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ABSTRACT

We investigate the problem of learning operators between function spaces, focus-
ing on the linear part of a layer in the Fourier Neural Operator architecture. First,
we identify three main errors that occur during the learning process: statistical
error due to finite sample size, truncation error from finite rank approximation
of the operator, and discretization error from handling functional data on a finite
grid of domain points. Finally, we analyze a Discrete Fourier Transform (DFT)
based least squares estimator, establishing both upper and lower bounds on the
aforementioned errors.

1 INTRODUCTION

In operator learning, the goal is to use statistical methods to estimate an unknown operator between
function spaces. A primary application of operator learning is the development of fast data-driven
methods to approximate the solution operator of partial differential equations (PDEs) (Li et al.,
2021; Kovachki et al., 2023). For example, consider Poisson equations on Ω ⊂ R3 with Dirichlet’s
boundary conditions:

−∇2w = v, x ∈ Ω such that w(x) = 0 for all x ∈ boundary(Ω).

The function v is usually given and the goal is to map v to the solution w. It is well known (Boullé
& Townsend, 2023, Section 1) that the solution operator of this PDE is a linear operator L such that
w = Lv, where

(Lv)(y) =
∫
Ω

G(y, x) v(x) dx ∀y ∈ Ω.

Here, G is the Green’s function of the Poisson equation. Given the training data
(v1, w1), . . . , (vn, wn), operator learning entails using statistical methods to estimate the solution
operator L̂n. Then, given a new input v, one can get the approximate solution ŵ = L̂nv. The goal
is to develop the estimation rule such that ŵ is close to the actual solution w = Lv under some
appropriate metric.

Traditionally, given an input function v, one would use numerical methods such as finite differences
to get a numerical solution. The solver starts from scratch for every new function v of interest
and can be computationally slow and expensive. This can be limiting in some applications such
as engineering design where the solution needs to be evaluated for many different instances of the
input functions. To solve this problem, operator learning aims to learn surrogate models that sig-
nificantly increase speed for solution evaluation compared to traditional solvers while sacrificing a
small degree of accuracy.

In this work, rather than focusing on specific PDEs, we take a slightly broader viewpoint and carry
out statistical analysis of a data-driven approach to operator learning in general. We focus on the
linear layer of the influential Fourier Neural Operator (Li et al., 2021) architecture. We begin by
identifying the various types of errors incurred while learning these operators. For example, in
addition to the statistical error resulting from finite sample size, there is also a discretization error
in operator learning, as we deal with functional data that is available only on a finite grid of domain
points. Ignoring high Fourier modes results in a truncation error. Finally, we analyze a Discrete
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Fourier Transform (DFT) based estimator, commonly used in practice, and provide both upper and
lower bounds on the various errors associated with this estimator.

1.1 NEURAL OPERATORS

To formally define our problem setting, we need to introduce neural operators (Kovachki et al.,
2023). Unlike that of Poisson equations, the solution operators for most PDEs of interest are non-
linear. Neural operators model these nonlinear operators using specialized neural networks.

Let V be a vector space of functions from a bounded subset X ⊂ Rdin to Rp. Consider W to be a
vector space of functions from Y to Rq where Y ⊂ Rdout is also a bounded subset. Given a function
v ∈ V , a single layer of neural operator Nt : V → W is a mapping such that

(Ntv)(y) = σ
(
(Kθtv) (y) + bt(y)

)
∀y ∈ Y where (Kθtv) (y) =

∫
X
kθt(y, x) v(x) dx.

The function bt : Y → Rq is a bias function in W , the function σ : Rq → Rq is a point-wise
non-linear activation, and the transformation v 7→ Kθtv is a integral kernel transform of v using
some kernel kθt : Y × X → Rq×p. Finally, the neural operator is a map v 7→ N v where N v =
Q◦NT . . .◦N1 ◦P(v). Here, P and Q are lifting and projection operators that can be used to change
the dimension of the functions.

Parametrizing Kθt in terms of kθt can be impractical due to the computational cost of calcu-
lating the integral in for each layer. Thus, a significant area of research in neural operators
focuses on developing innovative parametrizations of Kθt that facilitate more efficient computation.
One such parametrization gives rise to a well-known architecture called the Fourier Neural Operator.

1.2 FOURIER NEURAL OPERATOR (FNO)

We consider the setup from the work of Li et al. (2021). Let X = Y = Td be a d-dimensional peri-
odic torus. In this work, we will identify Td by [0, 1]d with periodic boundary conditions (Grafakos
et al., 2008, Chapter 3). Assume the kernel kθ is translation invariant–that is, kθ(y, x) = kθ(y− x).
This implies that Kθ is a convolution operator. In particular, we have Kθv = kθ ⋆ v (see Section 3
for more detail). Then, the Convolution Theorem implies that

Kθv = F−1
(
F(kθ)F(v)

)
,

where F and F−1 are Fourier and Inverse Fourier transform respectively. The key insight in FNO
is that instead of parametrizing the kernel kθ, we parametrize its Fourier transform F(kθ) directly.
That is, we parametrize the kernel transform operator as

Kβv = F−1
(
Λβ F(v)

)
.

This is a linear operator and will be referred to as Fourier linear operator. When |Λβ(m)|ℓ1 < ∞,
we can write this as

(Kβv)(y) =
∑
m∈Zd

e2π i⟨m,y⟩ Λβ(m) (Fv)(m) ∀y ∈ Y.

There are two practical challenges in implementing the operator Kβ . First, the implementation
involves an infinite sum over Zd. Second, the Fourier transform Fv cannot be computed exactly
since the function v is only available on a finite grid of domain points. To address the first challenge,
a largeK ∈ N is fixed and we sum only overm ∈ Zd such that |m|ℓ∞ ≤ K. The second challenge is
addressed by approximating Fv using the Discrete Fourier Transform (DFT) of v over the finite grid
of domain points, which can be efficiently computed using Fast Fourier Transform (FFT) algorithms.
The solution to the second challenge motivates our DFT-based least-squares estimator.

1.3 OUR CONTRIBUTION

In this work, we study the error bounds of learning the operator class {v 7→ F−1
(
Λβ F(v)

)
: β ∈

B}, where B is some parameter space that will be specified later. We study this simple setup to
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conceptually separate the paradigm of operator learning from its commonly used instantiation using
neural network architectures. By eliminating the complexities associated with neural networks,
studying this linear class can provide insights that are broadly applicable to both algorithm design
and theoretical analysis. Our work aligns with the historical development of neural networks theory
where the statistical properties of the linear core x 7→ Wx + b (a linear regression problem) were
fully understood before studying deep neural networks.

We assume that V = W = Hs(Td,R), a (s, 2)-Sobolev space of real-valued functions defined on
the d-dimensional periodic torus. See Section 4.3 for an explanation on why V and W need to be
spaces of functions with higher-order smoothness to achieve a vanishing error in this setting. We
work in the agnostic (misspecified) setting and analyze the DFT-based least-squares estimator (see
Section 4.2 for more details). Specifically, for some universal constant c1 > 0, we show that the
excess risk of the DFT-based least-squares estimator is at most

c1

(
1√
n
+

1

Ns
+

1

K2s

)
.

The term 1/
√
n is the usual statistical/estimation error due to a finite sample size. The term 1/Ns is

the discretization error incurred because the input and output functions are accessible to the learner
only on the uniform grid of size Nd of [0, 1]d. Finally, the term 1/K2s is the truncation error
incurred because the learner only works with the low Fourier modes m such that |m|ℓ∞ ≤ K.
Additionally, we establish the lower bound on excess risk, showing that it is at least

c2

(
1

n
+

1

N2s
+

1

K2s

)
for some c2 > 0. Our analysis is non-asymptotic and the precise form of the constants c1 and c2 are
provided in Theorems 1 and 2 respectively.

1.4 RELATED WORKS

After Li et al. (2021) proposed Fourier Neural Operators (FNOs), there has been a surge of interest
in this architecture. The number of applied works is too vast and not entirely relevant to list here, so
we will focus on related theoretical works. One of the earliest theoretical analyses of FNOs was the
universal approximation result by Kovachki et al. (2021).

More closely related to our work is a recent study on the sample complexity of various operator
classes, including FNOs, by Kovachki et al. (2024a). Their scope is broader than ours as they
address a general class of nonlinear operators. However, their results do not imply ours. They
treat the truncation parameter K as a part of the model rather than a variable that the learning
algorithm can choose. Their error bounds are based on metric entropy analysis, which leads to a
suboptimal dependence on K and the input dimension d. Specifically, their bounds break down
as K → ∞ and suffer from the curse of dimensionality in d. In contrast, our work establishes
statistical error bounds using sharp Rademacher analysis, avoiding both dependence on K and the
curse of dimensionality in d. An interesting future direction is to extend our Rademacher-based
analysis to capture function classes at the level of generality considered in Kovachki et al. (2024a).
Finally, we note that Rademacher-based analysis has also been used by (Raman et al., 2024; Tabaghi
et al., 2019) to study Schatten operators between Hilbert spaces. Kim & Kang (2024) also bound the
Rademacher complexity of FNOs, but their results have issues as the implied generalization bounds
do not always vanish.

A recent work by Lanthaler et al. (2024) aligns with our goal of quantifying the discretization error
of FNOs, and some of our proof techniques are inspired by their work. However, the nature of
their results differs from ours. To discuss the difference precisely, let Ψ be a trained Fourier Neural
Operator and v be an input function available to the learner only over a discrete grid of domain points
of sizeN . Denote vN as the set of discrete values of v available to the learner. Lanthaler et al. (2024)
bound the term ∥Ψv −ΨvN∥, quantifying the error incurred in the forward pass due to the function
being available only over a discrete grid. Essentially, this only captures errors incurred during the
test time but does not quantify the discretization error incurred during training. In contrast, our work
focuses on quantifying how the error propagates to the trained operator and its evaluation during the
test time because the training data is only available over a discrete grid.
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Finally, we also note that our setup is closely related to the function-to-function regression often
studied in the functional data analysis (FDA) literature. For example, the linear layer of a neural op-
erator v 7→ Kv + b is a well-studied model in FDA (Wang et al., 2016, Equation 15). Even a single
layer of a neural operator v 7→ σ (Kv + b) has been examined in FDA literature as multi-index func-
tional models (Wang et al., 2016, Equation 13), (Chen et al., 2011). That said, the overall goal of the
FDA differs slightly from that of operator learning. In FDA, the focus is on statistical inference, typ-
ically using RKHS-based frameworks under some assumptions about the data-generating process.
As a result, FDA methods often do not always scale to large datasets. In contrast, operator learning
primarily aims at prediction, seeking to develop surrogate models that approximate numerical PDE
solvers (Li et al., 2021; Kovachki et al., 2024b). The emphasis is on creating computationally effi-
cient methods that can be used to train large models and handle large datasets. However, we believe
that the intersection of these two fields can benefit both. The theoretical tools developed in FDA
literature over more than 40 years can be applied to the analysis of operator learning methods, while
the computational advances in operator learning can help scale FDA methods.

2 PRELIMINARIES

2.1 NOTATION

Let N be natural numbers and Z be integers. Define N0 := N ∪ {0}. R and C denote real and
complex numbers respectively. For any η ∈ Rd, we let |η|∞ := max1≤i≤d |ηi| denote the ℓ∞ norm.
For any complex number z ∈ C such that z = a + b i, we use |z| =

√
a2 + b2 and z̄ = a − i b

denotes complex conjugate. For any x, y ∈ Rd, the term ⟨x, y⟩ denotes the Euclidean inner product.
Occasionally, the inner products on other Hilbert spaces such as L2 will be distinguished from the
Euclidean one with the subscript such as ⟨·, ·⟩L2 . However, when the context is clear, we will use
⟨·, ·⟩ to denote canonical inner products on the respective Hilbert spaces.

Given K ∈ N, we define Zd
≤K = {m ∈ Zd : |m|∞ ≤ K} and Zd

>K := Zd\Zd
≤K . For a sequence

s := {sk}k∈Zd , we will also use |s|ℓp to denote the ℓp norm of s. Moreover, we let Td denote
a d-dimensional periodic torus. In this paper, we identify Td by [0, 1]d with periodic boundary
conditions. For a more detailed discussion on the torus, see (Grafakos et al., 2008, Chapter 3).

Throughout the paper, for any m ∈ Zd, we use φm : Td → R to denote the function φm(x) =
e2π i⟨m,x⟩. The sequence {φm}m∈Zd will be referred to as Fourier basis (of L2(Td,R)).

2.2 L2-SPACES AND FOURIER ANALYSIS

Define

L2(Td,R) :=
{
u : Td → R |

∫
Td

|u(x)|2 dx <∞
}
.

Recall that L2(Td,R) is a Hilbert space with inner-product

⟨u, v⟩L2 =

∫
Td

u(x) v(x) dx,

where z = a− b i is the complex conjugate of z = a+ b i. The norm induced by this inner product
will be denoted as ∥·∥L2 .

The sequence {φm}m∈Zd forms an orthonormal basis for L2(Td,R). That is, for any u ∈
L2(Td,R), we can write u =

∑
m∈Zd ⟨u, φm⟩L2 φm, where the convergence is in L2-norm. The

celebrated Parseval’s identity then implies that ∥u∥2L2 =
∑

m∈Zd | ⟨u, φm⟩L2 |2.

We note that u ∈ L2(Td,R) only guarantees that the sum
∑

m∈Zd ⟨u, φm⟩L2 φm converges to u in
L2 norm. Occasionally, we require a stronger notion of convergence, namely pointwise convergence
for every fixed x ∈ Td or uniform convergence across x ∈ Td. For these cases, we will make
appropriate assumptions to ensure that

∑
m∈Zd | ⟨u, φm⟩ | < ∞. Such absolute summability with

the Weierstrass M-test guarantees convergence of the sum
∑

m∈Zd ⟨u, φm⟩L2 φm(·) uniformly over
x ∈ Td.
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Since Td is identified with a bounded set [0, 1]d, the condition u ∈ L2(Td,R) implies that u is
integrable. That is,

∫
Td |u(x)| dx < ∞. For integrable functions, we use F to denote the Fourier

transform operator such that Fu : Zd → C is a complex-valued function on Zd defined as

(Fu)(m) =

∫
Td

u(x) e−2π i⟨m,x⟩ dx.

Note that we have (Fu)(m) = ⟨u, φm⟩. We let F−1 denote the operator that satisfies(
F−1F

)
(u) = u for any integrable u. F−1 will be referred to as inverse Fourier transform.

2.3 SOBOLEV SPACES

Fix s ∈ N and define

Hs(Td,R) = {u ∈ L2(Td,R) : ∂ku ∈ L2(Td,R) ∀k ∈ Nd
0 such that |k|∞ ≤ s}.

Here, ∂ku is the kth-weak partial derivatives. The space Hs(Td,R), also referred to as (s, 2)-
Sobolev space, is is a Hilbert space with an inner product

⟨u, v⟩Hs :=
∑

k∈Nd
0 : |k|∞≤s

〈
∂ku, ∂kv

〉
L2 ,

which naturally induces the norm ∥u∥Hs :=
√∑

k∈Nd
0 : |k|∞≤s ∥∂ku∥

2
L2 . In this paper, we often

assume that s > d/2. This ensures that (see Lemma 4)
∑

m∈Zd | ⟨u, φm⟩ | < ∞. As mentioned
before, this absolute convergence implies uniform convergence of the Fourier series over Td.

Note that it is more common to define Sobolev spaces with multi-indices k such that |k|1 ≤ s or
|k|2 ≤ s. We chose the restriction |k|∞ ≤ s simply for the convenience of computation. However,
as d is finite and all ℓp norms on a d-dimensional space are equivalent up to a factor of d, our results
extend to the case |k|p ≤ s for any p ≥ 1.

3 FOURIER LINEAR OPERATORS

In this section, we provide a formal treatment of Fourier linear operators and the corresponding
parametrization in FNOs. Recall that, in the Fourier Neural operator, one assumes that X = Y = Td

and the kernel is translation invariant. This implies that Kθ defined in Section 1.1 is a convolution
operator. That is,

Kθ v = kθ ⋆ v, where (kθ ⋆ v)(y) =

∫
Td

kθ(y − x) v(x) dx.

The convolution is done elementwise, (Kθv)i(y) =
∑p

j=1

(
[kθ]ij⋆vj

)
(y),where [kθ]ij : Td → R is

the scalar-valued kernel defined by the (i, j)th component of kθ and (Kθv)i is the ith component of
a Rq-valued function. Similarly, vj : Td → R is the jth component function of Rp-valued function
v. Next, using the linearity of the Fourier transform and the Convolution Theorem, we can write

(Kθv)i = F−1

F

 p∑
j=1

[kθ]ij ⋆ vj

 = F−1

 p∑
j=1

F
(
[kθ]ij

)
F(vj)

 .

where F is Fourier transform operator, and F−1 is the inverse Fourier transform. Here, F([kθ]ij) :
Zd → C and F(vj) : Zd → C are Fourier transforms of [kθ]ij and vj respectively. Note that only
discrete Fourier modes are defined because all the functions are defined on a periodic domain Td.

The key insight in FNO is that instead of parametrizing the kernel kθ, we parametrize its Fourier
transform F(kθ) directly. That is, we parametrize the kernel transform operator as (Kβv)i =

F−1
(∑p

j=1 [Λβ ]ij F(vj)
)

for some Λβ : Zd → Cq×p that maps Fourier modes to a complex-
valued matrix. Using the linearity of the inverse Fourier transform, we can write this more succinctly
in a matrix form as Kβ v = F−1

(
Λβ F(v)

)
.
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Since F−1
(
Λβ F(v)

)
is a function defined on periodic domain Td, it has a Fourier series represen-

tation. So, we can write

F−1
(
Λβ F(v)

)
(·) =

∑
m∈Zd

e2π i⟨m,·⟩ Λβ(m) (Fv)(m) =
∑
m∈Zd

φm(·) Λβ(m) (Fv)(m),

as the mth Fourier coefficient of F−1
(
Λβ F(v)

)
is Λβ(m) (Fv) (m).

We have not specified in what metric the sum on the right-hand side converges. However, the con-
vergence is not really an issue from a practical standpoint. In practice, Λβ is a trainable parameter,
and it has been observed in Li et al. (2021) that parametrizing Λβ as a function from Zd to Cq×p

yields sub-optimal results, possibly due to discrete structure of the lattice Zd. So, one picks a large
K > 0 and parametrize Λβ as a collection of matrices {Λβ(m) : m ∈ Zd such that |m|∞ ≤ K}.
In this case, the sum contains ≤ Kd terms and thus always converges. If one still wants to deal
with the infinite sum, a standard assumption would be [Λβ ]ij ∈ ℓ1(Zd) for all (i, j) pairs. That
is,
∑

m∈Zd |[Λβ(m)]ij | < ∞ for all (i, j) pairs. Then, the Weirstrass M -test implies that the sum
above converges uniformly over all y ∈ Td.

Reparametrizing Kθ as F−1
(
Λβ F(v)

)
was proposed in Li et al. (2021) from the perspective of the

convolution theorem, as discussed earlier. However, a more natural way to derive F−1
(
Λβ F(v)

)
from Kθ is to assume that kθ has a Mercer-type decomposition.
Proposition 1. Let kθ : Zd → Cq×p be a kernel with decomposition

[kθ(y, x)]ij =
∑
m∈Zd

[Λβ(m)]ij φm(y) φ−m(x) ∀(i, j) ∈ [q]× [p]

for some Λβ : Zd → Cq×p such that Λβ ∈ ℓ1(Zd). Then, Kθv = F−1
(
Λβ F(v)

)
for all v ∈ V .

Given such decomposition, a simple algebra shows that
∫
Td [kθ(y, x)]ij φk(x)dx =

[Λβ(k)]ij φk(y). In other words, [Λβ(k)]ij are the eigenvalues of the integral operator defined
by the kernel [kθ]ij . This suggests that the Fourier layer of FNOs is parametrizing the eigenvalues
of an operator while fixing the eigenfunctions to be φk’s. So, setting Λβ(m) = 0 for m ∈ Zd

>K
amounts to parametrizing the low-rank version of such operator. This viewpoint shows that FNO is
just a special case of a Low-rank Neural Operator defined in (Kovachki et al., 2023, Section 4.2).

More importantly, Proposition 1 (see Appendix B.1 for the proof) provides a natural
way to generalize Fourier Neural Operators. That is, we can consider [kθ(y, x)]ij =∑

m∈J [Λβ(m)]ij ψm(y)ϕm(x), where J is some countable index-set and {ψm}m∈J , {ϕm}m∈J
are some orthonormal sequences. Some common orthonormal sequences that allow efficient com-
putation like FFT include the Chebyshev polynomial and wavelet basis. Some works have already
explored the practical advantage of replacing Fourier basis with wavelet basis in certain problem
settings Gupta et al. (2021); Tripura & Chakraborty (2023).

4 LEARNING FOURIER LINEAR OPERATORS

In this section, we establish excess risk bounds of learning the operator class {v 7→
F−1

(
Λβ F(v)

)
: β ∈ B}, where B is some parameter space. Here, we only consider the case

where V,W ⊆ L2(Td,R). This is different from the usual setting in the literature, where V and
W are Banach spaces of vector-valued functions. First, a significant number of PDEs of practical
interest describe how scalar-valued functions evolve. Since not much is known from a theoretical
standpoint even for scalar-valued functions, we believe that this is a good start. Second, assuming
V,W to be a subset of L2 (a Hilbert space) does not result in any meaningful loss of generality from
a practical standpoint. In practice, one must discretize the domain and work with function values
over a discrete grid, which effectively requires a bounded domain. This essentially means working
with bounded functions on a bounded domain, all of which are L2 integrable.

For scalar-valued functions, Λβ is a scalar-valued function defined on modes Zd. Since the func-
tion is only defined on a countable domain, we can also represent it by a scalar-valued sequence
{Λβ(m)}m∈Zd . Henceforth, we will drop the β and just write {λm}m∈Zd , denoting λm’s to be

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

the parameters themselves. For the convenience of notation, we will also λ to denote the sequence
{λm}m∈Zd and write F−1

(
λ F(·)

)
. Fixing some C > 0, the class of interest can be written as{

v 7→ F−1
(
λ F(·)

)
: |λ|ℓ1 ≤ C

}
.

A starting point of our work is the following result on the decomposition of Fourier linear operators.
Proposition 2. If λ ∈ ℓ1(Zd), then

F−1
(
λ F(·)

)
=
∑
m∈Zd

λm φm ⊗ φ−m, (1)

where the equality holds for every u ∈ L2(Td,R).

Here, φm ⊗ φ−m is a rank-1 operator such that (φm ⊗ φ−m)(u) = ⟨φ−m, u⟩L2 φm. The equality
in equation 1 means F−1

(
λ F(u)

)
=
∑

m∈Zd λm φm ⟨φ−m, u⟩L2 for all u ∈ L2(Td,R), where
the sum converges uniformly over x ∈ Td. We provide the proof of Proposition 2 in Appendix B.2.

Given Proposition 2, we can write our class as
{∑

m∈Zd λm φm ⊗ φ−m : |λ|ℓ1 ≤ C
}

. This repre-
sentation is preferable for the following reasons. First, it highlights the fact that the Fourier basis is
just one of the design choices for singular vectors that may be replaced with any other orthonormal
sequences. Second, this representation also allows us to drop the constraint that λ ∈ ℓ1, which is a
rather artificial constraint required only to ensure that the operator F−1

(
λ F(·)

)
is a well-defined

object. However,
∑

m∈Zd λm φm ⊗ φ−m is still well-defined even when λ ∈ ℓ∞ (in fact, it is a
bounded operator). Therefore, for some fixed C > 0, we will instead study the class of operators

T :=

∑
m∈Zd

λm φm ⊗ φ−m

∣∣∣ |λ|ℓ∞ ≤ C

 .

Since the class
{
v 7→ F−1

(
λ F(·)

)
: |λ|ℓ1 ≤ C

}
is contained in the class T , any guarantee (in

terms of upper bound) for T also holds for the ℓ1 constrained class.

Remark. The class T should remind readers of de Hoop et al. (2023), who also consider the
problem of singular value inference of an operator under fixed singular vectors. However, their
setting differs from ours in two significant ways. First, they only consider the well-specified setting
with an additive noise model, whereas we adopt a fully agnostic viewpoint. Second, they do not
account for possible discretization errors, assuming that their input and output functions are fully
available to the learner.

4.1 PROBLEM SETTING AND ERROR TYPES

We adopt the framework of statistical learning and study the rates of error in learning the class T .
In statistical learning, the learner is provided with n ∈ N i.i.d samples Sn = {(vi, wi)}ni=1 from
some unknown distribution µ on V ×W . We adopt a fully agnostic viewpoint and do not make any
assumptions about the data-generating process. Next, using the sample Sn and some prespecified
learning rule, the learner then finds an estimator T̂ ∈ T . We will abuse notation and denote T̂ to be
both the learning rule and the estimator output by the learner. For an estimator T̂ , we can define its
expected excess risk as

En(T̂ , T , µ) := E
Sn∼µn

[
E

(v,w)∼µ

[
∥T̂ v − w∥2L2

]
− inf

T∈T
E

(v,w)∼µ

[
∥Tv − w∥2L2

]]
.

Formally, the goal of the learner is to output the estimator such that En(T̂ , T , µ) → 0 as n → ∞.
In traditional settings, the excess risk En(T̂ , T , µ) is usually referred to as the statistical error of
the learner. This error arises because the learner is trying to find the optimal operator in T for
distribution µ while only having access to finitely many samples from the distribution. However,
unlike traditional statistical learning settings, in operator learning, there are two additional errors
beyond the statistical error: (I) Discretization Error and (II) Truncation Error.

7
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The discretization error arises because the learner only has access to (vi, wi) ∼ µ over some discrete
grid of domain points. In this work, we assume that each vi and wi are available on a uniform grid

G :=
{
m/N : m ∈ {0, . . . , N − 1}d

}
of [0, 1]d for some prespecified N ∈ N. That is, the learner only has access to {vi(x) : x ∈ G} and
{wi(x) : x ∈ G}. Although other grids are also used in practice, the use of FNO requires uniform
griding. This is because the main benefit of FNO is its computationally efficient approximation of
Fourier transform through fast Fourier transform (FFT) algorithms, which requires uniform grids.

To see where the truncation error comes from, note that the representation of any estimator T ∈
T requires specifying an infinite sequence {λm}m∈Zd . However, the infinite sequence cannot be
implemented in a computer. Thus, for a practical implementation (Li et al., 2021), one picks a large
K ∈ N and specifies the finite rank operator

TK =
∑

m∈Zd : |m|∞≤K

λm φm ⊗ φ−m =:
∑

m∈Zd
≤K

λm φm ⊗ φ−m.

While the truncation error is specific to our class of interest T , a similar “truncation” error occurs
in any model class. Such error arises because operator learning is inherently an infinite-dimensional
problem, yet any computation we perform is limited to some finite-dimensional subspace.

4.1.1 FURTHER CONNECTION AND COMPARISON TO FDA.

The operator TK is related to the functional PCA-based estimator commonly used in the FDA litera-
ture. Given n i.i.d. pairs of functions {(vi, wi)}i≤n, computing the least-squares estimator involves
solving the equation

∑n
i=1 wi ⊗ vi = L ◦ (

∑n
i=1 vi ⊗ vi). This equation is not fully specified when

vi, wi belong to infinite-dimensional spaces. To address this, various techniques can be used to
compute the pseudo-inverse (

∑n
i=1 vi ⊗ vi)

†, resulting in a large family of estimators. One popular
technique for computing this pseudo-inverse involves fixing an orthonormal basis {ψt}t∈N of the
space of vi’s. Assuming an eigendecomposition of the form

∑n
i=1 vi ⊗ vi =

∑
t≥1 ηt ψt ⊗ ψt, the

pseudo-inverse can be written as (
∑n

i=1 vi ⊗ vi)
†
=
∑

t≥1 1[ηt > 0] η−1
t ψt ⊗ ψt. This yields the

estimator L̂ such that L̂v =
(∑

t≥1 1[ηt > 0] η−1
t ψt ⊗ ψt

)∑n
i=1 wi ⟨vi, v⟩. For practical imple-

mentation, one often truncates the sum over t at some value τ ∈ N.

Hörmann & Kidziński (2015) proposed a similar estimator and established its consistency under an
additive noise model. Both the ψt’s and the truncation parameter must be learned from the observed
data to obtain the guarantees established in Hörmann & Kidziński (2015), which is typically a major
computational bottleneck. In contrast, we consider the agnostic setting and the parameter K only
needs to depend on the sample size n to achieve

√
n-risk consistency. Finally, they assume that the

learner has access to vi and wi in their exact form, which is unrealistic for operator learning. Similar
principal component-based estimators have also been studied in Yao et al. (2005) and Reimherr
(2015), but both assume a well-specified additive noise model and access to exact functions. Overall,
our work differs from FDA results in two main aspects. First, unlike most of the FDA literature, we
consider the agnostic (misspecified) setting. Second, in addition to quantifying statistical error, we
are equally interested in quantifying the discretization error of the estimator.

4.2 A CONSTRAINED LEAST-SQUARES ESTIMATOR

In this section, we specify our primary estimator of interest. Let T =
∑

m∈Zd λm φm ⊗ φ−m. For
any v ∈ V , we have Tv =

∑
m∈Zd λm ⟨φ−m, v⟩ φm. As we only require ℓ∞ norm of λ to be

bounded by C, we only get the convergence of the sum
∑

m∈Zd λm ⟨φ−m, v⟩ φm in L2 norm rather
than uniform. Since {φm}m∈Zd is an orthonormal basis of L2(Td,R), Parseval’s identity implies

∥Tv − w∥2L2 =
∑
m∈Zd

| ⟨Tv − w,φm⟩L2 |2 =
∑
m∈Zd

|λm ⟨φ−m, v⟩L2 − ⟨φ−m, w⟩L2 |2. (2)

To see why the last equality is true, note that ⟨Tv, φm⟩ = λm ⟨φ−m, v⟩ and

⟨w,φm⟩L2 :=

∫
Td

w(x)φm(x) dx =

∫
Td

φ−m(x)w(x)dx =

∫
Td

φ−m(x)w(x)dx = ⟨φ−m, w⟩L2 .

8
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Here, we use the fact that w is a real-valued function. Thus, given {(v1, wi)}ni=1, the least-squares
estimator over the class T is an operator T specified by the sequence {λm}m∈Zd , which is obtained
by solving the optimization problem

min
{λm :m∈Zd}

1

n

n∑
i=1

∑
m∈Zd

|λm ⟨φ−m, vi⟩L2 − ⟨φ−m, wi⟩L2 |2 subject to sup
m∈Zd

|λm| ≤ C.

However, this estimator cannot be implemented for two reasons. First, there is an infinite sum
over Zd. Second the learner only has access to (vi, wi) through vNi := {vi(x) : x ∈ G} and
wN

i := {wi(x) : x ∈ G}, and thus the L2 inner products cannot be computed exactly. Both
of these issues can be resolved by considering the operator specified by the finite length sequence
λ̂(N) = {λ̂m : m ∈ Zd

≤K} obtained by solving the optimization problem

min
{λm :m∈Zd

≤K
}

1

n

n∑
i=1

∑
m∈Zd

≤K

∣∣λm DFT(vNi )(−m)−DFT(wN
i )(−m)

∣∣2 subject to sup
m∈Zd

≤K

|λm| ≤ C.

DFT, which stands for Discrete Fourier Transform, is the numerical approximation of ⟨φ−m, u⟩L2

and is defined formally as

DFT(vNi )(−m) :=
1

Nd

∑
x∈G

vi(x) e
−2π i⟨x,m⟩ and DFT(wN

i )(−m) :=
1

Nd

∑
x∈G

wi(x) e
−2π i⟨x,m⟩.

To indicate the dependence of both truncation value K and grid-size Nd, let us denote the estimator
obtained by solving this problem to be T̂N

K where

T̂N
K :=

∑
m∈Zd

≤K

λ̂m(N) φm ⊗ φ−m. (3)

The estimator T̂N
K is the closest implementable version of the least-squares estimator for our setting.

4.3 ERROR BOUNDS

In this section, we study how En(T̂N
K , T , µ) decay as a function of n,K and N . Note that we have

only specified that V and W are subsets of L2(Td,R), but have not specified their precise form. A
natural choice would be V = W = {u ∈ L2(Td,R) : ∥u∥L2 ≤ 1}, the unit ball of L2(Td,R).
However, it turns out that En(T̂N

K , T , µ) does not vanish under such V and W .

To see this, let K ∈ N be a truncation parameter chosen by the learner. Define µ =
Uniform({(ψm, ψm) : 2K < |m|∞ < 2K+1}) that is only supported on large modes. Here,
ψm = 2−1/2(φm + φ−m) is the symmetrized, real-valued version of m-th Fourier mode. Note that
we can choose a distribution as a function of K because the truncation parameter K can depend on
the sample size n, but not on the exact realization of the samples.

For any sample size n and the estimator T̂N
K produced by the learner, T̂N

K v = 0 almost surely for

(v, w) ∼ µ. Thus, we have E(v,w)∼µ

[
∥T̂N

K v − w∥2L2

]
= E(v,w)∼µ

[
∥w∥2L2

]
= 1, as w = ψm for

some 2K < |m|∞ < 2K+1 almost surely and ∥ψm∥L2 = 1 for any m ∈ Zd
>0.

Next, let C = 1 and define T ⋆ =
∑

m∈Zd φm ⊗ φ−m. It is easy to see that T ⋆ψk =

2−
1
2 (T ⋆ φk + T ⋆ φ−k) = 2−

1
2 (φ−k + φk) = ψk ∀k ∈ Zd\{0}. As T ⋆ ∈ T , we obtain

infT∈T E(v,w)∼µ

[
∥Tv − w∥2L2

]
≤ E(v,w)∼µ

[
∥T ⋆v − w∥2L2

]
= 0. Thus, we have established

En(T̂N
K , T , µ) = E

(v,w)∼µ

[
∥T̂N

K v − w∥2L2

]
− inf

T∈T
E

(v,w)∼µ

[
∥Tv − w∥2L2

]
≥ 1.

This shows that merely bounding the L2 norm of v, w is not sufficient to achieve a vanishing error.
So, we need a stronger assumption on the input and output functions.
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The inductive bias in FNOs is that the functions are sufficiently smooth so that the higher Fourier
modes can be safely ignored. We will also adopt this viewpoint and assume that V and W are
smooth subsets of L2(Td,R). In particular, we will assume that V = W = Hs(Td,R), a (s, 2)-
Sobolev space (see Section 2.3). For any u ∈ Hs(Td,R), we are guaranteed that ⟨φ−m, u⟩L2 → 0
sufficiently fast as |m|∞ → ∞. This allows us to ignore higher Fourier modes while only incurring
small error. The following Theorem, whose proof is deferred to Apendix D, makes these arguments
precise and provides an upper bound on the excess risk of T̂N

K in terms of n,N, and K.

Theorem 1 (Upper Bound). Let V = W = Hs(Td,R) for s > d/2 and µ be any distribution on
V × W for which ∃B > 0 such that ∥v∥Hs ≤ B and ∥w∥Hs ≤ B almost surely. Then, for n
iid samples {(vi, wi)}ni=1 ∼ µn accessible to the learner over the N -uniform grid of [0, 1]d, the
estimator T̂N

K defined in equation 3 for N > max{5, 2K} satisfies

En(T̂N
K , T , µ) ≤ 8B2(C + 1)2

(
1√
n
+

2s
√
πd

Ns
+

1

K2s

)
.

The terms O(1/
√
n), O(1/Ns), and O(1/K2s) are the estimator’s statistical, discretization, and

truncation errors respectively. For most practical applications of interest, we have d = 3 (functions
defined on spatial coordinates). Since

√
πd ≤ 6 in these cases, the exponential dependence of the

discretization error on d is not an issue. Finally, choosing N ≥ n
1
2s and K ≥ n

1
4s , Theorem 1

guarantees the
√
n– risk consistency of the estimator T̂N

K . Our next result, proved in Appendix E,
provides a lower bound on the rates at which En(T̂N

K , T , µ) decay.

Theorem 2 (Lower Bound). Let V = W = Hs(Td,R) for s > d/2 andC = 1. Given n,N,K ∈ N,
there exists a distribution on µ on V ×W for which ∃B > 0 such that ∥v∥Hs ≤ B and ∥w∥Hs ≤ B
almost surely and for n iid samples {(vi, wi)}ni=1 ∼ µn accessible over the N -uniform grid of
[0, 1]d, the estimator T̂N

K defined in equation 3 for Ns ≥
√
2B satisfies

En(T̂N
K , T , µ) ≥

B2

3(s+ 1)

(
1

8n
+

1

N2s
+

2

(K + 2)2s

)
.

Although the lower bound on truncation error matches with the upper bound, there is a gap in the
statistical and discretization error. We leave closing this gap for future work.

5 DISCUSSION AND FUTURE WORK

In this work, we established the excess risk error bounds of learning the core linear layer v 7→
F−1

(
Λβ F(v)

)
of Fourier neural operators. A natural future direction is to extend these results

to single layer Fourier neural operator, v 7→ σ
(
F−1

(
Λβ F(v)

)
+ b
)

and then to multiple layers.
Although simple metric entropy-based analysis gives a bound on statistical error even for single layer
neural operator, such a bound is vacuous when K → ∞. It would be interesting to see if we can get
a meaningful statistical rate even at the limit of K → ∞. One can view K as an analog of the width
of traditional neural networks. Thus, analysis of v 7→ σ

(
F−1

(
Λβ F(v)

)
+ b
)

as K → ∞ can
lead to an analog of infinite width and neural tangent kernel theory (Jacot et al., 2018) for operator
learning. These insights will help us better understand width vs depth tradeoffs in operator learning.

For discretization error, we consider the setup where the training data is available on a grid of size
Nd but the trained operator is evaluated at full resolution (N → ∞). It would be interesting to study
the discretization error when the training data is available at resolutionN1, but the trained operator is
evaluated at resolutionN2. Such a theory would formalize the multi-resolution generalization (oper-
ators trained at lower resolution have good generalization even when evaluated in higher resolution)
observed in practice (see (Li et al., 2021, Section 5)).

Finally, with PDEs as an application, it is unclear if the iid-based statistical model is the right
framework for operator learning. For instance, Boullé et al. (2023) show that an active learning
approach for data collection and training for solution operators of elliptic PDEs yields exponential
error decay with increasing sample size. Therefore, an important future direction is to define the
appropriate active learning model and develop active algorithms for operator learning.
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A APPENDIX

B PROOFS OF OPERATOR THEORETIC PROPERTIES

B.1 PROOF OF PROPOSITION 1

Proof. Let λij(m) := [Λβ(m)]ij and assume that

[kθ(y, x)]ij =
∑
m∈Zd

λij(m) φm(y) φ−m(x).

Using this decomposition, we obtain

(Kθv)i(y) =

∫
Td

p∑
j=1

[kθ(y, x)]ij vj(x) dx

=

∫
Td

p∑
j=1

∑
m∈Zd

λij(m) φm(y) φ−m(x) vj(x) dx

=
∑
m∈Zd

φm(y)

p∑
j=1

λij(m)

∫
Td

φ−m(x) vj(x) dx.

Note that swapping the integral and the summation is justified through Fubini’s because the sum
over Zd converges absolutely (as Λβ ∈ ℓ1) and Td is a bounded set. Since∫

Td

φ−m(x) vj(x) dx =

∫
Td

e−2π i⟨m,x⟩vj(x) dx = F(vj)(m),

we can write

(Kθv)i(y) =
∑
m∈Zd

φm(y)

p∑
j=1

λij(m) F(vj)(m).

Next, consider the function w := F−1
(∑p

j=1 λij F(vj)
)

. Our proof will be complete upon show-

ing that w(y) = (Kθv)i(y) for every y ∈ Td. Since the function w : Td → C is defined on a
periodic domain, it has a Fourier series representation. That is,

w(y) =
∑
m∈Zd

e2π i⟨m,y⟩ F(w)(m) =
∑
m∈Zd

e2π i⟨m,y⟩
p∑

j=1

λij(m)F(vj)(m),

where the final equality follows because F
(
F−1

(∑p
j=1 λij F(vj)

))
(m) =∑p

j=1 λij(m)F(vj)(m). As usual, Λβ ∈ ℓ1 implies that the sum above converges uni-
formly over y ∈ Td. Recalling that φm(y) = e2π i⟨m,y⟩, we have shown that (Kθv)i(y) = w(y) for
all y ∈ Td. This subsequently implies that

(Kθv)i = w = F−1

 p∑
j=1

λij F(vj)

 .

Finally, using the linearity of the inverse Fourier transform and writing this in the matrix form
establishes that Kθv = F−1(Λβ F(v)) for any v ∈ V .

B.2 PROOF OF PROPOSITION 2

Proof. Fix v ∈ V and define w := F−1
(
λ F(v)

)
. By definition of the operator F−1

(
λ F(·)

)
, we

have
w = F−1 (λF(v) ) .

12
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Using the Fourier series representation of w, we have

w(·) =
∑
m∈Zd

e2π i⟨m,·⟩ (Fw)(m) =
∑
m∈Zd

e2π i⟨m,·⟩ λm F(v)(m).

This step is rigorously justified because λ ∈ ℓ1. Noting that

(Fv)(m) =

∫
Td

e−2π i⟨m,x⟩ v(x) dx = ⟨φ−m, v⟩L2 ,

we can write
w(·) =

∑
m∈Zd

e2π i⟨m,·⟩ λm ⟨φ−m, v⟩L2 .

Thus, w =
∑

m∈Zd λm ⟨φ−m, v⟩L2 φm, where the convergence is uniform over Td. This implies
that

F−1 (λF(v) ) =
∑
m∈Zd

λm ⟨φ−m, v⟩L2 φm.

Since this equality holds for every v ∈ V , we have

F−1 (λF(·) ) =
∑
m∈Zd

λm φm ⊗ φ−m.

C TECHNICAL LEMMAS

In this section, we state and derive some technical Lemmas that we use to prove Theorems 1 and 2.
Lemma 1. For any u ∈ Hs(Td,R) , we have

| ⟨φ−m, u⟩L2 | ≤
∥u∥Hs

(2π)s |m|s∞
∀m ∈ Zd\{0}.

Proof. Fix m ∈ Zd\{0} and let |mj | = |m|∞ = max1≤i≤d |mi|. Clearly, mj ̸= 0. Integrating by
parts s times with respect to variable xj in x = (x1, . . . , xd), we obtain

⟨φ−m, u⟩ =
∫
Td

u(x)e−2π i⟨m,x⟩ dx = (−1)s
∫
Td

(∂sju)(x)
e−2π i⟨m,x⟩

(−2π i mj)s
dx =

(
1

2π imj

)s 〈
φ−m, ∂

s
j u
〉
.

Here, all boundary terms vanish because Td does not have a boundary ((Grafakos et al., 2008, Proof
of Theorem 3.3.9)). Taking absolute value on both sides, we obtain that

|mj |s | ⟨φ−m, u⟩ | = (2π)−s |
〈
φ−m, ∂

s
ju
〉
|

Finally, using the fact that
∣∣〈φ−m, ∂

s
ju
〉∣∣ ≤ ∥u∥Hs completes our proof.

Lemma 2. For any u ∈ Hs(Td,R), we have∑
m∈Zd

(1 + |m|2s∞) | ⟨φ−m, u⟩ |2 ≤ ∥u∥2Hs .

Proof. Fix m ∈ Zd\{0} and let |mj | = |m|∞ = max1≤i≤d |mi|. Clearly, mj ̸= 0. Integrating by
parts s times with respect to variable xj in x = (x1, . . . , xd), we obtain

⟨φ−m, u⟩ =
∫
Td

u(x)e−2π i⟨m,x⟩ dx = (−1)s
∫
Td

(∂sju)(x)
e−2π i⟨m,x⟩

(−2π i mj)s
dx =

(
1

2π imj

)s 〈
φ−m, ∂

s
j u
〉
.

Here, all boundary terms vanish because Td does not have a boundary ((Grafakos et al., 2008, Proof
of Theorem 3.3.9)). Taking absolute value on both sides, we obtain that

|mj |s | ⟨φ−m, u⟩ | = (2π)−s |
〈
φ−m, ∂

s
ju
〉
|
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Noting that |mj | = |m|∞, squaring and summing over all m ∈ Zd\{0} to get∑
m∈Zd\{0}

|m|2s∞ | ⟨φ−m, u⟩ |2 = (2π)−2s
∑

m∈Zd\{0}

|
〈
φ−m, ∂

s
ju
〉
|2 ≤ (2π)−2s

∥∥∂sju∥∥2L2 ,

where the final inequality uses Parseval’s identity and the fact that ∂sju ∈ L2(Td,R). Thus, we
obtain ∑

m∈Zd

(1 + |m|2s∞) | ⟨φ−m, u⟩ |2 =
∑
m∈Zd

| ⟨φ−m, u⟩ |2 +
∑

m∈Zd\{0}

|m|2s∞ | ⟨φ−m, u⟩ |2

≤ ∥u∥2L2 + (2π)−2s
∥∥∂sju∥∥2L2

≤ ∥u∥2L2 +
∥∥∂sju∥∥2L2

≤ ∥u∥2Hs ,

completing our proof.

Lemma 3. For any u ∈ Hs(Td,R) such that s ≥ 0 and K ∈ Z>0, we have∑
m∈Zd

>K

| ⟨φ−m, u⟩ |2 ≤
∥u∥2Hs

K2s

Proof. Observe that∑
m∈Zd

>K

| ⟨φ−m, u⟩ |2 =
∑

m∈Zd
>K

(1 + |m|2s∞) | ⟨φ−m, u⟩ |2
1

(1 + |m|2s∞)

≤ 1

1 +K2s

∑
m∈Zd

>K

(1 + |m|2s∞) | ⟨φ−m, u⟩ |2

≤
∥u∥2Hs

K2s
,

using Lemma 2.

Lemma 4. For any u ∈ Hs(Td,R) such that s > d/2, we have

∑
m∈Zd

>K

| ⟨φ−m, u⟩ | ≤ ∥u∥Hs

√
3d

2s− d

1√
K2s−d

, .

Proof. First, we use Cauchy-Schwarz to get∑
m∈Zd

>K

| ⟨φ−m, u⟩ | =
√ ∑

m∈Zd
>K

(1 + |m|2s∞)| ⟨φ−m, u⟩ |2
√√√√ ∑

m∈Zd
>K

1

(1 + |m|2s∞)

Lemma 3 implies that the first term is ≤ ∥u∥Hs . To bound the second term, note that for any j ∈ N,
we have |{m ∈ Zd : |m|∞ = j}| = 2(2j + 1)d−1. This is because one of the entry of m has to be
±j and other d− 1 entries could be anything in {−j . . . ,−1, 0, 1, . . . , j}. So,∑
m∈Zd

>K

1

(1 + |m|2s∞)
=
∑
j>K

2 (2j + 1)d−1

(1 + j2s)
≤ 3d

∑
j>K

1

j2s−d+1
≤ 3d

∫ ∞

K

t−2s+d−1 dt =
3d

2s− d

1

K2s−d
,

for all s > d/2. Thus, overall, we obtain

∑
m∈Zd

>K

| ⟨φ−m, u⟩ | ≤ ∥u∥Hs

√
3d

2s− d

1√
K2s−d

,

completing our proof.
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Lemma 5. Let G :=
{
j/N : j ∈ {0, . . . , N − 1}d

}
be the N -uniform grid of [0, 1]d. Then, for any

m ∈ Zd
<N , we have

1

Nd

∑
x∈G

e2π i⟨k−m,x⟩ = 1[k ≡ m (mod N)].

Here, we say k ≡ m(mod N) if ∃ℓ ∈ Zd such that k = Nℓ+m.

Proof. We first prove it for d = 1. For this case, we need to show that

1

N

N−1∑
j=0

e2π i(k−m) j
N = 1[k ≡ m(mod N)].

First, consider the case where k = τN +m for some τ ∈ Z. Then, e2π i(k−m) j
N = e2π i τ j = 1 by

Euler’s identity. Thus, the overall sum must be 1. Next, assume that k ̸≡ m (mod N). Then, the
geometric series formula implies that

1

N

N−1∑
j=0

e2π i(k−m) j
N =

1

N

1− e2π i(k−m)j

1− e2π i(k−m) j
N

= 0.

Here, the final equality holds because e2π i(k−m)j = 1 by Euler’s identity, whereas e2π i(k−m) j
N ̸= 1

for every j ∈ {0, 1 . . . , N − 1}. This completes our proof for the case d = 1.

Next, to prove it for general d, we write the sum as d-fold summation

1

Nd

∑
x∈G

e2π i⟨k−m,x⟩ =
1

Nd

N−1∑
j1=0

. . .

N−1∑
jd=0

e2π i(k1−m1)
j1
N . . . e2π i(kd−md)

jd
N =

d∏
t=1

1

N

N−1∑
jt=0

e2π i(kt−mt)
jt
N .

Using the result of d = 1 case for each term in the product, we have

1

Nd

∑
x∈G

e2π i⟨k−m,x⟩ =

d∏
t=1

1[kt ≡ mt (mod N )] = 1[k ≡ m (modN)].

Lemma 6. Let u ∈ Hs(Td,R) such that ∥u∥Hs ≤ B and uN := {u(x) : x ∈ G} be its values on
the uniform grid G. Then, for all |m|∞ < N , we have

|DFT(uN )(−m)− ⟨φ−m, u⟩ | ≤

∣∣∣∣∣∣
∑

ℓ∈Zd\{0}

〈
φ−(ℓN+m), u

〉∣∣∣∣∣∣ .
Proof. Recall that

DFT(uN )(−m) =
1

Nd

∑
x∈G

u(x) e−2π i⟨m,x⟩.

Pick some M > N and write

u(x) =
∑

k∈Zd
≤M

⟨φ−k, u⟩ e2π i⟨k,x⟩ +

u(x)− ∑
k∈Zd

≤M

⟨φ−k, u⟩ e2π i⟨k,x⟩

 .
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We can then write
DFT(uN )(−m)

=
1

Nd

∑
x∈G

 ∑
k∈Zd

≤M

⟨φ−k, u⟩ e2π i⟨k,x⟩ +

u(x)− ∑
k∈Zd

≤M

⟨φ−k, u⟩ e2π i⟨k,x⟩


 e−2π i⟨m,x⟩

=
∑

k∈Zd
≤M

⟨φ−k, u⟩

(
1

Nd

∑
x∈G

e2π i⟨k−m,x⟩

)
+

1

Nd

∑
x∈G

u(x)− ∑
k∈Zd

≤M

⟨φ−k, u⟩ e2π i⟨k,x⟩

 e−2π i⟨m,x⟩

=
∑

k∈Zd
≤M

⟨φ−k, u⟩ 1[k ≡ m(mod N)] +
1

Nd

∑
x∈G

u(x)− ∑
k∈Zd

≤M

⟨φ−k, u⟩ e2π i⟨k,x⟩

 e−2π i⟨m,x⟩,

where the final equality follows from Lemma 5 as |m|∞ < N . Note that we can swap sums over G
and Zd in the first term because the sums converge absolutely when s > d/2 (see Lemma 4). Thus,
we obtain

|DFT(uN )(−m)− ⟨φ−m, u⟩ | ≤

∣∣∣∣∣ ∑
k∈Zd

≤M

⟨φ−k, u⟩1[k ≡ m(mod N)]− ⟨φ−m, u⟩

∣∣∣∣∣
+

∣∣∣∣∣∣∣
1

Nd

∑
x∈G

u(x)− ∑
k∈Zd

≤M

⟨φ−k, u⟩ e2π i⟨k,x⟩

 e−2π i⟨m,x⟩

∣∣∣∣∣∣∣
Using the uniform bound over x ∈ G for the second term and the following identity for the first term∑

k∈Zd
≤M

⟨φ−k, u⟩ 1[k ≡ m(mod N)]− ⟨φ−m, u⟩ =
∑

k∈Zd
≤M

\{m}

⟨φ−k, u⟩ 1[k ≡ m(mod N)],

we obtain
|DFT(uN )(−m)− ⟨φ−m, u⟩ |

≤

∣∣∣∣∣∣∣
∑

k∈Zd
≤M

\{m}

⟨φ−k, u⟩ 1[k ≡ m(mod N)]

∣∣∣∣∣∣∣+ sup
x∈G

∣∣∣∣∣∣∣u(x)−
∑

k∈Zd
≤M

⟨φ−k, u⟩ e2π i⟨k,x⟩

∣∣∣∣∣∣∣
Recall that we have (i) | ⟨φ−k, u⟩ e2π i⟨k,x⟩| ≤ B and

∑
k∈Zd

∣∣⟨φ−k, u⟩ e2π i⟨k,x⟩
∣∣ <∞ for s > d/2

using Lemma 4. The Weierstrass M-test implies that the second term converges to 0 uniformly over
x ∈ Td as M → ∞. Thus, we obtain∑

k∈Zd
≤M

\{m}

⟨φ−k, u⟩ 1[k ≡ m(mod N)] −−−−→
M→∞

∑
k∈Zd\{m}

⟨φ−k, u⟩ 1[k ≡ m(mod N)]

=
∑

ℓ∈Zd\{0}

〈
φ−(ℓN+m), u

〉
,

which completes our proof.

Lemma 7. For any s ∈ N such that s > d/2, we have∑
k∈Zd\{0}

1

|k|2s∞
≤ π2 3d−2.

Proof. Recall that |{m ∈ Zd : |m|∞ = j}| = 2(2j + 1)d−1. This is because one of the entry of m
has to be ±j and other d− 1 entries could be anything in {−j . . . ,−1, 0, 1, . . . , j}. Thus,∑
ℓ∈Zd\{0}

1

|ℓ|2s∞
≤

∞∑
j=1

2(2j + 1)d−1

j2s
≤ 2·3d−1

∞∑
j=1

1

j2s−d+1
≤ 2·3d−1

∞∑
j=1

1

j2
=

2 · 3d−1π2

6
= π2 3d−2.

The third inequality uses 2s− d ≤ 1 as s > d/2 and s ∈ N.
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D PROOF OF UPPER BOUND (THEOREM 1)

Before we prove Theorem 1, we need some notation. For any T ∈ T such that T =∑
m∈Zd λm φm ⊗ φ−m, we define

r(T ) := E
(v,w)∼µ

[
∥Tv − w∥2L2

]
= E

(v,w)∼µ

 ∑
m∈Zd

|λm ⟨φ−m, v⟩ − ⟨φ−m, w⟩|2


r̂(T ) :=
1

n

n∑
i=1

∥Tvi − wi∥2L2 =
1

n

n∑
i=1

∑
m∈Zd

|λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩|2

where {(vi, wi)}ni=1 is the sample accessible to the learner on a uniform grid of [0, 1]d. Then, using
these definitions, we can write

En(T̂N
K , T , µ) = E

[
r(T̂N

K )− inf
T∈T

r(T )

]
= E

[
r(T̂N

K )− inf
T∈TK

r(T )

]
+ inf

T∈TK

r(T )− inf
T∈T

r(T ),

where TK is the truncated class defined as

TK :=


∑

m∈Zd
≤K

λm φm ⊗ φ−m

∣∣∣ sup
m∈Zd

≤K

|λm| ≤ C

 .

Furthermore, defining

T̂K ∈ argmin
T∈TK

r̂(T ),

we can decompose

En(T̂N
K , T , µ) = E

[
r(T̂N

K )− r(T̂K)
]

︸ ︷︷ ︸
(I)

+E
[
r(T̂K)− inf

T∈TK

r(T )

]
︸ ︷︷ ︸

(II)

+ inf
T∈TK

r(T )− inf
T∈T

r(T )︸ ︷︷ ︸
(III)

.

First, it is easy to see that
(III) ≤ sup

T∈T
inf

TK∈TK

|r(T )− r(TK)|.

To upper bound (II), let T ⋆
K ∈ TK such that r(T ⋆

K) = infT∈TK
r(T ). Formally, for every ε > 0, we

may only be guaranteed the existence of T ⋆
K such that r(T ⋆

K) ≤ infT∈TK
r(T ) + ε. However, as ε

can be made arbitrarily small, we can just choose it to be smaller than any error bound we obtain at
the end. So, the arguments below are rigorously justified.

Given such T ⋆
K , we can write

(II) = E[r(T̂K)− r(T ⋆
K)] = E[r(T̂K)− r̂(T̂K)] + E[r̂(T̂K)− r̂(T ⋆

K)] + E[r̂(T ⋆
K)− r(T ⋆

K)].

The last term of the sum vanishes because E[r̂(T ⋆
K)] = r(T ⋆

K). As for the second term, T̂K min-
imizes empirical loss over the samples, implying r̂(T̂K) ≤ r̂(T ⋆

K). For the first term, we use the
trivial bound r(T̂K)− r̂(T̂K) ≤ supT∈TK

|r(T )− r̂(T )|. Overall, we obtain

(II) ≤ E
[
sup

T∈TK

|r(T )− r̂(T )|
]
.
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Finally, we upper bound the term (I). Given K and N , for any T ∈ TK such that T =∑
m∈Zd

≤K
λm φm ⊗ φ−m, define

r̂N (T ) :=
1

n

n∑
i=1

∑
m∈Zd

≤K

∣∣λm DFT(vNi )(−m)−DFT(wN
i )(−m)

∣∣2+1

n

n∑
i=1

∑
m∈Zd

>K

| ⟨φ−m, wi⟩ |2.

Technically, the term r̂N (T ) also depends on K, but we drop K to avoid cluttered notation. Here,
the first term above is the empirical DFT-based least squares loss of T define in 4.2. The second term
is introduced purely for technical reasons to make our calculations work (see Section D.2). Since
the second term does not depend on T , our estimator T̂N

K is still the operator obtained by minimizing
r̂N . Then, note that

(I) = E[r(T̂N
K )− r̂N (T̂N

K )] + E[r̂N (T̂N
K )− r̂N (T̂K)] + E[r̂N (T̂K)− r(T̂K)]

Note that the second term above satisfies r̂N (T̂N
K )− r̂N (T̂K) ≤ 0 almost surely because T̂N

K mini-
mizes r̂N (T ) over all T ∈ TK . For the first and the third term, we use the bound

E[r(T̂N
K )−r̂N (T̂N

K )] ≤ E[ sup
T∈TK

|r(T )−r̂N (T )|] and E[r̂N (T̂K)−r(T̂K)] ≤ E[ sup
T∈TK

|r(T )−r̂N (T )|].

Thus, we have

(I) ≤ 2E
[
sup

T∈TK

|r(T )− r̂N (T )|
]
≤ 2E

[
sup

T∈TK

|r(T )− r̂(T )|
]
+ 2E

[
sup

T∈TK

|r̂(T )− r̂N (T )|
]
,

where the final step uses the triangle inequality. Combining everything, we have established that

En(T̂N
K , T , µ) ≤ 3E

[
sup

T∈TK

|r(T )−r̂(T )|
]
+2E

[
sup

T∈TK

|r̂(T )−r̂N (T )|
]
+ sup

T∈T
inf

TK∈TK

|r(T )−r(TK)|.

The first term is the statistical error, the second is the discretization error, and the final is the trunca-
tion error. Next, we bound each of these terms individually.

D.1 UPPER BOUND ON THE TRUNCATION ERROR supT∈T infTK∈TK
|r(T )− r(TK)|

Pick any T ∈ T . Then, there exists a sequence {λm}m∈Zd such that T =
∑

m∈Zd λm φm ⊗ φ−m.
Define

TK :=
∑

m∈Zd
≤K

λm φm ⊗ φ−m.

Clearly, TK ∈ TK . Then, we have

r(T )− r(TK) = E
(v,w)∼µ

[∥Tv − w∥2L2 − ∥TKv − w∥2L2 ]

= E
(v,w)∼µ

[∥Tv∥2L2 − ∥TKv∥2L2 + 2 ⟨(TK − T )v, w⟩]

≤ E
(v,w)∼µ

 ∑
m∈Zd

>K

|λm|2| ⟨φ−m, v⟩ |2 + 2
∑

m∈Zd
>K

∣∣∣λm ⟨φ−m, v⟩ ⟨φm, w⟩
∣∣∣


The final equality uses the following facts. First, we have ∥Tv∥2L2 =∥∥∑
m∈Zd λm ⟨φ−m, v⟩φm

∥∥2
L2 =

∑
m∈Zd |λm|2| ⟨φ−m, v⟩ |2. Analogously, ∥TKv∥2L2 =∑

m∈Zd
≤K

|λm|2| ⟨φ−m, v⟩ |2. As for the second term, we use

⟨(TK − T )v, w⟩ =

〈 ∑
m∈Zd

>K

λm ⟨φ−m, v⟩φm, w

〉
=

∑
m∈Zd

>K

λm ⟨φ−m, v⟩ ⟨φm, w⟩ .

Next, using the fact that |λm| ≤ C followed by Lemma 3, the first term is∑
m∈Zd

>K

|λm|2| ⟨φ−m, v⟩ |2 ≤ B2C2

K2s
.
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As for the second term, using |λm| ≤ C followed by Cauchy-Schwarz implies

2
∑

m∈Zd
>K

|λm ⟨φ−m, v⟩ ⟨φm, w⟩ | ≤ 2C
√ ∑

m∈Zd
>K

| ⟨φ−m, v⟩ |2
√ ∑

m∈Zd
>K

| ⟨φm, w⟩ |2 ≤ 2CB2

K2s
,

where the final inequality holds because of Lemma 3. Since T ∈ T is arbitrary, we have shown that

sup
T∈T

inf
TK∈TK

|r(T )− r(TK)| ≤ B2C(C + 2)

K2s
≤ B2(C + 1)2

K2s
.

D.2 UPPER BOUND ON THE DISCRETIZATION ERROR 2E
[
supT∈TK

|r̂(T )− r̂N (T )|
]

Fix T ∈ TK . Then, there exists {λm}m∈Zd
≤K

with |λm| ≤ C such that T =
∑

Zd
≤K

λm φm ⊗φ−m.
Then, recall that

r̂N (T ) :=
1

n

n∑
i=1

∑
m∈Zd

≤K

∣∣λm DFT(vNi )(−m)−DFT(wN
i )(−m)

∣∣2+1

n

n∑
i=1

∑
m∈Zd

>K

| ⟨φ−m, wi⟩ |2.

Moreover, we also have

r̂(T ) =
1

n

n∑
i=1

∑
m∈Zd

≤K

|λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩|2 +
1

n

n∑
i=1

∑
m∈Zd

>K

| ⟨φ−m, wi⟩ |2,

which yields

r̂N (T )−r̂(T ) = 1

n

n∑
i=1

∑
m∈Zd

≤K

(∣∣λm DFT(vNi )(−m)−DFT(wN
i )(−m)

∣∣2 − |λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩|2
)
.

Next, we define

αim = DFT(vNi )(−m)− ⟨φ−m, vi⟩ and βim = DFT(wN
i )(−m)− ⟨φ−m, wi⟩ .

We can then write∣∣λm DFT(vNi )(−m)−DFT(wN
i )(−m)

∣∣2
= |λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩+ λm αim − βim|2

≤ |λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩ |2 + 2|λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩ | |λmαim − βim| + |λmαim − βim|2.
Thus, we obtain

|r̂N (T )− r̂(T )| ≤ 1

n

n∑
i=1

∑
m∈Zd

≤K

(
2|λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩ | |λmαim − βim| + |λmαim − βim|2

)
≤ max

i∈[n]

∑
m∈Zd

≤K

2 (|λm ⟨φ−m, vi⟩ |+ | ⟨φ−m, wi⟩ |) |λmαim − βim| |+ |λmαim − βim|2.

Next, using Cauchy-Schwarz inequality, the first term of the summand can be bounded as∑
m∈Zd

≤K

|λm ⟨φ−m, vi⟩ | |λmαim − βim|

≤
√√√√ ∑

m∈Zd
≤K

|λm|2(1 + |m|2s∞) | ⟨φ−m, vi⟩ |2
√√√√ ∑

m∈Zd
≤K

|λmαim − βim|2
1 + |m|2s∞

≤ BC

√√√√ ∑
m∈Zd

≤K

|λmαim − βim|2
1 + |m|2s∞

,
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where the final inequality uses Lemma 3 and the fact that |λm| ≤ C. Similar arguments show that∑
m∈Zd

≤K

| ⟨φ−m, wi⟩ | |(λmαim − βim)| ≤ B

√√√√ ∑
m∈Zd

≤K

|λmαim − βim|2
1 + |m|2s∞

.

Overall, we have shown that

|r̂N (T )− r̂(T )| ≤ max
i∈[n]

2B(C + 1)

√√√√ ∑
m∈Zd

≤K

|λmαim − βim|2
1 + |m|2s∞

+
∑

m∈Zd
≤K

|λmαim − βim|2

 .

Now, recall that Lemma 6 implies

max{|αim|, |βim|} ≤

∣∣∣∣∣∣
∑

ℓ∈Zd\{0}

〈
φ−(ℓN+m), u

〉∣∣∣∣∣∣ ,
which subsequently yields

|λmαim − βim|2 ≤ (C + 1)2

∣∣∣∣∣∣
∑

ℓ∈Zd\{0}

〈
φ−(ℓN+m), u

〉∣∣∣∣∣∣
2

.

Thus, we have∑
m∈Zd

≤K

|λmαim − βim|2

≤ (C + 1)2
∑

m∈Zd
≤K

∣∣∣∣∣∣
∑

ℓ∈Zd\{0}

〈
φ−(ℓN+m), u

〉∣∣∣∣∣∣
2

≤ (C + 1)2

 ∑
m∈Zd

≤K

 ∑
ℓ∈Zd\{0}

1

1 + |m+ ℓN |2s∞

 ∑
ℓ∈Zd\{0}

(1 + |m+ ℓN |2s∞) |
〈
φ−(ℓN+m), u

〉
|2

 .

,

where the final step follows from Cauchy-Schwarz inequality.

To upper bound the first sum within inner parenthesis, note that |m + ℓN |∞ ≥ |ℓN |∞ − |m|∞ ≥
N |ℓ|∞ −N/2 ≥ N/2 |ℓ|∞. Here, we use the fact that |m|∞ ≤ K ≤ N/2. So, we have∑

ℓ∈Zd\{0}

1

1 + |m+ ℓN |2s∞
≤
(

2

N

)2s ∑
ℓ∈Zd\{0}

1

|ℓ|2s∞
≤ 22sπ2 3d−2

N2s
,

where the final inequality uses Lemma 7. Next, note that∑
m∈Zd

≤K

∑
ℓ∈Zd\{0}

(1 + |m+ ℓN |2s∞) |
〈
φ−(ℓN+m), u

〉
|2 ≤

∑
k∈Zd

(1 + |k|2s∞) | ⟨φ−k, u⟩ |2 ≤ B2,

where the second inequality follows from Lemma 3. The first inequality holds because for each
k ∈ Zd, we have |{(m, ℓ) : m + ℓN = k, m ∈ Zd

≤K and ℓ ∈ Zd\{0}}| ≤ 1. That is, for each
k ∈ Zd, there is only one possible pair (m, ℓ) such that k = m + ℓN . Suppose, for the sake of
contradiction, there exists k ∈ Zd such that two distinct pairs exist in the set, namely (m1, ℓ1) and
(m2, ℓ2). Note thatm1+ℓ1N−(m2+ℓ2N) = k−k = 0, which implies (m1−m2) = (ℓ2−ℓ1)N .
Clearly, we cannot have ℓ2 = ℓ1, otherwise, we will have m2 = m1, contradicting the fact that there
are two distinct pairs. So, we must have ℓ2 ̸= ℓ1. That is, |ℓ2−ℓ1|∞ ≥ 1, and thus |m1−m2|∞ ≥ N .
Moreover, |m1 −m2|∞ ≤ |m1|∞ + |m2|∞ ≤ 2K, which implies that 2K ≥ N . This contradicts
the fact that K < N/2. Therefore, overall, we have shown that∑

m∈Zd
≤K

|λmαim − βim|2 ≤ 22sπ2 3d−2B2(C + 1)2

N2s
.
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Next, we have√√√√ ∑
m∈Zd

≤K

|λmαim − βim|2
1 + |m|2s∞

≤
√√√√ ∑

m∈Zd
≤K

|λmαim − βim|2 ≤ 2sπ
√
3d−2B(C + 1)

Ns
.

Therefore, by combining everything, we have shown that

|r̂N (T )−r̂(T )| ≤ 2s+1B2(C + 1)2

Ns
π
√
3d−2+

B2(C + 1)24s

N2s
π23d−2 ≤ 2

2s+1B2(C + 1)2

Ns
π
√
3d−2.

The final inequality holds when Ns ≥ 2s−1 π
√
3d−2, which is satisfied as long as N ≥ 6. As

T ∈ TK is arbitrary, we have shown that the discretization error

2E
[
sup

T∈TK

|r̂(T )− r̂N (T )|
]
≤ 2s+3π

√
3d−2B2(C + 1)2

Ns
≤ 2s+3

√
πdB2(C + 1)2

Ns
.

D.3 UPPER BOUND ON THE STATISTICAL ERROR 3E
[
supT∈TK

|r(T )− r̂(T )|
]

In fact, we will bound E [supT∈T |r(T )− r̂(T )|]. This can be viewed as the limit of the sta-
tistical error as K → ∞. To that end, let σ1, . . . , σn denote iid random variables such that
σi ∼ Uniform({−1, 1}). Standard symmetrization arguments show that

E
[
sup
T∈T

|r(T )− r̂(T )|
]
≤ 2E

[
sup
T∈T

∣∣∣∣∣ 1n
n∑

i=1

σi ∥Tvi − wi∥2L2

∣∣∣∣∣
]

= 2E

 sup
|λ|ℓ∞≤C

∣∣∣∣∣∣ 1n
n∑

i=1

σi
∑
m∈Zd

|λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩|2
∣∣∣∣∣∣


Note that
|λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩|2

= (λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩) (λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩)
= λm λm ⟨φ−m, vi⟩ ⟨φ−m, vi⟩ − λm ⟨φ−m, vi⟩ ⟨φ−m, wi⟩ − λm ⟨φ−m, wi⟩ ⟨φ−m, vi⟩+ ⟨φ−m, wi⟩ ⟨φ−m, wi⟩

= |λm|2 | ⟨φ−m, vi⟩ |2 −
(
λm ⟨φ−m, vi⟩ ⟨φ−m, wi⟩+ λm ⟨φ−m, wi⟩ ⟨φ−m, vi⟩

)
+ | ⟨φ−m, wi⟩ |2.

The first and the last term above are real numbers, so the term in the parenthesis must also be a real
number. Using triangle inequality, the term Rademacher sum above can be upper-bounded as

E

 sup
|λ|ℓ∞≤C

∣∣∣∣∣∣ 1n
n∑

i=1

σi
∑
m∈Zd

|λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩|2
∣∣∣∣∣∣


≤ E

 sup
|λ|ℓ∞≤C

∣∣∣∣∣∣ 1n
n∑

i=1

σi
∑
m∈Zd

|λm|2 | ⟨φ−m, vi⟩ |2
∣∣∣∣∣∣


︸ ︷︷ ︸
(i)

+E

 sup
|λ|ℓ∞≤C

∣∣∣∣∣ 1n
n∑

i=1

σi
∑
m∈Zd

λm ⟨φ−m, vi⟩ ⟨φ−m, wi⟩

∣∣∣∣∣


︸ ︷︷ ︸
(ii)

+ E

 sup
|λ|ℓ∞≤C

∣∣∣∣∣ 1n
n∑

i=1

σi
∑
m∈Zd

λm ⟨φ−m, wi⟩ ⟨φ−m, vi⟩

∣∣∣∣∣


︸ ︷︷ ︸
(iii)

+E

∣∣∣∣∣ 1n
n∑

i=1

σi
∑
m∈Zd

| ⟨φ−m, wi⟩ |2
∣∣∣∣∣


︸ ︷︷ ︸
(iv)

.

Let us start with the term (iv) first. Swapping the sum over m and i and using triangle inequality
yields

(iv) = E

∣∣∣∣∣ 1n
n∑

i=1

σi
∑
m∈Zd

| ⟨φ−m, wi⟩ |2
∣∣∣∣∣
 ≤

∑
m∈Zd

1

n
E

[∣∣∣∣∣
n∑

i=1

σi | ⟨φ−m, wi⟩ |2
∣∣∣∣∣
]

≤
∑
m∈Zd

1

n

(
n∑

i=1

| ⟨φ−m, wi⟩ |4
)1/2

,
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where the final step follows from Khintchine’s inequality. Note that swapping the sums is justified
because both sums converge absolutely.

For the term (iii), swapping the sum over m and i and using the fact that |λm| ≤ C yields

(iii) = E

 sup
|λ|ℓ∞≤C

∣∣∣∣∣ 1n
n∑

i=1

σi
∑
m∈Zd

λm ⟨φ−m, wi⟩ ⟨φ−m, vi⟩

∣∣∣∣∣


= E

 sup
|λ|ℓ∞≤C

∣∣∣∣∣ 1n ∑
m∈Zd

λm

n∑
i=1

σi ⟨φ−m, wi⟩ ⟨φ−m, vi⟩

∣∣∣∣∣


≤ C E

 ∑
m∈Zd

∣∣∣∣∣ 1n
n∑

i=1

σi ⟨φ−m, wi⟩ ⟨φ−m, vi⟩

∣∣∣∣∣


≤ C
∑
m∈Zd

1

n

(
n∑

i=1

| ⟨φ−m, wi⟩ ⟨φ−m, vi⟩ |2
)1/2

,

where the final step uses Khintchine’s inequality. Since |λm| ≤ C, we can use the same arguments
to show that

(ii) ≤ C
∑
m∈Zd

1

n

(
n∑

i=1

| ⟨φ−m, vi⟩ ⟨φ−m, wi⟩ |2
)1/2

,

and

(i) ≤ C2
∑
m∈Zd

1

n

(
n∑

i=1

| ⟨φ−m, vi⟩ |4
)1/2

.

Next, note that we can bound | ⟨φ0, u⟩ | ≤ B for all ∥u∥Hs ≤ B. Moreover, Lemma 1 implies that
| ⟨φ−m, u⟩ | ≤ B

(2π)s |m|s∞
for all m ̸= 0. Thus, we obtain the bound

(i) ≤ B2C2

√
n

+ C2
∑

m∈Zd\{0}

1

n

(
n∑

i=1

B4

(2π)4s
1

|m|4s∞

)1/2

≤ B2C2 1√
n
+
B2C2

(2π)2s
1√
n

∑
m∈Zd\{0}

1

|m|2s∞

≤ B2C2 1√
n
+
B2C2π23d−2

(2π)2s
1√
n
,

where the final inequality uses Lemma 7. Similar calculations can be done to show that

(ii), (iii) ≤ B2C
1√
n
+
B2Cπ2 3d−2

(2π)2s
1√
n

and (iv) ≤ B2 1√
n
+
B2π23d−2

(2π)2s
1√
n
.

Thus, we have overall shown that

E
[
sup
T∈T

|r(T )− r̂(T )|
]
≤ 2 ((i) + (ii) + (iii) + (iv))

≤ 2(B2C2 + 2B2C +B2)

(
1 +

π23d−2

(2π)2s

)
1√
n

=
2B2(C + 1)2√

n

(
1 +

π23d−2

(2π)2s

)
≤ 5

2

B2(C + 1)2√
n

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

where we use the fact that
π23d−2

(2π)2s
≤ 1

22s
πd

π2s
≤ 1

22s
≤ 1

4

as 2s > d and s ≥ 1. Therefore, the overall statistical error is

3E
[
sup
T∈T

|r(T )− r̂(T )|
]
≤ 8B2(C + 1)2√

n
.

E PROOF OF LOWER BOUND (THEOREM 2)

Proof. To define a difficult distribution for the learner, we need some notations. Let

ψ0 = φ0 and ψm =
1√
2
(φ−m + φm) for m ∈ Zd\{0}.

Note that ψm : Td → R is a real-valued function such that ∥ψm∥L2 = 1. We work with ψm’s to
ensure that the distribution is only supported over real-valued functions. For any {λk}k∈Zd such that
λk = λ−k ∈ R, the operator T =

∑
m∈Zd λmφm ⊗ φ−m satisfies

Tψm =
1√
2
(λm φm + λ−mφ−m) =

λm√
2
(φ−m + φm) = λmψm ∀m ∈ Zd\{0}.

Clearly, Tψ0 = λ0ψ0. Next, let us define a sequence {γm}m∈Zd such that

γ0 =
B√
s+ 1

and γm =
B√

s+ 1 |m|s∞
∀m ∈ Zd\{0}.

Finally, define a set

J = {m ∈ Zd : m1 ∈ N and mj = 0 ∀j ̸= 1}.

For any M,N ∈ N, define JN
M = {m ∈ J : m1 ̸≡ 0 (mod N ) and m1 ≤ M}. Let r ∈ Zd such

that r ∈ J and r1 = 1. That is, r = (1, 0, 0, . . . , 0). For any q ∈ Z, we write qr = (q, 0, 0, . . . , 0).

We now describe a difficult distribution for the learner. To that end, first draw a ξ := {ξm}m∈Zd such
that ξm = ξ−m is drawn from Uniform({−1, 1}). Then, given such ξ, let µξ be any joint distribution
on V ×W such that its marginal on V assigns 1/3 mass uniformly on

{
γmψm : m ∈ JN

M

}
, 1/3

mass on γ0ψ0, and the remaining 1/3 mass on γ(K+j)r ψ(K+j)r for either j = 1 or j = 2 ensuring
that K + j ̸≡ 0 (mod N ). Moreover, given a v = γkψk drawn from the marginal of µξ, assign w | v
to be ξkγkψk if k ̸= 0. On the other hand, if k = 0, then w | v is ξNr γNr ψNr.

This is a valid distribution as

∥v∥2Hs =
∑

k∈Nd
0 : |k|∞≤s

∥∥∂kv∥∥2
L2 =

∑
k∈Nd

0 : |k|∞≤s

(mk1
1 γm)21[kj = 0 for all j ̸= 1]

= γ2m

s∑
k1=0

|m|2k1
∞

≤ (s+ 1)γ2m|m|2s∞
≤ B2

Similar arguments show that ∥w∥2Hs ≤ B2.

Next, we establish that

E
ξ

[
En(T̂N

K , T , µξ)
]
≥ B2

3(s+ 1)

(
1

8n
+

2

(K + 2)2s
+

1

N2s

)
.

Since the lower bound above holds in expectation, we can use the probabilistic method to argue that
there must exist a sequence ξ⋆ such that En(T̂N

K , T , µξ⋆) ≥ B2

3(s+1)

(
1
8n + 2

(K+2)2s + 1
N2s

)
.
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We now proceed with the proof of the claimed lowerbound. Let T̂N
K denote the estimator produced

by the algorithm. Then, there exists {λ̂m}m∈Zd
≤K

such that

T̂N
K =

∑
m∈Zd

≤K

λ̂m φm ⊗ φ−m.

For convenience, we will extend the sum to the entire Zd and write T̂N
K =

∑
m∈Zd λ̂m φm ⊗φ−m,

where λ̂m = 0 for all m ∈ Zd
>K .

Given a ξ, we now lowerbound the expected loss of T̂N
K on µξ. Using the definition of the distribution

µξ, we have

E
(v,w)∼µξ

[
∥T̂N

K v − w∥2L2

]
=

1

3

1

|JN
M |

∑
m∈JN

M

(
λ̂m − ξm

)2
γ2m +

1

3

∥∥∥λ̂0γ0ψ0 − ξNr γNr ψNr

∥∥∥2
L2

+
1

3

∥∥0ψ(K+j)r − γ(K+j)r ψ(K+j)r

∥∥2
L2

≥ 1

3|JN
M |

∑
m∈JN

M

γ2m 1[λ̂mξm ≤ 0] +
λ̂20γ

2
0 + γ2Nr

3
+
γ2(K+j)r

3

≥ γ2r
3|JN

M |
1[λ̂rξr ≤ 0] +

λ̂20γ
2
0 + γ2Nr

3
+
γ2(K+2)r

3
.

Here, the first inequality use the fact that (λ̂m−ξm)2 ≥ 1 whenever λ̂mξm ≤ 0 and ⟨e0, eNr⟩L2 = 0.
The second inequality uses the fact that r ∈ JN

M as long as M,N > 1 and that γ2(K+j)r ≥ γ2(K+2)r

for j ∈ {1, 2}.

Next, we establish the upper bound on the loss of the best-fixed operator. Given ξ, define an operator

Tξ =
∑

m∈Zd
>0

ξm φm ⊗ φ−m.

Clearly,

inf
T∈T

E
(v,w)∼µξ

[∥∥Tv − w∥2L2

∥∥]
≤ E

(v,w)∼µξ

[∥∥Tξv − w∥2L2

∥∥]
= E

[∥∥Tξv − w∥2L2

∥∥ ∣∣v = γ0ψ0

]
P[v = γ0ψ0] + E

[∥∥Tξv − w∥2L2

∥∥ ∣∣v ̸= γ0ψ0

]
P[v ̸= γ0ψ0]

≤ ∥0− ξNr γNr ψNr∥2L2

1

3

≤ γ2Nr

3
,

where we use the fact that Tξv = 0 whenever v = γ0e0 and Tξv = w otherwise. Overall, we have
shown that

E
(v,w)∼µξ

[
∥T̂N

K v − w∥2L2

]
− inf

T∈T
E

(v,w)∼µξ

[∥∥Tv − w∥2L2

∥∥]
≥ γ2r

3|JN
M |

1[λ̂rξr ≤ 0] +
λ̂20γ

2
0 + γ2Nr

3
+
γ2t
3

− γ2Nr

3

≥ 1

3(s+ 1)

(
1[λ̂rξr ≤ 0]

|JN
M |

+ λ̂20 +
B2

(K + 2)2s

)
,

where the final inequality holds because γ0 = γr = B√
s+1

and γ(K+2)r = B√
s+1(K+2)2s

.

Next, we establish lowerbound of λ̂20. To that end, let Sn = {(vi, wi)}ni=1 denote the n samples
accessible to the learner over the uniform grid of sizeN . Recall our notation vNi := {vi(x) : x ∈ G}
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and wN
i := {wi(x) : x ∈ G} for discretized samples. Take a sample (vi, wi) ∼ µξ. Then, we must

have vi = γkψk for some k ∈ Zd. Consider the case that k ̸= 0. Then, by definition of the
distribution µξ, it must be the case that k ̸≡ 0 (mod ) N. Then, Lemma 5 implies that

DFT(vNi )(−0) =
1

Nd

∑
x∈G

γk ψk(x) e
−2π i⟨x,0⟩ =

γk√
2Nd

(∑
x∈G

e−2π i⟨k,x⟩ +
∑
x∈G

e2π i⟨k,x⟩

)
= 0.

On the other hand, if vi = γ0ψ0, then we have

DFT(vNi )(−0) =
1

Nd

∑
x∈G

γ0ψ0(x) =
γ0
Nd

∑
x∈G

1 = γ0.

Additionally, when vi = γ0ψ0, we have wi = γNr ψNr. In this case, Lemma 5 implies that

DFT(wN
i )(−0) =

γNr

Nd

∑
x∈G

ψNr(x) =
γNr√
2Nd

(∑
x∈G

e−2π i⟨Nr,x⟩ +
∑
x∈G

e2π i⟨Nr,x⟩

)
=
γNr√

2
2 =

√
2γNr.

Using these facts, we can write the empirical least-square loss as

1

n

n∑
i=1

∑
m∈Zd

≤K

∣∣λm DFT(vNi )(−m)−DFT(wN
i )(−m)

∣∣2
=

|λ0 −
√
2 γNr|2

n

n∑
i=1

1[vi = γ0ψ0] +
1

n

n∑
i=1

1[vi ̸= γ0ψ0]
∣∣DFT(wN

i )(−m)
∣∣2

+
1

n

n∑
i=1

∑
m∈Zd

≤K
\{0}

∣∣λm DFT(vNi )(−m)−DFT(wN
i )(−m)

∣∣2
Thus, the least squares estimator for λ0 must be λ̂0 =

√
2γNr. That is,

λ̂20 = 2γ2Nr =
2B2

(s+ 1)|Nr|s∞
=

2B2

(s+ 1)N2s
.

Note that this choice of λ̂0 is valid as λ̂0 ≤ 1. Thus, so far, we have shown that

E
(v,w)∼µξ

[
∥T̂N

K v − w∥2L2

]
− E

(v,w)∼µξ

[∥∥Tξv − w∥2L2

∥∥] ≥ B2

3(s+ 1)

(
1[λ̂rξr ≤ 0]

|JN
M |

+
2

N2s
+

1

(K + 2)2s

)

Our proof will be complete upon establishing that

1

|JN
M |

E
ξ

[
E

Sn∼µξ

[
1[λ̂rξr ≤ 0]

]]
≥ 1

8n

for an appropriate choice of M . To that end, let µV
ξ be the marginal of µξ on V and SV

n ∈ Vn denote
the restriction of samples Sn ∈ (V ×W)n to its first arguments. Then, we can change the order of
expectations to write

E
ξ

[
E

Sn∼µξ

[
1[λ̂rξr ≤ 0]

]]
= E

SV
n∼µV

n

[
E
ξ

[
1[λ̂rξr ≤ 0]

]]
≥ 1

2
P[γrψr /∈ SV

n ]

To understand why the final inequality holds, observe that when the event γrψr /∈ SV
n occurs, the

learner has no information about ξr. This implies that ξr and λ̂r are independent. Consequently,
given that γrψr /∈ SV

n , the event λ̂rξr ≤ 0 has a probability of at least 1/2 since ξr is sampled
uniformly from {−1,+1}.

Next, it remains to pick M such that

P[γrψr /∈ SV
n ]

|JN
M |

≥ 1

4n
.
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To get this, we choose M = 2n. It is easy to verify that |JN
M | ≥ n whenever N > 1. This is true

because no more than half of integers in {1, 2, . . . , 2n} are divisible by N . Thus, we have

P[γrψr /∈ SV
n ] =

(
1− 1

3|JN
M |

)n

≥
(
1− 1

3n

)n

≥ 1

2

for any n ≥ 1. Noting that |JN
M | ≤ 2n completes our proof.

F EXPERIMENTS

In this section, we present experiments demonstrating that our estimator achieves vanishing errors.
We pick d = 2, and the input functions v are sampled i.i.d. from N (0, 102(−∇2 + I)−γ), a
widely used distribution for generating training data in the operator learning literature (see Li et al.
(2021); Kovachki et al. (2023)). Since γ governs the decay rate of the eigenvalues of the covariance
operator for this distribution, it directly controls the average smoothness of the samples v. For our
experiments, we set γ = 2 as this is the smallest integer value that ensures γ > d/2 for d = 2.

To generate training data, we define a random operator

T ⋆ :=
∑
m∈Zd

λm φm ⊗ φ−m,

where φm’s are Fourier modes and λm ∼ Unif(−2, 2). For a given input v, the corresponding
output is generated as

w = T ⋆v + ε,

where ε ∼ N (0, (−∇2 + I)−3). Noise is sampled from a higher-order smooth space to ensure that
its addition does not alter the smoothness of w. In actual implementation, the transformation T ⋆v
is implemented on some N ×N grid using Fast Fourier Transform (FFT) and Inverse Fast Fourier
Transform (IFFT). The sum over Zd is truncated at a Nyquist limit of N/2.

Recall that, for a truncation parameter K, our estimator is obtained by solving the following opti-
mization problem:

min
{λm :m∈Zd

≤K
}

1

n

n∑
i=1

∑
m∈Zd

≤K

∣∣λm DFT(vNi )(−m)−DFT(wN
i )(−m)

∣∣2 subject to sup
m∈Zd

≤K

|λm| ≤ 2.

As this is a convex optimization problem, we implement the optimization routine for our estimator
using stochastic gradient descent with a projection step to ensure |λ̂m| ≤ 2. Although, in experi-
ments, we found that initializing close to 0 and keeping small step-sizes of around 10−3 ensures that
the estimated λ̂m’s converge to something in a feasible set of [−2, 2].

Figures 1, 2, and 3 show the statistical, truncation, and discretization errors, respectively. The y-axis
in all these figures represents the relative mean-squared testing error:

1

ntest

ntest∑
i=1

∥∥∥wtrue
i − wpredicted

i

∥∥∥2
L2

∥wtrue
i ∥2L2

,

evaluated using ntest = 100 i.i.d. samples from the described distribution.

F.1 STATISTICAL ERROR

Both training and testing are carried out on a 64 × 64 grid, with the estimator implemented using
K = 32 modes. Error bands are included to account for fluctuations in the estimated parameters
at small sample sizes, showing results from 5 independent runs. The model is trained and tested at
the same resolution at the Nyquist limit of K = 32 modes to ensure that the reported error isolates
statistical error with truncation and discretization errors being minimal possible. The smallest error
is around 6× 10−4 for the training sample size of 500.
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Figure 1: Statistical error of the estimator.

F.2 TRUNCATION ERROR

Training and testing data are generated on a 128×128 grid, with the estimator trained using n = 500
samples. Error bands are omitted as the estimates are almost identical due to a large sample size.
Both training and testing are conducted at the same resolution to remove discretization error, with
the sample size selected to minimize statistical error, ensuring that the reported error isolates the
truncation error effectively. The testing error converges to around 7.9× 10−4 at the Nyquist limit of
K = 64.

Figure 2: Truncation error of the estimator.

F.3 DISCRETIZATION ERROR

Testing data is generated on a 512 × 512 grid. The estimator is trained using n = 500 samples on
grids of varying sizes N × N , where N ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512}. For each training
grid of size N ×N , truncation is performed at the Nyquist limit (K = N/2). The trained estimators
are subsequently evaluated at the higher testing resolution of 512 × 512 to quantify discretization
error. The testing error converges to around 6×10−4 when the estimator is trained at a full grid size
of 512× 512 with 500 training samples.
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Figure 3: Discretization error of the estimator.

28


	Introduction
	Neural Operators
	Fourier Neural Operator (FNO) 
	Our Contribution
	Related Works

	Preliminaries
	Notation
	L2-Spaces and Fourier Analysis
	Sobolev Spaces

	Fourier Linear Operators
	Learning Fourier Linear Operators
	Problem Setting and Error Types
	Further Connection and Comparison to FDA.

	A Constrained Least-Squares Estimator
	Error Bounds 

	Discussion and Future Work
	Appendix
	Proofs of Operator Theoretic Properties
	Proof of Proposition 1
	Proof of Proposition 2

	Technical Lemmas
	Proof of Upper Bound (Theorem 1)
	upper bound on the truncation error T T  TK TK |r(T) - r(TK)|
	upper bound on the discretization error 2`3́9`42`"̇613A``45`47`"603AE[to1.5.T TK  |r"0362r(T) - r"0362rN(T)| ]to1.5.
	Upper Bound on the Statistical Error 3 `3́9`42`"̇613A``45`47`"603AE[T TK  |r(T) - r"0362r(T)| ]

	Proof of Lower Bound (Theorem 2)
	Experiments
	Statistical Error
	Truncation Error
	Discretization Error


