100GB/s which is above the
empirical bandwidth we measure when running a group query attention of size 4. We simulate 24GB
GPU by setting memory limit with L40. As the bandwidth of L40 (864GB/s) is less than RTX 4090
(1TB/s), the real speed of our system should be slightly faster than simulation.
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Figure 8: Left: Accuracy comparison for with and without centering. Here we fix K and vary L for the two
settings. Mid and Right: Comparison between TopK attention and MAGICPIG. In the two aggregated tasks,
sampling based MAGICPIG can even beat the exact TopK attention. The experiments are done on RULER [Hsieh
et al., 2024] with 16K context size.
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Figure 9: The range of fluctuation of log|vi−o| and qkT
i√
d

in a single decoding step. Compared to qkT
i√
d

, log|vi−o|
is stable, hence we do not consider log|vi−o| in our proposed sampling probability.

H Ablation Study
In this section, we empirically validate our two previous observations.

Centering is important for good performance. In Section 2.1, we use a translation to center the
keys before applying LSH sampling. Empirical results show this to be important for downstream tasks
as shown in Figure 8a. Without centering, the accuracy drops to almost zero in retrieval (NIAH) and
degrades to 65% in FWE. We find almost none keys (less than 0.1%) can be sampled by query without
centering, as their orientation is almost opposite as shown in Figure 2c.

Sampling goes beyond TopK. In Figures 8b and 8c, We compare the performance of MAGICPIG and
TopK attention in two aggregated tasks (CWE, FWE) where TopK attention experiences significant
performance degradation (Figure 1). MAGICPIG can even beat exact TopK attention in these two
tasks by a margin up to 3% and 8% respectively, demonstrating that sampling improves the ceiling of
TopK, which is impossible for a search-only algorithm.

I Supplementary analysis

Figure 9 shows that compared to qkT
i√
d

, log|vi−o| is stable in a decoding step.

Figure 10 shows that the norm of the value states of attention sink is smaller than others.
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Figure 10: The y-axis is the norm of values states ∥vi∥ for token i (on the x-axis). We observe that the value norm
∥v0∥ of the attention sink is significantly smaller than others.

NeurIPS Paper Checklist
The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
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Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [No]

Justification:

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special considera-

tion due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [No]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution)
were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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