
Scalable Optimization in the Modular Norm

Tim Large⋆ Yang Liu Minyoung Huh
Columbia University Lawrence Livermore National Lab MIT CSAIL

Hyojin Bahng Phillip Isola Jeremy Bernstein⋆

MIT CSAIL MIT CSAIL MIT CSAIL

Abstract

To improve performance in contemporary deep learning, one is interested in scaling
up the neural network in terms of both the number and the size of the layers.
When ramping up the width of a single layer, graceful scaling of training has
been linked to the need to normalize the weights and their updates in the “natural
norm” particular to that layer. In this paper, we significantly generalize this idea
by defining the modular norm, which is the natural norm on the full weight space
of any neural network architecture. The modular norm is defined recursively in
tandem with the network architecture itself. We show that the modular norm
has several promising applications. On the practical side, the modular norm can
be used to normalize the updates of any base optimizer so that the learning rate
becomes transferable across width and depth. This means that the user does not
need to compute optimizer-specific scale factors in order to scale training. On the
theoretical side, we show that for any neural network built from “well-behaved”
atomic modules, the gradient of the network is Lipschitz-continuous in the modular
norm, with the Lipschitz constant admitting a simple recursive formula. This
characterization opens the door to porting standard ideas in optimization theory
over to deep learning. We have created a Python package called Modula that
automatically normalizes weight updates in the modular norm of the architecture.
The package is available via pip install modula with source code here.

1 Introduction

Given the practical impact of deep learning systems trained at the largest scale, there is a need for
training algorithms that scale gracefully: without instability and—if possible—without manual tuning.
However, current best practices for training have developed somewhat organically and do not live on
a bedrock of sound numerical analysis. For example, while the Adam optimizer [1] is ubiquitous
in the field, errors have been found in its proof of convergence [2], and empirically Adam has been
found to scale poorly as either the width [3] or the depth [4] of the network is ramped up.

To remedy this situation, a patchwork of learning rate correction factors have recently been proposed
[3–6]. The general idea is to retrofit a base optimizer such as Adam or SGD with special correction
factors intended to render the optimizer’s optimal learning rate invariant to scale. But this situation is
not ideal: the correction factors are reportedly difficult to use. Lingle [7] suggests that this may be due
to their “higher implementation complexity, many variations, or complex theoretical background”.
What’s more, the correction factors are optimizer-specific, meaning that if one switches to a different
optimizer one must either look up or recalculate a separate set of correction factors.

The goal of this paper is to simplify matters. We show that both Adam and SGD can be made to scale
gracefully with width and depth by simply normalizing their updates in a special norm associated with

⋆ denotes equal contribution. Correspondence to {jbernstein,minhuh}@mit.edu.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/jxbz/modula

10−1 100

learning rate

5

6

tr
ai

n
lo

ss

10−1 100 25 26 27 28 29 210

width

Adam
normed Adam

SGD
normed SGD

21 22 23 24 25 26

number of blocks

25 26 27 28 29 210

width

21 22 23 24 25 26

number of blocks

Figure 1: Learning rate transfer in the modular norm. We train GPT with context length 128
for 10k steps on OpenWebText. Left: Learning rate sweeps for normed Adam (Adam with updates
normalized in the modular norm) with three transformer blocks and varying width. The optimal
learning rate (marked by red dots) transfers well across scales. Mid-left: The same, but varying the
number of blocks at width 128. Mid-right: Comparing normed versus unnormed Adam and SGD at
fixed learning rate and varying width. For each method, we tune the learning rate at the scale marked
by the dotted line. The normed methods scale better. Right: The same, but scaling number of blocks.

the network architecture—see Figure 1. We call this norm the modular norm, and provide a Python
package called Modula that constructs this norm automatically and in tandem with the architecture.

The modular norm is constructed recursively, leveraging the module tree perspective on neural
architectures. It is enough to define how the modular norm propagates through only two elementary
operations: composition and concatenation. We show how other basic operations on modules, such
as addition and scalar-multiplication, can be implemented through composition and concatenation.
And then higher-order structures, such as residual networks, can be built using these basic operations.

Beyond its practical relevance, the modular norm may also prove useful to theoreticians. Various
optimization-theoretic quantities are accessible and efficiently calculable in the modular norm. For
instance, we show that the gradient of any neural network built from “well-behaved” atomic modules
is Lipschitz-continuous in the modular norm of the architecture. This opens the door to porting
several more-or-less textbook optimization theory analyses [8] over to the world of deep learning.

1.1 Related work

Metrization It is by now well-known that deep networks do not easily or naturally admit Lipschitz-
continuity or smoothness guarantees in the Euclidean norm [9–13]. Researchers have attempted
to address this problem: for instance, Bernstein et al. [12] propose a distance function called deep
relative trust, which combines Frobenius norms across network layers. However, deep relative trust is
only constructed for the multilayer perceptron and, when used to normalize updates, its employment
of the Frobenius norm precludes good width scaling. In contrast, Yang et al. [14] equip individual
layers with the RMS–RMS operator norm, finding this to enable good width scaling. Researchers
have also looked at building neural net distance functions outside the context of scalability [15–17].

Asymptotics The metrization-based approach to scaling developed in this paper contrasts with
the tradition of asymptotic scaling analyses—the study of infinite width and depth limits—more
common in the deep learning theory literature [3–5, 18, 19]. These asymptotic analyses follow an old
observation of Neal [20] that interesting properties of the neural network function space are exactly
calculable in the infinite width limit and at initialization. This tradition has continued with asymptotic
studies of the neural tangent kernel [21] as well as infinite depth limits [4, 5, 22]. However, there is
increasing recognition of the limits of these limits, with researchers now often trying to relax limiting
results [23–25]. And ultimately, from a practitioner’s perspective, these results can be difficult to
make sense of [7]. In contrast, our framework eschews any kind of limiting or probabilistic analysis.
As a consequence, we believe our framework is simpler, more easily relatable to basic mathematical
concepts, and ultimately more relevant to what one may encounter in, say, a PyTorch [26] program.

2

Majorization In recent work, Streeter and Dillon [27] propose a universal majorize-minimize algo-
rithm [28]: a method that automatically computes and minimizes a majorizer for any computational
graph. Despite its generality, current downsides to the method include its overhead, which can be 2×
per step [29], as well as the risk that use of a full majorization may be overly pessimistic. Indeed,
Cho and Shin [30] find that an optimization approach leveraging second-order information converges
significantly faster than a majorization-inspired approach. Related ideas appear in [31, 32].

2 Descent in Normed Spaces

We define the modular norm in §3. This section is intended to prime the reader for what is to come.
In this section, and the rest of the document, the diamond operator ⋄ denotes tensor contraction.

2.1 What’s in a norm?

Suppose that we wish to use gradient descent to minimize a loss function L : W → R over a weight
space W = RN . What properties of the loss L and weight space W would we desire for this to be
sensible? Three such properties are:

(i) the loss function is differentiable, meaning that the gradient map ∇wL : W → W exists;
(ii) the weight space W carries a norm ∥·∥ : W → R, which need not be the Euclidean norm;

(iii) the loss is Lipschitz smooth in the norm ∥·∥, with sharpness constant λ > 0, meaning that:

L(w +∆w) ≤ L(w) +∇wL(w) ⋄∆w +
λ

2
∥∆w∥2. (2.1)

Under these conditions, the weight update given by ∆w = argmin
[
∇wL(w) ⋄∆w + λ

2 ∥∆w∥2
]

is guaranteed to reduce the loss. The particular norm ∥·∥ influences the direction of this weight
update, while the sharpness constant λ influences the size of the update.

In deep learning, we would ideally like the optimal step-size to remain invariant as we scale, say, the
width and the depth of the network. Thus, a fundamental problem is to design a norm such that, first,
Inequality (2.1) actually holds (and is not hopelessly lax), and second, the corresponding sharpness
constant λ is invariant to the relevant architectural dimensions. If the norm is chosen poorly, the
practitioner may end up having to re-tune the step size as the network is scaled up. In this paper, we
design a norm for neural networks that meets these requirements: the modular norm.

2.2 Preview of the modular norm

The weight space of a deep neural network is a Cartesian product W = W1 × . . . × WL, where
Wk is the weight space at layer k. Yang et al. [14] consider the problem of metrizing individual
layers. For instance, if layer k is a linear layer with weight space Wk = Rdout×din , then they equip
this layer with the RMS–RMS operator norm, ∥·∥RMS−RMS. This is the matrix norm induced by
equipping the input and output space of the layer with the root-mean-square (RMS) vector norm,
∥x∥2RMS := 1

dΣi x
2
i for x ∈ Rd. The advantage of this non-standard matrix norm is that it allows one

to estimate the amount of feature change induced by a gradient update. In other words, the inequality

∥∆Wx∥RMS ≤ ∥∆W ∥RMS−RMS · ∥x∥RMS, (2.2)

turns out to hold quite tightly when ∆W is a gradient update and x is a corresponding layer input.
This is because gradient updates to a layer are (sums of) outer products that align with layer inputs.

Once we know how to metrize individual layers, a natural question is: can we combine layer-wise
norms to produce a norm on the full weight space W =

∏
k Wk of the network? Naïvely, there are

many ways to do this: one could take any positive linear combination of the layer-wise norms (L1

combination), the square root of any combination of the squared layer-wise norms (L2 combination),
and so on. But we want the norm to be useful by the criteria of §2.1. To this end, we propose the
modular norm ∥·∥W , which ends up as a max (L∞ combination) of scaled layer-wise norms ∥·∥Wk

:

∥(w1, . . . ,wL)∥W := max (s1∥w1∥W1
, . . . , sL∥wL∥WL

) . (2.3)

The positive scalar constants s1, . . . , sL are determined by both the architecture of the network and
a set of user-specified “mass” parameters. The precise construction of the modular norm, working

3

𝖠𝖽𝖽
𝖬𝟣 𝖬𝟤

(,)

module sum 𝖬𝟣 + 𝖬𝟤

y ∈ 𝒴
w ∈ 𝒲

x ∈ 𝒳 module
attributes:
• .
• .
• .
• .

𝖬
𝖬 𝖿𝗈𝗋𝗐𝖺𝗋𝖽
𝖬 𝗆𝖺𝗌𝗌
𝖬 𝗌𝖾𝗇𝗌𝗂𝗍𝗂𝗏𝗂𝗍𝗒
𝖬 𝗇𝗈𝗋𝗆

𝖬𝟤 𝖬𝟣 𝖬𝟣 𝖬𝟤

(,)

composition concatenation

operations for building modules

Figure 2: Modules and trees of modules. A module is an object that maps an input and a weight
vector to an output. Left: In addition to the standard forward function, our modules are endowed
with two numbers—a mass and sensitivity—and a norm. Middle: New compound modules are built
via the binary operations of composition and concatenation. We provide rules for composing and
concatenating all module attributes. Right: Compound modules are binary trees, where the leaves
are modules and the internal nodes compose and concatenate their children. Here we illustrate a sum
of modules, which leverages a special utility module Add—see Table 1 for more on this.

recursively over the module tree of the network, is given in §3; there, we also explain how the modular
norm satisfies the criteria of §2.1, and the role played by the mass parameters. For now, let us explain
what good the modular norm yields in practice.

2.3 Normed optimization

The main practical use of the modular norm is to normalize weight updates. With reference to
Equation (2.3), we define the following operation on weight updates ∆w = (∆w1, . . . ,∆wL) ∈ W :

normalize(∆w) :=

(
∆w1

s1∥∆w1∥W1

, . . . ,
∆wL

sL∥∆wL∥WL

)
. (2.4)

Provided none of the ∆wk are zero, then normalize(∆w) is a unit vector in the modular norm. We
propose using normalize as a wrapper, along with an explicit learning rate schedule, for any base
optimizer such as Adam or SGD. The resulting normed optimizer is thus made architecture-aware via
the normalize function. In pseudo-code—and actual Modula code—this amounts to:

delta_w = optim(w.grad()) # get update from base optimizer
net.normalize(delta_w) # normalize update in the modular norm
w -= eta(step) * delta_w # apply update with learning rate eta

We find this wrapper to significantly improve the scalability of the base optimizer. It renders the
optimal learning rate roughly invariant to width and depth, with seemingly no cost to accuracy. In
some instances, it enables training with a simpler optimizer—for example, training GPT with SGD
rather than Adam—thus incurring a smaller memory footprint.

Normalization in the modular norm essentially forces individual layers to learn at specified, regulated
rates. We view this as balancing learning across the network; no individual layer can learn too fast
and destabilize training. This balance is determined by the architecture, along with user-specified
mass parameters that provide precise control over the relative learning speed in different submodules.

For a variety of experiments with normed optimization, see §4 and Appendix D. But first, we detail
the construction of the modular norm along with its core properties.

3 Constructing the Modular Norm

Our strategy is to first define the abstract notion of a module, which includes a norm as an attribute.
We depict this concept in Figure 2. Then, by providing rules for composing and concatenating
modules, we recursively define a norm for any module built via an arbitrary sequence of compositions
and concatenations: the modular norm!

4

3.1 Modules

A module is a re-usable, composable object useful for building complicated neural networks. Our
definition of a module augments the PyTorch module [26] with two real numbers and a norm:
Definition 1 (Module). Given input vector space X , output vector space Y and weight vector space
W , a module M is an object with the following four attributes:

(a) a function, M.forward : W × X → Y , which maps an input and a weight vector to an
output—we often abbreviate this attribute to just M ≡ M.forward;

(b) a number, M.mass ≥ 0, which will turn out to set the proportion of feature learning that
this module contributes to any supermodule;

(c) a number, M.sensitivity ≥ 0, which estimates the module’s sensitivity to input perturbations;

(d) a norm over the weight space, M.norm : W → R≥0, sometimes abbreviated to just ∥·∥M.

Before we say more about the intended roles of these attributes, let us mention the three kinds of
modules that we will care about in practice:

(i) atomic modules, whose attributes are hand-declared, and have weights. Examples include
linear modules, embedding modules, and convolution modules.

(ii) bond modules, whose attributes are hand-declared, but have no weights. Formally, their
weight space is the zero vector space W = 0. An example is the ReLU non-linearity module.

(iii) compound modules, built out of other modules, with automatically inferred attributes.

Note that the space of objects that type-check as a module by Definition 1 is vast. Since we need to
hand-declare atomic and bond modules in order to build interesting compound modules, we should
have an idea of what makes for a “good” module. Simply put, a module is good when its attributes
are predictive of its behaviour. To formalize this idea, we say that a module is well-normed if its
forward function, sensitivity, and norm satisfy the following two relationships:
Definition 2 (Well-normed). Let M be a module on (X ,Y,W), where the input and output spaces
have respective norms ∥·∥X and ∥·∥Y . M is well-normed if for all inputs x ∈ X and weights w ∈ W:

∥∇wM.forward(w,x) ⋄∆w∥Y ≤ M.norm(∆w) for all ∆w ∈ W; (3.1)
∥∇xM.forward(w,x) ⋄∆x∥Y ≤ M.sensitivity ∗ ∥∆x∥X for all ∆x ∈ X . (3.2)

Well-normed-ness means that the norm function and sensitivity are a good match for the forward
function. The first inequality says that a well-normed module is Lipschitz-continuous over its weight
space with a constant one. The second inequality says that a well-normed module is Lipschitz-
continuous over its input space with constant M.sensitivity. In practice, we will be interested
in well-normed modules where these inequalities hold fairly tightly, since then M.sensitivity and
M.norm will let us estimate the sensitivity of the module to input and weight perturbations. Appendix
B provides many examples of well-normed atomic and bond modules.

The remaining attribute M.mass will turn out to control the proportion of feature learning that a
module contributes to any compound module in which it participates. We formalize this concept in
§3.3. But before that, we need to understand how to build compound modules.

3.2 Compound modules: Building new modules from old

We consider building new modules from old ones via the binary operations of composition and
concatenation, illustrated in Figure 2. Composition is denoted via the serial combination M2 ◦M1,
and concatenation via the parallel combination (M1,M2), alternatively referred to as a module tuple.
These simple binary combinations will let us build basic algebraic operations on modules (Table 1)
as well as complex neural network architectures. We start by defining module composition:
Definition 3 (Module composition). Consider module M1 with input, output and weight space
(X1,Y1,W1) and module M2 with input, output and weight space (X2,Y2,W2). M1 and M2 are
composable if X2 = Y1. Their composite M = M2 ◦M1 lives on (X1,Y2,W1 ×W2) with attributes:

(a) M.forward((w1,w2),x)) = M2.forward(w2,M1.forward(w1,x));

5

Operation Shorthand Definition Modula Expression

module addition M1 +M2 Add ◦ (M1,M2) M_1 + M_2

scalar multiplication a ∗M Mula ◦M a * M

iterated composition ML M ◦ML−1 with M0 := Identity M ** L

Table 1: Arithmetic with modules. Composition and concatenation let us define an extended
arithmetic on modules. The utility modules Add,Mula and Identity are defined in Appendix B.2.

(b) M.mass = M1.mass+M2.mass;

(c) M.sensitivity = M1.sensitivity ∗M2.sensitivity;

(d) M.norm((w1,w2)) given by:

max

(
M2.sensitivity ∗

M.mass

M1.mass
∗M1.norm(w1),

M.mass

M2.mass
∗M2.norm(w2)

)
,

where if M1.mass or M2.mass is zero, the corresponding term in the max is set to zero.

At this stage, we make two comments about this definition. First, in the definition of the composite
norm, notice that the norm of the first module couples with the sensitivity of the second module.
This reflects the fact that the output of the first module is fed into the second module and not vice
versa. Second, observe that the masses of the submodules are involved in setting the balance of the
composite norm. Before we further motivate this definition, let us first define module concatenation:

Definition 4 (Module concatenation). Consider module M1 with input, output and weight space
(X1,Y1,W1) and module M2 with input, output and weight space (X2,Y2,W2). We say that M1 and
M2 are concatenatable if their input spaces match: X1 = X2. The tuple M = (M1,M2) has input,
output and weight space (X1,Y1 × Y2,W1 ×W2) and attributes:

(a) M.forward((w1,w2),x)) = (M1.forward(w1,x),M2.forward(w2,x));

(b) M.mass = M1.mass+M2.mass;

(c) M.sensitivity = M1.sensitivity +M2.sensitivity;

(d) M.norm(w1,w2) given by:

max

(
M.mass

M1.mass
∗M1.norm(w1),

M.mass

M2.mass
∗M2.norm(w2)

)
,

where if M1.mass or M2.mass is zero, the corresponding term in the max is set to zero.

Concatenation is simpler than composition in the sense that neither module is fed through the other,
and therefore, sensitivity does not appear in the concatenated norm. To further motivate these
definitions, observe that two basic and desirable properties follow as immediate consequences:

Proposition 1 (Composition and concatenation are associative). If modules M1,M2,M3 are succes-
sively composable, then M3◦(M2◦M1) equals (M3◦M2)◦M1 in all attributes. If modules M1,M2,M3

are mutually concatenatable, then ((M1,M2),M3) equals (M1, (M2,M3)) in all attributes.

Proposition 2 (Composition and concatenation preserve well-normedness). If modules M1 and M2

are well-normed and composable, then their composite M2 ◦M1 is also well-normed. If modules M1

and M2 are well-normed and concatenatable, then their tuple (M1,M2) is also well-normed with
respect to the L1 combination norm on the output space: ∥(·, ·)∥Y1×Y2

= ∥·∥Y1
+ ∥·∥Y2

.

The proofs follow directly from the definitions and the chain rule. Proposition 1 implies that one may
build complicated compound modules without worrying in which order successive combinations are
taken. Proposition 2 implies that complicated compounds automatically inherit Lipschitz guarantees.

Taken together, Definitions 3 and 4 define the modular norm M.norm of any compound module M.

6

1.5

1.6

1.7

1.8

mass=0.25 mass=0.5

ResMLP on CIFAR10

10−1 100

1.5

1.6

1.7

1.8

mass=1

10−1 100

mass=2

blocks
2
4
8
16
32

101

blocks

1.5

1.6

mass
0.25
0.5
1
2

tr
ai

n
lo

ss

learning rate

5

6

7
width=128 blocks=3

GPT on OpenWebText

10−1 100

learning rate

5

6

7
width=512 blocks=6

mass
1
2
4
6
8
10
12
14
16
18
20

Figure 3: Exploring mass allocation. We tune the total mass of the hidden layers, training with
normed Adam. Left group: Learning rate sweeps for ResMLP on CIFAR-10, for varying depth and
mass. The bottom right subplot reports the best train loss at each mass and depth. Mass 0.5 was best
at all depths. Right group: Learning rate sweeps for GPT on OpenWebText, for varying mass. Both
optimal mass and learning rate transferred from the small model (top) to the large model (bottom).

3.3 Mass allocation in compound modules

Suppose we wish to train a network with an input layer, an output layer, and L blocks between:

Network = OutputLayer ◦ HiddenLayers ◦ InputLayer (3.3)

= OutputLayer ◦ BlockL ◦ InputLayer. (3.4)

Then how much learning should happen in the output layer, compared to the blocks, compared to the
input layer? And what if we scale the number of blocks L—do we want relatively less learning to
occur in the network’s extremities? Or do we want the input and output layers to learn non-trivially
even in the L → ∞ limit? Since answering these questions is difficult a priori, we introduced the
mass parameter to allow a user to set the proportional contribution each module has toward learning:
Proposition 3 (Feature learning is apportioned by mass). Consider a compound module M derived
in any fashion from L well-normed modules M1, . . . ,ML. Given weight setting w = (w1, . . . ,wL),
where wk denote the weights of module Mk, let us perturb w by ∆w = (∆w1, . . . ,∆wL). If we
decompose the linearized change in the output of module M into one contribution per sub-module:

∇wM(w,x) ⋄∆w = ∇w1M(w,x) ⋄∆w1 + · · ·+∇wL
M(w,x) ⋄∆wL, (3.5)

then the kth term in this decomposition satisfies:

∥∇wk
M(w,x) ⋄∆wk∥Y ≤ Mk.mass

M.mass
∗M.norm(∆w). (3.6)

In words: module mass provides the flexibility needed to build complicated compound modules
involving many sub-modules, while maintaining precise control over how much learning any sub-
module can contribute to the overall compound. Proposition 3 is proved in Appendix E.

In practice, we obtained the best training performance by maintaining a constant amount of learning
in the input and output layers even as the number of blocks is scaled (Figure 6). In other words,
it seems to be a good idea to assign OutputLayer.mass : HiddenLayers.mass : InputLayer.mass in
proportion 1 : m : 1, where m is independent of the number of blocks L. The exact mass of the
hidden layers m needs to be tuned on a new architecture—just as one needs to tune separate learning
rates in the input and output layers in µP [18]; this tuning can be done on a small model prior to
scaling (Figure 3). We further discuss mass allocation in Appendix D.6.

3.4 Smoothness in the modular norm

In this section, we study the second derivatives of a module using the modular norm as a measuring
stick. Let us start by defining the notion of sharpness that we will consider:

7

Definition 5 (Module sharpness). Let M be a module on (X ,Y,W), where the input and output
spaces have respective norms ∥·∥X and ∥·∥Y . We say that M is (α, β, γ)-sharp for constants
α, β, γ ≥ 0 if, at all inputs x ∈ X and weights w ∈ W , the second derivatives of M are bounded as:

∥∆w ⋄ ∇2
wwM(w,x) ⋄∆w̃∥Y ≤ α ∥∆w∥M∥∆w̃∥M for all ∆w,∆w̃ ∈ W; (3.7)

∥∆w ⋄ ∇2
wxM(w,x) ⋄∆x∥Y ≤ β ∥∆w∥M ∥∆x∥X for all ∆w ∈ W and ∆x ∈ X ; (3.8)

∥∆x ⋄ ∇2
xxM(w,x) ⋄∆x̃∥Y ≤ γ ∥∆x∥X ∥∆x̃∥X for all ∆x,∆x̃ ∈ X . (3.9)

While one may ultimately be interested in the sharpness of a module with respect to weight perturba-
tions, Definition 5 also tracks sharpness with respect to input perturbations. In fact, tracking this extra
information is essential for propagating sharpness bounds up the module tree. Appendix C details
the procedure for automatically calculating the sharpness constants of a compound module starting
from the sharpness constants of all its submodules; see Propositions 8 and 9 for the specific formulae.
Here we highlight one major corollary of these formulae, proved in Appendix E: for a specific choice
of block multipliers, the sharpness constant of a residual network is independent of depth:
Proposition 4. Suppose M is a well-normed, (α, β, γ)-sharp module on (X ,X ,W) with unit sensi-
tivity. Define the depth L residual module ResL(M) via the module arithmetic of Table 1 as:

ResL(M) :=
(
L−1
L ∗ Identity + 1

L ∗M
)L

. (3.10)

Then this residual module ResL(M) is in fact (α+ β + γ
3 , β + γ

2 , γ)-sharp, independent of depth L.

For optimization purposes, one may be more interested in the sharpness of the loss function rather
than the sharpness of the neural network. Fortunately, it is possible to convert sharpness bounds on
modules into sharpness bounds on loss functions, provided a little is known about the error measure:
Proposition 5 (Loss functions are smooth in the modular norm). Let M be a module on (X ,Y,W)
and let ℓ : Y × T → R measure the error between a module output and a target in target space T .
The loss L : W → R records the module’s average error on data distribution D over X × T :

L(w) := Ex,t∼D ℓ(M(w,x), t). (3.11)

Suppose that the error measure ℓ is σ-Lipschitz and τ -smooth in the module output, in the sense that:

|∇yℓ(y, t) ⋄∆y| ≤ σ ∥∆y∥Y for all ∆y ∈ Y and t ∈ T ; (3.12)

|∆y ⋄ ∇2
yyℓ(y, t) ⋄∆ỹ| ≤ τ ∥∆y∥Y ∥∆ỹ∥Y for all ∆y,∆ỹ ∈ Y and t ∈ T . (3.13)

If the module M is well-normed and (α, β, γ)-sharp, then the loss function L satisfies the following
three inequalities at all weight settings w ∈ W and for all weight perturbations ∆w,∆w̃ ∈ W:

(i) |∆w ⋄ ∇2
wwL ⋄∆w̃| ≤ (σα+ τ) ∥∆w∥M ∥∆w̃∥M;

(ii) ∥∇wL(w +∆w)−∇wL(w)∥∗M ≤ (σα+ τ) ∥∆w∥M,

where ∥·∥∗M is the dual norm of ∥·∥M;

(iii) |L(w +∆w)− [L(w) +∇wL ⋄∆w]| ≤ 1
2 (σα+ τ) ∥∆w∥2M.

The proof is given in Appendix E, and we present estimates for σ and τ for common error measures
in Appendix C.4. Notice that inequalities (i), (ii) and (iii) are the standard inequalities of smooth
optimization [8], albeit expressed in the modular norm. In fact, (i) implies (ii) implies (iii). In words,
inequality (ii) says that the gradient of the loss is Lipschitz-continuous in the modular norm. The
Lipschitz constant depends on the module only through the module’s first sharpness coefficient α.

4 Experiments

Our experiments aimed to test the scalability of training with normed versions of Adam and SGD:
whether one can tune the learning rate on a small model, and expect the learning rate to remain
close to optimal on models of much larger width and depth. In addition to the learning rate, normed
optimization in Modula requires a mass parameter to apportion feature learning between the input,
output and hidden layers; we also tested the sensitivity of this parameter, whether it affects learning
rate transfer, and to what extent the optimal mass itself transfers across width and depth.

8

25 27 29

width

1.4

1.6
tr

ai
n

lo
ss

ResMLP on CIFAR-10

21 23 25

blocks
25 27 29

width

0.5

1.0

ResNet on CIFAR-10

21 23 25

blocks

Adam
normed Adam

SGD
normed SGD

Figure 4: Learning rate transfer on CIFAR-10. We tune the learning rate on a small model—at the
scale marked by the dotted line—and test the performance on models of increasing width and depth
at this fixed learning rate. We find that normed Adam and SGD scale better than their unnormed
counterparts on both ResMLPs and ResNets. See Figure 1 for the same experiment on GPT.

All SGD experiments were done with momentum β = 0.9, and all Adam experiments used β1 = 0.9
and β2 = 0.99. No weight decay was used in any experiment. Every experiment was done with
a linear decay learning rate schedule. As for initialization, we used orthogonal initialization for
Linear and Conv2D modules, and Gaussian weights projected to a unit norm ball for our Embed
module. This was to ensure all modules were well-normed at initialization. Precise versions of our
architectures are described in Appendices B.5 and B.7. We compare with nanoGPT using standard
initialization in Appendix D.4 to make sure our changes recover standard performance. We actually
found unnormed Adam using our GPT architecture transferred learning rate better than in nanoGPT.

We found that normed optimization, with both Adam and SGD as the base optimizer, allows for
successful learning rate transfer across width and depth for GPT training on OpenWebText (Figure 1),
as well as ResMLP and ResNet training on CIFAR-10 (Figure 4). We present expanded results in
Appendix D.5, including results on test loss. We reproduce the standard finding that train and test loss
are remarkably simillar in large language model pretraining. As for mass allocation, Figure 3 shows
that optimal mass transfers with depth for training a ResMLP on CIFAR-10 with normed Adam, and
also that both mass and learning rate transfer quite well from a smaller GPT on OpenWebText to a
larger one. We detail more experiments on mass allocation in Appendix D.6.

5 Discussion: Limitations and Future Work

This paper was influenced by four main streams of work: first, the Tensor Programs series, starting
at TP-IV [3, 4, 18]; second, the papers on universal majorize-minimize algorithms [27, 28]; third,
work on deep network metrization [12, 14, 31]; and fourth, the open source deep learning ecosystem
[26, 33, 34] including the PyTorch module tree and Karpathy’s YouTube video on autograd [35]. We
have distilled and synthesized key ideas from these sources, creating a framework that we believe to
be simpler than Tensor Programs, computationally lighter than universal majorization-minimization,
more general than prior work on metrization and more scalable than the PyTorch module tree. We
have packaged these ideas into a (soon-to-be) open-source library called Modula. Inevitably, Modula
has limitations. We highlight some of them here, along with associated avenues for future work.

Loss of well-normed-ness. We have emphasized well-normed-ness (Definition 2) as an important
criterion in module design. We show in Appendix B.1 that, for example, the Linear module is
well-normed when its weights lie within a spectral norm ball. In our experiments, we initialize all
weights so that all modules are well-normed, but we do not enforce this property throughout training.
Future work could explore regularization as a means to enforce well-normed-ness throughout training,
with the hope of attaining better scalability or improved generalization.

Overhead of normalization. As discussed in Appendix A.3, we implement normalization for Linear
and Conv2D modules using two steps of online power iteration. While online power iteration is an
established and fast primitive in deep learning—in fact, coming from the GAN literature [36]—it does
add a modest overhead to training time, as discussed in Appendix A.4. We think it may be possible
to mitigate this overhead by constructing atomic modules with more exotic operator norms. For
example, if one equips feature vectors with the L∞ norm rather than the RMS norm, then the induced
L∞–L∞ matrix norm is cheaper to compute than the RMS–RMS operator norm. In fact, L∞–L∞

9

operator normalization has the convenient feature that it decouples over matrix rows, making it more
local than spectral normalization and, dare-we-say, more biologically plausible.

Automatic step-size selection. Beyond scalability, recent work has explored the question of automatic
learning rate selection [31, 37–39], with the Prodigy optimizer [37] serving as a popular example. We
tested the Adam version of Prodigy and found it performs well at small scales, essentially working by
an implicit form of line search. However, Prodigy will always break at large enough widths, since it
requires a lower bound (d0) on Adam’s initial learning rate; Yang et al. [3] showed that no such lower
bound exists. We believe this issue could be fixed by rebuilding Prodigy on top of Modula. More
broadly, we think that designing line search methods in a properly-normed space is a good idea.

Acknowledgements

We are grateful to Chris Mingard, Virgile Richard and Evan Kiely for useful discussions early in the
project. Tongzhou Wang and Jyo Pari provided helpful feedback on the writing and figures.

The work was supported by a Packard Fellowship and a Sloan Research Fellowship to PI, by the MIT-
IBM Watson AI Lab, by ONR MURI grant N00014-22-1-2740 and the MIT Quest for Intelligence.
TL was supported by a Simons Junior Fellowship. This work was performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.

We are grateful to the anonymous reviewers for their helpful and constructive feedback on this
manuscript. Sadly, we have not had time to integrate much of their feedback into this camera-ready
version of the paper. We will integrate the feedback into the arXiv version of the paper.

Contribution Statement

All authors were involved in project conception and discussions, which were initiated by JB. TL and
JB developed the theory. MH and YL made core experimental observations. YL, MH, JB, and HB
ran experiments. TL and JB did most of the writing, while JB, MH and YL made the figures. PI
contributed guidance and helpful feedback throughout the course of the project. JB wrote the Modula
package with help from MH.

10

References
[1] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-

tional Conference on Learning Representations, 2015. Cited on page 1.

[2] Sashank J. Reddi, Satyen Kale and Sanjiv Kumar. On the convergence of Adam and beyond. In
International Conference on Learning Representations, 2018. Cited on page 1.

[3] Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu et al. Tuning large
neural networks via zero-shot hyperparameter transfer. In Neural Information Processing
Systems, 2021. Cited on pages 1, 2, 9, and 10.

[4] Greg Yang, Dingli Yu, Chen Zhu and Soufiane Hayou. Tensor programs VI: Feature learning in
infinite depth neural networks. In International Conference on Learning Representations, 2024.
Cited on pages 1, 2, 9, and 21.

[5] Blake Bordelon, Lorenzo Noci, Mufan Bill Li, Boris Hanin and Cengiz Pehlevan. Depthwise
hyperparameter transfer in residual networks: Dynamics and scaling limit. In International
Conference on Learning Representations, 2024. Cited on pages 1 and 2.

[6] Samy Jelassi, Boris Hanin, Ziwei Ji, Sashank J. Reddi, Srinadh Bhojanapalli et al. Depth
dependence of µP learning rates in ReLU MLPs. arXiv:2305.07810, 2023. Cited on page 1.

[7] Lucas Lingle. A large-scale exploration of µ-transfer. arXiv:2404.05728, 2024. Cited on pages
1 and 2.

[8] Hamza Fawzi. Topics in convex optimisation. University of Cambridge, Lent 2023. Lecture 3.
Cited on pages 2 and 8.

[9] Jeremy Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter and Ameet Talwalkar. Gradient descent
on neural networks typically occurs at the edge of stability. In International Conference on
Learning Representations, 2021. Cited on page 2.

[10] Haochuan Li, Jian Qian, Yi Tian, Alexander Rakhlin and Ali Jadbabaie. Convex and non-convex
optimization under generalized smoothness. In Neural Information Processing Systems, 2023.
Cited on page 2.

[11] Jingzhao Zhang, Tianxing He, Suvrit Sra and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. In International Conference on Learning
Representations, 2020. Cited on page 2.

[12] Jeremy Bernstein, Arash Vahdat, Yisong Yue and Ming-Yu Liu. On the distance between two
neural networks and the stability of learning. In Neural Information Processing Systems, 2020.
Cited on pages 2 and 9.

[13] Michael Vernon Nelson. Gradient conditioning in deep neural networks. Master’s thesis,
Brigham Young University, 2022. Cited on page 2.

[14] Greg Yang, James B. Simon and Jeremy Bernstein. A spectral condition for feature learning.
arXiv:2310.17813, 2023. Cited on pages 2, 3, 9, and 16.

[15] Nikita Dhawan, Sicong Huang, Juhan Bae and Roger Grosse. Efficient parametric approxi-
mations of neural network function space distance. In International Conference on Machine
Learning, 2023. Cited on page 2.

[16] Ari Benjamin, David Rolnick and Konrad Kording. Measuring and regularizing networks in
function space. In International Conference on Learning Representations, 2019. Cited on page
2.

[17] Behnam Neyshabur, Ruslan Salakhutdinov and Nathan Srebro. Path-SGD: Path-normalized
optimization in deep neural networks. Neural Information Processing Systems, 2015. Cited on
page 2.

[18] Greg Yang and J. Edward Hu. Tensor programs IV: Feature learning in infinite-width neural
networks. In International Conference on Machine Learning, 2021. Cited on pages 2, 7, and 9.

11

[19] Jaehoon Lee, Jascha Sohl-Dickstein, Jeffrey Pennington, Roman Novak, Sam Schoenholz
et al. Deep neural networks as Gaussian processes. In International Conference on Learning
Representations, 2018. Cited on page 2.

[20] Radford M. Neal. Bayesian Learning for Neural Networks. Ph.D. thesis, Department of
Computer Science, University of Toronto, 1994. Cited on page 2.

[21] Arthur Jacot, Franck Gabriel and Clement Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Neural Information Processing Systems, 2018. Cited on
page 2.

[22] Mufan Bill Li, Mihai Nica and Daniel M. Roy. The neural covariance SDE: Shaped infinite
depth-and-width networks at initialization. In Advances in Neural Information Processing
Systems, 2022. Cited on page 2.

[23] Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein and Guy Gur-Ari. The
large learning rate phase of deep learning, 2021. Cited on page 2.

[24] Daniel A. Roberts, Sho Yaida and Boris Hanin. The Principles of Deep Learning Theory.
Cambridge University Press, 2022. Cited on page 2.

[25] Chaoyue Liu, Libin Zhu and Mikhail Belkin. On the linearity of large non-linear models: When
and why the tangent kernel is constant. Neural Information Processing Systems, 2020. Cited on
page 2.

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury et al. PyTorch: An
imperative style, high-performance deep learning library. In Neural Information Processing
Systems, 2019. Cited on pages 2, 5, and 9.

[27] Matthew J. Streeter and Joshua V. Dillon. Automatically bounding the Taylor remainder series:
Tighter bounds and new applications. arXiv:2212.11429, 2022. Cited on pages 3 and 9.

[28] Matthew J. Streeter. Universal majorization-minimization algorithms. arXiv:2308.00190, 2023.
Cited on pages 3 and 9.

[29] Matthew Streeter. Beyond automatic differentiation, 2023. URL https://research.google/
blog/beyond-automatic-differentiation/. Cited on page 3.

[30] Namhoon Cho and Hyo-Sang Shin. Automatic optimisation of normalised neural networks.
arXiv:2312.10672, 2023. Cited on page 3.

[31] Jeremy Bernstein, Chris Mingard, Kevin Huang, Navid Azizan and Yisong Yue. Automatic
gradient descent: Deep learning without hyperparameters. arXiv:2304.05187, 2023. Cited on
pages 3, 9, 10, and 16.

[32] Dung T. Tran, Nobutaka Ono and Emmanuel Vincent. Fast DNN training based on auxiliary
function technique. International Conference on Acoustics, Speech and Signal Processing,
2015. Cited on page 3.

[33] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary et al. JAX:
composable transformations of Python+NumPy programs, 2018. URL http://github.com/
google/jax. Cited on page 9.

[34] Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller, Dzmitry Bah-
danau et al. Theano: A Python framework for fast computation of mathematical expressions.
arXiv:1605.02688, 2016. Cited on page 9.

[35] Andrej Karpathy. The spelled-out intro to neural networks and backpropagation: Building
micrograd, 2018. URL https://www.youtube.com/watch?v=VMj-3S1tku0. Cited on page
9.

[36] Takeru Miyato, Toshiki Kataoka, Masanori Koyama and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. In International Conference on Learning Representations,
2018. Cited on page 9.

12

https://research.google/blog/beyond-automatic-differentiation/
https://research.google/blog/beyond-automatic-differentiation/
http://github.com/google/jax
http://github.com/google/jax
https://www.youtube.com/watch?v=VMj-3S1tku0

[37] Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
learner. arXiv:2306.06101, 2024. Cited on page 10.

[38] Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by D-adaptation. In
International Conference on Machine Learning, 2023. Cited on page 10.

[39] Maor Ivgi, Oliver Hinder and Yair Carmon. DoG is SGD’s best friend: A parameter-free
dynamic step size schedule. In International Conference on Machine Learning, 2023. Cited on
page 10.

[40] Kaiming He, X. Zhang, Shaoqing Ren and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. International Conference on Computer
Vision, 2015. Cited on page 19.

[41] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUs). arXiv:1606.08415,
2016. Cited on page 19.

[42] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra and Christopher Ré. FlashAttention: Fast
and memory-efficient exact attention with IO-awareness. arXiv:2205.14135, 2022. Cited on
page 22.

[43] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei et al. Language models
are unsupervised multitask learners. Technical report, OpenAI, 2019. Cited on pages 23 and 27.

[44] Andrej Karpathy. nanoGPT code repository, 2022. URL https://github.com/karpathy/
nanoGPT. Cited on pages 23, 27, and 28.

[45] Kaiming He, X. Zhang, Shaoqing Ren and Jian Sun. Deep residual learning for image recogni-
tion. Computer Vision and Pattern Recognition, 2015. Cited on page 27.

[46] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009. Cited on page 27.

[47] Andrej Karpathy. Tiny Shakespeare. https://huggingface.co/datasets/karpathy/
tiny_shakespeare, 2022. Cited on page 27.

[48] Ronen Eldan and Yuanzhi Li. TinyStories: How small can language models be and still speak
coherent English? arXiv:2305.07759, 2023. Cited on page 27.

[49] Aaron Gokaslan and Vanya Cohen. OpenWebText corpus. http://Skylion007.github.
io/OpenWebTextCorpus, 2019. Cited on page 27.

13

https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://huggingface.co/datasets/karpathy/tiny_shakespeare
https://huggingface.co/datasets/karpathy/tiny_shakespeare
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

Contents of the Appendices

Appendix A The Modula Package 15

A.1 The Vector class . 15

A.2 The Module class . 15

A.3 Normalization in Modula . 15

A.4 Overhead . 16

Appendix B Module and Network Design 17

B.1 Atomic modules . 17

B.2 Bond modules . 18

B.3 Module broadcasting . 19

B.4 Mass taring . 20

B.5 Compound modules and neural networks . 20

B.6 Case study I: Attention . 22

B.7 Case study II: GPT . 23

Appendix C More on Smoothness and Sharpness 24

C.1 Underlying every estimate: The Gauss-Newton decomposition 24

C.2 Sharpness under composition and concatenation 24

C.3 Sharpness under module broadcasting . 24

C.4 Smoothness estimates for common error measures 25

Appendix D Experimental Details 27

D.1 Datasets . 27

D.2 Architectures . 27

D.3 Hardware . 28

D.4 Comparing to standard nanoGPT architecture . 28

D.5 Full sweeps . 29

D.6 Mass allocation . 29

D.7 Context length . 30

D.8 Full sweep results . 30

Appendix E Proofs 35

14

Appendix A The Modula Package

We created a Python package called Modula that realizes our module framework in code. Modula
supplements PyTorch’s Tensor class with two new classes: Vector and Module.

A.1 The Vector class

The Vector class is used to store the weights of a module. It allows for basic algebraic operations
to be performed on module weights without needing to write for loops over lists of tensors. For
example, if v_1 and v_2 are vectors with the same sub-structure, then one may write expressions such
as v_1 + v_2 for the vector sum, or v_1 * v_2 for the elementwise product. Internally, a Vector
stores a list of tensors and implements operations using efficient PyTorch foreach primitives.

A.2 The Module class

The most significant aspect of the Modula package is the Module class. A Module must have six
attributes: two float attributes, namely mass and sensitivity. And four methods:

• forward(w: Vector, x: Tensor) -> Tensor # returns an output tensor

• initialize() -> Vector # randomly samples a weight vector

• normalize(w: Vector) # normalizes w to have unit modular norm

• regularize(w: Vector, strength: float) # regularizes w in-place

The norm of a module is not specifically implemented, instead we use the normalize method which is
how the norm is directly used in optimization.

We refer to modules with hand-specified attributes as bonds if they have no weights and atoms if
they have weights. Modules formed by combining existing modules are called compounds. Modula
automatically constructs the attributes of compound modules. We provide reference implementations
for many common modules—see Appendix B. We equip atoms with their natural operator norm, and
compute spectral norms via online power iteration. Reference modules may be imported as follows:

from modula.bond import Identity, ReLU, Abs, FunctionalAttention
from modula.atom import Linear, Embed, Conv2D
from modula.compound import ResMLP, ResCNN, Attention, GPT

To make building new compounds easier, Modula overloads the following operations on modules:

• M_2 @ M_1 # composes module M_2 with module M_1

• (M_1, M_2) # acts as a tuple module in any further composition

• M_1 + M_2 # returns the module sum

• a * M # multiplies module M by scalar a

• M ** L # returns the Lth iterate of module M

For example, the compound

(L/(L-1) * Identity() + 1/L * M()) ** L

builds an L-layer residual network from base module M. Comparing with Equation (3.10), we see that
Modula expressions closely resemble their mathematical counterparts.

Finally, all modules come with a convenience method tare(m: float), which resets the module
mass to m, with default m=1.

A.3 Normalization in Modula

We can normalize any base optimizer in the modular norm using the following pattern:

15

delta_w = optim(w.grad()) # get update from base optimizer
net.normalize(delta_w) # normalize update in the modular norm
w -= lr * delta_w # apply update to weights

Computation of net.normalize(delta_w) requires an efficient estimation of the spectral matrix
norm, in the last two dimensions, of the constituent tensors of delta_w; this can be done very quickly
to reasonable accuracy using power iteration. We implement this by storing a running estimate of the
top singular vector u for each constituent tensor of delta_w. At initialization, u is sampled Gaussian,
and each time we normalize a weight update, the previous update’s estimated singular vector is used
as the starting value for the power iteration. This enables us to use just two steps of power iteration
per weight update. Indeed, for any base optimizer with momentum, successive weight updates should
be fairly close; for training without momentum more steps of power iteration may be required.

A.4 Overhead

To test the overhead of normalization in the modular norm, we trained a width 64 ResMLP with 8
blocks and block-depth 2 for 10k steps on the CIFAR-10 dataset. We repeated the experiment with
and without normalization, and in each case with three different random seeds. Without normalization,
the training took 101± 1 seconds, and with normalization the training took 124± 1 seconds. So in
this experiment, the overhead of modular normalization was around 23%.

We note that the user of the Modula package is free to write new atomic modules with cheaper or
more efficient normalize functions. For instance, the Frobenius norm can be used as a proxy for
the spectral norm whenever the weight updates have low stable rank [14, 31]. And we note in §5
that one could explore more exotic norms such as the L∞–L∞ operator norm, which is cheaper to
compute than the standard spectral norm. Beyond these suggestions, one could explore CUDA-level
optimizations to spectral norm computation, which is something that we have not explored.

16

Module M M.forward M.mass M.sensitivity M.norm

Linear W ,x 7→
√

dout

din
Wx 1 1 W 7→ ∥W ∥∗

Embed E,x 7→
√
dEx 1 1 E 7→ maxi ∥E·i∥2

Conv2D C,x 7→ 1
K2

√
dout

din
C ⊛ x 1 1 C 7→ maxij ∥C··ij∥∗

Table 2: Three atomic modules. These are the three atoms implemented in Modula—enough to
build ResNet and GPT networks. By including explicit dimensional scale factors in the forward
functions, we are able to use the standard spectral norm ∥·∥∗ and Euclidean norm ∥·∥2, rather than
their rescaled versions. din and dout denote the input and output dimension of the Linear module. d
denotes the embedding dimension of the Embed module. K denotes the kernel size of a Conv2D
module with dout output channels and din input channels. ⊛ denotes convolution.

Appendix B Module and Network Design

In this appendix, we list the basic, hand-declared modules that serve as building blocks for more
complicated neural networks. Then we go on to show how these modules may be combined to yield
interesting neural networks. This includes discussion of module broadcasting (Appendix B.3) and
mass taring (Appendix B.4). The appendix culminates with case studies on attention (Appendix B.6)
and transformers (Appendix B.7).

B.1 Atomic modules

An atomic module or atom for short is a module with nonzero mass and nonzero parameter space,
whose attributes are specifically declared rather than derived. Setting an atom’s mass to zero has the
effect of freezing its weights under normed optimization.
Atom 1 (Linear). For positive integers dout and din, the linear module Linear(dout, din) corresponds
to the standard linear layer with din input features and dout output features. As a module, it has input
space X = Rdin , output space Rdout and weights W = Rdout×din the space of dout × din matrices.

Its four attributes (forward function, mass, sensitivity, norm) are given in Table 2. Note the presence
of the

√
dout/din factor in the forward function: this convention means that we can work with the

standard L2 operator norm ∥·∥∗ rather than the RMS-RMS operator norm.

Writing f = Linear(dout, din).forward, its derivative and second derivative at (W ,x) are given by:

∇f ⋄ (∆W ,∆x) =
√
dout/din ((∆W)x+W (∆x)) , (B.1)

(∆W ,∆x) ⋄ ∇2f ⋄ (∆W̃ ,∆x̃) =
√

dout/din

(
(∆W)(∆x̃) + (∆W̃)(∆x)

)
. (B.2)

from which we conclude that Linear(dout, din) is well-normed, using the RMS norms on its input
and output, so long as its arguments satisfy:

∥W ∥∗, ∥x∥RMS ≤ 1. (B.3)

These conditions will be automatically satisfied for many neural networks under orthogonal initial-
ization of the weights, and especially if a linear module is immediately preceded by something like a
LayerNorm module. Moreover, orthogonal initialization guarantees that the well-normed inequality

∥∇f ⋄∆x∥RMS ≤ ∥x∥RMS (B.4)

holds tightly in nearly-square matrices at initialization, which is important for getting good signal
propagation through the whole network.

Moreover, inspection of the second derivative formula above shows it is always (0, 1, 0)-sharp with
respect to the RMS norms on the input and output spaces.

17

Atom 2 (Embed). For positive integers n and d, the embedding module Embed(n, d) corresponds to
n class, token, or positional embeddings in a d-dimensional embedding space. As a module, it has
input space Rn, output space Rd and weights W = Rd×n the space of d× n matrices.

Its attributes are listed in Table 2.

This is at first sight similar to the linear module, the key difference being that in applications we
expect the inputs of Embed(n, d) to be one-hot vectors; as such we consider its input space to carry
the L1-norm.

As for the linear module, Embed(n, d) is well-normed and (0, 1, 0)-sharp with respect to the
L1-norm on the input space Rn and the RMS norm on the output space Rd.

Atom 3 (Conv2D). For positive integers dout, din,K as well as H,W , the 2D-convolution module
Conv2D(dout, din,K) corresponds to a convolutional layer with a K × K kernel; din and dout
are the number of channels for the input and output respectively (we suppress optional stride and
padding arguments here for simplicity). Its input space is X = Rdin×H×W , its output space is
Y = Rdout×H×W and its weights are W = Rdout×din×K×K .

Its attributes are listed in Table 2.

In fact, one could alternatively build Conv2D(dout, din,K) starting from K2 different
Linear(dout, din) modules (of mass 1/K2 each) and concatenating them, and composing with a
(parameter-less) convolution module. As such, Conv2D is well-normed and (0, 1, 0)-sharp. However,
in our Modula package, we choose to explicitly declare Conv2D so as to take advantage of Pytorch’s
efficient implementation of convolution; the presentation here reflects this.

B.2 Bond modules

A bond module or bond is a module with zero mass and zero parameter space. They are the “glue”
between the atomic modules, needed to construct complex neural networks.

Note that we need not specify a weight space, or mass or norm arguments for a bond module.
Moreover, when discussing whether a bond module is (α, β, γ)-sharp, the inequalities for α and β
are vacuous; thus for bond modules we will abbreviate this notion to γ-sharp.

To begin, we need two bond modules that are essentially “utility”, as they are crucial for defining
basic secondary module operations. These modules are also “type polymorphic” in the sense that
they work with any underlying vector space.
Bond 1 (Add). For any vector space Y , the adder module Add has inputs Y × Y and outputs Y . It
has forward function

Add.forward : (y1,y2) 7→ y1 + y2 (B.5)
and sensitivity 1. Its significance is that it allows for concatenable modules to be added:

M1 +M2 := Add ◦ (M1,M2). (B.6)

For any norm ∥·∥Y on the vector space Y , Add is well-normed with respect to the L1 combination
norm ∥(y1,y2)∥Y×Y := ∥y1∥Y + ∥y2∥Y on its input space. Furthermore, Add is 0-sharp.
Bond 2 (Mulλ). For any normed vector space Y and real number λ the scalar multiplier module
Mulλ has inputs Y and outputs Y . Its forward function is:

Mulλ.forward : y 7→ λ ∗ y (B.7)

and its sensitivity is |λ|. Its significance is that it allows for scalar multiplication of modules:

λ ∗M := Mulλ ◦M. (B.8)

It is well-normed with respect to any norm on Y , and 0-sharp. When λ = 1, we call this the identity
module Identity = Mul1. Note that λ ∗ Identity = Mulλ for any λ.

The remaining bond modules are used explicitly as non-linearities in neural networks.
Bond 3 (Abs). In any dimension d, the absolute value bond module Abs has inputs and outputs Rd,
forward function

Abs.forward : (x1, . . . , xd) 7→ (|x1|, . . . , |xd|) (B.9)
and sensitivity 1. It is well-normed for any norm on Rd.

18

Bond 4 (ReLU and ScaledReLU). In any dimension d, we define the “rectified linear unit” bond
module ReLU to have input space X ⊂ Rd, output space Y = Rd, forward function

ReLU.forward : (x1, . . . , xd) 7→ (max(0, xi))i=1,...,d. (B.10)

and sensitivity 1/
√
2. For this choice of sensitivity, ReLU is not well-normed with input space X set

to the full Rd. However, it is well-normed if the input space is, informally, a set of dense vectors with
balanced signs. For illustration, ReLU is rigorously well-normed with respect to the input space

X = {sign t : for t ∈ Rd with # positive entries = # negative entries}, (B.11)

and RMS norm on inputs and ouputs. For more on this design decision, see [40]. We also define
ScaledReLU :=

√
2 ∗ ReLU to be the unit sensitivity counterpart to ReLU.

Bond 5 (GELU and ScaledGeLU). The “Gaussian error linear unit” bond module GELU [41] is
essentially a smoothed version of ReLU. In any dimension d, GELU has inputs X ⊂ Rd, outputs
Y = Rd and forward function

GELU.forward : (x1, . . . , xd) 7→ (xiΦ(xi))i=1,...,xd
(B.12)

where Φ(x) =
∫ x

−∞
1√
2π

e−t2/2dt is the cumulative distribution function of the standard Gaussian.

GELU is well-normed in the same sense as ReLU. We similarly set ScaledGeLU =
√
2 ∗ GELU.

Bond 6 (MeanSubtract). For any dimension d, the mean subtraction module MeanSubtract has
inputs and outputs Rd. It centers its input to have mean zero. The forward function is given by:

MeanSubtract.forward : (x1, . . . , xd) 7→ (x1 − x̄, . . . , xd − x̄) (B.13)

and has sensitivity 1. It is well-normed, and since it is a linear mapping, it is 0-sharp.
Bond 7 (RMSDivide). For any dimension d, the RMS division bond module RMSDivide has inputs
and outputs Rd. It normalizes its input to have unit RMS norm. The forward function is given by:

RMSDivide.forward : x 7→ x

∥x∥RMS
=

√
dx

∥x∥2
. (B.14)

and has sensitivity 1. While it is not automatically well-normed, as long as its inputs have ∥x∥RMS ≈
1, the required inequality is not very far off. Similarly, it is approximately 1-sharp.
Bond 8 (LayerNorm). For any positive integer d, the layer normalization bond module LayerNorm
has inputs and outputs Rd, and is just defined as the composition of modules

LayerNorm = RMSDivide ◦MeanSubtract. (B.15)

As with RMSDivide, it is approximately well-normed and approximately 1-sharp.

B.3 Module broadcasting

Let us briefly discuss a supplementary module operation, which we refer to as module broadcasting.
Definition 6. Suppose M is a module with inputs X , outputs Y and weights W . Then for any h ≥ 1,
the h-times-broadcast of M is the module M(h) with the same weight space W , mass, sensitivity and
norm as M, but inputs the Cartesian power X h = X × . . .×X and outputs Yh = Y × . . .×Y , and
forward function

(w, (x1, . . . ,xh)) 7→ (M.forward(w,x1), . . . ,M.forward(w,xh)). (B.16)

Since this is not defining a module with a new set of weights, we will usually just refer to the broadcast
module by the same name M, and consider this as just an extension of its forward function.

For example, this allows us to define the action of linear modules Linear(dout, din) on inputs x ∈
Rℓ×din to give outputs y ∈ Rℓ×dout , where ℓ is the context length parameter for a transformer (see
Appendix B.6, Appendix B.7, where it is also crucial for the construction of multi-headed attention).
Additionally, one can view the basic Abs, ReLU and GELU modules as being broadcasts of the usual
one-variable functions to take inputs and outputs in Rd.

Let us briefly note:

19

Proposition 6. If M is well-normed, then so is any broadcast of M taking X h to Yh, as long as the
norms on X h and Yh are taken to be either the “mean Lp” norms

∥(x1, . . . ,xh)∥Xh =

(
1

h
(∥x1∥pX + . . .+ ∥xh∥pX)

)1/p

(B.17)

∥(y1, . . . ,yh)∥Yh =

(
1

h
(∥y1∥pY + . . .+ ∥yh∥pY)

)1/p

(B.18)

for 1 ≤ p ≤ ∞; when p = ∞ this is just the max norm. In the case that M is a bond module (so
W = 0, any scalar multiple of the mean Lp norm can be used (including the standard Lp norm).

The situation for sharpness is a bit more complicated; we discuss this in C.3.

B.4 Mass taring

In order to make working with the mass parameter of modules a bit easier, let us introduce an auxiliary
operation:

Definition 7 (Tare). For any module M and positive real number mnew, the module tare(M,mnew)
has the exact same inputs, outputs and weights as M; the same forward function, the same sensitivity
and the same norm; but has mass

tare(M,mnew).mass = mnew. (B.19)

This resets the mass of M. If M is a compound module, one could also reset the masses of all its
submodules, by taking tare(Mk,mnew ∗ Mk.mass

M.mass) for every submodule Mk, to “reconstruct” the
computation graph for tare(M,mnew).

This way, one can build complex modules starting from atomic modules with unit masses, and then
using tare later to reset their masses to desired quantities for better feature learning with normed
descent as in Proposition 3.

B.5 Compound modules and neural networks

Composition, concatenation and the secondary operations of addition, scalar multiplication and iter-
ated concatenation allow us to build a wide variety of neural networks which thus come automatically
endowed with the modular norm.

Deep neural networks are typically built as long series of compositions. Let us introduce some
terminology:

Definition 8 (Blocks and deep networks). A deep neural network is a module M formed by a
composition

M = OutputLayer ◦ BlockL ◦ . . . ◦ Block1 ◦ InputLayer (B.20)

where InputLayer,Block1, . . . ,BlockL,OutputLayer are modules; the number of blocks L ≥ 1 is
the depth of the network.

Typically, each of Block1, . . . ,BlockL will be copies of the same module (allowing them to take
different weight values, of course), so that the network can be written as an iterated composition

M = OutputLayer ◦ BlockL ◦ InputLayer. (B.21)

InputLayer,Block,OutputLayer can be principle be any module one likes, but usually InputLayer is
often some form of embedding module, and OutputLayer is usually a linear module.

As for the form of Block, we found the following design principle to be quite useful in practice:

Arrange so that each Block has unit sensitivity.

This ensures that the sensitivity of the whole network stays bounded as L → ∞ (this will also be the
case if we ensure that Block.sensitivity = 1+O(1/L), but unit sensitivity has the advantage that the
modular norm becomes very explicit). With this in mind:

20

Compound 1 (Residual network). Suppose that M is a module of unit sensitivity whose inputs and
outputs are the same space X . For any L ≥ 1, consider the residual block

Block = L−1
L ∗ Identity + 1

L ∗M (B.22)

and write ResL(M) = BlockL. This is of unit sensitivity, well-normed if M is, and moreover by
Proposition 4 is sharp with O(1) sharpness if M is.

A general residual network with residue M is any neural network of the form

OutputLayer ◦ ResL(M) ◦ InputLayer. (B.23)

In practice, we will want to apply one more operation: we will want to tare the mass of the residual
blocks. To this end, the residual network with residue M, depth L and total block mass m > 0 is

OutputLayer ◦ tare(ResL(M),m) ◦ InputLayer. (B.24)

Let us give two basic example of residual networks.

Compound 2 (ResMLP). This is a simple residual variation on the multi-layer perceptron. For a
width d ≥ 1, consider the unit sensitivity module

M(d) = MeanSubtract ◦ Abs ◦ Linear(d, d) ◦ RMSDivide. (B.25)

This particular order of operations is inspired by a reecent paper of Yang et al. [4].

We invite the reader to compare this to something like ReLU ◦ Linear(d, d) ◦ LayerNorm: three
core operations are being performed (but in a different order in both cases): the inputs are being
normalized; the inputs are being centered; and the inputs are passed through a nonlinearity that
mutates just the negative coordinates.

The ResMLP network has as its residue an iterated composition of M(d), where the number of copies
of M(d) in each residue is called the block depth and denoted B. It also has just linear initial and
final modules. Thus the ResMLP network of depth L, width d, block depth B and total block mass
m > 0 is

ResMLP = Linear(dout, d) ◦ tare(ResL(M(d)B),m) ◦ Linear(d, din) (B.26)

where din is the number of features of the data, and dout the desired number of output features of the
network.

Usually we suggest taking B = 1 or 2, and m ∼ 1.

Compound 3 (ResNet). This is a version of ResNet for image classification tasks. For a width d ≥ 1
and kernel size K, consider similarly to above the unit sensitivity module

M(d,K) = MeanSubtract ◦ Abs ◦ Conv2D(d, d,K) ◦ RMSDivide. (B.27)

As in the ResMLP, the ResNet network is a residual network with as its residue an iterated compo-
sition of B copies of M(d,K) where B is the block depth. Its initial and final modules are given
by

InputLayer = Conv2D(d, cin,K) (B.28)
OutputLayer = Linear(dout, dtotal) ◦ AvgPool (B.29)

where AvgPool is an additional bond module implementing adaptative average pooling. Here, cin is
the number of channel dimensions of the input image, dtotal = d ∗H ∗W is the total dimension of
the hidden representation, and dout is the desired number of output features (note that in Modula we
include an additional dummy module Flatten to change the tensor shape before passing through the
final layer). The ResNet network of depth L, width d, block depth B, kernel size K and total block
mass m is thus:

ResNet = OutputLayer ◦ tare(ResL(M(d,K)B),m) ◦ InputLayer. (B.30)

As defaults, we suggest taking B = 2,K = 3 and m ∼ 20.

21

B.6 Case study I: Attention

Let us now focus on the construction of a single multi-headed attention module in this framework.
The attention module should have, as both inputs and outputs, X = Rℓ×d where ℓ is the context
length and d is the embedding dimension. The attention module itself will depend on three additional
dimensional arguments:

• h, the number of heads;
• dQ, the key/query dimension;
• dV , the value dimension;

as well as an ℓ× ℓ matrix mask, which we usually take to be either

maskij =

{
0 if i ≥ j

−∞ otherwise
(B.31)

for causal attention, and mask = 0 for non-casual attention.

The core of the attention module is a bond module which we call functional attention.
Bond 9 (FuncAttention). Take positive integers ℓ, dQ, dV and mask matrix mask. The correspond-
ing functional attention is the bond module of unit sensitivity, inputs X = Rℓ×dQ ×Rℓ×dQ ×Rℓ×dV ,
outputs Y = Rℓ×dV , and forward function

FuncAttention.forward(q,k,v) = softmax

(
qk⊤

dQ
+mask

)
v. (B.32)

Moreover, we set FuncAttention.sensitivity = 1.

In theory, one could try break up attention further into constituent more basic modules (such as scaled
dot product, softmax, etc), but keeping FuncAttention as the basic unit one to leverage efficient
implementations of attention such as FlashAttention [42].

In fact, a perhaps surprising result is that with the above 1
dQ

scaling of the dot product, we can
estimate the sensitivity and sharpness of FuncAttention. This relies on giving norms for the input
and output spaces; these norms are chosen to be

∥(q,k,v)∥X = ∥q∥∞RMS + ∥k∥∞RMS + ∥v∥∞RMS, ∥y∥Y = ∥y∥∞RMS (B.33)

where ∥·∥∞RMS is the infinity-RMS-norm on Rℓ×d defined from the standard root-mean-square norm
∥·∥RMS on Rd by

∥x∥∞RMS := max
i=1,...,ℓ

∥xi∗∥RMS. (B.34)

Proposition 7. Over the space of inputs q,k,v with each ∥q∥∞RMS, ∥k∥∞RMS, ∥v∥∞RMS ≤ 1, the
functional attention module FuncAttention is well-normed, and moreover is sharp with sharpness
constant γ = 3.

The proof is given in Appendix E. We thus choose to adopt a 1
dQ

-dot-product scaling in our imple-
mentation of attention– a rigorous bound as above is not possible for 1√

dQ

-scaling, for instance.

We can then immediately define a single head of attention.
Compound 4 (Single-headed attention). For positive integers ℓ, d, dQ, dV and a choice of mask,
take four instances of the linear module, for the query, key, value and exit parameters:

Query = Linear(dQ, d) (B.35)
Key = Linear(dQ, d) (B.36)

Value = Linear(dV , d) (B.37)
Exit = Linear(d, dV) (B.38)

which by broadcasting we consider to have inputs of shape Rℓ×d. The single-headed attention
Attention module is then the composition

Attention = Exit ◦ 1

3
∗ FuncAttention ◦ (Query,Key,Value). (B.39)

The scalar multiplication factor of 1
3 ensures that Attention has unit sensitivity.

22

For multiple heads of attention, we simply take advantage of module broadcasting (Definition 6):
Compound 5 (Multi-headed attention). For positive integers ℓ, d, h, dQ, dV and a choice of mask,
take four instances of the linear module:

Query = Linear(h ∗ dQ, d) (B.40)
Key = Linear(h ∗ dQ, d) (B.41)

Value = Linear(h ∗ dV , d) (B.42)
Exit = Linear(d, h ∗ dV) (B.43)

which by broadcasting we consider to have inputs of shape Rℓ×d. The multi-headed attention
MultiHeadAttention module is then the composition:

MultiHeadAttention = Exit ◦ 1

3
∗ FuncAttention(h) ◦ (Query,Key,Value) (B.44)

where FuncAttention is broadcast over the heads dimension. Note that in Modula, we do this
by creating dummy bond modules called AddHeads and RemoveHeads to reshape the tensors and
create/remove the explicit head dimension.

As in the single-headed case, the scalar multiplication factor of 1
3 ensures unit sensitivity.

B.7 Case study II: GPT

Let us now build an auto-regressive transformer similar to GPT-2 [43] or nanoGPT [44] in this
framework. Fix positive integers ℓ, d, h, dQ, dV (usually h divides d and dQ = dV = d/h). In
addition to Compound 5 from the earlier, consider the 2-layer MLP:

MLP = Linear(d, 4d) ◦
√
2 ∗ GELU ◦ Linear(4d, d) (B.45)

where we are using the scalar correction so that GELU has unit sensitivity, and using module
broadcasting so that it can take inputs and outputs Rℓ×d. Fix a depth L ≥ 1, and consider the
following two modules, whose input and output spaces are Rℓ×d:

BlockMLP := 2L−1
2L ∗ Identity + 1

2L ∗MLP ◦ LayerNormd (B.46)

BlockAttn :=
2L−1
2L ∗ Identity + 1

2L ∗MultiHeadAttention ◦ LayerNormd (B.47)

where LayerNormd refers to taking LayerNorm in the embedding dimension (i.e. the rows of matrices
in Rℓ×d, as distinct from normalizing all ℓ× d coordinates together). This can alternately be thought
of as just taking the usual LayerNorm on Rd and broadcasting it to take inputs and outputs Rℓ×d.

Suppose that N is the number of tokens. For the initial module, take two embeddings of the N tokens
and ℓ context positions

Embedtok = Embed(N, d), Embedpos = Embed(ℓ, d) (B.48)

and form the mass one, sensitivity one module

InputLayer = tare(12 ∗ Embedtok +
1
2 ∗ Embedpos, 1). (B.49)

The final module is just

OutputLayer = Linear(N, d) ◦ LayerNormd. (B.50)

The depth L ≥ 1, width d, total block mass m > 0 GPT module is thus

GPT = OutputLayer ◦ tare((BlockMLP ◦ BlockAttn)L,m) ◦ InputLayer. (B.51)

We suggest, as a default value, a total block mass of m ∼ 5.

23

Appendix C More on Smoothness and Sharpness

C.1 Underlying every estimate: The Gauss-Newton decomposition

All our estimates of sharpness for compound modules, as well as the smoothness estimate Proposi-
tion 5 for loss functions, depend on an application of the chain rule to compute second derivatives
which in the optimization context is sometimes called the Gauss-Newton decomposition.

Namely, if f : Rd0 → Rd1 and g : Rd1 → Rd2 , then the second derivative of their composite
h = g ◦ f is computed by

v ⋄ ∇2h ⋄w = (∇f ⋄ v) ⋄ ∇2g ⋄ (∇f ⋄w) +∇g ⋄ (v ⋄ ∇2f ⋄w) (C.1)

for any v,w ∈ Rd0 , or for short

∇2h(·, ·) = ∇2g(∇f(·),∇f(·)) +∇g(∇2f(·, ·)). (C.2)

Indeed, this amounts to simply the following expression for partial derivatives:

∂2h

∂xi∂xj
=
∑
k,l

∂2g

∂yk∂yl

∂fk
∂xi

∂fl
∂xj

+
∑
k

∂g

∂yk

∂2fk
∂xi∂xj

. (C.3)

C.2 Sharpness under composition and concatenation

Here, we state the two formulae for computing the sharpness of a composition and a concatenation of
two modules. The proofs are given in Appendix E.
Proposition 8 (Sharpness under composition). Suppose that M2 and M1 are well-normed, compos-
able modules that are respectively (α2, β2, γ2)-sharp and (α1, β1, γ1)-sharp. Under the shorthand
that pk ≡ Mk.mass

M1.mass+M2.mass and µk ≡ Mk.sensitivity, the composite M2 ◦M1 is (α, β, γ)-sharp for:

α = 1
µ2
p21α1 + p22α2 +

2
µ2
p1p2β2 +

1
µ2
2
p21γ2, (C.4)

β = p1β1 + µ1p2β2 +
µ1

µ2
p1γ2, (C.5)

γ = µ2γ1 + µ2
1γ2. (C.6)

Proposition 9 (Sharpness under concatenation). Suppose that M1 and M2 are well-normed, concate-
natable modules that are respectively (α1, β1, γ1)-sharp and (α2, β2, γ2)-sharp. Under the shorthand
that pk ≡ Mk.mass

M1.mass+M2.mass and µk ≡ Mk.sensitivity, the tuple (M1,M2) is (α, β, γ)-sharp for:

α = p21α1 + p22α2, (C.7)
β = p1β1 + p2β2, (C.8)
γ = γ1 + γ2. (C.9)

Taken together, Propositions 8 and 9 specify a recursive procedure for computing the sharpness of
any compound module that is built from a set of well-normed modules of known sharpness.
Remark 1. These two sets of formulas are actually associative, as the reader may verify using their
favorite computer algebra package. This means, for instance, that if M1,M2,M3 are successively
composable, well-normed and each (αk, βk, γk)-sharp, then the two sets of sharpness estimates
coming from applying the above formulas for M3 ◦ (M2 ◦M1) and (M3 ◦M2) ◦M1 actually coincide.

C.3 Sharpness under module broadcasting

Suppose M is a well-normed module with inputs X , outputs Y and weights W , and suppose moreover
that it is (α, β, γ)-sharp. The broadcast module M(h) has the same weights, mass, sensitivity and
norm, but takes X h to Yh.

By Proposition 6, M(h) is well-normed, as long as the norms on X h and Yh are taken to be

∥(x1, . . . ,xh)∥Xh = S ∗ (∥x1∥pX + . . .+ ∥xh∥pX)
1/p (C.10)

∥(y1, . . . ,yh)∥Yh = S ∗
(
∥y1∥pY + . . .+ ∥yh∥pY

)1/p
(C.11)

24

for 1 ≤ p ≤ ∞; unless M is a bond module (and thus weight-less), we must take S = h−1/p,
otherwise S can be any positive scalar.

A natural question is whether M(h) is also sharp, and if so what its sharpness constants are, with
respect to these norms. More or less the same proof as for Proposition 6 shows that the α and β
bounds for sharpness are always true, with the same α, β. The γ bound is trickier however, and
depends subtly on the chosen S, p. We highlight three cases where one can say something interesting.

Case 1. p = ∞, S = 1. For the L∞ norm, we have that M(h) is (α, β, γ)-sharp with the same α, β, γ
by a more or less immediate proof.

Case 2. p < ∞, S = 1. For the “standard” Lp-norms, we have that M(h) is (α, β, γ)-sharp with the
same α, β, γ. The proof is direct, using the inequality

(xp
1x̃

p
1 + . . .+ xp

hx̃
p
h)

1/p ≤ (xp
1 + . . .+ xp

h)
1/p(x̃p

1 + . . .+ x̃p
h)

1/p (C.12)

for any positive reals x1, . . . , xh, x̃1, . . . , x̃h; however this is a very weak inequality and so leads to
very pessimistic sharpness estimates for large h.

Case 3. p = 2, S = 1/
√
h. This is the “RMS norm” case. As in Case 2, one could use a very weak

inequality to obtain the pessimistic result that M(h) is (α, β,
√
h ∗ γ)-sharp. However, one could

also make the following observation: if h is large, and x1, . . . , xh are sampled from any normal
distribution N(µ, σ2), then(

1

h
(x4

1 + . . .+ x4
h)

)1/2

≈
√
3

(
1

h
(x2

1 + . . .+ x2
h)

)
. (C.13)

In particular, this justifies the statement that “for large h, the broadcast module M(h) is approximately
(α, β,

√
3 ∗ γ)-sharp”. While in actual deep learning contexts, the assumption that x1, . . . , xh are

sampled from a normal distribution may not be valid, one should still expect the ratio between the
two sides of Equation (C.13) to stay O(1) as h → ∞, and so even if the “

√
3 rule” is insufficient, the

effective sharpness of the broadcast module should not blow up as h → ∞.

C.4 Smoothness estimates for common error measures

Suppose ℓ : Y × T → R is an error measure. In Proposition 5, we showed that smoothness estimates
on ℓ together with sharpness of a neural network imply smoothness of the corresponding average
error loss function. The precise estimates are that ℓ is σ-Lipschitz and τ -smooth in the module output,
in the sense that:

|∇yℓ(y, t) ⋄∆y| ≤ σ ∥∆y∥Y for all ∆y ∈ Y and t ∈ T ; (C.14)

|∆y ⋄ ∇2
yyℓ(y, t) ⋄∆ỹ| ≤ τ ∥∆y∥Y ∥∆ỹ∥Y for all ∆y,∆ỹ ∈ Y and t ∈ T . (C.15)

We now present estimates on σ and τ for square and cross-entropy error. Both estimates will be in
terms of the value of the average loss function L itself, rather than being truly global over the entire
output space Y . Thus, to apply them to real learning problems, one should measure the average loss
L at initialization, and use this for estimates for σ and τ ; we are implicitly making the assumption
that under gradient descent the loss decreases.

Square error

Consider square error for a d-class classification problem. Thus, Y = Rd and T = {1, . . . , d}.
Consider the RMS norm on Y , and define the error function

ℓ(y, t) =
1

2d

(
y21 + . . .+ (yt −

√
d)2 + . . .+ y2d

)
for y, t ∈ Y × T . (C.16)

(the slightly non-standard scalings are due to the choice of RMS norm on Y). The first and second
partial derivatives of ℓ are given by

∂ℓ

∂yi
(y, t) =

1

d
(yi − δit

√
d),

∂2ℓ

∂yi∂yj
(y, t) =

1

d
δij (C.17)

25

The desired constants σ, τ can then be computed as maxima:

σ = max
∥z∥RMS=1

∑
i

∂ℓ

∂yi
zi, τ = max

∥z∥RMS=1

∑
i,j

∂2ℓ

∂yi∂yj
zizj (C.18)

which from the above formulas amounts exactly to

σ =
√

ℓ(y, t), τ = 1. (C.19)

To translate this into a bound for the average loss function L, note that square root is a concave
function. Thus if we have outputs y1, . . . ,yB with true classes t1, . . . , tB , Jensen’s inequality yields

1

B

∑√
ℓ(yb, tb) ≤

√
1
B

∑
ℓ(yb, tb) =

√
L (C.20)

allowing us to use σ =
√
L as our estimate for Proposition 5.

Cross-entropy error

Consider cross-entropy error for a d-class classification problem. Thus, Y = Rd and T = 1, . . . , d.
For y ∈ Rd and t ∈ T , write

pt(y) =
eyt

Σjeyj
(C.21)

and consider the error function
ℓ(y, t) = − log(pt(y)). (C.22)

The first and second partial derivatives of ℓ are given by

∂ℓ

∂yi
(y, t) = pi − δit,

∂2ℓ

∂yiyj
(y, t) = δijpi − pipj . (C.23)

Consider again the RMS norm on Y . An estimate on σ can thus be computed as

max
∥z∥RMS=1

∑
i

∂ℓ

∂yi
zi =

√
d

(∑
i

(pi − δit)

)1/2

≤
√
d ∗

√
ℓ (C.24)

using the basic fact that if p1, . . . , pd are non-negative numbers that sum to 1, then

p21 + . . .+ (pt − 1)2 + . . .+ p2d ≤ − log(pt). (C.25)

(Indeed, for fixed pt, the left hand side is maximized at p1 = 1− pt and all other pi = 0; one then
easily checked that 2(p− 1)2 ≤ − log(p) for all 0 < p ≤ 1.)

A similar concavity argument to the square error case then enables us to use σ =
√
d ∗

√
L as the

first derivative bound for average cross-entropy loss.

The second derivative bound depends on more subtle information geometry. Indeed, τ can be
computed to be

τ = d ∗ λ (C.26)
where λ is the largest eigenvalue of the matrix diag(p)− ppT . It is possible for this eigenvalue to
be quite large (for instance, if p1 = p2 = 1/2 and all other pi = 0, then λ = 1/2). However, the
average eigenvalue is

1

d

(
1−

∑
p2i

)
≤ d− 1

d2
<

1

d
. (C.27)

If we presumed that, in the course of a gradient descent optimizing the weights of a module M, the
output perturbations ∇M ⋄∆w are only generically aligned with the eigenvectors of diag(p)− ppT ,
then we could use the “effective” smoothness bound τ = 1.

Perhaps this is a dubious assumption however. A more conservative, but perhaps still dubious,
assumption comes from assuming that the logits y have roughly N(0, 1) entries—at least this could
be more or less true at initialization. In this case, the largest eigenvalue λ is with high probability
bounded as

λ ≤ 1/
√
d (C.28)

justifying “approximate” smoothness bound of τ =
√
d.

26

2

4

6

te
st

lo
ss

Adam
nanoGPT

Adam
modulaGPT

normed Adam
modulaGPT

width
32
64
128
256
512
1024

10−3 10−2

2

4

6

te
st

lo
ss

10−3 10−2

learning rate
10−1 100

blocks
2
4
8
16
32
64

Figure 5: Comparing to a standard transformer implementation. Since we used our own well-
normed GPT implementation for the experiments in this paper (here referred to as modulaGPT) we
wanted to check its performance was on par with a standard nanoGPT implementation. These plots
show learning rate sweeps for varying width and depth for Adam on nanoGPT, as well as Adam
and normed Adam on modulaGPT. Even without normed updates, the architectural changes and
orthogonal initialization used in Modula seem to already improve transfer compared to nanoGPT.

Appendix D Experimental Details

D.1 Datasets

All experiments with ResMLP and ResNet [45] are done with the CIFAR-10 [46] image dataset with
standard train and test splits. For data augmentation on the training set, we use random crop, random
horizontal flip and PyTorch AutoAugment.

For the GPT [43] transformer experiments, we compared three different datasets:

(a) The Shakespeare corpus, using character-level tokens [47];

(b) The TinyStories database [48] using sub-word level tokenization;

(c) OpenWebText using sub-word level tokenization [49].

No data augmentation was used on the language data. We used data splitting code from [44].

D.2 Architectures

Full details of the ResMLP, ResNet and GPT architectures we used are detailed in Appendices B.5
and Appendix B.7. In every experiment, we used:

(a) cross-entropy loss with no weight decay;

(b) block depth B = 2 for ResMLP and ResNet;

(c) kernel size K = 3 for ResNet;

(d) h = 8 heads for GPT, with query and value dimensions dQ = dV = d/h where d is the
embedding dimension (width);

(e) context length 128 for GPT, except for the experiment in Appendix D.7.

27

10−1 100

1.6

1.8

tr
ai

n
lo

ss

free mass

10−1 100

mass=0.25

10−1 100

learning rate

mass=0.5

10−1 100

mass=1

10−1 100

mass=2 depth
2
4
8
16
32

Figure 6: Comparing mass allocation strategies. We train a ResMLP with width 64 and 2 layers
per block on CIFAR-10. In the first sub-plot titled “free mass”, we set every atomic module to have
unit mass, so that as depth is scaled the masses of the input and output layer become insignificant
relative to the total mass of the hidden layers. In the other four subplots, we tare the total mass of the
hidden layers to the value indicated in the subplot title. As can be seen, the taring strategy seems
to work much better than the free mass strategy. So, at least in this experiment, it is good to keep a
constant fraction of learning in the input and output layers even as depth is scaled.

D.3 Hardware

All experiments were run on NVIDIA GPUs using float32-precision. We used a combination of
TITAN-RTX, RTX-3090, V100, Ada6000, and H100 devices. Each data point in the experiments takes
up to 5 hours, depending on the computing device used. We ran over 1000 training runs in total.

D.4 Comparing to standard nanoGPT architecture

Our implementation of GPT in Modula has certain differences from off-the-shelf architectures such
as nanoGPT [44]. We would summarize the overall changes to transformer architecture and training
the following three points:

(I) the mathematical architecture has slightly different coefficients;

(II) we initialize weight matrices to be orthogonal rather than Gaussian;

(III) we train using normalized weight updates.

The architectural choices we made were entirely informed by the desire for the network to be well-
normed and have unit sensitivity: in particular this means that the network enjoys favorable signal
propagation properties. In the language of modules, these architectural changes can be summarized
as:

(a) Each residual block in our architecture is of the form
2L−1
2L ∗ Identity + 1

2L ∗ Block (D.1)

where Block = BlockMLP or BlockAttn, compared to Identity + 1√
L
Block suggested for

nanoGPT;

(b) We use a scaled dot product attention with 1
dQ

scaling, rather than 1√
dQ

;

(c) The forward function of our Linear and Embed modules (see Appendix B.1) includes scale
factors

√
dout/din and

√
d respectively.

(d) We use several additional scalar multiplications to keep the network of unit sensitivity:

• Each Attention module (B.44) has a scalar factor of 1
3 ;

• Each MLP module (B.45) has a scalar factor of
√
2;

• The token and position embeddings (B.49) have a scalar factor of 1
2 .

In Figure 5, we ran a comparison of the performance of the standard (unnormed) Adam optimizer
trained on OpenWebText with:

28

10−1 100

2

3
te

st
lo

ss

Shakespeare

10−1 100

learning rate

2

4

6
TinyStories

10−1 100

5

6

7

8
OpenWebText

5

10

15

20

m
ass

Figure 7: Mass and learning rate sweeps across datasets of increasing difficulty. A small GPT
architecture of width 128 and 3 transformer blocks was trained on the Shakespeare, TinyStores and
OpenWebText datasets. We varied the learning rate as well as the total mass of the blocks. Optimal
mass and learning rate seem to transfer reasonably well from TinyStories to OpenWebText, and less
well from the much smaller Shakespeare dataset.

1. the nanoGPT architecture with Gaussian initialization;

2. our implementation of GPT with orthogonal initialization.

We found that even without using the normed optimizer, our implementation with orthogonal initial-
ization transferred learning rate better. We suggest that even the base Adam optimizer benefits from
the above architectural changes.

D.5 Full sweeps

In Figures 9 to 12, at the end of this Appendix, we report on full learning rate sweep experiments,
across width and depth, for GPT on OpenWebText and TinyStories, and ResMLP, ResNet on CIFAR-
10.

We consistently find that the normed Adam optimizer matches or outperforms unnormed Adam in
both test and training loss, all the while exhibiting significantly better transfer across width. The
difference in depth transfer is less stark, however we posit that, in part, unnormed Adam is already
benefiting from architectural changes we made to improve depth scaling.

Notice too that normed SGD consistently significantly outperforms ordinary SGD, often coming
close to or matching the performance of Adam. We would like to highlight this, since SGD has a
significantly lower memory requirement than Adam, and does not require any tuning of β2.

D.6 Mass allocation

A novel feature of our normed optimization framework is the need to choose a mass parameter for
each atomic module. In the context of networks of the form

Network = OutputLayer ◦ HiddenLayers ◦ InputLayer (D.2)

where HiddenLayers = BlockL. We typically do this by assuming that InputLayer,OutputLayer
have mass 1, and by hand resetting the mass of HiddenLayers to be a fixed total mass m > 0, by
calling tare(HiddenLayers,m).

In this Appendix, we explore some different aspects the choice of m.

First, we tested whether or not calling tare is necessary in the first place. Not using tare would leave
the “free mass” of HiddenLayers.mass = L ∗ Block.mass; accordingly as L grows large, the feature
learning allotment (see Proposition 3) for InputLayer and OutputLayer would grow smaller. Indeed,
as the reader can see in Figure 6, this “free mass” arrangement for a ResMLP network on CIFAR-10,
allowing the mass of HiddenLayers to grow with L is very undesirable, and for good learning rate
transfer with depth we must fix a mass.

29

10−1 100

learning rate

3

4

5

6

7

8

te
st

lo
ss

context length
32
64
128
256
512
1024

Figure 8: Context length transfer. We trained GPTs of various context lengths using normed Adam.
As can be seen, learning rate transferred quite well across context length.

The mass m is thus left as a tunable parameter. We then tested the transferability of mass tuning.
Specifically, we wanted to know:

1. whether one can tune m on a network of small width/depth, and expect that same m to be
close to optimal on a larger network;

2. whether learning rate transfer across width/depth is itself dependent on selecting a good
mass m;

3. how sensitive the tuning for m is: if there is a broad range of acceptable masses, or certain
precise values lead to big improvements in train or test loss.

Figures 3 and 6 answer Question 1 above in the affirmative, in the context of ResMLP on CIFAR-10
and GPT on OpenWebText. Moreover, in the context of ResMLP on CIFAR-10, they give an answer
of Question 2 and Question 3: learning rate transfer occurs at a range of values of m.

Figure 7 address Question 3 in the context of transformers, on three different datasets. Across all
three datasets, a mass in the region m ∼ 5 to 10 is reasonable.

D.7 Context length

Additionally, we also tested the dependence of the optimal learning rate for GPT training on Open-
WebText on the context length; the results are in Figure 8 Interestingly, we report good transfer of the
optimal learning rate from small contexts to long contexts.

D.8 Full sweep results

The next four pages of the Appendix list results of our full learning rate sweeps over width/depth for
GPT on OpenWebText and TinyStories, and ResMLP, ResNet on CIFAR-10.

30

4.0

5.0

6.0

7.0
tr

ai
n

lo
ss

SGD normed SGD Adam normed Adam
width

32
64
128
256
512
1024

10−1 100

step size

4.0

5.0

6.0

7.0

tr
ai

n
lo

ss

10−1 100

step size
10−3 10−2

step size
10−1 100

step size

depth
2
4
8
16
32
64

4.0

5.0

6.0

7.0

te
st

lo
ss

SGD normed SGD Adam normed Adam
width

32
64
128
256
512
1024

10−1 100

step size

4.0

5.0

6.0

7.0

te
st

lo
ss

10−1 100

step size
10−3 10−2

step size
10−1 100

step size

depth
2
4
8
16
32
64

Figure 9: Learning rate transfer for GPT on OpenWebText. Training is done for 10k steps,
at batch size 128, with SGD, Adam, and their normed versions. The total block mass for normed
SGD/Adam is m = 5. Width scaling experiments are done at fixed depth 3, and depth scaling
experiments are done at fixed width 128.

31

2.0

3.0

4.0

5.0

tr
ai

n
lo

ss
SGD normed SGD Adam normed Adam

width
32
64
128
256
512
1024

10−1 100 101

step size

2.0

3.0

4.0

5.0

tr
ai

n
lo

ss

10−1 100 101

step size
10−3 10−2

step size
10−1 100 101

step size

depth
2
4
8
16
32
64

2.0

3.0

4.0

5.0

te
st

lo
ss

SGD normed SGD Adam normed Adam
width

32
64
128
256
512
1024

10−1 100 101

step size

2.0

3.0

4.0

5.0

te
st

lo
ss

10−1 100 101

step size
10−3 10−2

step size
10−1 100 101

step size

depth
2
4
8
16
32
64

Figure 10: Learning rate transfer for GPT on TinyStories. Training is done for 10k steps, at batch
size 128, with SGD, Adam, and their normed versions. The total block mass for normed SGD/Adam
is m = 5. Width scaling experiments are done at fixed depth 3, and depth scaling experiments are
done at fixed width 128.

32

1.4

1.6

1.8

tr
ai

n
lo

ss
SGD normed SGD Adam normed Adam

width
32
64
128
256
512
1024

10−1 100 101

step size

1.4

1.6

1.8

tr
ai

n
lo

ss

10−1

step size
10−3 10−2

step size
10−1

step size

depth
2
4
8
16
32
64

1.4

1.6

1.8

te
st

lo
ss

SGD normed SGD Adam normed Adam
width

32
64
128
256
512
1024

10−1 100 101

step size

1.4

1.6

1.8

te
st

lo
ss

10−1

step size
10−3 10−2

step size
10−1

step size

depth
2
4
8
16
32
64

Figure 11: Learning rate transfer for ResMLP. ResMLP architectures on CIFAR-10 are trained
for 10k steps, at batch size 128, with SGD, Adam, and their normed versions. The total block mass
for normed SGD/Adam is m = 1. Width scaling experiments are done at fixed depth 3, and depth
scaling experiments are done at fixed width 128.

33

0.5

1.0

1.5
tr

ai
n

lo
ss

SGD normed SGD Adam normed Adam
width

32
64
128
256
512
1024

100 101

step size

0.5

1.0

1.5

tr
ai

n
lo

ss

10−1100 101

step size
10−310−210−1

step size
10−1100 101

step size

depth
2
4
8
16
32
64

0.5

1.0

1.5

te
st

lo
ss

SGD normed SGD Adam normed Adam
width

32
64
128
256
512
1024

100 101

step size

0.5

1.0

1.5

te
st

lo
ss

10−1100 101

step size
10−310−210−1

step size
10−1100 101

step size

depth
2
4
8
16
32
64

Figure 12: Learning rate transfer for ResNet. ResNet architectures on CIFAR-10 are trained for
10k steps, at batch size 128, with SGD, Adam, and their normed versions. The total block mass for
normed SGD/Adam is m = 20. Width scaling experiments are done at fixed depth 3, and depth
scaling experiments are done at fixed width 128.

34

Appendix E Proofs

Proposition 3: Feature learning is apportioned by mass

To prove Proposition 3, it suffices to induct on the construction of a compound module M by
composition and concatenation, with the atomic modules (where the inequality is just part of well-
normed-ness) as the base case.

Indeed, suppose either M = M2 ◦ M1 or M = (M1,M2). Suppose wk is a weight for one of the
atomic modules of M, and write m for the mass of this atomic module. Then wk is must be a weight
of either M1 or M2; the inductive assumption is that

∥∇wk
Mi ⋄∆wk∥ ≤ m

Mi.mass
∗ ∥∆w∥Mi

(E.1)

where i = 1 or 2 accordingly.

Case 1. M = M2 ◦M1 and wk is a weight of M1. From the chain rule we then must have:
∥∇wk

M ⋄∆wk∥ = ∥∇xM2 ⋄ ∇wk
M1 ⋄∆wk∥ (E.2)

≤ M2.sensitivity ∗ ∥∇wk
M1 ⋄∆wk∥ by well-normed-ness (E.3)

≤ M2.sensitivity ∗
m

M1.mass
∗ ∥∆w∥M1 by assumption (E.4)

≤ m

M.mass
∥∆w∥M (E.5)

where the last line is by the definition of the norm of module composition.

Case 2. M2 ◦M1 and wk is a weight of M2. The chain rule is not needed in this case, and we proceed
straight from the inductive assumption:

∥∇wk
M ⋄∆wk∥ = ∥∇wk

M2 ⋄∆wk∥ (E.6)

≤ m

M2.mass
∗ ∥∆w∥M2 (E.7)

≤ m

M.mass
∥∆w∥M. (E.8)

Case 3. M = (M1,M2). Given the symmetric roles of M1,M2, without loss of generality assume wk

is a weight of M1. Then,
∥∇wk

M ⋄∆wk∥ = ∥∇wk
M1 ⋄∆wk∥ (E.9)

≤ m

M1.mass
∗ ∥∆w∥M1

(E.10)

≤ m

M.mass
∥∆w∥M. (E.11)

This completes the proof.

Proposition 4: Sharpness of residual networks

Suppose M is a well-normed module of unit sensitivity on (X ,X ,W) and is (α, β, γ)-sharp. Then, by
Proposition 8 for any L ≥ 1, the module 1

L ∗M is well-normed, sensitivity 1
L , and (Lα, β, 1

Lγ)-sharp.

The module L−1
L ∗ Identity is also well-normed, sensitivity L−1

L , and (0, 0, 0)-sharp. In particular,
the sum

Mres =
L−1
L ∗ Identity + 1

L ∗M (E.12)
is well-normed, unit sensitivity, and (Lα, β, 1

Lγ)-sharp; it has the same mass as the original module.

We induct on the statement for k = 1, 2, . . . that Mk
res is (αk, βk, γk)-sharp where

αk =
L

k
α+

2 (1 + 2 + . . .+ (k − 1))

k2
β +

(
12 + 22 + . . .+ (k − 1)2

)
Lk2

γ (E.13)

βk = β +
(1 + 2 + . . .+ (k − 1))

Lk
γ (E.14)

γk =
k

L
γ. (E.15)

35

The base case is clearly true, and given the statement for Mk
res, which has exactly k times the mass as

Mres, we see that Mk+1
res = Mres ◦Mk

res is (αk+1, βk+1, γk+1)-sharp by applying Proposition 8 with
p1 = k

k+1 and p2 = 1
k+1 , where

αk+1 =
k2

(k + 1)2
αk +

1

(k + 1)2
Lα+

2k

(k + 1)2
β +

k2

L(k + 1)2
γ (E.16)

βk+1 =
k

k + 1
βk +

1

k + 1
β +

k

L(k + 1)
γ (E.17)

γk+1 = γk +
1

L
γ. (E.18)

which yields the induction.

Setting k = L, observe that 1 + 2 + . . .+ (L− 1) = 1
2L(L− 1) and 12 + 22 + . . .+ (L− 1)2 =

1
6L(L− 1)(2L− 1), giving

αL = α+
L− 1

L
β +

L(L− 1)(2L− 1)

6L3
γ ≤ α+ β + 1

3γ (E.19)

βL = β +
L− 1

2L
γ ≤ β + 1

2γ (E.20)

γL = γ (E.21)

which proves the result.

Proposition 5: Smoothness in the modular norm

To establish the first inequality, we start by applying the Gauss-Newton decomposition (C.1) of
the Hessian, followed by the fact that the error ℓ is σ-Lipschitz and τ -smooth, followed by the
well-normedness and (α, β, γ)-sharpness of the module M:

|∆w ⋄ ∇2
wwL ⋄∆w̃| (E.22)

=
∣∣Ex,y∼D

[
∇yℓ ⋄

(
∆w ⋄ ∇2

wwM ⋄∆w̃
)
+ (∇wM ⋄∆w) ⋄ ∇2

yyℓ ⋄ (∇wM ⋄∆w̃)
]∣∣
(E.23)

≤ Ex,y∼D
[
σ ∥∆w ⋄ ∇2

wwM ⋄∆w̃∥Y + τ ∥∇wM ⋄∆w∥Y ∥∇wM ⋄∆w̃∥Y
]

(E.24)

≤ (σα+ τ) ∥∆w∥M ∥∆w̃∥M. (E.25)

The second inequality follows from the first via the fundamental theorem of calculus:

∥∇wL(w +∆w)−∇wL(w)∥∗M = max
∥∆w̃∥M=1

|[∇wL(w +∆w)−∇wL(w)] ⋄∆w̃| (E.26)

≤ max
∥∆w̃∥M=1

∫ 1

0

|∆w ⋄ ∇2
wwL(w + t∆w) ⋄∆w̃|dt (E.27)

≤ max
∥∆w̃∥M=1

(σα+ τ) ∥∆w∥M ∥∆w̃∥M
∫ 1

0

dt (E.28)

= (σα+ τ) ∥∆w∥M. (E.29)

The third inequality follows from the second by again applying the fundamental theorem of calculus,
followed by the Cauchy-Schwarz inequality:

|L(w +∆w)− [L(w) +∇wL(w) ⋄∆w]| (E.30)

=

∣∣∣∣∫ 1

0

[∇wL(w + t∆w)−∇wL(w)] ⋄∆w dt

∣∣∣∣ (E.31)

≤
∫ 1

0

∥∇wL(w + t∆w)−∇wL(w)∥∗M ∥∆w∥M dt (E.32)

≤ (σα+ τ) ∥∆w∥2M
∫ 1

0

tdt (E.33)

= 1
2 (σα+ τ) ∥∆w∥2M. (E.34)

This completes the proof.

36

Proposition 6: Broadcast modules are well-normed

Suppose M is a module with inputs X , outputs Y and weights W , broadcast to take X h to Yh. We
take norms on these spaces to be

∥(x1, . . . ,xh)∥Xh = S ∗ (∥x1∥pX + . . .+ ∥xh∥pX)
1/p (E.35)

∥(y1, . . . ,yh)∥Yh = S ∗
(
∥y1∥pY + . . .+ ∥yh∥pY

)1/p
(E.36)

where S = h−1/p unless M is a bond module. Write µ = M.sensitivity. Then, for perturbations in
the weight direction, which only occur if M is not a bond module:

∥∇wM(w,x1, . . . ,xh) ⋄∆w∥Yh =

 1

h

∑
j

∥∇wM(w,xj) ⋄∆w∥pY

1/p

(E.37)

≤ ∥∆w∥M applying well-normed-ness. (E.38)

For perturbations in the input direction, we have:

∥∇x1,...,xh
M ⋄ (∆x1, . . . ,∆xh)∥Yh = S ∗

∑
j

∥∇xjM ⋄∆xj∥pY

1/p

(E.39)

≤ S ∗

∑
j

µp∥∆xj∥pY

1/p

(E.40)

= µ ∗ ∥(∆x1, . . . ,∆xh)∥Yh (E.41)

which proves the proposition.

Proposition 7: Sensitivity of attention

We prove that the functional attention module FuncAttention of Bond 9 is well-normed and of unit
sensitivity.

Recall we use the following norms on the inputs X = Rℓ×dQ × Rℓ×dQ × Rℓ×dV and outputs
Y = Rℓ×dV :

∥(q,k,v)∥X = ∥q∥∞RMS + ∥k∥∞RMS + ∥v∥∞RMS, ∥y∥Y = ∥y∥∞RMS. (E.42)

We will also make use of the L∞-operator norm for ℓ× ℓ matrices, which we write as

∥B∥∞−op = max
i=1,...,ℓ

 ℓ∑
j=1

|Bij |

 ; (E.43)

observe that for B ∈ Rℓ×ℓ and x ∈ Rℓ×d we have

∥Bx∥∞RMS ≤ ∥B∥∞−op∥x∥∞RMS. (E.44)

Writing F = FuncAttention.forward for short, recall that

F (q,k,v) = softmax(1
dQ

qkT +M)v (E.45)

where M is the mask (our proof will apply equally for the standard causal mask and also the
non-causal M ≡ 0).

We will prove that at any (q,k,v) satisfying ∥q∥∞RMS, ∥k∥∞RMS, ∥v∥∞RMS ≤ 1, for any
(∆q,∆k,∆v) we have

∥∇F (q,k,v) ⋄ (∆q,∆k,∆v)∥Y ≤ ∥(∆q,∆k,∆v)∥X . (E.46)

For short, write A = softmax(1
dQ

qkT +M) for the attention matrix and its derivative as

∆A = ∇(q,k) softmax(1
dQ

qkT +M) ⋄ (∆q,∆k). (E.47)

37

Now, the derivative of F splits into two terms

∇F ⋄ (∆q,∆k,∆v) = A(∆v) + (∆A)v. (E.48)

To complete the proof, we claim that

∥A∥∞−op = 1 and ∥∆A∥∞−op ≤ ∥∆q∥∞RMS + ∥∆k∥∞RMS. (E.49)

The calculation of the norm of A follows by definition from its construction by softmax. For the
calculation of the norm of ∆A, a direct calculation yields that

∆Aij =
1
dQ

Aij⟨∆qi, kj − ΣmAimkm⟩+ 1
dQ

Aij⟨qi, ∆kj − ΣmAim∆km⟩ (E.50)

where we are writing qi = qi∗ and so on.

Taking absolute values, applying the Cauchy-Schwarz inequality and summing over j we have

Σj |∆Aij | ≤∥∆qi∥RMS (ΣjAij∥kj − ΣmAimkm∥RMS) (E.51)
+ ∥qi∥RMS (ΣjAij∥∆kj − ΣmAim∆km∥RMS) . (E.52)

We now use the following inequality: given any non-negative reals p1, . . . , pℓ which sum to 1, and
any vectors x1, . . . ,xℓ in an inner product space with norm ∥·∥, we have by Jensen’s inequality

Σjpj∥xj − Σmpmxm∥ ≤
(
Σjpj∥xj − Σmpmxm∥2

) 1
2 (E.53)

=
(
Σjpj∥xj∥2 − ∥Σjpjxj∥2

) 1
2 (E.54)

≤
(
Σjpj∥xj∥2

) 1
2 (E.55)

≤ max
j

∥xj∥. (E.56)

Applying to the matrix ∆A, we thus have

Σj |Aij | ≤ ∥∆qi∥RMS max
j

∥kj∥RMS + ∥qi∥RMS max
j

∥∆kj∥RMS. (E.57)

Taking the max over i, this shows the L∞-operator-norm of ∆A is at most

∥∆q∥∞RMS∥k∥∞RMS + ∥q∥∞RMS∥∆k∥∞RMS (E.58)

which, since ∥q∥∞RMS, ∥k∥∞RMS ≤ 1, completes the proof.

Proposition 7: Sharpness of functional attention

In this section, we estimate the second derivative of the forward function F of functional attention at
(q,k,v) in perturbation directions (∆q,∆k,∆v) and (∆q̃,∆k̃,∆ṽ):

∆2F := (∆q̃,∆k̃,∆q̃) ⋄ ∇2F ⋄ (∆q,∆k,∆v). (E.59)

We will prove that functional attention is γ-sharp where in fact γ = 3; this amounts to proving that

∥∆2F∥ ≤ 3∥(∆q,∆k,∆v)∥X ∥(∆q̃,∆k̃,∆ṽ)∥X . (E.60)

We continue with all the notation of the previous section. Moreover, to simplify the calculation, we
suppress all factors of 1

dQ
(indeed, one can absorb them as a rescaled inner product ⟨·, ·⟩). We also,

in addition to the shorthand xi = xi∗ for ℓ×d matrices x, we adopt the shorthand for an ℓ× ℓ matrix
B and a ℓ× d matrix x, and any i, j = 1, . . . , ℓ:

[B,x]ij := xj − ΣmBimxm. (E.61)

We note three crucial inequalities regarding [B,x], for any ℓ× ℓ matrix B with non-negative entries
whose rows sum to 1, and ℓ× d matrices x,y::

ΣjBij∥[B,x]ij∥ ≤ max
j

∥xj∥; (E.62)

ΣjBij∥[B,x]ij∥2 ≤ max
j

∥xj∥2; (E.63)

ΣjBij∥[B,x]ij∥∥[B,y]ij∥ ≤ (max
j

∥xj∥)(max
j

∥yj∥). (E.64)

38

All three inequalities follow from standard expectation/variance inequalities for random variables on
the finite set {1, . . . , ℓ} with distributions given by Bi1, . . . ,Biℓ.

With these conventions, the expression for ∆A is thus

∆Aij = Aij⟨∆qi, [A,k]ij⟩+Aij⟨qi, [A,∆k]ij⟩. (E.65)

Let us also write

∆Ã : = ∇(q,k) softmax(1
dQ

qkT +M) ⋄ (∆q̃,∆k̃) (E.66)

∆Ãij = Aij⟨∆q̃i, [A,k]ij⟩+Aij⟨qi, [A,∆k̃]ij⟩. (E.67)

as well as
∆2A := (∆q̃,∆k̃) ⋄ ∇2F ⋄ (∆q,∆k). (E.68)

In these terms, the second derivative ∆2F is just

∆2F = (∆Ã)(∆v) + (∆A)(∆ṽ) + (∆2A)v. (E.69)

From the estimates of the previous section, we have

∥(∆Ã)(∆v)∥∞RMS ≤ (∥∆q̃∥∞RMS + ∥∆k̃∥∞RMS)∥∆v∥∞RMS (E.70)
∥(∆A)(∆ṽ)∥∞RMS ≤ (∥∆q∥∞RMS + ∥∆k∥∞RMS)∥∆ṽ∥∞RMS (E.71)

so our task is to estimate the L∞-operator-norm of ∆2A. Thus, we calculate ∆2A:

∆2Aij =Aij⟨∆qi, [A,∆k̃]ij⟩ (E.72)
+Aij⟨∆q̃i, [A,∆k]ij⟩ (E.73)

+∆Ãij⟨∆qi, [A,k]ij⟩ (E.74)

+∆Ãij⟨qi, [A,∆k]ij⟩ (E.75)

+Aij⟨∆qi, −Σm(∆Ã)imkm⟩ (E.76)

+Aij⟨qi, −Σm(∆Ã)im∆km⟩ (E.77)

We estimate the L∞-operator-norm of these six terms one by one. The first (E.72), (E.73) are the
simplest, using inequality (E.62):

max
i

Σj |Aij⟨∆qi, [A,∆k̃]ij⟩| ≤ max
i

ΣjAij∥∆qi∥∥[A,∆k̃]ij∥ (E.78)

≤ max
i

∥∆qi∥max
j

∥∆kj∥ (E.79)

= ∥∆q∥∞RMS∥∆k̃∥∞RMS (E.80)
max

i
Σj |Aij⟨∆q̃i, [A,∆k]ij⟩| ≤ ∥∆q̃∥∞RMS∥∆k∥∞RMS likewise. (E.81)

For the term (E.74), we have

∆Ãij⟨∆qi, [A,k]ij⟩ =
(
Aij⟨∆q̃i, [A,k]ij⟩+Aij⟨qi, [A,∆k̃]ij⟩

)
⟨∆qi, [A,k]ij⟩ (E.82)

Take absolute values, sum over j, and apply Cauchy-Schwarz and inequalities (E.63),(E.64):

Σj |∆Ãij⟨∆qi, [A,k]ij⟩| ≤ ΣjAij

(
∥∆qi∥∥∆q̃i∥∥[A,k]ij∥2 + ∥qi∥∥∆qi∥∥[A,k]ij∥∥[A,∆k̃]ij∥

)
(E.83)

≤ ∥∆qi∥∥∆q̃i∥max
j

∥kj∥2 + ∥qi∥∥∆qi∥(max
j

∥kj∥)(max
j

∥∆k̃j∥).

(E.84)

Taking the max over i and applying ∥q∥∞RMS, ∥k∥∞RMS, ∥v∥∞RMS ≤ 1:

max
i

Σj |∆Ãij⟨∆qi, [A,k]ij⟩| ≤ ∥∆q∥∞RMS∥∆q̃∥∞RMS + ∥∆q∥∞RMS∥∆k̃∥∞RMS. (E.85)

The term (E.75) is similar:

max
i

Σj |∆Ãij⟨qi, [A,∆k]ij⟩| ≤ ∥∆k∥∞RMS∥∆q̃∥∞RMS + ∥∆k∥∞RMS∥∆k̃∥∞RMS (E.86)

39

For term (E.76), observe that

max
i

∥Σm(∆Ã)imkm∥ ≤ ∥∆Ã∥∞−op∥∆k∥∞RMS (E.87)

≤ ∥∆q̃∥∞RMS + ∥∆k̃∥∞RMS (E.88)

and so by Cauchy-Schwarz and the fact that the rows of A sum to 1:

max
i

Σj |Aij⟨∆qi, −Σm(∆Ã)imkm⟩| ≤ max
i

∥∆qi∥∥Σm(∆Ã)imkm∥ (E.89)

≤ ∥∆q∥∞RMS∥∆q̃∥∞RMS + ∥∆q∥∞RMS∥∆k̃∥∞RMS.
(E.90)

By a similar argument, for term (E.77) we have:

Aij⟨qi, −Σm(∆Ã)im∆km⟩ ≤ ∥∆k∥∞RMS∥∆q̃∥∞RMS + ∥∆k∥∞RMS∥∆k̃∥∞RMS (E.91)

Thus, we have an estimate on the L∞-operator-norm of ∆2A:

∥∆2A∥∞−op ≤ 2∥∆q∥∥∆q̃∥+ 3∥∆q∥∥∆k̃∥+ 3∥∆k∥∥∆q̃∥+ 2∥∆k∥∥∆k̃∥ (E.92)

where all the norms on the right hand side are ∥·∥∞RMS.

Adding this together with (E.70) and (E.71), we obtain (all norms being ∥·∥∞RMS:

∥∆2F∥ ≤ 2∥∆q∥∥∆q̃∥+ 3∥∆q∥∥∆k̃∥+ 3∥∆k∥∥∆q̃∥+ 2∥∆k∥∥∆k̃∥ (E.93)

+ ∥∆v∥∥∆q̃∥+ ∥∆v∥∥∆k̃∥+ ∥∆q∥∥∆ṽ∥+ ∥∆k∥∥∆ṽ∥ (E.94)

≤ 3(∥∆q∥+ ∥∆k∥+ ∥∆v∥)(∥∆q̃∥+ ∥∆k̃∥+ ∥∆ṽ∥) (E.95)

which is the desired result.

Proposition 8: Sharpness under composition

Suppose M = M2 ◦M1 where M1,M2 are well-normed modules on respectively (Xk,Yk,Wk) and
moreover (αk, βk, γk)-sharp for k = 1, 2. If pk = Mk.mass

M.mass for k = 1, 2, note that by the definition of
the modular norm on the composite M, we have for any ∆w = (∆w1,∆w2) ∈ W1 ×W2:

∥∆w1∥M1
≤ 1

µ2
p1∥∆w∥M and ∥∆w2∥M2

≤ p2∥∆w∥M. (E.96)

We must prove that M is (α, β, γ) sharp where:

α = 1
µ2
p21α1 + p22α2 +

2
µ2
p1p2β2 +

1
µ2
2
p21γ2, (E.97)

β = p1β1 + µ1p2β2 +
µ1

µ2
p1γ2, (E.98)

γ = µ2γ1 + µ2
1γ2. (E.99)

Turning to the second derivative of M(·, ·), we prove the first Inequality (E.97). The Gauss-Newton
decomposition (C.1) for any ∆w = (∆w1,∆w2) and ∆w̃ = ∆w̃1,∆w̃2 yields

∆w ⋄ ∇2M ⋄∆w̃ =∇M2 ⋄ (∆w1 ⋄ ∇2M1 ⋄∆w̃1) (E.100)

+ (∆w2,∇M1 ⋄∆w1) ⋄ ∇2M2 ⋄ (∆w̃2,∇M1 ⋄∆w̃1) (E.101)

Applying the well-normed and sharpness inequalities, the norm of the first (E.100) of these terms is
bounded by

µ2∥∆w1 ⋄ ∇2M1 ⋄∆w̃1∥Y1
≤ µ2α1∥∆w1∥M1

∥∆w̃1∥M1
(E.102)

≤ 1
µ2
p21α1∥∆w∥M∥∆w̃∥M. (E.103)

The second term (E.101) breaks into four separate terms:

∆w2 ⋄ ∇2
wwM2 ⋄∆w̃2 (E.104)

+(∇M1 ⋄∆w1) ⋄ ∇2
xwM2 ⋄∆w̃2 (E.105)

+∆w2 ⋄ ∇2
wxM2 ⋄ (∇M1 ⋄∆w̃1) (E.106)

+(∇M1 ⋄∆w1) ⋄ ∇2
xxM2 ⋄ (∇M1 ⋄∆w̃1). (E.107)

40

In particular, applying the well-normed and sharpness inequalities, this is bounded by
α2∥∆w2∥M2∥∆w̃2∥M2 (E.108)

+β2∥∆w1∥M1∥∆w̃2∥M2 (E.109)
+β2∥∆w2∥M2

∥∆w̃1∥M1
(E.110)

+γ2∥∆w1∥M1
∥∆w̃1∥M1

, (E.111)
which is less than (

p22α2 +
2
µ2
p1p2β2 +

1
µ2
2
p21γ2

)
∥∆w∥M∥∆w∥M (E.112)

which completes the proof of Inequality (C.4).

Inequalities (E.98) and (E.99) are simpler. For the first of these, note we have
∆w ⋄ ∇2M ⋄∆x =∇M2 ⋄ (∆w1 ⋄ ∇2M1 ⋄∆x) (E.113)

+ (∆w2,∇M1 ⋄∆w1) ⋄ ∇2M2 ⋄ (∇M1 ⋄∆x). (E.114)
Term (E.113) is bounded by

µ2∥∆w1 ⋄ ∇2M1 ⋄∆x∥Y1
≤ µ2β1∥∆w1∥M1

∥∆x∥X1
(E.115)

≤ p1β1∥∆w∥M∥∆x∥X1
(E.116)

Term (E.114) breaks into two separate terms
∆w2 ⋄ ∇2

wxM2 ⋄ (∇M1 ⋄∆x) + (∇M1 ⋄∆w1) ⋄ ∇2
xxM2 ⋄ (∇M1 ⋄∆x). (E.117)

In particular this is bounded by

β2∥∆w2∥M2
µ1∥∆x∥X1

+ γ2∥∆w1∥M1
µ1∥∆x∥X1

≤
(
µ1p2β2 +

µ1

µ2
p1γ2

)
∥∆w∥M∥∆x∥X1

(E.118)
which completes the proof of Inequality (E.98).

Finally, for (E.99), we have
∆x ⋄ ∇2M ⋄∆x̃ =∇M2 ⋄ (∆x ⋄ ∇2M1 ⋄∆x̃) (E.119)

+ (∇M1 ⋄∆x) ⋄∆2M2 ⋄ (∇M1 ⋄∆x̃). (E.120)

Term (E.119) is bounded by
µ2∥∆x ⋄ ∇2M1 ⋄∆x̃∥Y1 ≤ µ2γ1∥∆x∥X1∥∆x̃∥X1 (E.121)

while Term (E.120) is bounded by
γ2∥∇M1 ⋄∆x∥X2∥∇M1 ⋄∆x̃∥X2 ≤ µ2

1γ2∥∆x∥X1∥∆x̃∥X1 (E.122)
which together give Inequality (E.99).

Proposition 9: Sharpness under concatenation

Suppose M = (M1,M2) where M1,M2 are well-normed modules on respectively (Xk,Yk,Wk) and
moreover (αk, βk, γk)-sharp for k = 1, 2. If pk = Mk.mass

M.mass for k = 1, 2, as in the previous proof we
have for any ∆w = (∆w1,∆w2) ∈ W1 ×W2:

∥∆w1∥M1
≤ 1

µ2
p1∥∆w∥M and ∥∆w2∥M2

≤ p2∥∆w∥M. (E.123)

We must prove that M is (α, β, γ)-sharp where

α = p21α1 + p22α2, (E.124)
β = p1β1 + p2β2, (E.125)
γ = γ1 + γ2. (E.126)

Now, for the first of these identities, we have for ∆w = (∆w1,∆w2) and ∆w̃ = (∆w̃1,∆w̃2):

∥∆w ⋄ ∇2M ⋄∆w̃∥Y1×Y2
= ∥(∆w1 ⋄ ∇2M1 ⋄∆w̃1,∆w2 ⋄ ∇2M2 ⋄∆w̃2)∥Y1×Y2

(E.127)

= ∥∆w1 ⋄ ∇2M1 ⋄∆w̃1∥Y1
+ ∥∆w2 ⋄ ∇2M2 ⋄∆w̃2)∥Y2

(E.128)

≤ α1∥∆w1∥2M1
+ α2∥∆w2∥2M2

(E.129)

≤ (p21α1 + p22α2) ∥∆w∥2M (E.130)

which shows α = p21α1 + p22α2. The expressions for β, γ follow similarly.

41

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claim is that normalizing Adam and SGD updates in the modular
norm leads to good learning rate transfer across width and depth. We believe this claim is
supported by the experiments in our paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in the discussion section (§5).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

42

Answer: [Yes]
Justification: We state theoretical results as formal propositions and provide their proofs in
Appendix E.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Appendix A for an overview of our code, Appendix B for the detailed
network architectures and Appendix D for the parameters of our experiments. In addition,
we provide the source code for our experiments and the Modula package.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

43

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We make use of standard datasets and provide our code in the supplemental
materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Appendix D for the full details of our experiments. Also, see our code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to computational resource constraints, we opted to run a large number
of experiments to check that trends hold across several distinct architectures and datasets,
rather than running repeats on each individual experiment. Each hyperparameter sweep
involves on the order of 100 training runs, and we are working under academic resource
limits. We believe that the fact the reported trends hold across varied experimental settings
supports the significance of our results.

Guidelines:

• The answer NA means that the paper does not include experiments.

44

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report on this in Appendix D.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We believe that no ethics guidelines were violated.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: No societal impact of the work was discussed. Potentially the work could have
a positive impact in terms of reducing carbon emissions caused by sweeping hyperparameters
for large-scale models.

45

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We are not releasing any new datasets or pre-trained models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We only use public and open-source resources. We have cited these works.
Licenses were not provided from the original source.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

46

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide code and instructions on how to use the new modules that we
define.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We did not crowdsource and we did not use human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We did not use human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

47

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

48

	The Modula Package
	The Vector class
	The Module class
	Normalization in Modula
	Overhead

	Module and Network Design
	Atomic modules
	Bond modules
	Module broadcasting
	Mass taring
	Compound modules and neural networks
	Case study I: Attention
	Case study II: GPT

	More on Smoothness and Sharpness
	Underlying every estimate: The Gauss-Newton decomposition
	Sharpness under composition and concatenation
	Sharpness under module broadcasting
	Smoothness estimates for common error measures

	Experimental Details
	Datasets
	Architectures
	Hardware
	Comparing to standard nanoGPT architecture
	Full sweeps
	Mass allocation
	Context length
	Full sweep results

	Proofs

