
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RELASH: RECONSTRUCTING JOINT LATENT SPACES
FOR EFFICIENT GENERATION OF SYNTHETIC HYPER-
GRAPHS WITH HYPERLINK ATTRIBUTES

Anonymous authors
Paper under double-blind review

ABSTRACT

Hypergraph network data, which capture multi-way interactions among entities,
have become increasingly prevalent in the big data era, spanning fields such as so-
cial science, medical research, and biology. Generating synthetic hyperlinks with
attributes from an observed hypergraph has broad applications in data augmenta-
tion, simulation, and advancing the understanding of real-world complex systems.
This task, however, poses unique challenges due to special properties of hyper-
graphs, including discreteness, hyperlink sparsity, and the mixed data types of
hyperlinks and their attributes, rendering many existing generative models unsuit-
able. In this paper, we introduce ReLaSH (REconstructing joint LAtent Spaces for
Hypergraphs with attributes), a general generative framework for producing real-
istic synthetic hypergraph data with hyperlink attributes via training a likelihood-
based joint embedding model and reconstructing the joint latent space. Given a
hypergraph dataset, ReLaSH first embeds the hyperlinks and their attributes into
a joint latent space by training a likelihood-based model, and then reconstructs
this joint latent space using a distribution-free generator. The generation task is
completed by first sampling embeddings from the distribution-free generator and
then decoding them into hyperlinks and attributes through the trained likelihood-
based model. Compared with existing generative models, ReLaSH explicitly ac-
counts for the unique structure of hypergraphs and jointly models hyperlinks and
their attributes. Moreover, the likelihood-based embedding model provides ef-
ficiency and interpretability relative to deep black-box architectures, while the
distribution-free generator in the joint latent space ensures flexibility. We theo-
retically demonstrate the consistency and generalizability of ReLaSH. Empirical
results on a range of real-world datasets from diverse domains demonstrate the
strong performance of ReLaSH, underscoring its broad utility and effectiveness in
practical applications.

1 INTRODUCTION

Hypergraph data capture multi-way interactions among entities, such as co-occurrence, collabora-
tion, and co-functioning, (Benson et al., 2016; Battiston et al., 2020), and have become ubiquitous,
spanning areas including biology (Rhodes et al., 2005; Nepusz et al., 2012; Feng et al., 2021), medi-
cal research (Johnson et al., 2016; 2023), and the social sciences (Zhu et al., 2019; Ji et al., 2022; Wu
et al., 2024). Generating hypergraphs with hyperlink attributes has broad applications in data aug-
mentation (Wei et al., 2022; Zhou et al., 2025), simulation (Nguyen & Le, 2024), and understanding
real-world complex systems (Torres et al., 2021). For example, Intensive Care Unit (ICU) records
can be viewed as a symptom co-occurrence hypergraph with hyperlink attributes: for each patient
profile, the co-occurrence of symptoms and diseases forms a hyperlink, while other patient infor-
mation constitutes hyperlink attributes. Generating synthetic hyperlinks with attributes from the
symptom co-occurrence hypergraph corresponds to generating synthetic patient profiles, enabling
applications such as privacy-preserving data sharing across medical centers and patient simulations.
Fig. 1 showcases a synthetic patient profile produced by ReLaSH. The widespread need across fields
to generate realistic hypergraphs with hyperlink attributes calls for a general generative model ar-
chitecture for this task.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: An example of synthetic ICU medical record forms generated from ReLaSH, trained
on a symptom co-occurrence hypergraph from Johnson et al. (2016), which includes 3,000 ICU
patient profiles and 2,230 distinct disease and symptom codes. The disease combinations in this
synthetic record reflect the characteristics of an aged, medically complex ICU patient, where the
co-occurrence of symptoms often leads to the development of new syndromes. For example, anti-
coagulant use in the setting of atrial fibrillation increases the risk of intracerebral hemorrhage and
gastrointestinal bleeding (Lopes et al., 2017; Scridon & Balan, 2023), and they co-occur on the
record.

Generative models are trained to learn the distribution of real-world observations and to generate
novel yet realistic samples (Kingma & Welling, 2013; Goodfellow et al., 2014). Recent research
has witnessed many powerful generative architectures, including variational autoencoders (VAEs)
(Kingma & Welling, 2013), generative adversarial networks (GANs) (Goodfellow et al., 2014; Ar-
jovsky et al., 2017), flow-based models (Dinh et al., 2016; 2014; Kingma & Dhariwal, 2018), score-
based and diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020), and
autoregressive models (Van Den Oord et al., 2016; 2017), with notable successes in tasks includ-
ing image generation (Karras et al., 2019; Dhariwal & Nichol, 2021; Rombach et al., 2022), audio
generation (van den Oord et al., 2016; Kong et al., 2021), and speech synthesis (Shen et al., 2018).
However, most of these popular models are designed for continuous data and do not directly apply to
discrete structures such as hypergraphs. Another thread of work studies generative modeling for dis-
crete data, including extending GANs for text and audio generation (Yu et al., 2017; Nie et al., 2018),
and diffusion models for categorical variables (Austin et al., 2021; Hoogeboom et al., 2021). These
approaches, however, often suffer from computational and storage limitations and typically do not
account for the special structure of hypergraphs. On the other hand, existing graph generative mod-
els (You et al., 2018; Chen et al., 2023b) primarily focus on generating graphs that capture pairwise
relations, and do not extend directly to hypergraph generation. Prior work has considered hyperlink
representation learning and generation (Jo et al., 2021; Wu et al., 2025), but these models do not
incorporate hyperlink attributes. Representation learning on pairwise graphs with edge attributes
has also been studied (Wang et al., 2024), yet it does not apply to generating hypergraphs capturing
multi-way interactions with hyperlink attributes. A generative model architecture for hypergraphs
with hyperlink attributes is greatly needed.

In this work, we introduce ReLaSH (REconstructing joint LAtent Spaces for Hypergraphs with
attributes), a generative model architecture for hypergraphs with hyperlink attributes. Given an
observed hypergraph with hyperlink attributes, ReLaSH first trains a likelihood-based joint em-
bedding model and embeds the observed hypergraph together with hyperlink attributes into a joint
low-dimensional latent space, then reconstructs this joint latent space using a distribution-free gen-
erator. Synthetic hyperlinks with attributes are then generated by first sampling embeddings from
the distribution-free generator in the joint latent space and then decoding the embeddings via the
trained likelihood-based model. Below, we summarize our main contributions:

1. Methodologically, we introduce ReLaSH, a generative model architecture for generating
realistic synthetic hypergraphs with hyperlink attributes. ReLaSH consists of a likelihood-
based joint embedding model and a distribution-free generator in the joint latent space. The

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

likelihood-based joint embedding model provides efficiency and interpretability relative to
deep architectures, while the distribution-free generator offers flexibility in the latent space.

2. Theoretically, we show that the KL divergence between the distributions of true samples
and generated ones can be decomposed into three parts. The first two parts correspond to
errors arising from training the likelihood-based joint embedding model, whereas the third
depends on the discrepancy between the distributions of true and generated embeddings in
the joint latent space. Notably, this analysis shows that ReLaSH circumvents the curse of
ambient dimensionality in high-dimensional hypergraphs by exploiting the special structure
of hypergraphs through the likelihood model, so that the overall error rate is dominated
by errors from the relatively low-dimensional latent space rather than the original high-
dimensional problem.

3. Numerically, we evaluate ReLaSH on three tasks: generating synthetic medical records
from the MIMIC-III dataset (Johnson et al., 2016); generating new recipes from the ERRN
dataset1; and generating reference author lists with top keywords from a co-citation dataset
(Ji et al., 2022; Ke et al., 2023). In all tasks, ReLaSH efficiently generates realistic hy-
perlinks with reasonable hyperlink attributes and achieves superior performance compared
with competing methods, demonstrating its broad utility and advantages for this task. Ad-
ditional simulation results further demonstrate the effectiveness of ReLaSH.

The remainder of the paper is organized as follows. Section 2 introduces the ReLaSH framework.
Section 3 presents the theoretical results. Section 4 reports numerical experiments on three real-
world hypergraph generation tasks. Section 5 concludes with a discussion and outlines potential di-
rections for future research. Additional materials, including additional theoretical results, algorithm
details, simulation study results, experimental settings, and proofs, are provided in the appendix.

2 RECONSTRUCTING THE JOINT LATENT SPACE FOR HYPERGRAPHS

2.1 NOTATION

For positive real numbers a and b, we define a ∨ b = max(a, b) and a ∧ b = min(a, b). Let
∥A∥F be the Frobenius norm of matrix A, ∥A∥2 be the spectral norm, and Aij denote its element
at the i-th row and j-th column. For two sequences of positive real numbers an and bn, we write
an = O(bn) or an ≲ bn if there exist constants N and C such that an ≤ Cbn for all n > N .
For random variable sequences Xn and Yn, we write Xn = Op(Yn) if for any ε > 0, there exists
a constant Cε > 0 such that supn P(|Xn| ≥ Cε|Yn|) < ε. For two probability distribution P,Q
defined on the same sample space X , we denote the KL-divergence from Q to P as dKL(P∥Q) =∑
x∈X P (x) log(P (x)/Q(x)).

2.2 SETUP AND THE GENERAL RELASH

We denote an observed hypergraph with hyperlink attributes by H(Vn, Em,Xm), where Vn =
{v1, . . . , vn} is the set of n nodes in the hypergraph, Em = {e1, . . . , em} is the set of observed hy-
perlinks, and Xm = {x1, . . . , xm} collects the attributes associated with each of the m hyperlinks.
For simplicity, let Vn = [n] = {1, . . . , n}; each hyperlink is then a subset of [n] indexing the nodes
that form it. Given H([n], Em,Xm), the goal is to generate a synthetic hypergraph H̃([n], Ẽm̃, X̃m̃),
where m̃ denotes the number of generated hyperlinks, Ẽm̃ = {ẽ1, . . . , ẽm̃} is the set of generated
hyperlinks, and X̃m̃ = {x̃1, . . . , x̃m̃} is the corresponding set of attributes.

In this section, we introduce the general ReLaSH framework for the hypergraph generation task.
Fig. 2 presents the pipeline of ReLaSH. In brief, ReLaSH first jointly embeds the hyperlinks and
their attributes into a latent space by training a likelihood-based model; it then reconstructs this joint
latent space via a distribution-free generator; and finally generates new hyperlinks with attributes
by decoding sampled embeddings from the joint latent space using the trained likelihood-based
model. Below, we describe these three steps in sequence. Sections 2.3 and 2.4 introduce the specific
likelihood-based model and the latent-space generator used in this paper, respectively.

1https://www.kaggle.com/datasets/hugodarwood/epirecipes/data

3

https://www.kaggle.com/datasets/hugodarwood/epirecipes/data

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: The general pipeline of ReLaSH.

Embedding hyperlinks with attributes to the joint latent space. To build the likelihood-based
embedding model, we partition the dimensions of the joint latent space into three blocks with di-
mensions k1, k2, and k3, corresponding respectively to attributes only, attributes and hyperlinks
jointly, and hyperlinks only. We associate each node i with a latent embedding zi ∈ Rk2+k3
and a degree parameter αi ∈ R to capture heterogeneity in node popularity. The overall rate
of αi’s, i.e., ᾱm,n = n−1

∑n
i=1 αi serves to control hyperlink sparsity in the hypergraph (Wu

et al., 2024): the smaller ᾱm,n, the sparser the hyperlinks. The attributes are associated with a
latent loading matrix B ∈ Rp×(k1+k2) and an intercept vector γ ∈ Rp, where p is the number
of attributes. We also associate each hyperlink and its attributes with a joint latent embedding
u = (u(1)⊤, u(2)⊤, u(3)⊤)⊤ ∈ Rk1+k2+k3 drawn from an unknown distribution PU ; for conve-
nience, we write u(12) = (u(1)⊤, u(2)⊤)⊤ and u(23) = (u(2)⊤, u(3)⊤)⊤. Let Um = {u1, . . . , um}
denote the joint embeddings of the observed hypergraph H([n], Em,Xm), and let Zn = {z1, . . . , zn}
and αn = (α1, . . . , αn). Then Um indeed collects m realizations from PU . Consider a random
hypergraph Hm,n := H([n], {E1, . . . , Em}, {X1, . . . , Xm}), of which H([n], Em,Xm) is a sin-
gle realization. Let PHm,n|Um,Zn,αn,B,γ denote the distribution of Hm,n conditional on Um, Zn,
αn, B, and γ. This defines a probability measure over the product space (P([n]) × A)m, where
P([n]) = {e : e ⊆ [n]} is the power set of [n], and A is the attribute space. Given all embeddings
and parameters, we consider the factorization

PHm,n|Um,Zn,αn,B,γ =

m∏
j=1

PH([n],{Ej},{Xj})|uj ,Zn,αn,B,γ ,

which implies that dependency in node co-occurrence and attributes are characterized by the em-
beddings, and different hyperlinks are conditionally independent; similar assumptions are widely
adopted in the literature on latent space network models (Ma et al., 2020) and hypergraphs (Ke
et al., 2019). Additionally, decomposing the latent space into (k1, k2, k3) dimensions permits a
factorization of the joint likelihood, where

PH([n],{Ej},{Xj})|uj ,Zn,αn,B,γ = PH([n],{Ej})|u(23)
j ,Zn,αn

· P
Xj |u(12)

j ,B,γ
.

Here, PH([n],{E})|u(23),Zn,αn
is the hyperlink-generation model and PX|u(12),B,γ is the attribute gen-

eration model; dependence between hyperlinks and their attributes is captured via the shared latent
embedding u(2). Under a specified likelihood, ReLaSH obtains embeddings (Ûm, Ẑn, α̂n, B̂, γ̂) via
optimizing a joint loss from the likelihood model. Section 2.3 introduces a specific likelihood model
for this task.

Reconstructing the joint latent space. The joint embeddings Ûm constitute an estimated sample
of latent characteristics of the observed hyperlinks and attributes in the joint embedding space. In
the second step, ReLaSH trains a distribution-free generator on this estimated sample. Examples of
such generators include normalizing flows (Kingma & Dhariwal, 2018), kernel density estimation
(Silverman, 2018), and score-based generative models (Song et al., 2020). Section 2.4 specifies the
score-based generator and its implementation used in this paper. ReLaSH then produces Ũm from
the generator and separates it by dimension to obtain Ũ (12)

m and Ũ (23)
m .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Generating new hyperlinks with attributes. Finally, given the generated embeddings Ũ (12)
m and

Ũ (23)
m , ReLaSH decodes them stochastically through the fitted likelihood models to obtain a syn-

thetic hypergraph H̃([n], Ẽm̃, X̃m̃), with hyperlinks drawn from PH̃([n],Ẽm̃)|Ũ(23)
m ,Ẑn,α̂n

and attributes
drawn from PX̃m̃|Ũ(12)

m ,B̂,γ̂
, respectively.

2.3 A JOINT EMBEDDING APPROACH AND ITS IDENTIFIABILITY CONDITIONS

The embedding approach in the first step of ReLaSH can be flexibly chosen and designed domain-
adaptively. In this section, we specify a joint embedding likelihood model implemented in this paper.
Specifically, for each e ⊆ [n], let PH([n],{E})|u(23),Zn,αn

(E = e) =
∏
i∈e pi(u

(23))
∏
i/∈e
(
1 −

pi(u
(23))

)
with pi(u(23)) = σ

(
u(23)⊤zi + αi

)
, where σ(·) = exp(·)/(1 + exp(·)) is the sigmoid

function. The distribution PX|u(12),B,γ is specified by x = γ+Bu(12)+ϵ, where ϵ is a p-dimensional
vector of independent, mean-zero random errors with sub-Gaussian tails (Vershynin, 2018) chosen
to accommodate different attribute types (e.g., Gaussian for continuous attributes and Bernoulli for
binary attributes). Our choice of embedding models is motivated by prior work with theoretical
support on hyperlink generation (Wu et al., 2024) and joint attribute modeling in graphs (Zhang
et al., 2022; Li et al., 2025), yet our setting differs substantially and therefore requires new analysis
and justification. These analyses are presented in Section 3 and in Appendix A.

To obtain embeddings from the observed hypergraph H([n], Em,Xm), we propose to optimize a
joint loss based on the likelihood models. Specifically, let

ℓH = − logPH([n],Em)|U(23)
m ,Zn,αn

= −
m∑
j=1

n∑
i=1

[1{i∈ej}θ
H
ji − log{1 + exp(θHji)}]

with θHji = u
(23)⊤
j zi + αi and ℓA =

∑m
j=1 ∥xj − γ − Bu

(12)
j ∥22. We optimize the joint loss

ℓ(U,Z,B, α, γ) = ℓH + λℓA, where λ > 0 is a weight parameter that balances the contri-
butions from each part. To ensure identifiability during the embedding and estimation proce-
dure, we need to impose additional structural constraints. Define the node embedding matrix as
Z = (z1, · · · , zn)⊤ ∈ Rn×(k2+k3), and let B = (B1 B2) ∈ Rp×(k1+k2). The identifiability of the
joint embedding model, i.e., the distribution of PU and Z,α,B, γ is defined as follows.
Definition 1. (Identifiability of the joint embedding model.) The joint embedding model is identifi-
able if for any two sets of model parameters (PU , Z, α, γ,B) and (P′U , Z ′, α′, γ′, B′),

α+ ZU (23) d
= α′ + Z ′U (23)′ and γ +BU (12) d

= γ′ +B′U (12)′

imply (PU , Z, α, γ,B) = (PU ′ , Z ′, α′, γ′, B′).

The following theorem ensures the identifiability of the embedding parameters under a set of iden-
tifiability conditions.

Theorem 1. Under the following conditions: (C1) EPU
[U] = 0; (C2) EPU

[U (23)U (23)⊤] = 1
nZ
⊤Z

is a diagonal matrix with distinct positive diagonal elements; (C3) EPU
[U (1)U (1)⊤] = 1

pB
⊤
1 B1 is a

diagonal matrix with distinct positive diagonal elements; (C4) EPU
[U (1)U (2)⊤] = 0k1×k2 , the joint

embedding model is identifiable according to Definition 1.

Such identifiability conditions have been widely considered in the literature; see, e.g., (Wu et al.,
2025; Li et al., 2025). In general, if the true (PU , Z,B, α, γ) does not satisfy the conditions in
Theorem 1, we can apply a unique transformation to enforce the constraints while keeping the joint
distribution of hyperlinks and attributes unchanged. Therefore, we jointly embed the hypergraph
and attributes by minimizing ℓ(U,Z,B, α, γ) under identifiability constraints designed based on
Theorem 1. Full algorithmic details are provided in Appendix B.1.

2.4 SCORE-BASED JOINT EMBEDDING SPACE RECONSTRUCTION

In this section, we specify the score-based generator in the joint latent embedding space imple-
mented in this work. Our construction follows score-based generative modeling through stochastic
differential equations (SDEs) (Song et al., 2020): a forward SDE gradually perturbs the data into

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Gaussian noise, and a reverse-time SDE generates samples from noise using score functions learned
via denoising score matching (Hyvärinen & Dayan, 2005; Song et al., 2020). A key difference in
our setup is that we train score functions using unobserved embeddings rather than observed data.

Specifically, we define a continuous-time forward diffusion process initialized from Ûm:

dUt = −Ut dt+
√
2 dWt, U0 ∼ Ûm, (1)

where {Wt}t∈[0,T] is a standard k-dimensional Wiener process with k = k1+k2+k3. LetN = T/h

denote the number of discretization steps with step size h. Let sθ : Rk × [0, T] → Rk be the score
network, a multilayer perceptron (MLP) with parameters θ, to approximate the score function. The
parameter θ is learned via the denoising score matching objective (Vincent, 2011), constructed using
the learned embeddings (Wu et al., 2025):

ℓ(θ) =

N∑
l=0

λl ·
1

m

∑
u0∈Ûm

Eulh|u0

[∥∥ sθ(ulh, lh)− ∇ulh
log plh(ulh|u0)

∥∥2
2

]
,

where {ulh}Nl=0 are diffused samples in the forward process (1) at time lh, ∇ log pt(·) is the score
(gradient of the log-density of Ut), plh(ulh|u0) is the marginal density of the forward process given
u0, and λk ≈ 1/E{∥∇ulh

log plh(ulh | u0)∥22} are nonnegative weights that balance different time
steps. To construct the score-based generator, for each l ∈ {0, 1, . . . , N − 1} and t ∈ [lh, (l+ 1)h],
we hold the score network fixed at the grid time and obtain

dU←t =
(
U←t + 2 sθ̂(U

←
T−lh, T − lh)

)
dt+

√
2 dW̃t,

where W̃t is a standard k-dimensional Wiener process independent of Wt. To sample m̃ embed-
dings, we simulate the above reverse-time SDE m̃ times, each initialized at t = 0 with U←0 ∼
N (0, Ik). Collecting the terminal states yields the synthetic embeddings Ũm̃ = {ũ1, . . . , ũm̃}.

3 THEORETICAL RESULTS

Our theoretical analysis in this section considers the following setup. The node embeddings
Zn = {z1, . . . , zn}, the degree parameters αn = (α1, . . . , αn)

⊤, and (B, γ) are treated as fixed
parameters. The hyperlink embeddings Um = {u1, . . . , um} consist of m i.i.d. draws from the
hyperlink-embedding distribution PU . Conditioned on (Um,Zn, αn, B, γ), the observed hypergraph
is one realization from PHm,n|Um,Zn,αn,B,γ . Our goal is to understand how close the distribution of
synthetic hyperlinks and attributes generated by ReLaSH is their true distribution under this model.
Let P(E,X,U) denote the joint distribution of a hyperlink E, its associated attribute X , and the cor-
responding joint latent embedding U . Let PŨ denote the marginal distribution of a hyperlink em-
bedding Ũ sampled from the latent space generator trained on Ûm, and let P(Ẽ,X̃,Ũ) denote the joint
distribution of Ũ , and the hyperlink and attributes generated from PH([n],{Ej},{Xj})|Ũ,Ẑn,α̂n,B̂,γ̂

.
Note that the estimated embeddings comes from one realization of PHm,n|Um,Zn,αn,B,γ , PŨ and
P(Ẽ,X̃,Ũ) are indeed defined conditioned on Um, Zn, αn, B, and γ.

Lemma 1. If Um, Zn, αn, B, and γ are available and replace (Ûm, Ẑn, α̂n, B̂, γ̂) in ReLaSH, we
have dKL(P(E,X,U) ∥P(Ẽ,X̃,Ũ)) = dKL(PU ∥PŨ).

Lemma 1 states that the generative error for high-dimensional hyperlinks and attributes can be re-
duced to the generative error of low-dimensional hyperlink embeddings, under an ideal scenario
where the true latent embeddings are available to use. In practical scenarios where these embeddings
are unobserved and need to be learned from the data, the error from the embedding algorithm needs
to be considered. Conditioned on Um, let P′

(Ẽ,X̃,Ũ)
denote a random measure for the joint distribu-

tion of a generated hyperlink embedding Ũ and its associated hyperlink Ẽ and attribute X̃ , using the
estimated parameters Ẑn, B̂, α̂, and γ̂. More formally, this measure is P′

(Ẽ,X̃,Ũ)|Ûm,Ẑn,B̂,α̂,γ̂
, but we

use the simpler notation for clarity. The randomness of this distribution arises from the observed hy-
pergraph H([n], Em,Xm) given (Um,Zn, B, α, γ), which further induces randomness in the learned
embeddings (Ûm, Ẑn, B̂, α̂, γ̂) and consequently in the distribution of (Ẽ, X̃, Ũ). Similarly, define
P′
Ũ

:= P′
Ũ |Ûm,Ẑn,B̂,α̂,γ̂

as the random measure on Ũ conditioned on the learned embeddings. The
next theorem shows that the generation error can be decomposed into three parts.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Theorem 2. The KL-divergence between the true distribution P(E,X,U) and the generated distribu-
tion P(Ẽ,X̃,Ũ) admits the following decomposition:

dKL(P(E,X,U) ∥P(Ẽ,X̃,Ũ)) = ∆(Zn,B,α,γ)-estimation +∆PU -estimation +∆latent-reconstruction,

where the exact forms of the three components are given in the proof of the theorem (Appendix C).

As their names indicate, the first error term depends on the estimation error of (Zn, B, α, γ), the
second on the recovery of the joint latent embedding distribution, and the third on the reconstruction
of the joint latent space. Next, we analyze these three terms under the specific embedding approach
in Section 2.3 and the score-based generator in Section 2.4. We first analyze ∆(Zn,B,α,γ). Follow-
ing the discussion in Wu et al. (2024) on how the sparsity parameter ᾱm,n affects the hypergraph
embedding procedure, we introduce the following assumption on ᾱm,n.

Assumption 1 (Hyperlink sparsity). As m,n, p→ ∞, exp(ᾱm,n) ≳ log(m ∨ n)/(m ∧ n).

When m ≍ n, this sparsity scaling is consistent with the sufficient order in Proposition 2.2 and
the necessary order in Proposition 2.1 of Wu et al. (2024), up to a logarithmic factor. Further, we
consider the following assumption on the embedding space.

Assumption 2 (Embedding space). Define σm,n,p = {(m ∧ n ∧ p) exp(ᾱm,n)}−1/2. The mini-
mum eigenvalue of EPU

[UU⊤] is lower bounded by a constant, and eigenvalues of EPU
[UU⊤] are

distinct with their gaps lower bounded by a constant. For the m realizations of PU in Um, it holds
that that ∥m−1

∑m
j=1 uj∥F = O(σm,n,p), and ∥m−1

∑m
j=1 uju

⊤
j − EPU

[UU⊤]∥F = O(σ2
m,n,p),

∥m−1
∑m
j=1 u

(2)
j u

(1)⊤
j ∥F = O(σ2

m,n,p), ∥m−1
∑m
j=1 u

(2)
j u

(3)⊤
j ∥F = O(σ2

m,n,p).

With Assumptions 1 and 2, we have the following theorem on ∆(Zn,B,α,γ).

Theorem 3. Suppose that Assumptions 1 and 2 hold, and λ ≍ exp(ᾱm,n), then as (m,n) → ∞,
the rate of estimation-related error satisfies

1

(n ∨ p)
∆(Zn,B,α,γ)-estimation = Op

(
log(m ∨ n)
min{m,n, p}

)
.

Theorem 3 implies that if m ≍ n ≍ p, the error introduced by estimating (Z,B, α, γ) is asymptoti-
cally negligible. We defer the analysis of ∆PU estimation to Appendix A due to page constraints, as it
requires defining a discretization over the support of PU . To study ∆latent-reconstruction, we follow the
theoretical development of Chen et al. (2022), noting that our score networks are trained on learned
embeddings rather than observed data. Let pe denote the marginal density of the joint embeddings
Û , and let pet denote the law of Ut in the forward process (1). Under the following assumptions
(Block et al., 2020; Lee et al., 2022; Chen et al., 2022), we bound the generative error in the joint
embedding space.

Assumption 3. The learned score network sθ̂(u, t) satisfies for any 1 ≤ k ≤ N ,
EU∼pekh

∥∇ log pekh(U) − sθ̂(U, kh)∥
2 ≤ ε20. The distribution of estimated embeddings has a

bounded second moment, i.e., MU = Epe∥Û∥2 ≤ ∞. For t ∈ [0, T], ∇ log pet is L-Lipschitz.

Proposition 1 (Theorem 2 in Chen et al. (2022)). Under Assumption 3, if L ≥ 1, h ≤ 1 and
T ≥ 1. We have ∆latent-reconstruction ≲ (MU + K)e−T + Tε20 + N−1KT 2L2. Then by choosing
T = log((MU +K)/ε20) and N = Ω(KTL2/ε20), we have ∆latent-reconstruction = O(Tε20).

The first error term quantifies the distance between UT and the standard Gaussian distribution in the
forward diffusion process, which decays exponentially in T . The third term accounts for errors aris-
ing from discretizing the SDE. Regarding the score-approximation error ε20, Chen et al. (2023a) stud-
ied a specific neural network construction and demonstrated that the upper bound on the sample com-
plexity of score estimation is exponential in the score network dimension. This sample-complexity
result for score estimation highlights the curse of dimensionality in high-dimensional generative
modeling tasks. By jointly embedding the hypergraph and attribute data into a low-dimensional
continuous space and reconstructing this joint latent space, we avoid training a high-dimensional
score network or other high-dimensional distribution-free generators, thereby significantly improv-
ing efficiency.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

In this section, we empirically evaluate ReLaSH for generating hypergraphs with hyperlink attributes
on three datasets. We first describe the experimental setup and then report the numerical results.
Additional simulation study and implementation details are provided in Appendix B.

4.1 EXPERIMENT SETUP

∆Hv ↓ ∆Xm ↓ ∆Xv ↓ FED ↓
ReLaSH-2 3.260 2.989 1.435 0.532
ReLaSHc-2 27.794 2.989 1.435 0.013
ReLaSH-16 2.624 3.681 1.655 11.738
ReLaSHc-16 6.230 3.681 1.655 9.049

Gau-Diff 4.268 3.497 1.719 39.731
RealNVP 3.958 33.240 2.526 27.685
WGAN 3.506 10.534 2.176 21.053

VAE 48.450 11.499 4.134 9.374

Table 1: Results for the patient profile generation task.
Scales of ∆Hv

, ∆Xm
, ∆Xv

, FED are 10−4, 10−3,
10−1, 10−2, respectively.

Datasets. We use three datasets: (i) the
co-citation hypergraph data from MAD-
Stat (Ji et al., 2022) and MADStaText (Ke
et al., 2023), where authors are nodes, co-
cited authors in a statistical journal pa-
per form hyperlinks, and TF-IDF values
(Sparck Jones, 1972) of words with re-
spect to the corresponding paper abstracts
are hyperlink attributes; (ii) the recipe
hypergraph dataset2, where food ingredi-
ents are nodes, the set of ingredients in
a recipe forms a hyperlink, and meta-
data such as cuisine type constitute hy-
perlink attributes; and (iii) the symptom
co-occurrence hypergraph from MIMIC-
III (Johnson et al., 2016), where medical symptoms are nodes, symptoms co-occurring in a patient
profile forms a hyperlink, and the remaining patient notes are hyperlink attributes. Details of these
hypergraph datasets are provided in Appendix B.4.

Baselines. We compare ReLaSH with 4 methods that can be used to produce synthetic hyperlinks
with attributes: Gau-Diff (Song et al., 2020), RealNVP (Dinh et al., 2016), WGAN (Arjovsky et al.,
2017), and VAE (Kingma & Welling, 2013). We refer readers to Appendix B.7 for more details and
discussion of these methods.

4.2 GENERATING SYNTHETIC HYPERLINKS WITH ATTRIBUTES

∆Hv ↓ ∆Xm ↓ ∆Xv ↓ FED ↓
ReLaSH-6 1.996 8.578 1.887 1.246
ReLaSHc-6 3.890 8.578 1.887 5.481
ReLaSH-24 1.626 8.608 1.887 1.454
ReLaSHc-24 2.816 8.608 1.887 6.451

Gau-Diff 1.672 10.016 1.824 5.060
RealNVP 1.668 12.646 1.863 3.948
WGAN 2.247 8.671 1.885 1.253

VAE 9.972 9.425 1.889 1.358

Table 2: Results for the co-citation hypergraph gener-
ation task. Scales of ∆Hv

, ∆Xm
, ∆Xv

, FED are 10−3,
10−2, 10−1, 10−1, respectively.

Evaluation metrics. The task aims
to generate realistic hyperlinks with at-
tributes that preserve properties of the ob-
served hypergraph from different models.
Following Wu et al. (2025), we evalu-
ate performance using the RMSE of the
hypergraph node covariances (∆Hv), the
attribute means (∆Xm), and the attribute
covariances (∆Xv

). In addition, we re-
port FED, a generalization of FID used in
evaluating visual generation tasks (Heusel
et al., 2017), adapted to the hypergraph
generation setting. Details of these met-
rics are provided in Appendix B. For each
metric, a lower value indicates better per-
formance.

Results & discussion.

The results are summarized in Tables 1, 2, and 3. In these tables, ReLaSH-k denotes that ReLaSH
is trained with latent-space dimension k, and ReLaSHc-k further denotes that, during generation, a
calibration step is applied at the end so that the node degree sequence of the generated hypergraph
matches that of the observed hypergraph. For each metric, the best result is highlighted in bold
and the second-best is underlined. Across the three tasks, ReLaSH exhibits robust and outstanding

2https://www.kaggle.com/datasets/hugodarwood/epirecipes/data

8

https://www.kaggle.com/datasets/hugodarwood/epirecipes/data

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

performance in terms of the quality of the generated hyperlinks and their attributes. Figure 1 (in the
Introduction) and Figure 3 show examples of generated samples for these three tasks. The rationale
for the generated medical record is described in the Introduction; below we discuss the other two
cases.

The left half of Fig. 3 presents a generated reference-author list with top keywords by ReLaSH-
24. Tibshirani and Hastie are seminal contributors to regularization and variable-selection methods,
particularly the LASSO. The remaining authors on the list are leading researchers in survival analysis
and statistical methodology, aligning with the keywords in the abstract and indicating a coherent
methodological focus at the intersection of high-dimensional variable-section and survival models.

∆Hv ↓ ∆Xm ↓ ∆Xv ↓ FED ↓
ReLaSH-2 1.978 2.236 0.894 0.293
ReLaSHc-2 7.504 2.236 0.894 0.182
ReLaSH-16 2.355 1.533 1.112 0.766
ReLaSHc-16 1.847 1.533 1.112 0.180

Gau-Diff 2.375 2.154 4.256 0.802
RealNVP 2.484 1.146 3.562 0.909
WGAN 2.208 21.428 1.351 0.907

VAE 21.587 9.883 5.180 11.553

Table 3: Results for the recipe generation task. Scales
of ∆Hv , ∆Xm , ∆Xv , FED are 10−3, 10−2, 10−2, 10−1,
respectively.

The right half of Fig. 3 shows a gener-
ated recipe named “Mediterranean Fisher-
man’s Bean Stew,” produced by ReLaSHc-
16. By comparing against meals with sim-
ilar ingredient combinations in the train-
ing set, we confirm that no identical recipe
exists in the source data, demonstrating
that the generated cuisine is genuinely
novel rather than a memorized replica-
tion. The dish resembles a Mediterranean
or Iberian-style fish and bean stew, simi-
lar to Spanish or Portuguese coastal cui-
sine. Its high-protein, low-fat profile is
consistent with ingredients like lean fish
and legumes, while saffron, fennel, and
wine reflect authentic regional flavor. These results highlight ReLaSH as a powerful and efficient
method for generating hypergraphs with attributes, even when trained on relatively small datasets,
supporting applications such as the creation of new recipes. Additional remarks and extended ex-
amples are provided in Appendix B.4.

Figure 3: Examples of synthetic reference author list (left) and synthetic recipe (right) from ReLaSH.

5 CONCLUSION

We introduce ReLaSH, a general generative framework for hypergraphs with hyperlink attributes by
bridging a likelihood-based joint embedding model with a distribution-free latent space generator.
By embedding hyperlinks and their attributes into a shared latent space and reconstructing that space
prior to decoding, ReLaSH explicitly accounts for the discrete nature of hypergraph structure, hyper-
link sparsity, and mixed data types, while avoiding heavy training on the original high-dimensional
data. Our analysis presents the consistency and generalizability for the framework, and experiments
across diverse real-world datasets demonstrate its strong empirical performance, highlighting Re-
LaSH as a practical tool for the hypergraph generation task.

This work opens several directions for future research. First, extending ReLaSH to dynamic and
temporal hypergraphs, weighted hyperlinks, and richer attribute modalities would broaden its ap-
plicability while introducing new challenges. Second, conditional generation (e.g., conditioning
on subsets of nodes, attributes, or constraints) could enable targeted simulation and counterfactual
analysis. Third, tighter theoretical results, such as uncertainty quantification for generated struc-
tures, would further strengthen its theoretical guarantees. We view ReLaSH as a step toward reliable
and flexible generative modeling for hypergraph data.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan, 2017.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Federico Battiston, Giulia Cencetti, Iacopo Iacopini, Vito Latora, Maxime Lucas, Alice Patania,
Jean-Gabriel Young, and Giovanni Petri. Networks beyond pairwise interactions: Structure and
dynamics. Physics Reports, 874:1–92, 2020.

Austin R Benson, David F Gleich, and Jure Leskovec. Higher-order organization of complex net-
works. Science, 353(6295):163–166, 2016.

Adam Block, Youssef Mroueh, and Alexander Rakhlin. Generative modeling with denoising auto-
encoders and langevin sampling. arXiv preprint arXiv:2002.00107, 2020.

Sourav Chatterjee. Matrix estimation by universal singular value thresholding. The Annals of Statis-
tics, 43(1):177–214, 2015. ISSN 00905364.

Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estimation and
distribution recovery of diffusion models on low-dimensional data. In International Conference
on Machine Learning, pp. 4672–4712. PMLR, 2023a.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy
as learning the score: theory for diffusion models with minimal data assumptions. arXiv preprint
arXiv:2209.11215, 2022.

Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and degree-guided graph generation
via discrete diffusion modeling. arXiv preprint arXiv:2305.04111, 2023b.

Fan Chung and Mary Radcliffe. On the spectra of general random graphs. The Electronic Journal
of Combinatorics, pp. P215–P215, 2011.

Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis. In Advances in
Neural Information Processing Systems, 2021.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components esti-
mation. arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Song Feng, Emily Heath, Brett Jefferson, Cliff Joslyn, Henry Kvinge, Hugh D Mitchell, Brenda
Praggastis, Amie J Eisfeld, Amy C Sims, Larissa B Thackray, et al. Hypergraph models of
biological networks to identify genes critical to pathogenic viral response. BMC Bioinformatics,
22(1):287, 2021.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder for
distribution estimation. In International Conference on Machine Learning, pp. 881–889. PMLR,
2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems, volume 27, 2014.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
Neural Information Processing Systems, 30, 2017.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Didrik Nielsen, Rianne van den Berg, and Max Welling. Argmax flows and
multinomial diffusion: Learning categorical distributions. arXiv preprint arXiv:2102.05379,
2021.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score match-
ing. Journal of Machine Learning Research, 6(4), 2005.

Pengsheng Ji, Jiashun Jin, Zheng Tracy Ke, and Wanshan Li. Co-citation and co-authorship net-
works of statisticians. Journal of Business & Economic Statistics, 40(2):469–485, 2022.

Jaehyeong Jo, Jinheon Baek, Seul Lee, Dongki Kim, Minki Kang, and Sung Ju Hwang. Edge
representation learning with hypergraphs. Advances in Neural Information Processing Systems,
34:7534–7546, 2021.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
a freely accessible critical care database. Scientific Data, 3(1):1–9, 2016.

Alistair EW Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout, Steven Horng,
Tom J Pollard, Sicheng Hao, Benjamin Moody, Brian Gow, et al. Mimic-iv, a freely accessible
electronic health record dataset. Scientific Data, 10(1):1, 2023.

Alexia Jolicoeur-Martineau, Kilian Fatras, and Tal Kachman. Generating and imputing tabular data
via diffusion and flow-based gradient-boosted trees. In International Conference on Artificial
Intelligence and Statistics, pp. 1288–1296. PMLR, 2024.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019.

Zheng Ke, Pengsheng Ji, Jiashun Jin, and Wanshan Li. Recent advances in text anal-
ysis. Annual Review of Statistics and Its Application, 11, 11 2023. doi: 10.1146/
annurev-statistics-040522-022138.

Zheng Tracy Ke, Feng Shi, and Dong Xia. Community detection for hypergraph networks via
regularized tensor power iteration. arXiv preprint arXiv:1909.06503, 2019.

Kevin Kilgour, Mauricio Zuluaga, Dominik Roblek, and Matthew Sharifi. Frechet audio distance:
A metric for evaluating music enhancement algorithms. arXiv preprint arXiv:1812.08466, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
Advances in Neural Information Processing Systems, 31, 2018.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. In International Conference on Learning Representations,
2021.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence for score-based generative modeling with
polynomial complexity. Advances in Neural Information Processing Systems, 35:22870–22882,
2022.

Jinming Li, Gongjun Xu, and Ji Zhu. High-dimensional factor analysis for network-linked data.
Biometrika, pp. asaf012, February 2025. ISSN 1464-3510. doi: 10.1093/biomet/asaf012.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Renato D Lopes, Patrı́cia O Guimarães, Bradley J Kolls, Daniel M Wojdyla, Cheryl D Bushnell,
Michael Hanna, J Donald Easton, Laine Thomas, Lars Wallentin, Sana M Al-Khatib, et al. In-
tracranial hemorrhage in patients with atrial fibrillation receiving anticoagulation therapy. Blood,
The Journal of the American Society of Hematology, 129(22):2980–2987, 2017.

Zhuang Ma, Zongming Ma, and Hongsong Yuan. Universal Latent Space Model Fitting for Large
Networks with Edge Covariates. Journal of Machine Learning Research, 21(4):1–67, 2020.

Tamás Nepusz, Haiyuan Yu, and Alberto Paccanaro. Detecting overlapping protein complexes in
protein-protein interaction networks. Nature Methods, 9:471–2, 03 2012. doi: 10.1038/nmeth.
1938.

Quoc Chuong Nguyen and Trung Kien Le. Toward a comprehensive simulation framework for
hypergraphs: a python-base approach. arXiv preprint arXiv:2401.03917, 2024.

Weili Nie, Nina Narodytska, and Ankit Patel. Relgan: Relational generative adversarial networks
for text generation. In International Conference on Learning Representations, 2018.

Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Gunter Klambauer.
Fréchet chemnet distance: a metric for generative models for molecules in drug discovery. Journal
of Chemical Information and Modeling, 58(9):1736–1741, 2018.

Daniel Rhodes, Scott Tomlins, Sooryanarayana Varambally, Vasudeva Mahavisno, Terrence Bar-
rette, Shanker Kalyana-Sundaram, Debashis Ghosh, Akhilesh Pandey, and Arul Chinnaiyan.
Probabilistic model of the human protein-protein interaction network. Nature Biotechnology,
23:951–9, 09 2005. doi: 10.1038/nbt1103.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022.

Alina Scridon and Alkora Ioana Balan. Challenges of anticoagulant therapy in atrial fibrilla-
tion—focus on gastrointestinal bleeding. International Journal of Molecular Sciences, 24(8):
6879, 2023.

Jonathan Shen, Ruoming Pang, Ron J. Weiss, Mike Schuster, Navdeep Jaitly, Zongheng Yang,
Zhifeng Chen, Yu Zhang, Yuxuan Wang, R. Skerry-Ryan, et al. Natural tts synthesis by condi-
tioning wavenet on mel spectrogram predictions. In IEEE International Conference on Acoustics,
Speech and Signal Processing, 2018.

Bernard W Silverman. Density estimation for statistics and data analysis. Routledge, 2018.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, pp. 2256–2265. PMLR, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Karen Sparck Jones. A statistical interpretation of term specificity and its application in retrieval.
Journal of Documentation, 28(1):11–21, 1972.

Leo Torres, Ann S Blevins, Danielle Bassett, and Tina Eliassi-Rad. The why, how, and when of
representations for complex systems. SIAM Review, 63(3):435–485, 2021.

Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphaël Marinier, Marcin Michalski,
and Sylvain Gelly. FVD: A new metric for video generation, 2019.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
In International Conference on Machine Learning, pp. 1747–1756. PMLR, 2016.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
Neural Information Processing Systems, 30, 2017.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge University Press, 2018.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural Compu-
tation, 23(7):1661–1674, 2011.

Hewen Wang, Renchi Yang, and Xiaokui Xiao. Effective edge-wise representation learning in edge-
attributed bipartite graphs. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 3081–3091, 2024.

Tianxin Wei, Yuning You, Tianlong Chen, Yang Shen, Jingrui He, and Zhangyang Wang. Aug-
mentations in hypergraph contrastive learning: Fabricated and generative. Advances in Neural
Information Processing Systems, 35:1909–1922, 2022.

Shihao Wu, Gongjun Xu, and Ji Zhu. A general latent embedding approach for modeling non-
uniform high-dimensional sparse hypergraphs with multiplicity, 2024.

Shihao Wu, Junyi Yang, Gongjun Xu, and Ji Zhu. Denoising diffused embeddings: a generative
approach for hypergraphs, 2025.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generat-
ing realistic graphs with deep auto-regressive models. In International Conference on Machine
Learning, pp. 5708–5717. PMLR, 2018.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets
with policy gradient. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31,
2017.

Yi Yu, Tengyao Wang, and Richard J Samworth. A useful variant of the davis–kahan theorem for
statisticians. Biometrika, 102(2):315–323, 2015.

Xuefei Zhang, Gongjun Xu, and Ji Zhu. Joint latent space models for network data with high-
dimensional node variables. Biometrika, 109(3):707–720, September 2022. ISSN 1464-3510.
doi: 10.1093/biomet/asab063.

Jiajun Zhou, Chenxuan Xie, Shengbo Gong, Zhenyu Wen, Xiangyu Zhao, Qi Xuan, and Xiaoniu
Yang. Data augmentation on graphs: A technical survey. ACM Comput. Surv., 57(11), 2025.
ISSN 0360-0300.

Jianming Zhu, Junlei Zhu, Smita Ghosh, Weili Wu, and Jing Yuan. Social influence maximization
in hypergraph in social networks. IEEE Transactions on Network Science and Engineering, 6(4):
801–811, Oct 2019. doi: 10.1109/tnse.2018.2873759.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

We provide additional theoretical results, experimental details with extended numerical results, and
proofs in the appendix. Appendix A presents additional theoretical results. Appendix B collects
supplementary materials for experiments, including additional numerical results on simulated and
real-world data and details of the evaluation metrics and implementations. Proofs of the theoretical
results are in Appendix C.

A ADDITIONAL THEORETICAL RESULTS

We start with a discussion of the identifiability of the embedding model introduced in Section 2.3.
First, we emphasize that the identifiability conditions in Theorem 1 are sufficient but not necessary.
For instance, (C3) may be replaced by (C3*) B1 contains a k1 × k1 unit lower-triangular matrix,
or (C3**) p−1B⊤1 B1 = Ik1 . The identifiability conditions in Theorem 1 are chosen according to
the literature (Wu et al., 2025). Other identifiability conditions can be adopted in our framework
as well. Additionally, we address identifiability up to column sign flips by fixing the sign of all
coordinates in the first hyperlink embedding vector and adjusting the estimators accordingly. In the
following, we specify the constraint sets for the embedding and the parameter estimation proce-
dure. Let the degree parameter be α = (α1, · · · , αn)⊤ ∈ Rn, the hyperlink embedding matrix be
Um = (u1, · · · , um)⊤ = (U

(1)
m U

(2)
m U

(3)
m) ∈ Rm×K , where K = k1 + k2 + k3. Furthermore,

denote the block submatrices of Um as U (12)
m = (U

(1)
m U

(2)
m) and U (23)

m = (U
(2)
m U

(3)
m). Under the

parametrization conditions outlined in Theorem 1, we define the feasible region:

F(Θ) := {(Um, Z,B, α, γ) | Θ = [ΘH ,ΘX],ΘH = 1mα
⊤ + U (23)

m Z⊤,ΘX = 1mγ
⊤ + U (12)

m B⊤,

max{∥α− ᾱm,n1n∥∞,max
i∈[n]

∥zi∥2} ≤M1,max{∥γ∥∞,max
i∈[p]

∥Bi∗∥2} ≤M2,

max
j∈[m]

∥uj∥2 ≤ (M1 ∧M2), and − Cm,n ≤ ᾱm,n ≤ −C ′Cm,n}.

(2)
where M1,M2 > 0, C ′ ∈ (0, 1), and the boundary parameter Cm,n, which may diverge slowly
as m,n → ∞, accounts for the sparsity of hyperlinks. An ideal choice of Cm,n would satisfy
ᾱm,n ≍ −Cm,n and exp(ᾱm,n) ≍ exp(−Cm,n). Following Proposition 3.2 in Wu et al. (2024), we
suggest setting Cm,n = −C ′′ log

(∑m
j=1 |ej |/(mn)

)
for some constant C ′′ > 1.

In the embedding step, we attain (Û , Ẑ, B̂, α̂, γ̂) by solving:

min
(Um,Z,B,α,γ)∈F(Θ)

ℓ(U,Z,B, α, γ). (3)

In what follows, we present additional theoretical results that characterize the error rates of the
embedding and estimation procedure.
Theorem 4 (F-consistent estimation of ΘH ,ΘX). Let Θ∗ = [ΘH∗ ΘX∗] be the true parameters,
and Θ̂ = [Θ̂H Θ̂X] be the estimated version derived by the optimizers (Û , Ẑ, B̂, α̂, γ̂). Under
Assumption 1 and the condition that (U∗, Z∗, B∗, α∗, γ∗) ∈ F(Θ), we have

∥Θ̂−Θ∗∥F = Op

(√
(m ∨ n) exp(ᾱm,n) log(m ∨ n) + 4λ2(m ∨ p)

(exp(−Cm,n) ∧ λ)

)
.

Remark 1. Theorem 4 implies that if m ≍ n ≍ p, exp(ᾱ∗m,n) ≍ exp(−Cm,n), and with Assump-
tion 1, the optimizers achieve F-consistent, i.e. 1√

m(n+p)
∥Θ̂−Θ∗∥F = op(1), implies that for any

set of Um from the distribution PU , the estimation is precise.
Remark 2. We conducted simulation experiments regarding the embedding procedure, as detailed
in Appendix B.2, to validate the theoretical error rate.
Remark 3. The error bound in Theorem 4 depends jointly on the sparsity parameter of the hyper-
graph ᾱm,n and the regularization weight λ. Consequently, λ should be tuned in accordance with
the observed sparsity in order to balance these two sources of error. Simulation results presented in
Appendix B.2 further indicate that while the tuning of λ does not substantially affect the accuracy
of estimation, it may influence the stability of the gradient descent procedure.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Remark 4. Moreover, when m ≍ n ≍ p and λ ≍ exp(ᾱ∗m,n) ≍ exp(−Cm,n), the error rate in
Theorem 4 is dominated by the hypergraph embedding error rate (Wu et al., 2024), and the error
from the attribute part is of smaller order.

Corollary 1. (F-consistent estimation of the embedding and parameters) Let (Û , Ẑ, B̂, α̂, γ̂) be the
optimizers, and (U∗, Z∗, B∗, α∗, γ∗) be the true embeddings and parameters satisfying the con-
straints in the feasible region F(Θ). Denote

δm,n,p =

√
(m ∨ n) exp(ᾱm,n) log(m ∨ n) + 4λ2(m ∨ p)

√
m (exp(−Cm,n) ∧ λ)

.

As (m,n) → ∞ and with Assumption 1, 2, we have F-consistent error of the embedding and

parameters that ∥α̂− α∗∥2 = Op(δm,n,p), ∥Û − U∗∥F = Op

(√
m(n+ p)/(np)δm,n,p

)
, ∥Ẑ −

Z∗∥F = Op(δm,n,p), ∥γ̂ − γ∗∥2 = Op(δm,n,p), ∥B̂ −B∗∥F = Op(δm,n,p).

To address identifiability, we apply the transformations in Remark 5, whose details are deferred to
Appendix C, and which introduce an additional source of error in the embedding procedure. The
following theorem characterizes this error.
Theorem 5. Let H([n], Em,Xm) be the hypergraph generated from underlying embeddings Um, Zn,
and parameters α, γ, B, where Um are m realizations from PU . Let (Û , Ẑ, B̂, α̂, γ̂) be the optimiz-
ers, then with Assumption 1, 2 and as (m,n) → ∞, we have ∥α̂−α∥2 = Op(δm,n,p), ∥Û−Um∥F =

Op

(√
m(n+ p)/(np)δm,n,p

)
, ∥Ẑ−Z∥F = Op(δm,n,p), ∥γ̂−γ∥2 = Op(δm,n,p), ∥B̂−B∥F =

Op(δm,n,p).

Next, we discuss ∆PU
via a discretization strategy (Wu et al., 2025). In general, analyzing the joint

embedding-related error ∆PU -estimation is challenging, as it requires comparing the distribution of the
estimated embeddings based on m observations, Um = {u1, . . . , um}, from the continuous latent
distribution PU . To address this, we adopt a discretization strategy to bridge these two quantities
and analyze the error term step by step. We first introduce Assumption 4 and analyze ∆PU -estimation
under these conditions.
Assumption 4 (Support of PU). The support of PU satisfies supp(PU) ⊂ {u ∈ Rk : ∥u∥∞ ≤
(M1 ∧M2)} for the constant M1,M2 in 2.

Let U dis denote a discretized version of U , with distribution pU dis = dPU dis/dµ(U dis), defined as
pU dis(udis) =

∫
[udis− 1

2γm,n,p
,udis+ 1

2γm,n,p
)∩supp(PU)

pU (u) dµ(u) for any udis ∈ AC,γ−1
m,n,p

= {a ∈

Rk : ∥a∥∞ ≤ C, ai ∈ 1
γm,n,p

· Z ∀i ∈ [k]}, where C = M1 ∧ M2, and γm,n,p is a sequence
diverging to ∞ as m,n, p → ∞. Since PU dis and PU are defined on different sample spaces, they
are not directly comparable. To address this, we introduce the random vector U pc, defined on the
same sample space as U , whose density is piecewise constant.

Without loss of generality, let supp(PU) = [−C − (2γm,n,p)
−1, C + (2γm,n,p)

−1)k, which
forms a hypercube centered at 0 with side length 2C + (γm,n,p)

−1 in each coordinate. This
hypercube can be perfectly partitioned into finitely many disjoint intervals of length γ−1m,n,p per
coordinate. Define PU pc as follows: for any u ∈ supp(PU), let udis(u) ∈ AC,γ−1

m,n,p
satisfy

u ∈ [udis(u) − (2γm,n,p)
−1, udis(u) + (2γm,n,p)

−1), and define the probability density of U pc

as pU pc(u) := dPUpc

dµ(U pc) (u) = γkm,n,p
∫
[udis(u)−(2γm,n,p)−1, udis(u)+(2γm,n,p)−1)

pU (u) dµ(u).

Lemma 2. U pc is a well-defined random variable on supp(PU) in the sense that its probability
density pU pc(·) integrated to 1.

Next, we show that the distance between pU pc(u) and pU (u) is uniformly bounded, which quantifies
the distance between PU pc and PU .
Theorem 6. Suppose pU (u) is L-Lipschitz continuous on its support. Then, for any u ∈ supp(PU),
there is |pU pc(u)− pU (u)| ≤ L

√
k γ−1m,n,p.

In our setting, the hypergraph with m hyperedges is constructed on the m observations Um. Let
PUdis

m
denote the empirical distribution of m realizations Udis

m = {udis
1 , u

dis
2 , · · · , udis

m }, defined by

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

pUdis
m
(u) = #{u ∈ Um}/m, ∀u ∈ AC,γ−1

m,n,p
. We can then show that the distance between PU dis

and the empirical distribution PUdis
m

based on m realizations is bounded as in Lemma 3.
Lemma 3. Let Um be a collection ofm realizations from PU dis . For any sequnce of εm,n,p satisfying
εm,n,p ≫

√
k log(2Cγm,n,p)/m as m,n, p → ∞, then there is P{∀u ∈ AC,γ−1

m,n,p
, |pU dis(u) −

pUdis
m
(u)| ≤ εm,n,p} → 1 as m,n, p→ ∞.

When Um is replaced by Udis
m , the corresponding estimators must be adjusted. We project the es-

timators {û1, · · · , ûm} onto AC,γ−1
m,n,p

by defining ûdis
j = argminx∈A

C,γ
−1
m,n,p

∥x − ûj∥. Then

ûdis
1 , û

dis
2 , · · · , ûdis

m have a probability mass function defined as pÛdis
m
(u) = #{u ∈ Ûm}/m. To bet-

ter understand the distance between the distributions of Udis
m and Ûm, we require tighter entry-wise

consistency results beyond the average error rate of the estimators, which is left as future work.

B SUPPLEMENTARY FOR NUMERICAL RESULTS

B.1 ALGORITHMS

To jointly embed the hypergraph and its corresponding attributes by minimizing the loss function
ℓ(U,Z,B, α, γ), we consider using a projected gradient descent algorithm similar to (Ma et al.,
2020), which is commonly employed for solving constrained optimization problems. The algorithm
is summarized in Algorithm 1 below.

Algorithm 1 Projected Gradient Descent for Joint Embedding

Require: Initial embeddings U(0), Z(0), α(0), initial parameters B(0),γ(0), observed hypergraph
connection matrix H and attribute matrix X , learning rate η, likelihood weight parameter λ,
maximum number of iterations T

1: for t = 1 to T do
2: Compute ΘX(t−1) = 1mγ

⊤
(t−1) + U

(12)
(t−1)B

⊤, and ΘH(t−1) = 1mα
⊤
(t−1) + U

(23)
(t−1)Z

⊤

3: U
(1)
(t) = U

(1)
(t−1) − ηU(1)∇U(1)ℓ(t−1) = U

(1)
(t−1) + ληU(1)(X − f ′A(Θ

X
(t−1)))B1,(t−1)

4: U
(2)
(t) = U

(2)
(t−1) − ηU(2)∇U(2)ℓ(t−1) = U

(2)
(t−1) + ηU(2){λ(X − f ′A(Θ

X
(t−1)))B2,(t−1) +(H −

σ(ΘH(t−1))Z2,(t−1))}
5: U

(3)
(t) = U

(3)
(t−1) − ηU(3)∇U(3)ℓ(t−1) = U

(3)
(t−1) + ηU(3)(H − σ(ΘH(t−1)))Z3,(t−1)

6: Z(t) = Z(t−1) − ηZ∇Zℓ(t−1) = Z(t−1) + ηZ(H − σ(ΘH(t−1)))B2,(t−1)

7: α(t) = α(t−1) − ηα∇αℓ(t−1) = α(t−1) + ηα(H − σ(ΘH(t−1)))
⊤1m

8: B(t) = B(t−1) − ηB∇Bℓ(t−1) = B(t−1) + ληB(X − f ′A(Θ
X
(t−1)))U

(2)
(t−1)

9: γ(t) = γ(t−1) − ηγ∇γℓ(t−1) = γ(t−1) + ληγ(X − f ′A(Θ
X
(t−1)))

⊤1m
10: Project the parameters and embeddings (U(t), Z(t), α(t), B(t) to the constraint set, with the

transformation in Remark 5.
11: end for
12: return (U(T), Z(T), α(T), B(T), γ(T)) as (Û , Ẑ, α̂, B̂, γ̂).

For the initial values (U(0), Z(0), α(0), B(0),γ(0)) and choices of step sizes, we adapt the initializa-
tion method based on universal singular value thresholding (Chatterjee, 2015) and step size choice
proposed by (Ma et al., 2020). The initialization algorithm is shown in Algorithm 2. Also, Moreover,
the step sizes in Algorithm 1 are set as:

ηα = ηγ =
η

2m
, ηZ =

η

∥Z(0)∥2op
, ηB =

η

∥B(0)∥2op
, ηU(i) =

η

∥U (i)
(0)∥2op

for i = 1, 2, 3.

B.2 ADDITIONAL SIMULATION RESULTS OF THE EMBEDDING PROCEDURE

In this section, we present additional simulation results of the embedding procedure.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 2 Initialization by Singular Value Thresholding

Require: Hypergraph matrix H , hyperlink attribute matrix X , latent embedding dimensions
(k1, k2, k3).

1: Let
∑
i σiuiv

⊤
i be the singular value decomposition of H , and denote P̃ =

∑
σi≥τH σiuiv

⊤
i as

the low-rank approximation of H . Elementwisely project P̃ into [12e
−M1 , 12] to obtain P̄ , and

take Θ̄H = logit(P̄).
2: Take α(0) =

1
m Θ̄H1m, and letU ′Λ′V ′⊤ as the singular value decomposition of Θ̄H−α(0)1

⊤
m =

JmΘ̄H , then take U (23)
(0) = 4

√
m
n U
′
k2+k3

Λ
′1/2
k2+k3

, Z(0) = 4
√

n
mV

′
k2+k3

Λ
′1/2
k2+k3

.
3: Treat X as a noisy version of ΘX , denoted as Θ̄X .
4: Take γ(0) = 1

m Θ̄X1m, and regress JmΘ̄X on U (2)
(0) to obtain B2,(0). Then take the residual

as R = JmΘ̄X − U
(2)
(0)B

⊤
2,(0), denote its singular value decomposition as Ũ Λ̃Ṽ ⊤, and denote

B1,(0) =
4
√

p
m Ṽk1Λ̃

1/2
k1

, U (1)
(0) = 4

√
m
p Ũk1Λ̃

1/2
k1

to satisfy the identifiability conditions.

5: return (U(0), Z(0), α(0), B(0), γ(0))

Specifically, for a (k2+k3)-dimensional latent space, we randomly divide the n nodes into (k2+k3)
nearly equal-sized groups, where the group sizes may differ by at most 1. The node embeddings Zn
are then independently generated as follows. For node i belonging to the t-th group, its embedding
zi is drawn from the truncated Gaussian distribution N[−1,1](1k2+k3 − et,Σz), where et is the
unit vector with the t-th element being 1 and the others 0, and [−1, 1] indicates truncation on each
coordinate.

The hyperlink embeddings Um are generated from a Gaussian distribution N[−1,1](0,ΣU), ensuring
that the identifiability condition

∑m
j=1 uj = 0k is approximately preserved. For the regression

parameters (B, γ), we generate γi i.i.d. from Uniform([−1, 1]), and each column Bi independently
sampled from N (0,ΣB). The variance-covariance matrices ΣB ,Σz , ΣU are defined such that the
(i, j)-th entry is 0.2ρ|i−j| with ρ ∈ {0, 0.5}. The degree heterogeneity parameters αi are generated
from the uniform distribution [ᾱm,n−1, ᾱm,n+1] for the sparsity parameter ᾱm,n specified in each
experimental setting.

We first examine how the sample size and latent dimension jointly affect estimation accuracy.
We set k1 = k2 = k3 with k ∈ {6, 9, 12}, ᾱ∗m,n = −3, and m = 10n = 10p with
n ∈ {100, 200, . . . , 1000}. The weight parameter λ is chosen such that λ = 0.2, matching the order
of exp(α∗m,n). Figure 4, 5 shows the relative Frobenius error of ΘH ,ΘX ,Θ as a function of n for dif-
ferent latent dimensions k. The error decreases approximately at the rate (m∧n∧p)−1/2 = n−1/2, in
agreement with the bound in Theorem 4. Increasing k leads to higher estimation errors: intuitively,
a larger latent dimension increases model complexity, which amplifies variance in estimation. This
dependence on k does not explicitly appear in the bound of Theorem 4 (which assumes fixed k), but
follows from its proof in Appendix C. When the coordinates of the embeddings are more correlated
(when we set ρ = 0.5), the error remains of similar magnitude, with a mild increase as k increases.

0.6

1.0

1.4

250 500 750 1000

n

||
Θ

Ĥ
−

Θ
H
|| F

m
n

k
6
9
12

Estimation error of Theta^H versus n

0.05

0.10

0.15

0.20

250 500 750 1000

n

||
Θ

X̂
−

Θ
X
|| F

m
p

k
6
9
12

Estimation error of Theta^X versus n

0.25

0.50

0.75

1.00

250 500 750 1000

n

||
Θ̂

−
Θ

|| F
m

(n
+

p)

k
6
9
12

Estimation error of Theta versus n

Figure 4: Estimation error under ρ = 0 versus sample size based on 30 Monte Carlo repetitions.

To further investigate the scaling behavior, we plot the logarithm of the estimation error against
log(m ∧ n ∧ p) in Figures 6 and 7. In both cases, the relationship appears approximately linear,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0.4

0.8

1.2

1.6

250 500 750 1000

n

||
Θ

Ĥ
−

Θ
H
|| F

m
n

k
6
9
12

Estimation error of Theta^H versus n

0.05

0.10

0.15

0.20

0.25

250 500 750 1000

n

||
Θ

X̂
−

Θ
X
|| F

m
p

k
6
9
12

Estimation error of Theta^X versus n

0.25

0.50

0.75

1.00

250 500 750 1000

n

||
Θ̂

−
Θ

|| F
m

(n
+

p)

k
6
9
12

Estimation error of Theta versus n

Figure 5: Estimation error under ρ = 0.5 versus sample size based on 30 Monte Carlo repetitions.

which aligns with the n−1/2 rate predicted by Theorem 4. As shown in Table 4, the observed linear
trend, with a slope of approximately −0.5, is consistent with the theoretical bounds, which suggest
that the estimation errors for ΘX , ΘH , and Θ are of order Op(n−1/2).

−1.0

−0.5

0.0

0.5

4.5 5.0 5.5 6.0 6.5 7.0

log(min(m, n, p))

lo
g||

Θ
Ĥ

−
Θ

H
|| F

m
n

k
6
9
12

log−log error plot for ΘH

−3.0

−2.5

−2.0

−1.5

4.5 5.0 5.5 6.0 6.5 7.0

log(min(m, n, p))

lo
g||

Θ
X̂

−
Θ

X
|| F

m
p

k
6
9
12

log−log error plot for ΘX

−1.5

−1.0

−0.5

0.0

4.5 5.0 5.5 6.0 6.5 7.0

log(min(m, n, p))

lo
g||

Θ̂
−

Θ
|| F

m
(n

+
p)

k
6
9
12

log−log error plot for Θ

Figure 6: Log–log plot of estimation error versus sample size for ρ = 0, based on 30 independent
Monte Carlo repetitions.

−1.0

−0.5

0.0

0.5

4.5 5.0 5.5 6.0 6.5 7.0

log(min(m, n, p))

lo
g||

Θ
Ĥ

−
Θ

H
|| F

m
n

k
6
9
12

log−log error plot for ΘH

−3.0

−2.5

−2.0

−1.5

4.5 5.0 5.5 6.0 6.5 7.0

log(min(m, n, p))

lo
g||

Θ
X̂

−
Θ

X
|| F

m
p

k
6
9
12

log−log error plot for ΘX

−1.5

−1.0

−0.5

0.0

4.5 5.0 5.5 6.0 6.5 7.0

log(min(m, n, p))

lo
g||

Θ̂
−

Θ
|| F

m
(n

+
p)

k
6
9
12

log−log error plot for Θ

Figure 7: Log–log plot of estimation error versus sample size for ρ = 0.5, based on 30 independent
Monte Carlo repetitions.

From the perspective of the error bound derived in Theorem 4, we regress the estimation error of
ΘH on log (m∧n)

(m∨n) using a log–log plot, as illustrated in Figure 8. It is noteworthy that the regression
based on this term performs better than directly regressing on (m ∧ n), with the slope of nealy 0.5.

To be more precise, our analysis focuses on two aspects: (i) the effect of varying p on the estimation
error of ΘX , and (ii) the effect of varying n on the estimation error of ΘH . Preliminary experiments
suggest that the correlation parameter ρ in hyperlink embeddings has a negligible effect on the
results. Therefore, we fix ρ = 0.5 for all subsequent experiments, as this correlation introduced
is commonly encountered in various scenarios. Additionally, we scale k to k ∈ {6, 12, 24} to
demonstrate the robustness of our algorithm in handling more complex data.

We fix m = 5000, n = 500, λ = 0.2, ρ = 0.5, ᾱm,n = −3, and vary p ∈ {100, 200, . . . , 1000}
to estimate the errors of ΘH and ΘX (Figure 9). The results confirm our theoretical expectation:
the estimation error of ΘH remains generally unchanged as p varies, because the associated error
term does not depend on p and the attribute dimension has minimal impact on hypergraph structure

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Error Type k
ρ = 0 ρ = 0.5

Slope 95% CI of Slope Slope 95% CI of Slope

ΘH
6 -0.4902 [−0.4951, −0.4854] -0.4697 [−0.4744, −0.4650]
9 -0.5158 [−0.5365, −0.4951] -0.5028 [−0.5262, −0.4795]

12 -0.5470 [−0.5852, −0.5087] -0.5546 [−0.5948, −0.5145]

ΘX
6 -0.5117 [−0.5150, −0.5085] -0.5212 [−0.5270, −0.5153]
9 -0.5125 [−0.5163, −0.5087] -0.5300 [−0.5387, −0.5213]

12 -0.5128 [−0.5165, −0.5090] -0.5321 [−0.5418, −0.5223]

Θ
6 -0.4907 [−0.4955, −0.4860] -0.4711 [−0.4758, −0.4663]
9 -0.5157 [−0.5360, −0.4954] -0.5035 [−0.5265, −0.4806]

12 -0.5462 [−0.5837, −0.5088] -0.5541 [−0.5935, −0.5147]

Table 4: Slope and confidence intervals for ρ = 0 (left) and ρ = 0.5 (right).

−1.0

−0.5

0.0

0.5

−4.5 −4.0 −3.5 −3.0

log(logmax(m, n)

min(m, n)
)

lo
g||

Θ
H^

−
Θ

H
|| F

m
n

k
6
9
12

−1.0

−0.5

0.0

0.5

−4.5 −4.0 −3.5 −3.0

log(logmax(m, n)

min(m, n)
)

lo
g||

Θ
H^

−
Θ

H
|| F

m
n

k
6
9
12

Figure 8: Log–log plot of estimation error of ΘH versus log (m∨n)
(m∧n) for ρ = 0 (left) and ρ = 0.5

(right), based on 30 independent Monte Carlo repetitions.

k Slope (ρ = 0) 95% CI (ρ = 0) Slope (ρ = 0.5) 95% CI (ρ = 0.5)
6 0.5596 [0.5522, 0.5669] 0.5361 [0.5285, 0.5438]
9 0.5886 [0.5621, 0.6150] 0.5738 [0.5443, 0.6032]

12 0.6240 [0.5773, 0.6707] 0.6327 [0.5838, 0.6817]

Table 5: Slope and confidence intervals for ρ = 0 (left) and ρ = 0.5 (right).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

estimation. In contrast, the estimation error of ΘX decreases with increasing p, in an approximately
power-law pattern. This is intuitive—higher-dimensional attribute information facilitates more ac-
curate recovery of the underlying attribute-based structure.

0.1

0.2

0.3

0.4

250 500 750 1000

p

E
st

im
at

io
n

E
rr

or

Error type

ΘH

ΘX

k = 6

0.2

0.4

0.6

250 500 750 1000

p

E
st

im
at

io
n

E
rr

or

Error type

ΘH

ΘX

k = 12

0.25

0.50

0.75

250 500 750 1000

p

E
st

im
at

io
n

E
rr

or

Error type

ΘH

ΘX

k = 24

Figure 9: Estimation error versus attribute dimension p, averaged over 30 Monte Carlo repetitions.

To further examine this scaling relationship, we plot the estimation error of ΘX against p on a log–
log scale (Figure 10). The observed linear trend confirms the power-law behavior. The figure also
shows the 95% confidence interval for the slope and for the expected value of the error.

Slope = −0.424

95% CI = [−0.442, −0.407]

−2.7

−2.4

−2.1

4.5 5.0 5.5 6.0 6.5 7.0

log p

lo
g

||
Θ̂

X
−

Θ
X
 ||

F

m
p

k = 6

Slope = −0.431

95% CI = [−0.448, −0.414]

−2.4

−2.1

−1.8

4.5 5.0 5.5 6.0 6.5 7.0

log p

lo
g

||
Θ̂

X
−

Θ
X
 ||

F

m
p

k = 12

Slope = −0.432

95% CI = [−0.446, −0.417]

−2.25

−2.00

−1.75

−1.50

−1.25

4.5 5.0 5.5 6.0 6.5 7.0

log p

lo
g

||
Θ̂

X
−

Θ
X
 ||

F

m
p

k = 24

Figure 10: Log–log plot of estimation error versus p, based on 30 independent Monte Carlo repeti-
tions.

Similarly, we exanmine the estimation error of both ΘH and ΘX as n varies in the set
{100, 200, . . . , 1000}, while fixing m = 5000, p = 500, ᾱm,n = −3, ρ = 0.5, and λ = 0.2.
As shown in Figure 11, the error associated with the attribute-based part, ΘX , remains relatively un-
changed as the node size n increases. In contrast, the error associated with hypergraph estimation,
ΘH , exhibits a clear power-law trend.

0.25

0.50

0.75

250 500 750 1000

n

E
st

im
at

io
n

E
rr

or

Error type

ΘH

ΘX

k = 6

0.5

1.0

1.5

250 500 750 1000

n

E
st

im
at

io
n

E
rr

or

Error type

ΘH

ΘX

k = 12

0.5

1.0

1.5

2.0

250 500 750 1000

n

E
st

im
at

io
n

E
rr

or

Error type

ΘH

ΘX

k = 24

Figure 11: Estimation error versus node size n, averaged over 30 Monte Carlo repetitions.

To gain further insight, we plot the estimation error on a log–log scale, as shown in Figure 12.
This plot illustrates that the error associated with hypergraph modeling (ΘH) follows a power-law
trend with respect to n. The figure also shows the 95% confidence interval for the slope and for the
expected value of the error.

We next explore the influence of the sparsity parameter ᾱm,n under varying latent dimensions. We
set k ∈ {6, 9, 12}, m = 10n = 5000, λ = 0.2, and −ᾱm,n ∈ {0.5, 1, . . . , 3.5, 4}. To focus

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Slope = −0.408

 95% CI = [−0.431, −0.385]

−0.9

−0.6

−0.3

4.5 5.0 5.5 6.0 6.5 7.0

log n

lo
g

||
Θ̂

H
−

Θ
H

 ||
F

m
n

k = 6

Slope = −0.543

 95% CI = [−0.598, −0.488]

−0.8

−0.4

0.0

0.4

4.5 5.0 5.5 6.0 6.5 7.0

log n

lo
g

||
Θ̂

H
−

Θ
H

 ||
F

m
n

k = 12

Slope = −0.541

 95% CI = [−0.584, −0.499]

−0.5

0.0

0.5

4.5 5.0 5.5 6.0 6.5 7.0

log n

lo
g

||
Θ̂

H
−

Θ
H

 ||
F

m
n

k = 24

Figure 12: Log–log plot of estimation error versus n, based on 30 independent Monte Carlo repeti-
tions.

on sparse hypergraph settings, we narrow the possible interval of degree parameters by setting
αi i.i.d. ∼ Uniform[ᾱm,n − 0.5, ᾱm,n + 0.5] for any i ∈ [n]. Figure 13 shows that the estima-
tion errors of ΘH and Θ increase approximately proportionally to exp(−ᾱm,n), which aligns with
the findings of (Wu et al., 2024), while the error of ΘX remains stable. This is reasonable because
changes in the hypergraph sparsity will not affect the attribute component ΘX . The slower growth
rate for ΘH compared to Θ is also expected, because of the stabilizing contribution from ΘX .

0.2

0.4

0.6

1 2 3 4

− αmn

E
st

im
at

io
n

E
rr

or

Error type
ΘH

ΘX

Θ

k = 6

0.2

0.4

0.6

1 2 3 4

− αmn

E
st

im
at

io
n

E
rr

or

Error type
ΘH

ΘX

Θ

k = 9

0.2

0.4

0.6

0.8

1 2 3 4

− αmn

E
st

im
at

io
n

E
rr

or

Error type
ΘH

ΘX

Θ

k = 12

Figure 13: Estimation error under ρ = 0 versus sparsity parameter αm,n based on 30 Monte Carlo
repetitions.

To further confirm the exponential scaling, we plot log-error of ΘH ,Θ versus −ᾱm,n in Figure 14 .
The fitted slopes confirm the exponential dependence predicted by Theorem 4.

Slope = 0.287
95% CI = [0.269, 0.305]

Slope = 0.276
95% CI = [0.256, 0.296]

−1.5

−1.0

−0.5

1 2 3 4

− αmn

ln
 E

rr
or

Error type
ΘH

Θ

k = 6

Slope = 0.255
95% CI = [0.240, 0.270]

Slope = 0.246
95% CI = [0.229, 0.262]−1.6

−1.2

−0.8

−0.4

1 2 3 4

− αmn

ln
 E

rr
or

Error type
ΘH

Θ

k = 9

Slope = 0.233
95% CI = [0.217, 0.249]

Slope = 0.225
95% CI = [0.207, 0.243]

−1.0

−0.5

1 2 3 4

− αmn

ln
 E

rr
or

Error type
ΘH

Θ

k = 12

Figure 14: Log–log plot of estimation error versus sparsity parameter ᾱm,n for ρ = 0, based on 30
independent Monte Carlo repetitions.

Finally, we investigate the influence of the weight parameter λ on estimation performance. We fix
k ∈ {6, 9, 12}, n = 500, ᾱm,n = −2, and vary λ ∈ {0.05, 0.1, . . . , 1.25}. To better visualize
potential differences, we consider two sample sizes, m ∈ {500, 2000}. The results are presented in
Figures 15 and 16. Across both settings, the estimation errors remain largely unchanged as λ varies,
suggesting that the choice of λ has minimal impact on accuracy.

From a practical standpoint, we include λ primarily as a stability-enhancing tuning parameter.
Specifically, a smaller λ allows the algorithm to converge with a larger step size η, leading to faster
execution without degrading estimation accuracy.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0.2

0.3

0.4

0.5

0.0 0.5 1.0 1.5

λ

E
st

im
at

io
n

E
rr

or

Error type

ΘH

ΘX

Θ

k = 6

0.2

0.3

0.4

0.5

0.6

0.0 0.5 1.0 1.5

λ

E
st

im
at

io
n

E
rr

or

Error type

ΘH

ΘX

Θ

k = 9

0.2

0.4

0.6

0.8

0.0 0.5 1.0 1.5

λ

E
st

im
at

io
n

E
rr

or

Error type

ΘH

ΘX

Θ

k = 12

Figure 15: Estimation error versus varying λ values for m = 500, averaged over 30 Monte Carlo
repetitions.

0.1

0.2

0.3

0.0 0.5 1.0 1.5

λ

E
st

im
at

io
n

E
rr

or

Error type

ΘH

ΘX

Θ

k = 6

0.1

0.2

0.3

0.4

0.5

0.0 0.5 1.0 1.5

λ

E
st

im
at

io
n

E
rr

or

Error type

ΘH

ΘX

Θ

k = 9

0.1

0.2

0.3

0.4

0.5

0.0 0.5 1.0 1.5

λ

E
st

im
at

io
n

E
rr

or

Error type

ΘH

ΘX

Θ

k = 12

Figure 16: Estimation error versus varying λ values for m = 2000, averaged over 30 Monte Carlo
repetitions.

B.3 ADDITIONAL SIMULATION RESULTS OF THE SYNTHETIC DATA ANALYSIS

We conduct simulation studies on synthetic datasets to assess the performance of the whole pipeline
of the proposed method ReLaSH. To demonstrate the ability of our algorithm to recover the underly-
ing structure of a given hypergraph and its associated attributes, we compare it with other generative
models, i.e. Gaussian Diffusion Models (Gau-Diff), Generative Adversarial Networks (GANs), Re-
alNVP, and Variational Autoencoders (VAE). Regarding these methods, we treat each hyperedge as
a binary vector and concatenate it with the attribute vector. To ensure fairness in the comparison,
we calibrate these algorithms to align with the 0-1 valued hyperlinks. Details of these methods are
provided in the Appendix B.7.

We assess the generative performance of different methods using the Root Mean Squared Error
(RMSE) of the means and variance-covariances of node co-occurrence and attributes vector. Addi-
tionally, we defined a task-specific error metric called the Fréchet Embedding Distance to evaluate
the performance of each method. Details of error metrics can be found in Appendix B.6, B.5. The
settings of simulation experiments and results of error metrics are shown in details in Appendix B.3.

Regarding the settings of synthetic data analysis, specifically, for a (k2 + k3)-dimensional latent
space, we randomly divide the n nodes into (k2 + k3) nearly equal-sized groups, where the group
sizes may differ by at most 1. The node embeddings Zn are then independently generated as follows.
For node i belonging to the t-th group, its embedding zi is drawn from the truncated Gaussian
distribution N[−1,1](1k2+k3 − et,Σz), where et is the unit vector with the t-th element being 1 and
the others 0, and [−1, 1] indicates truncation on each coordinate.

The hyperlink embeddings Um are generated from a Gaussian distribution N[−1,1](0,ΣU), ensuring
that the identifiability condition

∑m
j=1 uj = 0k is approximately preserved. For the regression pa-

rameters (B, γ), we generate γi i.i.d. from Uniform([−1, 1]), and each column Bi independently
sampled from N (0,ΣB). The variance-covariance matrices ΣB ,Σz , ΣU are defined such that their
diagonal entry is 0.2, with other entries being all 0. The degree heterogeneity parameters αi are gen-
erated from the uniform distribution [ᾱm,n− 1, ᾱm,n+1] for the sparsity parameter ᾱm,n specified
in each experimental setting. Once all parameters and embeddings are generated, we can construct
the hyperlinks according to the hyperlink generation model. The hyperlink-related attributes are

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

generated as Xjt ∼ N
((

1mγ
⊤ + U (12)B⊤

)
jt
, 1
)
, where the generation process is independent

for each j ∈ [m] and t ∈ [p]. That is, Gaussian noise is introduced during the generation, which is
commonly observed in real data structures.

We assess the generative performance of different methods using the Root Mean Squared Error
(RMSE) of the means and variance-covariances of node co-occurrence and attributes vector. Addi-
tionally, we defined a task-specific error metric called the Fréchet Embedding Distance to evaluate
the performance of each method. Details of error metrics can be found in Appendix B.6, B.5. Each
time we generate m̃ = 32m new hyperlinks together with attributes by each generative model.

We take the settings of k ∈ {6, 12, 24, 48} and m,n ∈ {200, 400, 800, 1600}, and limit the eval-
uation to ReLaSH (and the calibrated version ReLaSHc), Gau-Diff, RealNVP, and WGAN due to
the poor performance of VAE and constraints on computational resources and time. The runtime
required by the VAE is approximately four times longer than that of other competing methods. In
the real data analysis section, we will demonstrate its relatively poor performance, particularly in
terms of both the first and second-order moment errors for the hypergraph and attributes estimation.
The RMSE results are provided in Table 6, 7, 8, 9 respectively, and the FED results are provided in
Table 10, 11. The FED for each method is calculated using Algorithm 3, where the same maximum
iteration steps are imposed for all methods, and identical early stopping conditions are applied.

Generally, we observe that as m increases, the error metrics generally decrease due to the increasing
data size, which allows for better utilization of available information, resulting in improved perfor-
mance.

We use bold to highlight the best result in each experimental setting and underline the second-best
result. For the RMSE of the hyperlink vector mean, note that all calibrated methods yield the same
result, so we do not emphasize these results. It is important to note that the RMSE for the calibrated
methods reflects only the error between the training data and the benchmarks, while for ReLaSH, the
RMSE accounts for two sources of error: the error between the training data and the benchmarks,
as well as the error between the generated data and the training data. As a result, the RMSE for
ReLaSH is generally larger than that of the calibrated methods. In terms of the RMSE of the mean
attribute vector, ReLaSH consistently performs the best, while RealNVP performs well occasionally,
and WGAN shows slight improvement as the data scale increases.

In terms of RMSE of covariances and FED, ReLaSH generally outperforms the other three gen-
eration approaches. Generally, Gau-Diff requires the most memory, while RealNVP is the most
time-consuming method among the four. WGAN performs comparably to ReLaSH under limited
computational resources, but it yields worse results in terms of error metrics. As the latent dimension
k, or the values ofm and n, increase (i.e., as the synthetic data structure becomes more complex), the
number of epochs required for achieving similar results to ReLaSH by the other methods increases
substantially, leading to a corresponding increase in running time. However, ReLaSH constructs the
diffusion model in a low-dimensional continuous embedding space, thereby avoiding the need to
train a high-dimensional score network. This significantly reduces sample complexity and enhances
both efficiency and accuracy.

B.4 ADDITIONAL RESULTS FOR REAL DATA ANALYSIS

In this section, we provide additional results on real data analysis to further assess the quality of the
synthetic outcomes.

B.4.1 CO-CITATION HYPERGRAPH WITH ABSTRACT ATTRIBUTES

The MADStat dataset we utilized contains citation information for over 83,000 papers published
across 36 journals between 1975 and 2015, while MADStaText includes the abstracts of all these
papers. We focus on the top n = 1, 000 authors most frequently cited during this period, resulting
in a dataset of 35,143 papers that cite at least two of these top authors. Given the large size of
this dataset, among all the methods discussed previously, only ReLaSH can effectively handle such
a large volume of data, owing to the dimension reduction procedure it offers. Consequently, we
further narrow the scope by selecting the top m = 2, 000 papers that cite the greatest number of
these authors. To construct the co-citation hypergraph, we treat each top author as a node, with
each paper forming a hyperlink. Specifically, if a paper cites a top author, the corresponding node

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Embedding Dimension k = 6 (k1 = k2 = k3 = 2)
m Method Objects n = p = 200 n = p = 400 n = p = 800 n = p = 1600

Mean Cov Mean Cov Mean Cov Mean Cov

200

ReLaSH Hypergraph 0.0242 0.0069 0.0242 0.0053 0.0243 0.0042 0.0242 0.0041
Attributes 0.0740 0.0428 0.0703 0.0409 0.0772 0.0351 0.0732 0.0351

ReLaSHc Hypergraph 0.0243 0.0374 0.0240 0.0385 0.0241 0.0378 0.0239 0.0405
Attributes 0.0740 0.0428 0.0703 0.0409 0.0772 0.0351 0.0732 0.0351

Gau Diff Hypergraph 0.0243 0.0054 0.0240 0.0053 0.0241 0.0053 0.0239 0.0052
Attributes 0.0873 0.0683 0.1071 0.0567 0.1025 0.0564 0.0965 0.0548

RealNVP Hypergraph 0.0243 0.0054 0.0240 0.0053 0.0241 0.0052 0.0239 0.0052
Attributes 0.0731 0.0575 0.0707 0.0545 0.0769 0.0563 0.0734 0.0549

WGAN Hypergraph 0.0243 0.0143 0.0240 0.0108 0.0241 0.0165 0.0239 0.0221
Attributes 0.3485 0.1697 0.1425 0.1495 0.0892 0.0919 0.0813 0.0864

400

ReLaSH Hypergraph 0.0178 0.0047 0.0201 0.0039 0.0171 0.0032 0.0180 0.0030
Attributes 0.0472 0.0292 0.0511 0.0265 0.0535 0.0241 0.0519 0.0246

ReLaSHc Hypergraph 0.0176 0.0414 0.0200 0.0436 0.0169 0.0432 0.0178 0.0434
Attributes 0.0472 0.0292 0.0511 0.0265 0.0535 0.0241 0.0519 0.0246

Gau Diff Hypergraph 0.0176 0.0050 0.0200 0.0051 0.0169 0.0051 0.0178 0.0051
Attributes 0.0712 0.0676 0.0911 0.0559 0.0929 0.0547 0.0878 0.0541

RealNVP Hypergraph 0.0176 0.0051 0.0200 0.0051 0.0169 0.0051 0.0178 0.0051
Attributes 0.0476 0.0547 0.0512 0.0526 0.0539 0.0542 0.0520 0.0540

WGAN Hypergraph 0.0176 0.0131 0.0200 0.0133 0.0169 0.0138 0.0178 0.0175
Attributes 0.2332 0.1714 0.0790 0.1279 0.0634 0.0639 0.0587 0.0588

800

ReLaSH Hypergraph 0.0138 0.0037 0.0130 0.0028 0.0125 0.0023 0.0127 0.0021
Attributes 0.0359 0.0238 0.0411 0.0207 0.0363 0.0178 0.0381 0.0184

ReLaSHc Hypergraph 0.0137 0.0427 0.0129 0.0441 0.0122 0.0461 0.0125 0.0470
Attributes 0.0359 0.0238 0.0411 0.0207 0.0363 0.0178 0.0381 0.0184

Gau Diff Hypergraph 0.0137 0.0047 0.0129 0.0050 0.0122 0.0051 0.0125 0.0051
Attributes 0.0544 0.0788 0.0944 0.0579 0.0960 0.0529 0.0896 0.0556

RealNVP Hypergraph 0.0137 0.0050 0.0129 0.0050 0.0122 0.0051 0.0125 0.0051
Attributes 0.0352 0.0648 0.0414 0.0545 0.0367 0.0521 0.0384 0.0555

WGAN Hypergraph 0.0137 0.0085 0.0129 0.0088 0.0122 0.0111 0.0125 0.0195
Attributes 0.0789 0.1812 0.0614 0.0958 0.0537 0.0506 0.0491 0.0406

1600

ReLaSH Hypergraph 0.0089 0.0033 0.0091 0.0022 0.0091 0.0017 0.0088 0.0016
Attributes 0.0278 0.0185 0.0286 0.0160 0.0262 0.0140 0.0274 0.0138

ReLaSHc Hypergraph 0.0084 0.0439 0.0088 0.0449 0.0090 0.0458 0.0087 0.0469
Attributes 0.0278 0.0185 0.0286 0.0160 0.0262 0.0140 0.0274 0.0138

Gau Diff Hypergraph 0.0084 0.0046 0.0088 0.0049 0.0090 0.0050 0.0087 0.0050
Attributes 0.0516 0.0741 0.0879 0.0581 0.0820 0.0552 0.0831 0.0547

RealNVP Hypergraph 0.0084 0.0048 0.0088 0.0049 0.0090 0.0050 0.0087 0.0050
Attributes 0.0277 0.0578 0.0287 0.0537 0.0263 0.0543 0.0275 0.0545

WGAN Hypergraph 0.0084 0.0084 0.0088 0.0095 0.0090 0.0136 0.0087 0.0205
Attributes 0.0587 0.1883 0.0437 0.0590 0.0458 0.0452 0.0426 0.0358

Table 6: RMSE results for means (columns with “Mean”) & covariances (columns with “Cov”) of
ReLaSH, ReLaSHc, Gau-Diff, RealNVP and WGAN when latent dimension is k = 6. Each value
comes from the mean of 20 repetitions.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Embedding Dimension k = 12 (k1 = k2 = k3 = 4)
m Method Objects n = p = 200 n = p = 400 n = p = 800 n = p = 1600

Mean Cov Mean Cov Mean Cov Mean Cov

200

ReLaSH Hypergraph 0.0351 0.0137 0.0252 0.0081 0.0298 0.0097 0.0302 0.0099
Attributes 0.0782 0.0583 0.0748 0.0510 0.0782 0.0502 0.0736 0.0461

ReLaSHc Hypergraph 0.0310 0.0367 0.0251 0.0306 0.0263 0.0336 0.0285 0.0280
Attributes 0.0782 0.0583 0.0748 0.0510 0.0782 0.0502 0.0736 0.0461

Gau Diff Hypergraph 0.0310 0.0130 0.0251 0.0130 0.0263 0.0132 0.0285 0.0130
Attributes 0.0907 0.0852 0.1151 0.0800 0.1074 0.0753 0.0970 0.0797

RealNVP Hypergraph 0.0310 0.0133 0.0251 0.0130 0.0263 0.0132 0.0285 0.0130
Attributes 0.0797 0.0765 0.0772 0.0786 0.0780 0.0754 0.0734 0.0799

WGAN Hypergraph 0.0310 0.0212 0.0251 0.0126 0.0263 0.0158 0.0285 0.0188
Attributes 0.3304 0.2025 0.2052 0.1078 0.1106 0.0942 0.0816 0.0719

400

ReLaSH Hypergraph 0.0190 0.0081 0.0175 0.0057 0.0176 0.0047 0.0179 0.0044
Attributes 0.0534 0.0427 0.0514 0.0339 0.0553 0.0339 0.0554 0.0335

ReLaSHc Hypergraph 0.0184 0.0357 0.0182 0.0356 0.0179 0.0397 0.0178 0.0389
Attributes 0.0534 0.0427 0.0514 0.0339 0.0553 0.0339 0.0554 0.0335

Gau Diff Hypergraph 0.0184 0.0128 0.0182 0.0129 0.0179 0.0129 0.0178 0.0129
Attributes 0.0792 0.0863 0.0960 0.0741 0.1055 0.0783 0.0905 0.0803

RealNVP Hypergraph 0.0184 0.0131 0.0182 0.0130 0.0179 0.0129 0.0178 0.0129
Attributes 0.0555 0.0780 0.0525 0.0720 0.0557 0.0782 0.0554 0.0804

WGAN Hypergraph 0.0184 0.0152 0.0182 0.0131 0.0179 0.0184 0.0178 0.0296
Attributes 0.1838 0.1588 0.0822 0.1146 0.0640 0.0834 0.0610 0.0628

800

ReLaSH Hypergraph 0.0121 0.0053 0.0123 0.0039 0.0126 0.0035 0.0129 0.0030
Attributes 0.0402 0.0301 0.0380 0.0262 0.0366 0.0244 0.0402 0.0236

ReLaSHc Hypergraph 0.0126 0.0364 0.0122 0.0408 0.0126 0.0449 0.0128 0.0471
Attributes 0.0402 0.0301 0.0380 0.0262 0.0366 0.0244 0.0402 0.0236

Gau Diff Hypergraph 0.0126 0.0125 0.0122 0.0127 0.0126 0.0129 0.0128 0.0131
Attributes 0.0618 0.0862 0.0950 0.0785 0.0994 0.0758 0.0865 0.0767

RealNVP Hypergraph 0.0126 0.0129 0.0122 0.0128 0.0126 0.0129 0.0128 0.0131
Attributes 0.0394 0.0731 0.0385 0.0760 0.0368 0.0755 0.0399 0.0766

WGAN Hypergraph 0.0126 0.0103 0.0122 0.0118 0.0126 0.0171 0.0128 0.0385
Attributes 0.0779 0.1672 0.0505 0.0615 0.0502 0.0519 0.0486 0.0469

1600

ReLaSH Hypergraph 0.0098 0.0046 0.0099 0.0029 0.0102 0.0026 0.0105 0.0020
Attributes 0.0284 0.0221 0.0259 0.0192 0.0247 0.0172 0.0236 0.0168

ReLaSHc Hypergraph 0.0095 0.0405 0.0096 0.0419 0.0099 0.0401 0.0101 0.0399
Attributes 0.0284 0.0221 0.0259 0.0192 0.0247 0.0172 0.0236 0.0168

Gau Diff Hypergraph 0.0095 0.0123 0.0096 0.0128 0.0099 0.0130 0.0101 0.0872
Attributes 0.0547 0.0877 0.0850 0.0779 0.0836 0.0789 0.0128 0.0794

RealNVP Hypergraph 0.0095 0.0128 0.0096 0.0129 0.0099 0.0130 0.0101 0.0128
Attributes 0.0286 0.0735 0.0262 0.0753 0.0277 0.0785 0.0298 0.0793

WGAN Hypergraph 0.0095 0.0082 0.0096 0.0089 0.0099 0.0095 0.0101 0.0098
Attributes 0.0570 0.0885 0.0450 0.0620 0.0467 0.0597 0.0402 0.0610

Table 7: RMSE results for means (columns with “Mean”) & covariances (columns with “Cov”) of
ReLaSH, ReLaSHc, Gau-Diff, RealNVP and WGAN when latent dimension is k = 12. Each value
comes from the mean of 20 repetitions.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Embedding Dimension k = 24 (k1 = k2 = k3 = 8)
m Method Objects n = p = 200 n = p = 400 n = p = 800 n = p = 1600

Mean Cov Mean Cov Mean Cov Mean Cov

200

ReLaSH Hypergraph 0.0329 0.0140 0.0389 0.0133 0.0345 0.0149 0.0371 0.0128
Attributes 0.0808 0.0709 0.0817 0.0703 0.0790 0.0653 0.0834 0.0685

ReLaSHc Hypergraph 0.0245 0.0179 0.0264 0.0191 0.0319 0.0187 0.0246 0.0240
Attributes 0.0808 0.0709 0.0817 0.0703 0.0790 0.0653 0.0834 0.0685

Gau Diff Hypergraph 0.0245 0.0284 0.0264 0.0289 0.0319 0.0296 0.0246 0.0296
Attributes 0.0971 0.1089 0.1198 0.1104 0.1071 0.1131 0.0978 0.1117

RealNVP Hypergraph 0.0245 0.0288 0.0264 0.0289 0.0319 0.0296 0.0246 0.0296
Attributes 0.0818 0.1012 0.0815 0.1102 0.0789 0.1134 0.0839 0.1119

WGAN Hypergraph 0.0245 0.0257 0.0264 0.0212 0.0319 0.0257 0.0246 0.0309
Attributes 0.2503 0.2018 0.1372 0.1167 0.2365 0.1291 0.3456 0.1334

400

ReLaSH Hypergraph 0.0185 0.0093 0.0180 0.0077 0.0177 0.0071 0.0208 0.0063
Attributes 0.0563 0.0541 0.0554 0.0492 0.0584 0.0470 0.0580 0.0481

ReLaSHc Hypergraph 0.0186 0.0204 0.0195 0.0271 0.0182 0.0315 0.0191 0.0402
Attributes 0.0563 0.0541 0.0554 0.0492 0.0584 0.0470 0.0580 0.0481

Gau Diff Hypergraph 0.0186 0.0285 0.0195 0.0287 0.0182 0.0295 0.0191 0.0288
Attributes 0.0799 0.1146 0.0974 0.1080 0.0990 0.1083 0.0789 0.1092

RealNVP Hypergraph 0.0186 0.0289 0.0195 0.0288 0.0182 0.0296 0.0191 0.0288
Attributes 0.0576 0.1073 0.0560 0.1072 0.0585 0.1084 0.0581 0.1094

WGAN Hypergraph 0.0186 0.0193 0.0195 0.0183 0.0182 0.0263 0.0191 0.0334
Attributes 0.1951 0.1184 0.0774 0.0948 0.0717 0.0840 0.2848 0.1141

800

ReLaSH Hypergraph 0.0147 0.0073 0.0130 0.0058 0.0142 0.0050 0.0127 0.0044
Attributes 0.0418 0.0402 0.0404 0.0364 0.0400 0.0339 0.0431 0.0334

ReLaSHc Hypergraph 0.0145 0.0128 0.0128 0.0344 0.0140 0.0430 0.0128 0.0448
Attributes 0.0418 0.0402 0.0404 0.0364 0.0400 0.0339 0.0431 0.0334

Gau Diff Hypergraph 0.0145 0.0281 0.0128 0.0282 0.0140 0.0289 0.0128 0.0300
Attributes 0.0725 0.1139 0.1022 0.1123 0.1035 0.1110 0.0757 0.1069

RealNVP Hypergraph 0.0145 0.0287 0.0128 0.0283 0.0140 0.0289 0.0128 0.0300
Attributes 0.0407 0.1044 0.0402 0.1116 0.0405 0.1111 0.0431 0.1070

WGAN Hypergraph 0.0145 0.0128 0.0128 0.0269 0.0140 0.0523 0.0128 0.0459
Attributes 0.0645 0.0865 0.0572 0.0744 0.0523 0.0617 0.0645 0.0757

1600

ReLaSH Hypergraph 0.0098 0.0058 0.0115 0.0056 0.0097 0.0057 0.0095 0.0053
Attributes 0.0286 0.0314 0.0281 0.0309 0.0275 0.0332 0.0272 0.0298

ReLaSHc Hypergraph 0.0095 0.0328 0.0112 0.0342 0.0091 0.0309 0.0088 0.0301
Attributes 0.0286 0.0314 0.0281 0.0309 0.0275 0.0332 0.0272 0.0298

Gau Diff Hypergraph 0.0095 0.0280 0.0112 0.0272 0.0091 0.0279 0.0088 0.0283
Attributes 0.0637 0.1276 0.0618 0.1173 0.0628 0.1121 0.0597 0.1083

RealNVP Hypergraph 0.0095 0.0287 0.0112 0.0282 0.0091 0.0263 0.0088 0.0251
Attributes 0.0281 0.1172 0.0280 0.1132 0.0285 0.1104 0.0276 0.1036

WGAN Hypergraph 0.0095 0.0105 0.0112 0.0224 0.0091 0.0300 0.0088 0.0666
Attributes 0.0496 0.1053 0.0458 0.0648 0.0441 0.0579 0.0457 0.0466

Table 8: RMSE results for means (columns with “Mean”) & covariances (columns with “Cov”) of
ReLaSH, ReLaSHc, Gau-Diff, RealNVP and WGAN when latent dimension is k = 24. Each value
comes from the mean of 20 repetitions.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Embedding Dimension k = 48 (k1 = k2 = k3 = 16)
m Method Objects n = p = 200 n = p = 400 n = p = 800 n = p = 1600

Mean Cov Mean Cov Mean Cov Mean Cov

200

ReLaSH Hypergraph 0.0810 0.0260 0.0815 0.0260 0.0990 0.0299 0.0840 0.0368
Attributes 0.0863 0.1137 0.0807 0.1043 0.0938 0.1034 0.0872 0.1000

ReLaSHc Hypergraph 0.0281 0.0289 0.0263 0.0282 0.0268 0.0314 0.0291 0.0382
Attributes 0.0863 0.1137 0.0807 0.1043 0.0938 0.1034 0.0872 0.1000

Gau Diff Hypergraph 0.0281 0.0533 0.0263 0.0526 0.0268 0.0559 0.0291 0.0551
Attributes 0.0992 0.1575 0.1199 0.1581 0.1241 0.1543 0.1047 0.1550

RealNVP Hypergraph 0.0281 0.0538 0.0263 0.0526 0.0268 0.0559 0.0291 0.0551
Attributes 0.0850 0.1523 0.0808 0.1590 0.0938 0.1551 0.0874 0.1553

WGAN Hypergraph 0.0281 0.0290 0.0263 0.0427 0.0268 0.0393 0.0291 0.0288
Attributes 0.1421 0.2809 0.1414 0.5243 0.1201 0.3009 0.0936 0.1969

400

ReLaSH Hypergraph 0.0418 0.0180 0.0305 0.0139 0.0198 0.0136 0.0214 0.0104
Attributes 0.0590 0.0819 0.0640 0.0717 0.0682 0.0697 0.0593 0.0678

ReLaSHc Hypergraph 0.0179 0.0176 0.0195 0.0136 0.0194 0.0159 0.0174 0.0220
Attributes 0.0590 0.0819 0.0640 0.0717 0.0682 0.0697 0.0593 0.0678

Gau Diff Hypergraph 0.0179 0.0529 0.0195 0.0530 0.0194 0.0556 0.0174 0.0549
Attributes 0.0944 0.1667 0.1114 0.1557 0.1099 0.1501 0.0834 0.1539

RealNVP Hypergraph 0.0179 0.0535 0.0195 0.0531 0.0194 0.0556 0.0174 0.0549
Attributes 0.0601 0.1623 0.0628 0.1567 0.0686 0.1510 0.0590 0.1542

WGAN Hypergraph 0.0179 0.0247 0.0195 0.0370 0.0194 0.0255 0.0174 0.0226
Attributes 0.0939 0.2347 0.1011 0.2433 0.0767 0.1589 0.0691 0.1597

800

ReLaSH Hypergraph 0.0209 0.0108 0.0139 0.0079 0.0136 0.0085 0.0130 0.0062
Attributes 0.0460 0.0579 0.0452 0.0511 0.0481 0.0505 0.0472 0.0500

ReLaSHc Hypergraph 0.0137 0.0127 0.0122 0.0190 0.0138 0.0252 0.0129 0.0273
Attributes 0.0460 0.0579 0.0452 0.0511 0.0481 0.0505 0.0472 0.0500

Gau Diff Hypergraph 0.0137 0.0530 0.0122 0.0523 0.0138 0.0554 0.0129 0.0553
Attributes 0.0816 0.1655 0.1116 0.1514 0.1022 0.1536 0.0727 0.1548

RealNVP Hypergraph 0.0137 0.0539 0.0122 0.0524 0.0138 0.0554 0.0129 0.0554
Attributes 0.0459 0.1583 0.0457 0.1526 0.0485 0.1544 0.0428 0.1550

WGAN Hypergraph 0.0137 0.0208 0.0122 0.0251 0.0138 0.0107 0.0129 0.0183
Attributes 0.0811 0.1395 0.0663 0.1663 0.0671 0.0933 0.0551 0.0754

1600

ReLaSH Hypergraph 0.0173 0.0097 0.0102 0.0086 0.0097 0.0080 0.0090 0.0054
Attributes 0.0328 0.0525 0.0322 0.0491 0.0326 0.0495 0.0318 0.0472

ReLaSHc Hypergraph 0.0105 0.0127 0.0085 0.0169 0.0095 0.0184 0.0087 0.0204
Attributes 0.0328 0.0525 0.0322 0.0491 0.0326 0.0495 0.0318 0.0472

Gau Diff Hypergraph 0.0105 0.0526 0.0085 0.0521 0.0095 0.0555 0.0087 0.0559
Attributes 0.0653 0.1609 0.1061 0.1555 0.0978 0.1520 0.0811 0.1525

RealNVP Hypergraph 0.0105 0.0535 0.0085 0.0522 0.0095 0.0555 0.0087 0.0559
Attributes 0.0319 0.1510 0.0385 0.1570 0.0333 0.1528 0.0301 0.1527

WGAN Hypergraph 0.0105 0.0121 0.0085 0.0185 0.0095 0.0098 0.0087 0.0367
Attributes 0.0856 0.0912 0.0824 0.1415 0.0582 0.0710 0.0479 0.0547

Table 9: RMSE results for means (columns with “Mean”) & covariances (columns with “Cov”) of
ReLaSH, ReLaSHc, Gau-Diff, RealNVP and WGAN when latent dimension is k = 48. Each value
comes from the mean of 20 repetitions.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

m Method n = p = 200 n = p = 400 n = p = 800 n = p = 1600
Embedding Dimension k = 6 (k1 = k2 = k3 = 2)

200

ReLaSH 0.3540 0.2598 0.1561 0.1452
ReLaSHc 0.3624 0.1843 0.1884 0.2111
Gau Diff 0.3608 0.3245 0.4331 0.5995
RealNVP 0.3817 0.3280 0.3791 0.5638
WGAN 0.4278 0.2789 0.1673 0.1933

400

ReLaSH 0.1642 0.1756 0.1268 0.1341
ReLaSHc 0.2977 0.2965 0.3499 0.2740
Gau Diff 0.1764 0.1496 0.2627 0.3947
RealNVP 0.1775 0.1467 0.2819 0.4273
WGAN 0.2202 0.2426 0.2867 0.2766

800

ReLaSH 0.2199 0.1862 0.0792 0.0720
ReLaSHc 0.3112 0.3379 0.3688 0.3982
Gau Diff 0.1725 0.0892 0.1561 0.2866
RealNVP 0.1778 0.1143 0.1682 0.2949
WGAN 0.2215 0.1901 0.2582 0.2293

1600

ReLaSH 0.1670 0.0766 0.1381 0.1225
ReLaSHc 0.1666 0.1721 0.2752 0.5741
Gau Diff 0.1634 0.0793 0.1344 0.2172
RealNVP 0.1334 0.1842 0.0995 0.1994
WGAN 0.1618 0.2282 0.1962 0.1737

m Method n = p = 200 n = p = 400 n = p = 800 n = p = 1600
Embedding Dimension k = 12 (k1 = k2 = k3 = 4)

200

ReLaSH 0.9794 0.6914 0.6056 0.6034
ReLaSHc 1.0132 0.6824 0.5676 0.5067
Gau Diff 1.1343 0.9088 1.3026 1.4973
RealNVP 1.3139 1.0591 1.2460 1.5199
WGAN 1.6482 1.4013 0.7556 1.3379

400

ReLaSH 0.7072 0.4392 0.2884 0.2246
ReLaSHc 0.6191 0.4158 0.3129 0.2952
Gau Diff 0.6172 0.4947 0.6941 0.9002
RealNVP 0.7296 0.5701 0.8043 0.9341
WGAN 0.8856 0.6497 0.3500 0.2412

800

ReLaSH 0.4775 0.3718 0.2037 0.2398
ReLaSHc 0.4546 0.3552 0.3431 0.3174
Gau Diff 0.4071 0.3575 0.5120 0.7380
RealNVP 0.4533 0.4206 0.4720 0.7130
WGAN 0.4418 0.5541 0.3687 0.3399

1600

ReLaSH 0.3595 0.3217 0.2843 0.2204
ReLaSHc 0.3745 0.2854 0.2679 0.2589
Gau Diff 0.3529 0.3321 0.3795 0.5534
RealNVP 0.4275 0.3232 0.3423 0.5177
WGAN 0.3845 0.3974 0.4582 0.4952

Table 10: FED results for ReLaSH, ReLaSHc, Gau-Diff, RealNVP and WGAN when latent dimen-
sion is k = 6, 12. Each value comes from the mean of 20 repetitions.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

m Method n = p = 200 n = p = 400 n = p = 800 n = p = 1600
Embedding Dimension k = 24 (k1 = k2 = k3 = 8)

200

ReLaSH 3.7876 2.3795 1.7776 1.4888
ReLaSHc 4.0077 2.5164 1.8760 1.3280
Gau Diff 3.9593 3.4421 3.2590 3.2990
RealNVP 4.1992 3.7454 3.2969 3.3342
WGAN 3.0621 1.9154 1.5121 1.1528

400

ReLaSH 2.3870 1.3333 0.8480 0.5496
ReLaSHc 2.3198 1.3818 0.8407 0.6347
Gau Diff 2.0714 1.7287 1.8749 1.7820
RealNVP 2.3455 1.7374 1.8147 1.8179
WGAN 2.5758 1.7842 1.5667 0.8110

800

ReLaSH 1.6894 1.0641 0.6340 0.4274
ReLaSHc 1.5742 0.9923 0.7313 0.6584
Gau Diff 1.5422 1.1280 1.2945 1.5734
RealNVP 1.7499 1.2599 1.3955 1.5954
WGAN 1.8389 0.9427 0.9342 0.5240

1600

ReLaSH 1.2875 0.9731 0.5482 0.3740
ReLaSHc 1.1986 1.0372 0.8542 0.6594
Gau Diff 1.4199 1.0037 1.4529 1.5630
RealNVP 1.4597 1.6384 1.3294 1.2934
WGAN 0.9762 0.9205 0.7708 0.7188

m Method n = p = 200 n = p = 400 n = p = 800 n = p = 1600
Embedding Dimension k = 48 (k1 = k2 = k3 = 16)

200

ReLaSH 15.3227 11.4013 9.8524 9.1217
ReLaSHc 16.9249 11.9277 9.1791 9.2782
Gau Diff 17.5939 14.7371 13.4529 14.4237
RealNVP 18.0527 15.0858 13.5804 14.4640
WGAN 15.9366 12.1945 10.5906 9.4059

400

ReLaSH 9.2837 4.2397 2.3041 1.7503
ReLaSHc 9.7989 4.4413 2.4005 1.6694
Gau Diff 9.1772 5.3424 4.3290 4.3520
RealNVP 9.8230 5.6104 4.4242 4.3550
WGAN 8.4115 3.8713 2.2187 1.6203

800

ReLaSH 6.1817 2.9811 1.7799 1.0864
ReLaSHc 6.0745 2.9594 1.7735 0.9799
Gau Diff 5.9200 3.3151 3.1729 3.0181
RealNVP 6.2765 3.6356 3.2323 3.0597
WGAN 5.1394 2.3107 1.4140 0.9230

1600

ReLaSH 3.5762 1.7204 0.9726 0.5382
ReLaSHc 4.2942 1.6382 1.0038 0.6389
Gau Diff 4.5040 2.2186 2.3887 2.5871
RealNVP 4.6260 2.6337 2.3902 2.6417
WGAN 3.7429 1.6919 1.0535 0.7648

Table 11: FED results for ReLaSH, ReLaSHc, Gau-Diff, RealNVP and WGAN when latent dimen-
sion is k = 24, 48. Each value comes from the mean of 20 repetitions.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

appears in the hyperlink representing that paper. As noted in (Ji et al., 2022), co-citing two authors
in an article suggests that they likely share common research interests. In our application, this co-
citation setting provides a hypergraph with sufficient density, which justifies the construction of the
co-citation hypergraph as described above.

To construct the attributes corresponding to each hyperlink, we use the abstract data of each paper.
We consider the pre-processed corpus of 2,106 words from the dictionary generated by Ke et al.
(2023), and further refine this list by removing words that do not appear in the top m = 2, 000
papers. This leaves us with p = 2, 039 words for analysis. To construct the p-dimensional attribute
vector for each hyperlink, the t-th entry of the vector is set to the TF-IDF value (Sparck Jones, 1972)
of the t-th word in relation to the abstract of the corresponding paper.

We use each approach to generate m̃ = 32m hyperlinks and corresponding attributes. The perfor-
mance of each method is evaluated using the RMSE of the sample means and covariances of the
generated hyperlinks, compared against those of the overall population consisting of the top 5,000
most-cited papers from the selected authors. We also assess the performance by comparing ReLaSH
with other calibrated methods (i.e., ReLaSHc, Gau-Diff, RealNVP, WGAN, VAE) in terms of the
RMSE of the hypergraph node means, denoted as (∆Hm), as summarized in Table 12.

ReLaSH-6 ReLaSH-24 Caliberated methods
∆Hm ↓ 3.20 2.59 3.57

Table 12: ∆Hm for different generation methods for the co-citation hypergraph generation task. The
scale of ∆Hm is 10−2.

Additionally, the Fréchet Embedding Distance (FED) is computed with respect to the chosen latent
dimension, with the dimension selection procedure outlined in Appendix B.6. Based on the cross-
validation results presented in Table 13, we select k1 = k2 = k3 = 2 and generate benchmarks for
the embedding machine ET using the population data.

To evaluate the coherence and plausibility of the synthesized statistical research articles, we ran-
domly sampled several papers from the result generated by ReLaSH-24, as shown in Table 14. We
then analyzed the relationship between their cited authors and their top 10 TF-IDF keywords. The
analysis examined whether the referenced scholars are thematically aligned with the identified key-
words and what research areas such combinations are likely to represent in contemporary statistical
literature.

Table 14: Citation authors and top keywords in abstracts of sample papers. Authors are sorted
alphabetically by surname.

Paper ID Cited Authors Top Words

21029 Kuang Fu Cheng; David Clayton; Paul Gustafson; Ming
Tan; Jeremy Taylor; Bruce Turnbull; Aad Van Der Vaart;
James Ware; Lang Wu

time, study, missing, effect, censor,
random, event, covariate, survival,
hazard

45756 Raymond Carroll; Songxi Chen; Kuang Fu Cheng; Jianqing
Fan; Jian Huang; Jianhua Huang; Roger Koenker; Gérard
Letac; Chenlei Leng; Bing Li; Runze Li; Danyu Y. Lin;
Nicholas Polson; Jing Qin; Jane-ling Wang; Lan Wang;
Yichao Wu; Song Yang; Ming Yuan

select, regression, asymptotic, vari-
able, linear, coefficient, study, pro-
cedure, covariate, quantile

Continued on next page

Latent dimension FID by cross validation
k = 6 0.257
k = 12 0.329
k = 24 0.627

Table 13: Cross-Validation results for the co-citationship hypergraph.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 14 – continued from previous page

Paper ID Cited Authors Top Words

45969 Claudia Czado; Victor De Gruttola; Peter Diggle; Alan
Gelfand; Marc G. Genton; Barry Graubard; Hemant Ish-
waran; Wesley Johnson; Jean-françois Le Gall; Nicholas
Polson; Stephen Portnoy; Lee-jen Wei; Scott Zeger

effect, time, Bayesian, spatial, ran-
dom, prior, mixture, algorithm,
mix, study

19872 Per Anderson; Krzysztof Burdzy; Ludwig Fahrmeir; Trevor
Hastie; Patrick Heagerty; Christian Houdré; M. C. Jones;
Charles Kooperberg; Kung Yee Liang; Runze Li; John
Nelder; Marcello Pagano; Ross Prentice; Brian Reich; Pe-
ter X. K. Song; Robert Tibshirani; Scott Zeger; Hao Helen
Zhang

select, effect, coefficient, linear,
study, regression, variable, param-
eter, hazard, covariate

Regarding article 21029, the cited authors are highly recognized for their contributions to survival
analysis, missing data methodology, and longitudinal studies. The keywords are emblematic of liter-
ature in survival and event-time analysis, particularly relating to censoring, time-to-event data, and
covariate effects. This combination strongly suggests that the article addresses methodological inno-
vations in survival analysis, such as handling missing or censored data in longitudinal studies. The
citation-keyword pairing is highly credible, reflecting how such topics are addressed in biostatistics
and epidemiological statistics.

The referenced scholars in article 45756 are prominent in the fields of high-dimensional statistics,
variable selection, and regression modeling. The keywords reinforce this focus, centralizing on vari-
able selection, regression techniques (linear and quantile regression), and asymptotic theory. Such
an article would likely present advances in model selection procedures or regularization methods for
high-dimensional data, possibly investigating their theoretical properties or empirical performance.
The co-occurrence of these citations and keywords is typical for methodological developments in
regression analysis.

For the result of article 45969, these authors are well-known for their work in Bayesian methods,
spatial statistics, and hierarchical modeling. The keywords suggest a concentration on Bayesian
spatial analysis, mixture models, and computational algorithms for inference under complex hier-
archical or spatial structures. The configuration of cited authors and keywords is consistent with
research focused on Bayesian computation or spatial modeling for temporal or clustered data.

Overall, the pairing of cited authors and prominent keywords in these synthesized articles is highly
consistent with the structure and topical alignment found in authentic statistical methodology papers.
Each article demonstrates an internally coherent thematic structure, where the cited scholars are
authoritative within the research area denoted by the keywords. Therefore, our generative method,
ReLaSH, can support the prediction of emerging trends in the statistical community and facilitate
the identification of co-citation relationships between specialists and their research interests.

B.4.2 RECIPE HYPERGRAPH WITH NUTRITION ATTRIBUTES

The “Epicurious – Recipes with Rating and Nutrition”3 dataset contains 17,736 recipes information
lifted from http://www.epicurious.com/recipes-menus, each accompanied by user
ratings, nutritional information, and ingredient lists. Naturally, each recipe can be represented as
a hyperedge of ingredients, with ratings and nutritional variables (“calories”, “sodium”, “protein”,
and “fat”) serving as hyperedge attributes.

Note that the attributes in the recipe dataset vary in both scale and interpretation, so we apply z-score
standardization to the attribute set before training the generative models to ensure comparability
across features. The summary of attributes are listed in Table 15.

For pre-processing, we consolidated ingredient names with the same or highly similar meanings
(e.g., “green onion” and “spring onion”, “chili pepper” and “hot pepper”), and removed ingredients
appearing in only a single recipe. To mitigate issues caused by missing information, we retained only
recipes containing at least seven ingredients, resulting in a population dataset of 789 recipes with
200 distinct ingredients. From this population, we randomly selected 300 recipes as the training

3https://www.kaggle.com/datasets/hugodarwood/epirecipes/data

31

http://www.epicurious.com/recipes-menus
https://www.kaggle.com/datasets/hugodarwood/epirecipes/data

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Ratings Calories Protein Fat Sodium
Mean 4.192 430.04 17.46 22.90 455.90
Std. Error 0.598 257.24 16.41 17.37 429.33

Table 15: Means and standard errors for recipe attributes.

dataset, where each recipe is associated with five hyperedge attributes. We use each approach to
generate m̃ = 32m hyperlinks and corresponding attributes.

Specifically, in the recipe dataset, the attribute dimension is relatively small (p = 5) compared to
the size of the hypergraph node set (n = 200), and all attributes are continuous variables. There-
fore, in the embedding procedure of ReLaSH, we set k2 = k3 = 0, which implies that the attribute
embedding reduces to an identity mapping. Consequently, after embedding the hypergraph into a
k1-dimensional latent space, we concatenate the latent embedding of each hyperedge with its corre-
sponding attributes, and then train diffusion models on the concatenated data. Intuitively, the latent
variables obtained through embedding represent underlying structural features of each hyperedge,
whereas the attributes provide interpretable features for each recipe. Thus, concatenating the two
and performing generation constitutes a natural modeling strategy, which further demonstrates the
flexibility of our proposed method.

We also assess the performance by comparing ReLaSH with other calibrated methods (i.e.,
ReLaSHc, Gau-Diff, RealNVP, WGAN, VAE) in terms of the RMSE of the hypergraph node means,
denoted as (∆Hm), as summarized in Table 16.

ReLaSH-2 ReLaSH-16 Caliberated methods
∆Hm ↓ 9.38 8.33 8.27

Table 16: ∆Hm for different generation methods for the recipe hypergraph generation task. The scale
of ∆Hm is 10−3.

Similarly, the Fréchet Embedding Distance (FED) is computed with respect to the chosen latent
dimension. Based on the cross-validation results presented in Table 17, we select k = 2 and generate
benchmarks for the embedding machine ET using the population data.

Latent dimension FID by cross validation
k = 2 0.194
k = 4 0.427
k = 8 13.630
k = 16 14.064

Table 17: Cross-Validation results for the recipe hypergraph.

We examine individual recipes synthesized by ReLaSHc-16, which generally performs the best
among all the generation models, to emphasize the quality of generation. Table 18 presents sev-
eral randomly selected samples. For interpretability, we assign descriptive names corresponding to
real-world cuisines, and all generated recipes resemble authentic dishes. Each sample demonstrates
ingredient combinations and nutritional profiles that are both plausible and balanced, particularly
for seafood-forward, legume-based, or mixed salads and stews from the Mediterranean and North-
ern Europe. The coherent ingredient pairings and reasonable macronutrient compositions highlight
the applicability of the generated results to realistic culinary settings.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 18: Generated recipe samples from ReLaSHc. All nutritional values are reported per entire
recipe portion.

Recipe Name Rating
(out of 5)

Calories
(kcal)

Fat
(g)

Protein
(g)

Sodium
(mg) Ingredients

Mediterranean
Fisherman’s
Bean Stew

4.22 228 9.82 46.9 264

bean, chickpea, chile pepper,
clam, cod, fennel, halibut,
lentil, potato, saffron,
tomato, onion, wine

Hearty
Mediterranean
Legume Soup

4.21 430 16.36 32.96 482
carrot, celery, cinnamon,
legume, lemon, parsley,
pasta, potato

Scandinavian
Creamy Seafood

Chowder
3.74 237 10.98 17.75 1117 cilantro, citrus, clam,

cod, dill, milk, cream, onion

Sesame Tuna
Mediterranean

Salad
4.40 526 36.24 22.4 518 sesame, spice, tomato,

tuna, pepper

Mediterranean
Mussel 4.33 778 49.77 63 623

basil, fruit, grape,
mussel, parsley, pecan,
tomato, spirits

The “Hearty Mediterranean Legume Soup” can be characterized as a Mediterranean vegetable and
legume soup, recalling Italian minestrone or Middle Eastern harira. With pasta, root vegetables,
beans, and aromatic herbs, the nutrition profile is realistic for a hearty soup, rich in protein and
complex carbohydrates yet moderate in fat.

The “Scandinavian Creamy Seafood Chowder” is a Scandinavian-inspired creamy seafood chowder,
featuring cod, clam, dill, and citrus. Its nutritional composition is plausible for a chowder: adequate
protein, moderate fat, and elevated sodium due to seafood and seasoning.

The “Sesame Tuna Mediterranean Salad” represents a fusion-style salad that combines Mediter-
ranean and Asian influences, pairing tuna with sesame, tomato, and peppers. The higher fat content
is attributable to sesame, while protein derives from tuna, reflecting the nutritional profile of con-
temporary main-course salads.

Finally, the “Mediterranean Mussel” is a classical Mediterranean mussel cuisine, integrating mus-
sels, pecans, tomato, and basil, with spirits to enhance flavor. Its high protein and fat levels are
consistent with shellfish and nut components, while the addition of fruit and herbs signals modern,
health-oriented culinary trends.

To provide a comprehensive illustration of the cuisines, we construct a plot that aggregates the
ingredients of each recipe, as shown in Figure 17.

B.4.3 MEDICAL HYPERGRAPH WITH PATIENT ATTRIBUTES

We also apply ReLaSH and other competitive approaches to a symptom co-occurrence hypergraph
constructed from electronic medical records of ICU patients. Specifically, we use the Medical Infor-
mation Mart for Intensive Care (MIMIC-III; (Johnson et al., 2016)) dataset, which contains clinical
data from over 45,000 patients at Beth Israel Deaconess Medical Center in Boston between 2001
and 2012.

In MIMIC-III, we focus on more than 10,000 patients who experienced an ICU stay and for whom
a death record is available. To construct the population hypergraph, we consider 4,951 informative
patient records with more than 15 co-occurring diseases—an indicator of severe health conditions,
covering 2,230 distinct diseases. From this population, we randomly sample 2,000 records as the
training set.

In this hypergraph, each node represents a symptom, and each hyperlink corresponds to a patient
profile, with the incident nodes being the symptoms recorded for that patient. The attribute set of
each hyperlink is derived from patient metadata, including lifetime, ethnicity, marital status, religion,
gender, ICU length of stay, and overall hospital length of stay. Among these, ethnicity, marital status,

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 17: Illustration of generated cuisines.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

religion, and gender are categorical variables, which we encode as integers. We use each approach
to generate m̃ = 32m hyperlinks and corresponding attributes. Since the attribute dimension is
substantially smaller than the hyperlink dimension, we adopt the same identity mapping strategy as
in the recipe example for generation in ReLaSH and ReLaSHc.

We also assess the performance by comparing ReLaSH with other calibrated methods (i.e.,
ReLaSHc, Gau-Diff, RealNVP, WGAN, VAE) in terms of the RMSE of the hypergraph node means,
denoted as (∆Hm), as summarized in Table 19.

ReLaSH-2 ReLaSH-16 Caliberated methods
∆Hm ↓ 2.52 5.75 1.14

Table 19: ∆Hm for different generation methods for the patient profile generation task. The scale of
∆Hm is 10−3.

Similarly, the Fréchet Embedding Distance (FED) is computed with respect to the chosen latent
dimension. Based on the cross-validation results presented in Table 20, we select k = 2 and generate
benchmarks for the embedding machine ET using the population data.

Latent dimension FID by cross validation
k = 2 0.030
k = 4 0.223
k = 8 0.243
k = 16 0.365

Table 20: Cross-Validation results for the symptom co-occurrence hypergraph.

Furthermore, we examine the patient profiles generated by ReLaSH-2 using the MIMIC-III dataset.
For categorical variables such as marital status, ethnicity, religion, and gender, we calibrated the
generated outputs against the original training data to preserve the marginal proportions of each
category. Examination of continuous variables including ICU stay duration, hospital stay duration,
and patients’ lifetime data revealed no outliers or abnormal values, indicating that the generated data
are clinically reasonable. We randomly sampled 10 patient profiles from the generated set, as shown
in Table 21.

Table 21: Sampled Patients: Personal Information and Major Diseases

ID Numeric Attributes Number of
Diseases Demographics Representative Major Diseases

1
ICU stay: 8.25 days
Lifetime: 86.19 years
Hospital Stay: 354.94 hrs

23

Catholic
White
Married
Female

Coronary Atherosclerosis;
Congestive Heart Failure;
Chronic Kidney Disease;
Intracerebral Hemorrhage;
Dementia

2
ICU stay: 7.88 days
Lifetime: 74.42 years
Hospital Stay: 413.36 hrs

20

Protestant Quaker
White
Widowed
Male

Atrial Fibrillation;
Congestive Heart Failure;
Hypertension;
Acute Kidney Failure;
Diabetes Mellitus

3
ICU stay: 6.54 days
Lifetime: 75.72 years
Hospital Stay: 314.68 hrs

16

Not Specified
White
Single
Male

Malignant Neoplasm;
Chronic Kidney Disease;
Cerebral Embolism With Infarction;
Heart Failure

4
ICU stay: 14.16 days
Lifetime: 77.55 years
Hospital Stay: 512.29 hrs

36

Episcopalian
White
Married
Male

Diabetes Mellitus (Uncontrolled);
Chronic Kidney Disease (Stage V);
Heart Failure; Sepsis;
Hepatic Transplant Complications

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Patient Numeric Attributes Number of
Diseases Demographics Representative Major Diseases

5
ICU stay: 7.05 days
Lifetime: 57.35 years
Hospital Stay: 362.37 hrs

16

Not Specified
White
Single
Male

Graft-Versus-Host Disease;
Atrial Fibrillation;
Acute Vascular Insufficiency
of Intestine;
Implant Infection

6
ICU stay: 8.84 days
Lifetime: 67.53 years
Hospital Stay: 563.22 hrs

22

Catholic
Black
Married
Female

Diabetes Mellitus
(With Ketoacidosis);
Acute On Chronic Diastolic
Heart Failure;
Sepsis; Thrombocytopenia

7
ICU stay: 16.95 days
Lifetime: 70.73 years
Hospital Stay: 515.13 hrs

21

Not Specified
White
Single
Male

Secondary Malignant Neoplasms
(Intra-Abdominal, Nervous System,
Bone, Other Sites);
Tuberculosis Of Ureter; Dementia

8
ICU stay: 2.86 days
Lifetime: 41.29 years
Hospital Stay: 341.52 hrs

31

Protestant Quaker
White
Widowed
Male

Atrial Fibrillation;
Congestive Heart Failure;
Acute Kidney Failure;
Subdural Hemorrhage;
Septic Shock

9
ICU stay: 8.80 days
Lifetime: 66.34 years
Hospital Stay: 654.82 hrs

28

Catholic
White
Married
Female

Malignant Neoplasm of
Bronchus and Lung;
Heart Failure;
Chronic Pain Syndrome;
Hepatitis C;
Severe Sepsis

10
ICU stay: 4.00 days
Lifetime: 80.60 years
Hospital Stay: 136.56 hrs

13

Buddhist
Asian
Divorced
Female

Diabetes Mellitus;
Chronic Kidney Disease (Stage V);
Acute Diastolic Heart Failure;
Acute Respiratory Failure;
Dysthymic Disorder

It is worth noting that the number of diseases per patient is relatively high, since during preprocessing
we restricted the dataset to ICU patients with at least 15 documented conditions. This reflects
the severe health status typical of such cohorts. The demographic characteristics of the generated
patients also appear consistent with real-world ICU populations.

To illustrate, we closely examine the set of co-occurring diseases for the first generated patient pro-
file. The disease combination observed is highly representative of older, medically complex ICU
patients. Chronic conditions such as hyperlipidemia, hypertensive chronic kidney disease, coro-
nary atherosclerosis, atrial fibrillation, cardiomyopathy, chronic systolic heart failure, and dementia
collectively suggest substantial long-term cardiovascular, renal, and neurologic impairment. Su-
perimposed acute complications—including intracerebral hemorrhage, abdominal aortic aneurysm
rupture, gastrointestinal bleeding, acute kidney injury, and embolic or thrombotic events—are well-
known, life-threatening occurrences frequently encountered in critically ill patients with multiple
comorbidities.

Importantly, there is considerable overlap between pre-existing chronic conditions and their acute
manifestations. Similarly, congestive heart failure and chronic kidney disease exacerbate one an-
other (the so-called “cardiorenal syndrome”), and this interaction is frequently observed in ICU co-
horts. Infectious complications (e.g., pneumococcal infection) and procedural complications (e.g.,
procedure-related hematoma) are also prevalent in this context. Respiratory comorbidities (such as
chronic obstructive asthma or airway obstruction), gastrointestinal conditions, and prior malignancy
further reflect the clinical complexity of elderly ICU patients with multimorbidity and high risk of
adverse outcomes.

Taken together, the coexistence of chronic diseases, acute organ failures, infections, and iatrogenic
complications is highly characteristic of ICU populations, particularly among older adults. The gen-

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

erated case therefore mirrors realistic clinical scenarios commonly observed in critical care cohorts
such as MIMIC-III.

B.5 FRÉCHET EMBEDDING DISTANCE (FED)

In generative modeling, Fréchet Inception Distance (FID) is a widely used metric for evaluating the
quality of generated samples, particularly in visual tasks. FID compares the feature representations
(e.g., from the coding layers) of two datasets (e.g., real images and AI-generated images) using a
pre-trained Inception model, such as Inception-v4. The difference between the two populations is
measured by calculating the Fréchet distance, assuming that both distributions follow a Gaussian
distribution. This distance is computed using the means and covariances of the respective distri-
butions. While FID has proven effective for evaluating generative models in vision-related tasks,
its applicability is limited in other domains, as it relies on pre-trained Inception models specifically
trained on visual data.

To overcome this limitation, FID has been adapted into specialized variants for different domains.
For instance, Fréchet Audio Distance (FAD) (Kilgour et al., 2018) has been proposed for evaluating
music enhancement algorithms, Fréchet Video Distance (FVD) (Unterthiner et al., 2019) is used
for generative models of video, and Fréchet ChemNet Distance (FCD) (Preuer et al., 2018) is used
for evaluating AI-generated molecules. These variants maintain the core idea of FID, but they are
customized to better suit the unique characteristics of their respective domains.

In a similar vein, we extend the idea of FID to our own task by introducing Fréchet Embed-
ding Distance (FED). FED generalizes FID for generative tasks where no pre-trained models are
available for evaluation. Specifically, for a given generative task T , we define a “true” dataset
X true = {xtrue

i }i∈[ntrue] representing real data, and a generated dataset X gen = {xgen
i }i∈[ngen] sampled

from the generative model being evaluated. To compute FED, we introduce an embedding machine
ET : X → RK , which maps the data points into a continuous embedding space that captures the
essential features of the original data. Once the data points are mapped into this embedding space,
FED calculates the distance between the distributions of the true and generated datasets as

FED(X true,X gen) = ∥µtrue − µgen∥22 + Tr(Σtrue +Σgen − 2(ΣtrueΣgen)1/2),

where µtrue, µgen are the sample means of {ET (xtrue
i)}i∈[ntrue], {ET (x

gen
i)}i∈[ngen], and Σtrue,Σgen are

the sample covariance matrices of {ET (xtrue
i)}i∈[ntrue], {ET (x

gen
i)}i∈[ngen]. which provides a flexible

and robust evaluation metric for generative models in various tasks.

Thus, similar to how FID has been adapted for different domains, we introduce FED as a flexible and
robust evaluation metric for generative models across a variety of tasks. FED generalizes the concept
of FID by eliminating the dependence on pre-trained models. Furthermore, it proves particularly
useful in scenarios where data distributions are too complex to compare directly, such as the high-
dimensional hyperedges together with attributes explored in this study.

B.6 EVALUATION METRIC CALCULATION

In this subsection, we provide a detailed explanation of how we compute the quantities used in the
evaluation steps for both the simulation experiments and real data analysis.

Given an observed hypergraph H([n], Em,Xm), where Em = {e1, e2, · · · , em} and Xm =
{x1, x2, · · · , xm}, we encode each hyperlink as a binary vector ej ∈ {0, 1}n, where the i-th el-
ement of ej indicates whether node i is connected to the hyperlink. We then concatenate ej with
the corresponding attribute vector xj to form an (n+ p)-dimensional vector hj = (ej xj), which
encodes the complete information of the j-th hyperlink in the observed hypergraph. Consequently,
the dataset used to train the generative models (i.e. Gau-Diff, WGAN, RealNVP, VAE) compared
with our method is Dtrue = {hj}mj=1.

Similarly, for the generated hypergraph H̃([n], Ẽm̃, X̃m̃), where Ẽm̃ = {ẽ1, · · · , ẽm̃} and X̃m̃ =
{x̃1, · · · , x̃m̃}, we encode the hyperlinks in the same manner as the observed hypergraph, resulting
in the dataset Dgen = {h̃j}m̃j=1.

Also, for the random hyperlink E and its random attributes X , we denote H = (E X) as the
encoded random vector, in the same manner as above.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

B.6.1 CALCULATION OF FED

To calculate the Fréchet Embedding Distance (FED), we first define an embedding machine ET and
optimize its parameters using the gradient descent method. For each hyperlink data point hj , we
aim to minimize the following loss function:

ℓj(uj) = ℓj,H(uj) + λℓj,X(uj) = −
n∑
i=1

[
log(1 + exp(u

(23)⊤
j zi + αi))− hji(u

(23)⊤
j zi + αi)

]
− λ

p∑
i=1

[
1

2
(u

(12)⊤
j bi + γi)

2 − xji(u
(12)⊤
j bi + γi)

]
,

where zi, bi, αi, γi represent the true node embeddings and associated parameters. We optimize this
loss using the gradient descent approach as in Algorithm 3, which updates {uj}m̃j=1 during each
iteration. The initialization steps are the same as in Algorithm 2. This procedure allows us to ob-
tain the embeddings {ET (hj)}mj=1 for the observed hypergraph and {ET (h̃j)}m̃j=1 for the generated
hypergraph. Finally, we compute the FED between the two datasets according to its definition, i.e.

FED(Dtrue,Dgen) := FID({ET (hj)}mj=1, {ET (h̃j)}m̃j=1).

Algorithm 3 Projected Gradient Descent for Embedding Machine ET in FED Calculation

Require: Initialized U(0), known embeddings and parameters {α, γ, Z,B}, generated hypergraph
matrix H and according attribute matrix X , learning rate η, likelihood weight parameter λ,
maximum number of iterations T .

1: for t = 1 to T do
2: Calculate ΘH(t−1) = α1⊤m + U

(23)⊤
(t−1) Z, and ΘX(t−1) = γ1⊤m + U

(12)⊤
(t−1) B

3: U
(1)
(t) = U

(1)
(t−1) − ηU(1)∇U(1)ℓ(t−1) = U

(1)
(t−1) + ληU(1)(X − f ′A(Θ

X
(t−1)))B1,(t−1)

4: U
(2)
(t) = U

(2)
(t−1) − ηU(2)∇U(2)ℓ(t−1) = U

(2)
(t−1) + ηU(2){λ(X − f ′A(Θ

X
(t−1)))B2,(t−1) +(H −

σ(ΘH(t−1))Z2,(t−1))}
5: U

(3)
(t) = U

(3)
(t−1) − ηU(3)∇U(3)ℓ(t−1) = U

(3)
(t−1) + ηU(3)(H − σ(ΘH(t−1)))Z3,(t−1)

6: Project the embedding U(t) to the constraint set, with the transformation in Remark 5.
7: end for
8: return U(T) as {ET (hj)}j∈m̃ for further FED calculation.

For the synthetic data analysis, we directly utilize the true node embeddings and associated pa-
rameters (zi, bi, αi, γi) from the data generation procedure. In contrast, for the real data analysis,
we construct the reference node embeddings and corresponding parameters (zi, bi, αi, γi) by em-
bedding the population hypergraph together with its attributes. For instance, in the co-citationship
dataset, we analyze a training set of 2, 000 papers, which is sampled from a larger population of
5, 000 papers. To obtain a fair comparison, we embed the entire population dataset to derive the
reference embeddings and associated parameters (zi, bi, αi, γi).

To select the latent space for the embedding machine, we use cross-validation to determine the
optimal latent dimension. For each chosen dimension k, we split the population hypergraph into
a training set and a testing set, with 80% of the nodes and attributes used for training and the
remaining 20% for testing. We then perform the embedding procedure on both the training and
testing sets to estimate the hypergraph embeddings, denoted as Uktrain and Uktest. Next, we calculate
the Fréchet Inception Distance (FID) between Uktrain and Uktest, denoted as FIDk, and compare the FID
values across different latent dimensions k. The dimension that minimizes the FID is selected as the
optimal latent dimension for the embedding machine ET , and the corresponding (ẑi, b̂i, α̂i, γ̂i) are
used as benchmarks for the embedding machine.

The cross-validation results for the three real datasets are shown in Appendix B.4 respectively, in-
dicating that k = 2 or k1 = k2 = k3 = 2 is selected for all three datasets. This choice is based
on the fact that low-dimensional latent spaces yield the smallest error, thus it provides a much fairer
benchmark for comparing different generative models.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

B.6.2 MEANS AND COVARIANCES

As outlined in the setup of simulated data, we assume that the hyperlink embeddings {uj}mj=1 are
drawn from a distribution PU . Using this assumption, we can compute the expected occurrences of
the nodes as well as the covariances between the occurrences of the nodes by considering E(E) and
cov(Ei, Ej), and the expected mean E(X) and covariances of attributes cov(Xi, Xj).

For E(H) = E (E X), we have

E(Hi) = EPU
[E(Hi|U)] = EPU

[E(Ei|U)]1(i≤n) + EPU
[E(Xi|U)]1(i>n)

= EPU
[σ(z⊤i U

(23) + αi)]1(i≤n) + EPU
[(b⊤i U

(12) + γi)]1(i>n),

where Hi is the i-th coordinate of H .

Similarly, for cov(Ei, Ej) and cov(Xi, Xj), we have

cov(Ei, Ej) = EPU
[cov(Ei, Ej | U)] + covPU

(EPU
[Ei | U],EPU

[Ej | U])

= covPU
(EPU

[Ei | U],EPU
[Ej | U])

= EPU
[σ(z⊤i U

(23) + αi)σ(z
⊤
j U

(23) + αj)]

− EPU
[σ(z⊤i U

(23) + αi)]EPU
[σ(z⊤j U

(23) + αj)],

and
cov(Xi, Xj) = EPU

[cov(Xi, Xj | U)] + covPU
(EPU

[Xi | U],EPU
[Xj | U])

= covPU
(EPU

[Xi | U],EPU
[Xj | U])

= EPU
[(b⊤i U

(12) + γi)][(b
⊤
j U

(12) + γj)]

− EPU
[(b⊤i U

(12) + γi)]EPU
[(b⊤j U

(12) + γj)].

In our evaluations on real-world datasets, these expectations are approximated by their empirical
counterparts, as illustrated below.

B.6.3 COMPARISON WITH BENCHMARKS OF MEANS, COVARIANCES, AND FEDS

Since directly computing the expectations E(Hi) and covariances cov(Hi, Hj) based on the distri-
bution PU is generally challenging, in synthetic data analysis, we approximate them using Monte
Carlo integration with N = 20, 000 samples. Specifically, for a given set of parameters and node
embeddings (B,Z, α, γ), we generate a test set of embeddings U test = {utest

j }Nj=1, and then generate
a hypergraph with attributes Htest([n], EN ,XN) according to the hypergraph generation model. We
encode Htest([n], EN ,XN) into hyperlink sets {htest

j }Nj=1, and take the sample mean Ê(E), Ê(X)

as an approximation of E(E),E(X), while the sample variance ĉov(E,E), ĉov(X,X) provides an
approximation of cov(H,H), cov(X,X). In real data analysis, we directly utilize the sample mean
and variance of population data as an approximation of cov(H,H), cov(X,X).

To calculate the RMSE of the means and variance-covariances of node co-occurrence and attributes
vector from the generated hypergraph H̃([n], Ẽm̃, X̃m̃), we first encode the generated hypergraph as
vectors {ẽj}m̃j=1, {x̃j}m̃j=1, then calculate the sample means and sample covariances of both popula-
tions as Ẽ(E), Ẽ(X) and c̃ov(E,E), c̃ov(X,X). We then calculate the RMSEs for each population
by computing:

1

n
∥c̃ov(E,E)− ĉov(E,E)∥F ,

1√
n
∥Ê(E)− Ẽ(E)∥2,

1

p
∥c̃ov(X,X)− ĉov(X,X)∥F ,

1
√
p
∥Ê(X)− Ẽ(X)∥2.

Since we are comparing our method for mixed data types with other generative models that focus on
continuous data, we perform calibrations on such methods (e.g. RealNVP, WGAN, Gau-Diff, VAE,
and so on) to ensure a fair comparison. Recall that the hyperlink data is encoded as binary vectors
in the first n dimensions, while the generative models produce (n + p)-dimensional continuous

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

vectors. To map the first n dimensions of the continuous vectors to hyperlinks, we incorporate a
calibration step based on the observed hypergraph H([n], Em,Xm). Let {[ygen

1,j , y
gen
2,j]}m̃j=1 represent

the generated (n + p)-dimensional vectors, where ygen
1,j ∈ Rn and ygen

2,j ∈ Rp for each j ∈ [m̃].
Denote the i-th coordinate of ygen

1,j by ygen
1,ji, and let τi be a threshold for each i = 1, 2, . . . , n. Define

ỹgen
1,ji = 1{ygen

1,ji≥τi}, where 1 is the indicator function. The thresholds {τi}ni=1 are selected such that
the following condition holds for each i ∈ [n]:

1

m̃

m̃∑
j=1

ỹgen
1,ji =

1

m

m∑
j=1

eji.

This calibration step effectively decreases the error from the hypergraph part, as it mimics the distri-
bution of node co-occurrence in the observed hypergraph. The rationale behind is to ensure that the
node degree sequence of the generated hypergraph matches that of the observed hypergraph. Finally,
we replace the ygen

1,j ’s with their calibrated versions ỹgen
1,j ’s, which are binary-valued variables that rep-

resent a hyperlink. The calibrated encoded vector becomes Dgen = {h̃j}m̃j=1 := {[ỹgen
1,j , y

gen
2,j]}m̃j=1,

representing a hypergraph with m̃ hyperlinks, where the j-th hyperlink is associated with an attribute
vector ygen

2,j .

In this way, we can also introduce a variant of ReLaSH, denoted ReLaSHc (calibrated ReLaSH),
which generates hyperlinks not by sampling from the connection probability matrix P̃ = logit(Θ̃H),
but by calibrating P̃ with respect to the training data as described above. Consequently, ReLaSHc

achieves performance comparable to competing generative models in terms of the RMSE of hyper-
link vector means, and in both synthetic and real data experiments, we observe that ReLaSHc attains
state-of-the-art results on certain error metrics in specific settings.

For the FED, we generate Dtest = {ET (htest
j)}Nj=1 as the ground truth. We then compute the FED

between the test dataset and the generated dataset using the formula FED(Dtest,Dgen).

B.7 DETAILS AND IMPLEMENTATION OF THE GENERATIVE MODELS

In this subsection, we describe the details of the implementation of the methods used in our simula-
tion studies and real data analysis.

B.7.1 RELASH AND GAU-DIFF

A diffusion model consists of a forward process and a reverse process. In the forward process,
Gaussian noise is gradually added to the original data, eventually transforming it into pure noise.
In the reverse process, denoising neural networks are trained to remove the noise and recover new
samples from the data distribution.

Specifically, for both the ReLaSH and the Gau-Diff, we consider the Ornstein-Uhlenbeck process,
which is described by the following Stochastic Differential Equation (SDE) in the forward process:

dUt = −Ut dt+
√
2 dWt, (4)

where {Wt}t∈[0,T] is a standard Wiener process. Under mild conditions, as noise is gradually added
to the data over time, the resulting perturbed realizations will approach a standard multivariate Gaus-
sian distribution for sufficiently large T . The reverse process, which generates new realizations from
the noisy output, is given by another SDE:

dU←t = (U←t + 2 log pT−t(U
←
t)) dt+

√
2 dW̃t, (5)

where ∇ log pt(·) is the score function at time t. Since direct sampling from this SDE is computa-
tionally infeasible, we discretize the process with a step size h > 0 and train deep neural networks
to estimate the score functions at T/h discrete time steps.

The Ornstein–Uhlenbeck forward process specified can also be expressed as Ut = e−tU0 +√
1− e−2t z, with z ∼ N (0, Id). The conditional score has a closed-form expression, i.e.,

∇ut log pt(ut|u0) = −z/σt with σ2
t = 1 − e−2t. Plugging this into the general objective, the

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

loss simplifies to ℓ(θ) = 1
2 Eu0,t,z

[∥∥sθ(ut, t)σt + z
∥∥2
2

]
, which is the form used in our implemen-

tation.

In Gau-Diff, we train a diffusion model on the encoded (n + p)-dimensional vectors {hj}mj=1 with
the Ornstein-Ulhenbeck process as shown above. In ReLaSH, diffusion models are trained on the
k-dimensional continuous spaces, with the same architecture as in Gau-Diff without the calibra-
tion step. We refer to the diffusion model architecture as outlined in https://github.com/
yang-song/score_sde. The score neural network is set as a 5-layer MLP, which is enough
to avoid overfitting during generation of tabular data. For optimization, we use Adam (Kingma &
Ba, 2014) and follow the schedule therein. The models are all trained for fixed epochs for ReLaSH,
while trained for a larger fixed epochs for Gau-Diff, with fixed batch size of 128. The difference
in required epochs comes from the fact that the diffusion model in ReLaSH only works on a pop-
ulation of k-dimensional vectors, while the diffusion model in Gau-Diff works on a population of
(n+ p)-dimensional vectors with k ≪ n+ p. Therefore, the dimension reduction performed by our
algorithm successfully boosts the speed of hypergraph generation and enhances performance in all
error types.

In the application to real datasets, we employ the Forest Diffusion method proposed by Jolicoeur-
Martineau et al. (2024), which leverages XGBoost, a widely used Gradient Boosted Tree (GBT)
technique, instead of neural networks to learn the score function. Owing to its substantial compu-
tational cost, Forest Diffusion is applied only to the ReLaSH and ReLaSHc methods, as both train
the generative model in the embedded latent space of relatively low dimension. Forest Diffusion
also provides an R implementation, which ensures a smooth integration with our entirely R-based
pipeline. In contrast, Gau-Diff requires training directly on the full dataset of dimension (n+p), for
which we instead adopt the standard diffusion model described earlier with a simple architecture.
This comparison highlights the scalability advantage of our dimension reduction framework.

B.7.2 GANS

Generative Adversarial Networks (GANs) (Goodfellow et al., 2020) are a class of generative models
based on a game-theoretic framework between two neural networks: the generator and the discrimi-
nator. The generator aims to produce synthetic samples from random noise, while the discriminator
attempts to distinguish between real samples from the dataset and those produced by the generator.

However, this setup is often plagued by issues such as vanishing gradients and mode collapse, partic-
ularly when the discriminator becomes too strong, leaving the generator with poor learning signals.
To address these challenges during training, we employ the Wasserstein GAN (WGAN) (Arjovsky
et al., 2017) in our experiments. WGAN introduces the Wasserstein-1 distance as the divergence
metric between real and generated data distributions, providing smoother gradients and significantly
improved training stability, with the loss formulated as:

min
G

max
f∈Lip1

Ex∼pdata [f(x)]− Ez∼p(z)[f(G(z))],

where f is a 1-Lipschitz function parameterized by the discriminator. Unlike the classic GAN
discriminator, the WGAN critic outputs real-valued scores for how ”real” a sample appears, rather
than a probability. To enforce the Lipschitz constraint, weight clipping (or, in improved versions,
gradient penalty) is used during training.

For all simulation experiments, the WGAN is trained for a fixed number of epochs, ranging from
1500 to 15000, with a consistent learning rate and a latent dimension fixed at 50 to handle synthetic
datasets of varying complexity across all settings. In each real data experiment, we adjust the number
of training epochs based on the dataset’s complexity, considering limited computational resources,
and have saved the specific settings for each dataset to ensure reproducibility. We observe that
WGAN exhibits stable convergence under these configurations and is comparable to ReLaSH in
terms of run time. We apply the early stopping mechanism which monitors the generator’s loss,
halting training if there is no improvement for patience epochs to prevent overfitting.

B.7.3 VAE

Variational Autoencoders (VAEs) represent a class of generative models that fuse principles from
autoencoders and probabilistic graphical models (Kingma & Welling, 2013). VAEs learn an approx-

41

https://github.com/yang-song/score_sde
https://github.com/yang-song/score_sde

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

imate posterior distribution over latent variables by maximizing a lower bound on the ELBO. The
model consists of an encoder network that parameterizes a variational distribution over the latent
space, and a decoder network that reconstructs data from latent codes. The loss function includes
both a reconstruction term and a regularization (KL divergence) term encouraging the latent distri-
bution to remain close to a chosen prior, commonly the standard normal distribution.

In our experiments on real world datasets, we observe that VAE training is significantly more time-
consuming compared to WGAN and ReLaSH. Furthermore, the quality of generated samples, as
evaluated by our downstream metrics, systematically lags behind that of the other generative ap-
proaches in our comparative study. As a result, we exclude VAE from large-scale experiments
involving scalable m,n, p,K to maintain feasibility and focus our analysis on more tractable and
performant alternatives.

B.7.4 FLOW-BASED GENERATIVE MODELS

Flow-based generative models provide exact data likelihood evaluation and support efficient sam-
pling by learning a sequence of invertible (bijective) transformations between the data space and
a simple latent space. The central concept is to represent a complex data distribution by mapping
observed data x to latent variable z via an invertible function f , so that x = f−1(z). The density of
data points can then be computed exactly using the change of variables formula

log p(x) = log p(z) + log |Jf−1(z)|,

where Jf−1 is the Jacobian matrix of the inverse mapping. Typical flow-based models include
NICE (Dinh et al., 2014), RealNVP (Dinh et al., 2016), Glow (Kingma & Dhariwal, 2018), Masked
Autoregressive Flows (MAF) (Germain et al., 2015), PixelRNN (Van Den Oord et al., 2016) and so
on. NICE and RealNVP use affine coupling layers and can be flexibly applied to continuous vector
data of arbitrary dimensionality, while Glow, i-ResNet, PixelRNN, and some hierarchical models are
specifically designed for image generation and utilize architectural components that exploit spatial
locality and dependencies within images. These designs are less suitable for plain vectors where
such spatial structure is absent, making direct extension to general vector-valued data challenging
and sometimes inefficient.

In this work, we select RealNVP because of its modular structure and its generalizability to vector-
based data. For all experiments, the RealNVP is trained for a fixed number of epochs with a con-
sistent learning rate. For optimization, we use Adam (Kingma & Ba, 2014) and follow the schedule
therein. To enhance the robustness of the algorithm and prevent overflow of values, we apply stan-
dardization in the training and generating process. Also, we apply the early stopping mechanism
which monitors the generator’s loss, halting training if there is no improvement for patience epochs
to prevent overfitting. The run time of RealNVP is about double of Gau-Diff, while the metric results
are quite similar to the compared methods.

C PROOFS OF MAIN RESULTS

Proof of Theorem 1. Suppose two sets of model parameters (PU , Z, α, γ,B), and
(PU ′ , Z ′, α′, γ′, B′) yield the same distribution for hyperlinks and attributes, i.e.,

α+ ZU (23) d
= α′ + Z ′U (23)′ and γ +BU (12) d

= γ′ +B′U (12)′ .

First, by taking the mean on both sides, we obtain α = α′ and γ = γ′, thus we have

ZU (23) d
= Z ′U (23)′ and BU (12) d

= B′U (12)′ .

Next, we demonstrate that PU andZ,B are identifiable up to sign permutations. Suppose there exists
an invertible matrix A such that U (23)′ d

= A⊤U (23), and define EPU
[U (23)U (23)⊤] = 1

nZ
⊤Z =

D and EPU′ [U
(23)′U (23)′⊤] = 1

nZ
′⊤Z ′ = D′, both of which are diagonal matrices with distinct

positive diagonal elements. Thus, we have:

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

A−1DA−⊤ =
1

n
A−1Z⊤ZA−⊤ =

1

n
Z ′⊤Z ′ = EPU′ [U

(23)′U (23)′⊤]

= A⊤EPU
[U (23)U (23)⊤]A = A⊤DA,

which implies that

D = AA⊤DAA⊤ ≜ (MD
1
2)(MD

1
2)⊤,

where M = AA⊤. By the Cholesky decomposition, we conclude that MD
1
2 = D

1
2W for some

orthogonal matrix W , meaning that W = D−
1
2MD

1
2 , and I = W⊤W = D−

1
2M⊤MD

1
2 , i.e.

M2 = I , and M is positive semi-definite. Therefore, M = AA⊤ = I , A must be an orthogonal
matrix. Furthermore, since A⊤DA = D′, where both D and D′ are positive diagonal matrices with
distinct elements, we deduce that A must also be a sign permutation matrix. Therefore, we conclude
that U (23)′ d= A⊤U (23) and Z ′ = ZA−⊤, i.e., PU and Z are identifiable up to sign permutations.
To resolve the identifiability issue up to column sign flips during estimation, we fix the sign of all
coordinates in the first row of Um.

Next, suppose there exists an invertible matrix F such that U (12)′ d= F⊤U (12) and B′ = BF−⊤.

Let F =

(
F11 F12

F21 F22

)
, so that:

U (1)′ d= F⊤11U
(1) + F⊤21U

(2), and U (2)′ d= F⊤12U
(1) + F⊤22U

(2).

Since we have already shown that U (2) d
= U (2)′, it follows that

0 = EPU′ [U
(1)′U (2)′⊤]=F⊤11EPU

[U (1)U (2)⊤] + F⊤21EPU
[U (2)U (2)⊤] = F⊤21EPU

[U (2)U (2)⊤],

EPU′ [U
(2)′U (2)′⊤]=F⊤12EPU

[U (1)U (2)⊤] + F⊤22EPU
[U (2)U (2)⊤] = F⊤22EPU

[U (2)U (2)⊤],

thus, F21 = 0k2×k1 , F22 = Ik2 , and F12 = 0k1×k2 .

For the loading matrices B and B′, we have:(
B11 B21

B12 B22

)
= B = B′F⊤ =

(
B′11 B′21
B′12 B′22

)(
F⊤11 0
0 Ik2

)
=

(
B′11F

⊤
11 B′21

B′12F
⊤
11 B′22

)
,

which implies that B′21 = B21 and B′22 = B22.

Under condition (C3), we assume that B′1 =

(
B′11
B′12

)
and B1 =

(
B11

B12

)
both contain unit lower

triangular matrices, i.e., B11 and B′11 are both unit lower triangular matrices. We conclude that
F11 is a unit upper triangular matrix because B11 = B′11F

⊤
11. By checking each of the diagonal

elements of B11 and B′11F
⊤
11, we can conclude that all the off-diagonal elements of F11 should be

0, i.e. F11 = Ik1 . This leads us to conclude that U (3) and B are both identifiable, and the strict
identifiability holds for all parameters.

On the other hand, if the identifiability condition is (C3) 1
pB
⊤B = Ik, it follows that F11 = I3.

It’s also easy to show that with (C3**), F11 will be a sign permutation matrix, and the identifiability
can be resolved by arranging the sign of the first column in each matrix. In practice, we use (C3) or
(C3**) instead of (C3*) because it offers a more natural estimation procedure.

Remark 5. In the case where the true parameters (Um, Z,B, α, γ) do not satisfy the conditions in
Theorem 1, we can apply the following transformation w.r.t. the observations.

Firstly, compute ΘH and ΘX as defined respectively. Define α∗ = α + 1
mZU

(23)⊤
m 1m and γ∗ =

γ + 1
mBU

(12)⊤
m 1m, and let U ′ = JmUm.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Secondly, we transform (Um, Z,B) such that ΘX and ΘH remain unchanged and the orthogonality
condition U (2)

m ⊥U (1)
m , U

(3)
m is satisfied by orthogonal transformation. Specifically, let

U (1)′′ = (Im − U (2)′(U (2)′⊤U (2)′)−1U (2)′⊤)U (1)′,

U (3)′′ = (Im − U (2)′(U (2)′⊤U (2)′)−1U (2)′⊤)U (3)′.

To preserve the matrix product, we updateB′⊤2 = B⊤2 +(U (2)′⊤U (2)′)−1U (2)′⊤U (1)′B⊤1 andZ ′⊤2 =
Z⊤2 + (U (2)′⊤U (2)′)−1U (2)′⊤U (3)′Z⊤3 . Then combine U (23)′′ =

[
U (2)′ U (3)′′].

At this stage, we need to rotate (Um, Z,B) to satisfy the conditions (C2) and (C3). Let V =
diag(σ2

1 , σ
2
2 , . . . , σ

2
k2+k3

), where σ2
1 > σ2

2 > · · · > σ2
k2+k3

are the eigenvalues of

1

mn
(Z ′⊤Z ′)1/2(U (23)′′⊤U (23)′′)(Z ′⊤Z ′)1/2,

and let Γ be the (k2 + k3) × (k2 + k3) matrix whose columns are the corresponding eigenvectors.
Define U (23)∗ = U (23)′′G and Z∗ = Z ′G−⊤, where G = (Z ′⊤Z ′/n)1/2ΓV−1/4.

Similarly, let W = diag(δ21 , δ
2
2 , . . . , δ

2
k1
), where δ21 > δ22 > · · · > δ2k1 are the eigenvalues of

1

mp
(B⊤1 B1)

1/2(U (1)′′⊤U (1)′′)(B⊤1 B1)
1/2,

and let D be the k1 × k1 matrix whose columns are the corresponding eigenvectors. Define
U (1)∗ = U (1)′′K and B∗1 = B1K

−⊤, where K = (B⊤1 B1/p)
1/2DW−1/4. Finally, we take

B∗ = [B∗1 B′2], and U∗ =
[
U (1)∗ U (23)∗].

Thus, we obtain the transformed parameters (U∗, B∗, Z∗, α∗, γ∗), and the transformed parame-
ters of distributions (ΘX∗,ΘH∗) = (ΘX ,ΘH), meaning that the distribution of hyperlinks and
attributes remains unchanged after the transformation.
Remark 6. In general, if the true PU and Z,B, α, γ do not satisfy these constraints, a transfor-
mation of PU , Z,B, α, γ can also be made so that the constraints are met, and the distribution of
hyperlink and attributes remains unchanged.

Firstly, define ᾱ = α+ ZEPU
[U (23)] and γ̄ = γ +BEPU

[U (12)], and let U ′ = U − EPU
[U].

Secondly, we transform (PU , Z,B) such that the distribution for hyperlinks and attributes remain
unchanged and the orthogonality conditions EPU

[U (2)U (1)⊤] = 0k2×k1 ,EPU
[U (2)U (3)⊤] = 0k2×k3

are satisfied by orthogonal transformation. Specifically, let

U (1)′′ = U (1)′ − EPU
[U (1)′U (2)′⊤](EPU

[U (2)′U (2)′⊤])−1U (2)′,

U (3)′′ = U (3)′ − EPU
[U (3)′U (2)′⊤](EPU

[U (2)′U (2)′⊤])−1U (2)′.

To preserve the matrix product, we updateB′⊤2 = B⊤2 +(EPU
[U (2)′U (2)′⊤])−1EPU

[U (2)′U (1)′⊤]B⊤1
and Z ′⊤2 = Z⊤2 + (EPU

[U (2)′U (2)′⊤])−1EPU
[U (2)′U (3)′⊤]Z⊤3 .

At this stage, we need to rotate (PU , Z,B) to satisfy the conditions (C2) and (C3). Let V =
diag(σ2

1 , σ
2
2 , . . . , σ

2
k2+k3

), where σ2
1 > σ2

2 > · · · > σ2
k2+k3

are the eigenvalues of

1

n
(Z ′⊤Z ′)1/2(EPU

[U (23)′′U (23)′′⊤])(Z ′⊤Z ′)1/2,

and let Γ be the (k2 + k3) × (k2 + k3) matrix whose columns are the corresponding eigenvectors.
Define Ū (23) = G⊤U (23)′′ and Z̄ = Z ′G−⊤, where G = (Z ′⊤Z ′/n)1/2ΓV−1/4.

Similarly, let W = diag(δ21 , δ
2
2 , . . . , δ

2
k1
), where δ21 > δ22 > · · · > δ2k1 are the eigenvalues of

1

p
(B⊤1 B1)

1/2(EPU
[U (1)′′U (1)′′⊤])(B⊤1 B1)

1/2,

and let D be the k1 × k1 matrix whose columns are the corresponding eigenvectors. Define Ū (1) =
K⊤U (1)′′ and B̄1 = B1K

−⊤, where K = (B⊤1 B1/p)
1/2DW−1/4.

Thus, we obtain the transformed model parameters (PŪ , B̄, Z̄, ᾱ, γ̄), keeping the distribution of
hyperlinks and attributes unchanged after the transformation.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Proof of Lemma 1. In the following, we slightly abuse the notation by letting µ(x) denote the count-
ing measure when x is discrete, the Lebesgue measure when x is continuous, and the product of the
counting measure and the Lebesgue measure when x involves both discrete and continuous compo-
nents.

We can see that

dKL(P(E,X,U)∥P(Ẽ,X̃,Ũ)) = EP(E,X,U)

log


dP(E,X,U)(E,X,U)

dµ(E,X,U) (E,X,U)

dP(Ẽ,X̃,Ũ)(E,X,U)

dµ(Ẽ,X̃,Ũ)
(E,X,U)




= EP(E,X,U)

log


dPH([n],{E},{X})|U,Zn,α,B,γ)

dµ(H([n],{E},{X})) (E,X,U)dPU (U)
dµ(U) (U)

dPH([n],{Ẽ},{X̃})|Ũ,Zn,α,B,γ)

dµ(H([n],{Ẽ},{X̃})) (E,X,U)
dPŨ (U)

dµ(Ũ)
(U)




= EP(E,X,U)

log


dPU (U)
dµ(U) (U)

dPŨ (U)

dµ(Ũ)
(U)


 = dKL(PU∥PŨ).

Proof of Theorem 2. We’re going to show that

dKL(P(E,X,U) ∥P(Ẽ,X̃,Ũ)) = ∆(Zn,B,α,γ)-estimation +∆PU -estimation +∆latent-reconstruction,

where the three components are given by:

∆(Zn,B,α,γ)-estimation = EP(E,X,U)

log


dPH([n],{E},{X}|U,Zn,B,α,γ)

dµ(H([n],{E},{X})) (E,X,U)

dPH([n],{Ẽ},{X̃}|Ũ,Ẑn,B̂,α̂,γ̂)

dµ(H([n],{Ẽ},{X̃})) (E,X,U)


 ,

∆PU -estimation = EPU

log


dPU

dµ(U) (U)

dPÛm

dµ(Û)
(U)


+ EPU

log


dPÛm

dµ(Û)
(U)

dP′
Ũ

dµ(Ũ)
(U)


− EPÛm

log


dPÛm

dµ(Û)
(U)

dP′
Ũ

dµ(Ũ)
(U)


 ,

∆latent-reconstruction = EPÛm

log


dPÛm

dµ(Û)
(U)

dP′
Ũ

dµ(Ũ)
(U)


 .

Here, PÛm denotes the marginal distribution of the estimated attribute embeddings {û1, · · · , ûm}
given the observed Um, and we assume absolute continuity of all log-ratios with respect to a common
base measure µ.

Note that

dKL(P(E,X,U)∥P′(Ẽ,X̃,Ũ)
)

= EP(E,X,U)

log


dP(E,X,U)

dµ(E,X,U) (E,X,U)

dP′
(Ẽ,X̃,Ũ)

dµ(Ẽ,X̃,Ũ)
(E,X,U)




= EP(E,X,U)

log


dPH([n],{E},{X})|U,Zn,B,α,γ)

dµ(H([n],{E},{X})) (E,X,U) dPU

dµ(U) (U)

dPH([n],{Ẽ},{X̃})|Ũ,Ẑn,B̂,α̂,γ̂)

dµ(H([n],{Ẽ},{X̃})) (E,X,U)
dP′

Ũ

dµ(Ũ)
(U)




= EP(E,X,U)

log


dPH([n],{E},{X})|U,Zn,B,α,γ)

dµ(H([n],{E},{X})) (E,X,U)

dPH([n],{Ẽ},{X̃})|Ũ,Ẑn,B̂,α̂,γ̂)

dµ(H([n],{Ẽ},{X̃})) (E,X,U)




+ EP(E,X,U)

log


dPU

dµ(U) (U)

dP′
Ũ

dµ(Ũ)
(U)


 .

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Here, we denote

∆(Zn,B,α,γ)-estimation = EP(E,X,U)

log


dPH([n],{E},{X})|U,Zn,B,α,γ)

dµ(H([n],{E},{X})) (E,X,U)

dPH([n],{Ẽ},{X̃})|Ũ,Ẑn,B̂,α̂,γ̂)

dµ(H([n],{Ẽ},{X̃})) (E,X,U)




since dPH([n],{E},{X})|U,Zn,B,α,γ)

dµ(H([n],{E},{X})) (E,X,U) and
dPH([n],{Ẽ},{X̃})|Ũ,Ẑn,B̂,α̂,γ̂)

dµ(H([n],{Ẽ},{X̃})) (E,X,U) only differs in
the estimated version and the true (Zn, B, α, γ) with the same (E,X,U) plug-in.

To decompose the second term, we consider

EP(E,X,U)

log


dPU

dµ(U) (U)

dP′
Ũ

dµ(Ũ)
(U)


 = EP(E,X,U)

log


dPU

dµ(U) (U)

dPÛm

dµ(Û)
(U)


+ EP(E,X,U)

log


dPÛm

dµ(Û)
(U)

dP′
Ũ

dµ(Ũ)
(U)




= EPU

log


dPU

dµ(U) (U)

dPÛm

dµ(Û)
(U)


+ EPU

log


dPÛm

dµ(Û)
(U)

dP′
Ũ

dµ(Ũ)
(U)




− EPÛm

log


dPÛm

dµ(Û)
(U)

dP′
Ũ

dµ(Ũ)
(U)


+ EPÛm

log


dPÛm

dµ(Û)
(U)

dP′
Ũ

dµ(Ũ)
(U)


 .

The first three terms primarily depend on the distance between PU and PÛm , and are collectively
denoted as ∆PU -estimation. The final term corresponds to the diffusion error on observations of PÛm ,
and is denoted as ∆latent-reconstruction.

Proof of Theorem 4. Denote H = {hji}j∈[n],i∈[m] and X = {xji}j∈[n],i∈[m] as the hypergraph
connection matrix and the attribute matrix, respectively, where hji = 1{i∈ej} and xji represents
the i-th attribute associated with hyperlink ej . We consider minimizing the objective loss function
L(U,Z,B, α, γ), and the optimal solution (Û , Ẑ, B̂, α̂, γ̂) implies that

0 ≤ L(U∗, Z∗, B∗, α∗, γ∗)− L(Û , Ẑ, B̂, α̂, γ̂)

=

m∑
j=1

n∑
i=1

hji(Θ̂
H
ji −ΘH∗ji)− (fH(Θ̂Hji)− fH(ΘH∗ji))

+ λ

 m∑
j=1

n∑
i=1

xji(Θ̂
X
ji −ΘX∗ji)− (fX(Θ̂Xji)− fX(ΘX∗ji))


=

m∑
j=1

n∑
i=1

(Θ̂Hji −ΘH∗ji)(hji − f ′H(ΘH∗ji))− 1

2
f ′′H(Θ̃Hji)(Θ

H∗
ji − Θ̂Hji)

2

+ λ

 m∑
j=1

n∑
i=1

(Θ̂Xji −ΘX∗ji)(xji − f ′X(ΘX∗ji))− 1

2
f ′′X(Θ̃Xji)(Θ

X∗
ji − Θ̂Xji)

2

 ,
where Θ̃Xji = ajiΘ̂

X
ji +(1− aji)Θ

X∗
ji , and Θ̃Hji = ajiΘ̂

H
ji +(1− aji)Θ

H∗
ji for some aji, bji ∈ [0, 1].

Here, we have fH(x) = log(1 + exp(x)), and fX(x) = 1
2x

2. Denote EH = H − f ′H(ΘH∗),
EX = X−f ′X(ΘX∗). Since we require that both true parameters and estimated ones should belong

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

to the feasible parameter space F(Θ), we have the above equation transferred into:
1

2
min(min

i,j,Θ̃H∈F(Θ)
f ′′H(Θ̃Hji), λ)∥Θ̂−Θ∗∥2F

≤ 1

2
min

i,j,Θ̃H∈F(Θ)
f ′′H(Θ̃Hji)∥Θ̂H −ΘH∗∥2F +

λ

2
∥Θ̂X −ΘX∗∥2F

≤< EH , Θ̂
H −ΘH∗ > +λ < EX , Θ̂

X −ΘX∗ >

≤ ∥EH∥2rank(Θ̂H −ΘH∗)∥Θ̂H −ΘH∗∥F + λ∥EX∥2rank(Θ̂X −ΘX∗)∥Θ̂X −ΘX∗∥F

≤
√
2(k2 + k3 + 1)∥EH∥22 + 2(k1 + k2 + 1)λ2∥EX∥22

√
∥Θ̂H −ΘH∗∥2F + ∥Θ̂X −ΘX∗∥2F

=
√
2(k2 + k3 + 1)∥EH∥22 + 2(k1 + k2 + 1)λ2∥EX∥22∥Θ̂−Θ∗∥F .

Note that mini,j,Θ̃H∈F(Θ) f
′′
H(Θ̃Hji) ≳ exp(−Cm,n), we should consider the bound of

∥EH∥2, ∥EX∥2.

For ∥EH∥2, we prove that P(∥EH∥2 ≳
√
(m ∨ n) exp(ᾱm,n) log((m ∧ n)/ε)) ≤ ε. Let

ẼH =

(
0m×m EH
E⊤H 0n×n

)
,

we have λmax(Ẽ
⊤
HẼH) = λmax(E

⊤
HEH), so that ∥EH∥2 = ∥ẼH∥2. We introduce Lemma 4 to

bound it.

Lemma 4 (Theorem 5 from (Chung & Radcliffe, 2011)). Let X1, X2, · · · , Xm be independent
random n × n Hermitian matrices. Moreover, assume that ∥Xi − E(Xi)∥2 ≤ M for all i, and put
ν2 = ∥

∑
Var(Xi)∥2. Let X =

∑
iXi, then for any a > 0,

P (∥X − E(X)∥2 > a) ≤ 2n exp

(
− a2

2ν2 + 2Ma/3

)
.

Let Ej,i be the (m+ n)× (m+ n) matrix with 1 in the (j, i) and (i, j) positions and 0 elsewhere.
Therefore, we represent ẼH =

∑m
j=1

∑n
i=1 Y

j,m+i =
∑m
j=1

∑n
i=1(hji − σ(ΘH∗ji))Ej,m+i. Note

that EY j,m+i = 0(m+n)×(m+n), ∥Y j,m+i∥2 ≤ 1, and E(Y j,m+i)2 = (σ(ΘH∗ji)−σ(ΘH∗ji)2)(Ej,j+

Em+i,m+i), thus

ν2 = ∥
m∑
j=1

n∑
i=1

E(Y j,m+i)2∥2 = max{max
j∈[m]

∑
i∈[n]

σ(ΘH∗ji)− σ(ΘHji)
2,max
i∈[n]

∑
j∈[m]

σ(ΘH∗ji)− σ(ΘHji)
2}

≤ (m ∨ n)max
j,i

σ(ΘH∗ji).

For any ε > 0, we take a =
√
3(m ∨ n)maxj,i σ(ΘH∗ji) log(4(m ∨ n)/ε), and note that

exp(ᾱm,n) ≳ (m∧ n)−1 log((m∧ n)) implies that there exist large enough m,n s.t. exp(ᾱm,n) ≳
(m ∧ n)−1 log((m ∧ n)/ε), and maxj,i σ(Θ

H∗
ji) ≥ 4

3 (m ∧ n)−1 log(4(m ∧ n)/ε). Therefore,

(m ∨ n)maxj,i σ(Θ
H∗
ji) ≥ 2

√
3(m ∨ n)maxj,i σ(ΘH∗ji) log(4(m ∨ n)/ε)/3, and Lemma 4 im-

plies that

P(∥ẼH∥2 ≳
√

3(m ∨ n)max
j,i

σ(ΘH∗ji) log(4(m ∨ n)/ε)))

≤ 2n exp(−
3(m ∨ n)maxj,i σ(Θ

H∗
ji) log(4(m ∨ n)/ε)

2(m ∨ n)maxj,i σ(ΘH∗ji) + 2
√
3(m ∨ n)maxj,i σ(ΘH∗ji) log(4(m ∨ n)/ε)/3

)

≤ 4(m ∨ n) exp(− log(4(m ∨ n)/ε)) = ε.

Moreover, note that exp(ᾱm,n) ≍ maxj,i σ(Θ
H∗
ji), there is

P(∥ẼH∥2 ≳
√

(m ∨ n) exp(ᾱm,n) log(4(m ∨ n)/ε))) ≤ ε,

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

then the desired result follows.

For ∥EX∥2, note that the noise term is sub-Gaussian with zero mean; therefore Theorem 4.4.3
from (Vershynin, 2018) implies that

P(∥EX∥2 ≥ CK(
√
m+

√
p+ t)) ≤ 2 exp(−t2)

for some constant C, and we also have K = maxi,j ∥Xji∥ψ2
= maxt∈[p] ∥εt∥ψ2

as a bounded
constant, since the noise term is assumed to be sub-Gaussian, therefore we have ∥EX∥2 =
Op(

√
m+

√
p).

In all, with the assumption that exp(ᾱm,n) ≍ exp(−Cm,n), we arrive at the result that

∥Θ̂−Θ∗∥F = Op

(√
(m ∨ n) exp(ᾱm,n) log(m ∨ n) + 4λ2(m ∨ p)

(exp(−Cm,n) ∧ λ)

)
.

Proof of Theorem 3. By taking the hyperlink and attribute E,X , and the corresponding embedding
U as random parts of the random function, we have:

ℓ1(zi, αi) := ℓ1(zi, αi | E,X,U) = 1i∈E(U
(23)⊤zi + αi)− log(1 + exp(U (23)⊤zi + αi)),

ℓ2(bi, γi) := ℓ2(bi, γi | E,X,U) = xi(γi + U (12)⊤bi)−
1

2
(γi + U (12)⊤bi)

2,

where bi denotes the i-th row of matrix B, so as the b̂i, and xi denotes the i-th element of the
attribute vector X .

Then we expand two error terms to the second order:

ℓ1(zi, αi)− ℓ1(ẑi, α̂i) = ∇ℓ1(ẑi, α̂i)⊤
(
zi − ẑi
αi − α̂i

)
+

1

2

(
zi − ẑi
αi − α̂i

)⊤
∇2ℓ1(z̃i, α̃i)

(
zi − ẑi
αi − α̂i

)
,

ℓ2(bi, γi)− ℓ2(b̂i, γ̂i) = ∇ℓ2(b̂i, γ̂i)⊤
(
bi − b̂i
γi − γ̂i

)
+

1

2

(
bi − b̂i
γi − γ̂i

)⊤
∇2ℓ2(b̃i, γ̃i)

(
bi − b̂i
γi − γ̂i

)
,

for some (z̃i, α̃i) being the linear combination of (zi, αi) and (ẑi, α̂i). Note that

∇ℓ1(ẑi, α̂i) = 1i∈E

(
U (23)

1

)
− exp(U (23)⊤ẑi + α̂i)

1 + exp(U (23)⊤ẑi + α̂i)

(
U (23)

1

)
,

∇2ℓ1(z̃i, α̃i) =
exp(U (23)⊤z̃i + α̃i)

(1 + exp(U (23)⊤z̃i + α̃i))2

(
U (23)

1

)(
U (23)

1

)⊤
for the ℓ1 error, and also

∇ℓ2(b̂i, γ̂i) = (xi − (γ̂i + U (12)⊤b̂i))

(
U (12)

1

)
,

∇2ℓ2(b̃i, γ̃i) =

(
U (12)

1

)(
U (12)

1

)⊤
.

To consider the
∆(Zn,B,α,γ)− estimation

= EP(E,X,U)

log


dPH([n],{E},{X}|U,Zn,B,α,γ)

dµ(H([n],{E},{X})) (E,X,U)

dPH([n],{Ẽ},{X̃}|Ũ,Ẑn,B̂,α̂,γ̂)

dµ(H([n],{Ẽ},{X̃})) (E,X,U)




= EP(E,X,U)

log


dPH([n],{E}|U(23),Zn,α)

dµ(H([n],{E})) (E,U)

dPH([n],{Ẽ}|Ũ(23),Ẑn,α̂)

dµ(H([n],{Ẽ})) (E,U)

+ log


dPH([n],{X}|U(12),B,γ)

dµ(H([n],{X})) (X,U)

dPH([n],{X̃}|Ũ(12),B̂,γ̂)

dµ(H([n],{X̃})) (X,U)




= EP(E,U)

∑
i∈[n]

ℓ1(zi, αi)− ℓ1(ẑi, α̂i)

+ EP(X,U)

∑
i∈[p]

ℓ2(bi, γi)− ℓ2(b̂i, γ̂i)

 ,

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

we should analyze the expectation over (E,X,U) by first conditioning on U , i.e.,
EP(E,U)

|ℓ1(zi, αi)− ℓ1(ẑi, α̂i)|
= EPU

EPH([n],{E}|U)
|ℓ1(zi, αi)− ℓ1(ẑi, α̂i)|

≤ EPU

[∣∣∣∣ exp(U (23)⊤zi + αi)

1 + exp(U (23)⊤zi + αi)
− exp(U (23)⊤ẑi + α̂i)

1 + exp(U (23)⊤ẑi + α̂i)

∣∣∣∣ (U (23)

1

)⊤(
zi − ẑi
αi − α̂

)]

+ EPU

[
1

2

exp(U (23)⊤z̃i + α̃i)

(1 + exp(U (23)⊤z̃i + α̃i))2

(
zi − ẑi
αi − α̂

)⊤(
U (23)

1

)(
U (23)

1

)⊤(
zi − ẑi
αi − α̂

)]

≤ (C2 + 1)1/2
∥∥∥∥(zi − ẑi
αi − α̂

)∥∥∥∥
2

EPU

∣∣∣∣ exp(U (23)⊤zi + αi)

1 + exp(U (23)⊤zi + αi)
− exp(U (23)⊤ẑi + α̂i)

1 + exp(U (23)⊤zi + α̂i)

∣∣∣∣
+ C1 exp(ᾱm,n)λmax

([
EPU

(
U (23)

1

)(
U (23)

1

)⊤])∥∥∥∥(zi − ẑi
αi − α̂i

)∥∥∥∥2
2

,

where we can further expand

EPU

[∣∣∣∣ exp(U (23)⊤zi + αi)

1 + exp(U (23)⊤zi + αi)
− exp(U (23)⊤ẑi + α̂i)

1 + exp(U (23)⊤zi + α̂i)

∣∣∣∣]
=

exp(U (23)⊤z′i + α′i)

(1 + exp(U (23)⊤z′i + α′i))
2

(
U (23)

1

)⊤(
zi − ẑi
αi − α̂i

)
≤ C1 exp(αm,n)EPU

∥∥∥∥(U (23)

1

)∥∥∥∥
2

∥∥∥∥(zi − ẑi
αi − α̂i

)∥∥∥∥
2

.

Therefore, by combining Assumption 2, we have

EP(E,U)
|ℓ1(zi, αi)− ℓ1(ẑi, α̂i)| ≲ exp(ᾱm,n)

∥∥∥∥(zi − ẑi
αi − α̂i

)∥∥∥∥2
2

.

And also, for the attributes part, we have

EP(X,U)
|ℓ2(bi, γi)− ℓ2(b̂i, γ̂i)|

= EPU
EP

X|U(12)

∣∣∣∣∣(xi − (γ̂i + U (12)⊤b̂i))

(
U (12)

1

)⊤(
bi − b̂i
γi − γ̂i

)

+
1

2

(
bi − b̂i
γi − γ̂i

)⊤(
U (12)

1

)(
U (12)

1

)⊤(
bi − b̂i
γi − γ̂i

)∣∣∣∣∣
≤ 3

2
EPU

(
bi − b̂i
γi − γ̂i

)⊤(
U (12)

1

)(
U (12)

1

)⊤(
bi − b̂i
γi − γ̂i

)
≤ 3

2
λmax

(
EPU

[(
U (12)

1

)(
U (12)

1

)⊤])∥∥∥∥(bi − b̂i
γi − γ̂i

)∥∥∥∥2
2

≲

∥∥∥∥(bi − b̂i
γi − γ̂i

)∥∥∥∥2
2

.

By combining the results above, we have
∆(Zn,B,α,γ) estimation

= EP(E,U)

∑
i∈[n]

ℓ1(zi, αi)− ℓ1(ẑi, α̂i)

+ EP(X,U)

∑
i∈[p]

ℓ2(bi, γi)− ℓ2(b̂i, γ̂i)


≤
∑
i∈[n]

EP(E,U)
|ℓ1(zi, αi)− ℓ1(ẑi, α̂i)|+

∑
i∈[p]

EP(X,U)
|ℓ2(bi, γi)− ℓ2(b̂i, γ̂i)|

≲ exp(ᾱm,n)

n∑
i=1

∥∥∥∥(zi − ẑi
αi − α̂i

)∥∥∥∥2
2

+

p∑
i=1

∥∥∥∥(bi − b̂i
γi − γ̂i

)∥∥∥∥2
2

= exp(ᾱm,n){∥Ẑ − Z∥2F + ∥α̂− α∥22}+ {∥B̂ −B∥2F + ∥γ̂ − γ∥22},
then by combining Theorem 5, the desired result follows.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Proof of Corollary 1. First, due to the identification conditions, we have[
α̂
γ̂

]
=

1

m
Θ̂1m,

[
α∗

γ∗

]
=

1

m
Θ∗1m,

thus ∥∥∥∥∥1m
[
α̂
γ̂

]⊤
− 1m

[
α∗

γ∗

]⊤∥∥∥∥∥
F

≤
∥∥∥∥ 1

m
1m1⊤m(Θ̂−Θ∗)

∥∥∥∥
F

≤ ∥Θ̂−Θ∗∥F ,

i.e., ∥∥∥∥∥
[
α̂
γ̂

]⊤
−
[
α∗

γ̂∗

]⊤∥∥∥∥∥
2

≤ 1√
m
∥Θ̂−Θ∗∥F = Op(δm,n,p).

As a consequence,

∥Û (23)Ẑ⊤ − U (23)∗Z∗⊤∥F
= ∥(Θ̂H −ΘH∗)− 1m(α̂− α∗)⊤∥F ≤ ∥(Θ̂H −ΘH∗)∥F + ∥1m(α̂− α∗)⊤∥F
≤ 2∥(Θ̂H −ΘH∗)∥F = Op(

√
mδm,n,p).

Let σ1, σ2, · · · , σk2+k3 and σ̂1, σ̂2, · · · , σ̂k2+k3 be the singular values of 1√
mn

U (23)∗Z∗⊤ and
1√
mn

Û (23)Ẑ⊤ respectively. Further let e1, e2, · · · , ek2+k3 and ê1, ê2, · · · , êk2+k3 be the corre-

sponding left singular vectors. Under the identification constraints, the k-th column of U (23)∗ is√
mσkek and the k-th column of Û (23) is

√
mσ̂kêk.

According to Theorem 3 of (Yu et al., 2015), we have

∥ek − êk∥2 ≤
√
2

min{σ2
k − σ2

k+1, σ
2
k−1 − σ2

k}

∥∥∥∥ 1√
mn

(Û (23)Ẑ⊤ − U (23)∗Z∗⊤)

∥∥∥∥
F

,

and by Assumption 2, there is ∥ek − êk∥2 = Op(
1√
n
δm,n,p) for any 1 ≤ k ≤ k2 + k3.

Also by Weyl’s inequality, |σk − σ̂k| ≤ ∥ 1√
mn

(Û (23)Ẑ⊤ − U (23)∗Z∗⊤)∥op = Op(
1√
n
δm,n,p). Let

U
(23)∗
k , Û

(23)
k denote the k-th column of U (23)∗, Û (23) respectively, we have

∥U (23)∗ − Û (23)∥F ≤
k2+k3∑
k=1

∥U (23)∗
k − Û

(23)
k ∥2 =

√
m

k2+k3∑
k=1

∥σkek − σ̂kêk∥2

≤
√
m

k2+k3∑
k=1

(|
√
σk −

√
σ̂k|+

√
σk∥ek − êk∥2)

≤
√
m

k2+k3∑
k=1

(
|σk − σ̂k|√
σk +

√
σ̂k

+
√
σk∥ek − êk∥2

)
= Op(

√
m/nδm,n,p).

Similarly, we can prove that ∥Ẑ − Z∗∥F = Op(δm,n,p) by considering about the right singular
space.

On the other hand, we have

∥Û (12)B̂⊤ − U (12)∗B∗⊤∥F = ∥(Θ̂X −ΘX∗)− 1m(γ̂ − γ∗)⊤∥F
≤ ∥(Θ̂X −ΘX∗)∥F + ∥1m(γ̂ − γ∗)⊤∥F = Op(

√
mδm,n,p).

To consider about the error between B̂ =
[
B̂1 B̂2

]
and B∗ = [B∗1 B∗2], we construct the error

rate for B̂1, B̂2 respectively. According to the orthogonality between Û (1), Û (2) and U (1)∗, U (2)∗,

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

we have

∥B̂2 −B∗2∥F = ∥(Û (2)⊤Û (2))−1Û (2)⊤Û (12)B̂⊤ − (U (2)∗⊤U (2)∗)−1U (2)∗⊤U (12)∗B∗⊤∥F
≤ ∥(Û (2)⊤Û (2))−1Û (2)⊤∥2∥Û (12)B̂⊤ − U (12)∗B∗⊤∥F + ∥U (12)∗B∗⊤∥2
∥(Û (2)⊤Û (2))−1Û (2)⊤ − (U (2)∗⊤U (2)∗)−1U (2)∗⊤∥2

≤ 1

mink=1,··· ,k2+k3
√
mσ̂k

∥Û (12)B̂⊤ − U (12)∗B∗⊤∥F

+ C12∥(Û (2)⊤Û (2))−1Û (2)⊤ − (U (2)∗⊤U (2)∗)−1U (2)∗⊤∥F
= Op(δm,n,p),

because the rows of (Û (2)⊤Û (2))−1Û (2)⊤ are 1√
mσ̂1

ê⊤1 ,
1√
mσ̂2

ê⊤2 , · · · , 1√
mσ̂k2

ê⊤k2 , and the rows of

(U (2)∗⊤U (2)∗)−1U (2)∗⊤ are 1√
mσ1

e⊤1 ,
1√
mσ2

e⊤2 , · · · , 1√
mσk2

e⊤k2 . Denote Û (2)
k , U

(2)∗
k as the k-th

row of Û (2), U (2)∗, k = 1, 2, · · · , k2. Therefore, with Theorem 3 of (Yu et al., 2015), we have

∥(U (2)∗⊤U (2)∗)−1U (2)∗⊤ − (Û (2)⊤Û (2))−1Û (2)⊤∥F

≤
k2∑
k=1

∥Û (2)
k − U

(2)∗
k ∥2 =

1√
m

k2∑
k=1

∥∥∥∥ 1
√
σk
ek −

1√
σ̂k
êk

∥∥∥∥
2

≤ 1√
m

k2∑
k=1

(∣∣∣∣ 1
√
σk

− 1√
σ̂k

∣∣∣∣+ 1
√
σk

∥ek − êk∥2
)

≤ 1√
m

k2∑
k=1

(
|σk − σ̂k|√

σkσ̂k(
√
σk +

√
σ̂k)

+
1

√
σk

∥ek − êk∥2
)

= Op(
1√
m2n

δm,n,p).

Therefore, with ∥B̂2 −B∗2∥F , we have

∥Û (2)B̂⊤2 − U (2)∗B⊤2 ∥F ≤ ∥Û (2) − U (2)∗∥2∥B2∥F + ∥U (2)∗∥2∥B̂⊤2 −B∗⊤2 ∥F
≤
√
pk2C2∥Û (2) − U (2)∗∥2 + max

k∈[k2]

√
mσk∥B̂⊤2 −B∗⊤2 ∥F

= Op(
√
mδm,n,p),

and finally we arrive at

∥Û (1)B̂⊤1 − U (1)∗B⊤1 ∥F ≤ ∥(Û (12)B̂⊤ − U (12)∗B∗⊤)− (Û (2)B̂⊤2 − U (2)∗B⊤2)∥F
≤ ∥(Û (12)B̂⊤ − U (12)∗B∗⊤)∥F + ∥(Û (2)B̂⊤2 − U (2)∗B⊤2)∥F
= Op(

√
mδm,n,p).

Similarly, we denote σ1, σ2, · · · , σk1 and σ̂1, σ̂2, · · · , σ̂k1 be the singular values of 1√
mpU

(1)B⊤1

and 1√
mp Û

(1)B̂⊤1 respectively, and further let f1, f2, · · · , fk1 and f̂1, f̂2, · · · , f̂k1 be the correspond-

ing left singular vectors. Then under the identification conditions, the k − th column of U (1)∗ is√
mδkfk, and the k − th column of Û (1) is

√
mδ̂kf̂k. By applying Theorem 3 in (Yu et al., 2015),

we have

∥fk − f̂k∥2 ≤
√
2

min{δ2k − δ2k+1, δ
2
k−1 − δ2k}

∥∥∥∥ 1
√
mp

(Û (1)B̂⊤1 − U (1)∗B⊤1)

∥∥∥∥
F

= Op(
1
√
p
δm,n,p)

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

for any k = 1, 2, · · · , k1. And by Weyl’s inequality, |δk − δ̂k| ≤ ∥ 1√
mp (Û

(1)B̂⊤1 − U (1)B⊤1)∥op =

Op(
1√
pδm,n,p). Let U (1)∗

k , Û
(1)
k denote the k-th colunm of U (1)∗, Û (1) respectively, we have

∥U (1)∗ − Û (1)∥F ≤
k1∑
k=1

∥U (1)∗
k − Û

(1)
k ∥2 =

√
m

k2∑
k=1

∥δkfk − δ̂kf̂k∥2

≤
√
m

k2∑
k=1

(|
√
δk −

√
δ̂k|+

√
δk∥fk − f̂k∥2)

=
√
m

k2∑
k=1

(
|δk − δ̂k|

√
δk +

√
δ̂k

+
√
δk∥fk − f̂k∥2

)
= Op(

√
m/pδm,n,p).

Similarly, we can prove that ∥B̂1 − B∗1∥F = Op(δm,n,p) by considering about the right singular
space. By combining the results together, we have

∥Û − U∗∥F = Op

(√
m(n+ p)

np
δm,n,p

)
, ∥B̂ −B∗∥F = Op(δm,n,p).

Proof of Theorem 5. According to Assumption 2, we first prove that ∥ 1
m

∑m
j=1 u

(2)′
j u

(i)′⊤
j ∥F =

O(σ2
m,n,p) for both i = 1, 3. By directly calculating

∥ 1

m

m∑
j=1

u
(2)′
j u

(i)′⊤
j ∥F = ∥ 1

m

m∑
j=1

{u(2)j − 1

m
(

m∑
j=1

u
(2)
j)}{u(i)j − 1

m
(

m∑
j=1

u
(i)
j)}⊤∥F

= ∥ 1

m

m∑
j=1

u
(2)
j u

(i)⊤
j − (

m∑
j=1

u
(i)
j /m)(

m∑
j=1

u
(2)
j /m)⊤∥F

≤ ∥ 1

m

m∑
j=1

u
(2)
j u

(i)⊤
j ∥F + ∥

m∑
j=1

u
(i)
j /m∥F ∥

m∑
j=1

u
(2)
j /m∥F = O(σ2

m,n,p),

there is also ∥ 1
mU

(2)′⊤U (i)′∥F = O(σ2
m,n,p) for any i = 1, 3.

Denote (U∗, Z∗, B∗, α∗, γ∗) as the transformed version of (U,Z,B, α, γ) accordng to Remark 5.
Then we can analyse the errors as follows.

∥α∗ − α∥2 = ∥ 1

m
ZU (23)⊤

m 1m∥2 ≤ ∥Z∥2∥
1

m

m∑
j=1

u
(23)
j ∥2 = O(

√
nσm,n,p),

∥γ∗ − γ∥2 = ∥ 1

m
BU (12)⊤

m 1m∥2 ≤ ∥B∥2∥
1

m

m∑
j=1

u
(12)
j ∥2 = O(

√
pσm,n,p),

∥U (23)∗ − U (23)
m ∥F ≤ ∥U (23)′′ − U (23)

m ∥F + ∥U (23)′′ − U (23)∗∥F
≤ ∥I −G∥F ∥U (23)′′∥F + ∥U (23)′′ − U (23)

m ∥F ,
∥U (1)∗ − U (1)

m ∥F ≤ ∥U (1)∗ − U (1)′′∥F + ∥U (1)
m − U (1)′′∥F

≤ ∥I −K∥F ∥U (1)′′∥F + ∥U (1) − U (1)′′∥F ,
∥B∗1 −B1∥F ≤ ∥B1K

−⊤ −B1∥F ≤ ∥B1∥F ∥I −K−⊤∥F ,
∥Z∗ − Z∥F ≤ ∥Z∗ − Z ′∥F + ∥Z ′ − Z∥F = ∥Z ′∥F ∥I −G−⊤∥F + ∥Z ′ − Z∥F .

Note that G,K can be decomposed into

∥G∥F = ∥(Z ′⊤Z ′/n)1/2ΓV−1/4∥F
≤ ∥(Z ′⊤Z ′/n)1/2∥2∥Γ− I∥F ∥V−1/4∥F + ∥(Z ′⊤Z ′/n)1/2∥2∥V −1/4∥F ,

∥K∥F = ∥(B⊤1 B1/p)
1/2DW−1/4∥F

≤ ∥(B⊤1 B1/p)
1/2∥F ∥D − I∥F ∥W−1/4∥F + ∥(B⊤1 B1/p)

1/2∥F ∥W−1/4∥F .

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

We first analyze the error bounds of G,K related terms.

With Assumption 2, we have∥∥∥∥ 1

mn
(Z ′⊤Z ′)1/2(U (23)′′⊤U (23)′′)(Z ′⊤Z ′)1/2 − (Z ′⊤Z ′/n)2

∥∥∥∥
F

=

∥∥∥∥ 1n (Z ′⊤Z ′)1/2(U (23)′′⊤U (23)′′/m− Z⊤Z/n+ Z⊤Z/n− Z ′⊤Z ′/n)(Z ′⊤Z ′)1/2
∥∥∥∥
F

≤ ∥(Z ′⊤Z ′/n)1/2∥22
[
∥U (23)′′⊤U (23)′′/m− Z⊤Z/n∥F + ∥Z⊤Z/n− Z ′⊤Z ′/n∥F

]
= ∥Z ′⊤Z ′/n∥2

[
∥U (23)′′⊤U (23)′′/m− Z⊤Z/n∥F + ∥Z⊤Z/n− Z ′⊤Z ′/n∥F

]
.

By Weyl’s inequality, we know that the 2-norm of Z ′⊤Z ′/n can be bounded by both ∥Z⊤Z/n∥2
and a permutation term, i.e.,

∥Z ′⊤Z ′/n∥2 ≤ ∥Z ′⊤Z ′/n− Z⊤Z/n∥2 + ∥Z⊤Z/n∥2,

where ∥Z⊤Z/n∥2 = O(1). Note that

1

n
Z ′⊤Z ′ − 1

n
Z⊤Z =

1

n

(
Z ′⊤2 Z ′2 − Z⊤2 Z2 (Z ′⊤2 − Z⊤2)Z3

Z⊤3 (Z ′2 − Z2) 0

)
=

1

n

(
Z⊤2 Z3Γ23Γ22 + Γ22Γ

⊤
23Z

⊤
3 Z2 + Γ22Γ

⊤
23Z

⊤
3 Z3Γ23Γ22 Γ22Γ

⊤
23Z

⊤
3 Z3

Z⊤3 Z3Γ23Γ22 0

)
,

where we denote Γ22 = (U (2)′⊤U (2)′)−1, Γ23 = U (3)′⊤U (2)′, hence

∥ 1
n
Z ′⊤Z ′ − 1

n
Z⊤Z∥F ≤ 4

n
∥Z⊤2 Z3Γ23Γ22∥F +

1

n
∥Γ22Γ

⊤
23Z

⊤
3 Z3Γ23Γ22∥F

≤ 4

n
∥Z⊤2 Z3∥F ∥Γ23∥F ∥Γ22∥2 +

1

n
∥Z⊤3 Z3∥F ∥Γ23∥2F ∥Γ22∥22

= O(σ2
m,n,p)

according to Assumption 2. Also, here we bound ∥Γ22∥2 by Weyl’s inequality, i.e.,

∥Γ22∥2 = σmax((U
(2)′⊤U (2)′)−1) =

1

σmin(U (2)′⊤U (2)′)
≤ 1

σmin(U
(2)⊤
m U

(2)
m)− σ2

m,n,p

= O(
1

m
).

Therefore, ∥Z ′⊤Z ′/n∥2 = O(1). Next, we consider about the error bound of ∥U (23)′′⊤U (23)′′/m−
Z⊤Z/n∥F by decomposing it into

∥U (23)′′⊤U (23)′′/m− Z⊤Z/n∥F ≤ ∥U (23)′′⊤U (23)′′/m− U (23)′⊤U (23)′/m∥F
+ ∥U (23)′⊤U (23)′/m− Z⊤Z/n∥F ,

where the latter is of O(σ2
m,n,p). For the former, we have

U (23)′′⊤U (23)′′/m− U (23)′⊤U (23)′/m

=
1

m

(
0 U (2)′⊤(U (3)′′ − U (3)′)

(U (3)′′ − U (3)′)⊤U (2)′ U (3)′′⊤U (3)′′ − U (3)′⊤U (3)′

)
=

1

m

(
0 −U (2)′⊤U (3)′

−U (3)′⊤U (2)′ −U (3)′⊤[U (2)′(U (2)′⊤U (2)′)−1U (2)′⊤]U (3)′

)
,

whose F-norm can be bounded by considering

∥U (23)′′⊤U (23)′′/m− U (23)′⊤U (23)′/m∥F

≤ 1

m

(
2∥U (2)′⊤U (3)′∥F + ∥U (2)′⊤U (3)′∥2F ∥Γ22∥F

)
= O

(
σ2
m,n,p

)
.

To sum up, we have∥∥∥∥ 1

mn
(Z ′⊤Z ′)1/2(U (23)′′⊤U (23)′′)(Z ′⊤Z ′)1/2 − (Z ′⊤Z ′/n)2

∥∥∥∥
F

= O(σ2
m,n,p).

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

Therefore, by Weyl’s inequality, we have
|ρ2i − σi((Z

′⊤Z ′/n)2)| ≤ O(σ2
m,n,p),

and accordingly,

|ρi − σi(Z
′⊤Z ′/n)| = |ρ2i − σi((Z

′⊤Z ′/n)2)|
ρi + σi(Z ′⊤Z ′/n)

= O(σ2
m,n,p),

|ρ1/2i − σi((Z
′⊤Z ′/n)1/2)| = |ρi − σi(Z

′⊤Z ′/n)|
ρ
1/2
i + σi((Z ′⊤Z ′/n)1/2)

= O(σ2
m,n,p),

|ρ−1/2i − σi((Z
′⊤Z ′/n)−1/2)| = |ρ−1/2i ||ρ1/2i − σi((Z

′⊤Z ′/n)1/2)||σi((Z ′⊤Z ′/n)−1/2)| = O(σ2
m,n,p).

Regarding the singular vectors Γ, we further denote Γ′ as the singular vector of (Z ′⊤Z ′/n)2 and
apply Theorem 3 from (Yu et al., 2015), then there is

∥Γ− I∥F ≤ ∥Γ− Γ′∥F + ∥Γ′ − I∥F

= O

(∥∥∥∥ 1

mn
(Z ′⊤Z ′)1/2(U (23)′′⊤U (23)′′)(Z ′⊤Z ′)1/2 − (Z ′⊤Z ′/n)2

∥∥∥∥
F

+ ∥(Z ′⊤Z ′/n)2 − (Z⊤Z/n)∥F
)

= O(σ2
m,n,p).

Regarding the singular value matrix V , we have
∥V−1/4∥F

≤ ∥V−1/4 − (Z ′⊤Z ′/n)−1/2∥F + ∥(Z ′⊤Z ′/n)−1/2 − (Z⊤Z/n)−1/2∥F + ∥(Z⊤Z/n)−1/2∥F
≤
√
k2 + k3 max

i
|ρ−1/2i − σi((Z

′⊤Z ′/n)−1/2)|+ ∥(Z ′⊤Z ′/n)−1/2 − (Z⊤Z/n)−1/2∥F

+ ∥(Z⊤Z/n)−1/2∥F
= O(1).

To sum up, we have
∥G∥F ≤ ∥(Z ′⊤Z ′/n)1/2∥2 (∥Γ− I∥F + 1) ∥V−1/4∥F

= ∥(Z ′⊤Z ′/n)∥1/22 (∥Γ− I∥F + 1) ∥V−1/4∥F = O(1).

On the other hand, we should estimate the error bound of ∥I − G−T ∥F and ∥G − I∥F in order to
bound ∥Z∗ − Z∥F and ∥U∗ − U∥F . Note that

∥I −G−T ∥F = ∥I −G−1∥F ≤ ∥G−1∥F ∥I −G∥F ,
where
∥G−1∥F = ∥V1/4Γ⊤(Z ′⊤Z ′/n)−1/2∥F ≤ ∥V1/4∥(∥Γ− I∥F + 1)∥(Z ′⊤Z ′/n)−1/2∥F = O(1),

∥I −G∥F = ∥I − (Z ′⊤Z ′)1/2V−1/4∥F + ∥(Z ′⊤Z ′)1/2∥F ∥I − Γ∥F ∥V−1/4∥F
≤ ∥(Z ′⊤Z ′)1/2∥F ∥(Z ′⊤Z ′)−1/2 − V−1/4∥2 + ∥(Z ′⊤Z ′)1/2∥F ∥I − Γ∥F ∥V−1/4∥F
≤ O(σ2

m,n,p).

Therefore, we reach at the result that
∥I −G−T ∥F ≤ ∥G−1∥F ∥I −G∥F = O(σ2

m,n,p).

Similarly, we estimate the error bounds of ∥I −K∥F and ∥I −K−⊤∥F by considering about

∥ 1

mp
(B⊤1 B1)

1/2(U (1)′′⊤U (1)′′)(B⊤1 B1)
1/2 − (B⊤1 B1/p)

2∥F

≤ ∥ 1

mp
(B⊤1 B1)

1/2(U (1)′′⊤U (1)′′ − U (1)′⊤U (1)′)(B⊤1 B1)
1/2∥F

+ ∥1
p
(B⊤1 B1)

1/2(U (1)′⊤U (1)′/m−B⊤1 B1/p)(B
⊤
1 B1)

1/2∥F

=
1

m
∥B⊤1 B1/p∥2∥U (1)′′⊤U (1)′′ − U (1)′⊤U (1)′∥F

+ ∥B⊤1 B1/p∥2∥U (1)′⊤U (1)′/m− EPU
[U (1)U (1)⊤]∥F ,

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

where
∥U (1)′′⊤U (1)′′ − U (1)′⊤U (1)′∥F = ∥U (1)′⊤(U (2)′(U (2)′⊤U (2)′)−1U (2)′⊤)U (1)′∥F

≤ ∥U (1)′⊤U (2)′∥2F ∥Γ22∥F = O(mσ4
m,n,p).

Therefore, we have

∥ 1

mp
(B⊤1 B1)

1/2(U (1)′′⊤U (1)′′)(B⊤1 B1)
1/2 − (B⊤1 B1/p)

2∥F = O(σ2
m,n,p).

By Weyl’s inequality, and note that W = diag(σ2
1 , · · · , σ2

k1
) is the eigenvalue matrix of

1
p (B

⊤
1 B1)

1/2(U (1)′′⊤U (1)′′)(B⊤1 B1)
1/2, we have

|δ2i − ((B⊤1 B1/p)
2)ii| ≤ O(σ2

m,n,p),

|δi − (B⊤1 B1/p)ii| =
|δ2i − ((B⊤1 B1/p)

2)ii|
δi + (B⊤1 B1/p)ii

= O(σ2
m,n,p),

|δ1/2i − ((B⊤1 B1/p)
1/2)ii| =

|δi − (B⊤1 B1/p)ii|
δ
1/2
i + ((B⊤1 B1/p)1/2)ii

= O(σ2
m,n,p).

Similarly to our analysis on G, we use Theorem 3 in (Yu et al., 2015) and obtain the error bound of
singular vectors as

∥I −D∥F = O(σ2
m,n,p).

Regarding the error bound of ∥I −K∥F and ∥I −K−⊤∥F , we consider

∥W−1/4∥F ≤ ∥W−1/4 − (B⊤1 B1/p)
−1/2∥F + ∥B⊤1 B1/p∥F = O(1),

∥K∥F ≤ ∥(B⊤1 B1/p)
1/2∥F ∥W−1/4∥F ∥D − I∥F + ∥(B⊤1 B1/p)

1/2∥F ∥W−1/4∥F = O(1),

and then
∥I −K∥F

= ∥I − (B⊤1 B1/p)
1/2DW−1/4∥F

≤ ∥I − (B⊤1 B1/p)
1/2W−1/4∥F + ∥(B⊤1 B1/p)

1/2∥F ∥D − I∥F ∥W−1/4∥F
≤ ∥(B⊤1 B1/p)

1/2∥F ∥(B⊤1 B1/p)
−1/2 −W−1/4∥F + ∥(B⊤1 B1/p)

1/2∥F ∥D − I∥F ∥W−1/4∥F
≤ O(σ2

m,n,p).

Similarly, there is

∥K−1∥F = ∥W1/4D⊤(B⊤1 B1/p)
−1/2∥F

≤ ∥W1/4∥F ∥D⊤ − I∥F ∥(B⊤1 B1/p)
−1/2∥F + ∥W1/4∥F ∥(B⊤1 B1/p)

−1/2∥F
= O(1),

and then
∥I −K−⊤∥F ≤ ∥K−1∥F ∥I −K∥F = O(σ2

m,n,p).

Now, we go back to the analysis of error bounds for embeddings and parameters. According to the
process of transformation, there is

∥U (23)∗ − U (23)
m ∥F ≤ ∥U (23)′′ − U (23)

m ∥F + ∥U (23)′′ − U (23)∗∥F
≤ ∥I −G∥F ∥U (23)′′∥F + ∥U (23)′′ − U (23)

m ∥F
≤ ∥I −G∥F (∥U (23)

m ∥F + ∥U (23)′′ − U (23)
m ∥F) + ∥U (23)′′ − U (23)

m ∥F ,
where
∥U (23)′′ − U (23)

m ∥2F
= ∥U (2)′′ − U (2)

m ∥2F + ∥U (3)′′ − U (3)
m ∥2F

≤ ∥U (2)′ − U (2)
m ∥2F + (∥U (3)′′ − U (3)′∥F + ∥U (3)′ − U (3)

m ∥F)2

≤ ∥U (2)′ − U (2)
m ∥2F + ∥U (3)′′ − U (3)′∥2F + ∥U (3)′ − U (3)

m ∥2F + 2∥U (3)′ − U (3)
m ∥F ∥U (2)′ − U (2)

m ∥F
≤ ∥U (2)′ − U (2)

m ∥2F + ∥U (3)′⊤U (2)′∥2F ∥Γ22∥2F ∥U (2)′∥2F + ∥U (3)′ − U (3)
m ∥2F + 2∥U (3)′ − U (3)

m ∥F ∥U (2)′ − U (2)
m ∥F

= O(mσ2
m,n,p),

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

thus

∥U (23)∗−U (23)
m ∥F ≤ ∥I−G∥F (∥U (23)

m ∥2+∥U (23)′′−U (23)
m ∥F)+∥U (23)′′−U (23)

m ∥F = O(
√
mσm,n,p).

Similarly, we have

∥U (1)∗ − U (1)
m ∥F ≤ ∥U (1)∗ − U (1)′′∥F + ∥U (1)

m − U (1)′′∥F
≤ ∥I −K∥F ∥U (1)′′∥F + ∥U (1)

m − U (1)′′∥F = O(
√
mσm,n,p).

therefore, the overall error bound of hyperlink embedding U∗ is

∥U∗ − Um∥F =

√
∥U (1)∗ − U

(1)
m ∥2F + ∥U (23)′′ − U

(23)
m ∥2F = O(

√
mσm,n,p).

For the node embeddings, we have the following:

∥Z∗ − Z∥F ≤ ∥Z∗ − Z ′∥F + ∥Z ′ − Z∥F = ∥Z ′∥F ∥I −G−⊤∥F + ∥Z ′ − Z∥F ,
where

∥Z ′ − Z∥F = ∥Z ′2 − Z2∥F ≤ ∥(U (2)′⊤U (2)′)−1U (2)′⊤U (3)′∥F ∥Z3∥F
≤ ∥Γ22∥2∥Γ23∥F ∥Z3∥F = O(

√
mσ2

m,n,p),

therefore
∥Z∗ − Z∥F = O(

√
mσ2

m,n,p).

Regarding the parameters B, note that

∥B∗1 −B1∥F ≤ ∥B1K
−⊤ −B1∥F ≤ ∥B1∥F ∥I −K−⊤∥F = O(σ2

m,n,p),

and similarly ∥B∗2 −B2∥ = O(
√
mσ2

m,n,p) during transformation, we have

∥B∗ −B∥F =
√
∥B∗1 −B1∥2F + ∥B∗2 −B2∥2F = O(

√
mσ2

m,n,p).

To sum up, we have proved that for the transformed version (U∗, Z∗, B∗, α∗, γ∗), the error bounds
are as follows:

∥U∗ − Um∥F = O(
√
mσm,n,p), ∥Z∗ − Z∥F = O(

√
mσ2

m,n,p), ∥B∗ −B∥F = O(
√
mσ2

m,n,p);

∥α∗ − α∥2 = O(
√
nσm,n,p), ∥γ∗ − γ∥2 = O(

√
pσm,n,p).

Combine the above result with Corollary 1, then the desired result follows that ∥α̂ − α∗∥2 =

Op(δm,n,p), ∥Û − U∗∥F = Op

(√
m(n+ p)/(np)δm,n,p

)
, ∥Ẑ − Z∗∥F = Op(δm,n,p),

∥γ̂ − γ∗∥2 = Op(δm,n,p), ∥B̂ −B∗∥F = Op(δm,n,p).

Proof of Lemma 2. Note that pU pc(u) ≥ 0 according to the definition, then we only need to consider
about the integral, i.e.,∫

supp(PU)

pU pc(u)dµ(u)

=

∫
supp(PU)

{γkm,n,p
∫
[udis(u)− 1

2γm,n,p
,udis(u)+ 1

2γm,n,p
)

pU (u
′)dµ(u′)}dµ(u)

=
∑

udis∈A
C,γ

−1
m,n,p

γ−km,n,p{γkm,n,p
∫
[udis(u)− 1

2γm,n,p
,udis(u)+ 1

2γm,n,p
)

pU (u
′)dµ(u′)}

=
∑

udis∈A
C,γ

−1
m,n,p

∫
[udis(u)− 1

2γm,n,p
,udis(u)+ 1

2γm,n,p
)

pU (u
′)dµ(u′)

=

∫
supp(PU)

pU (u
′)dµ(u′) = 1,

then the result follows.

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

Proof of Theorem 6. According to the mean value theorem and the condition of Lipschitz continu-
ous, we have

pU pc(u) = γkm,n,p

∫
[udis(u)− 1

2γm,n,p
,udis(u)+ 1

2γm,n,p
)

pU (u)dµ(u)

= γkm,n,pγ
−k
m,n,ppU (c) = pU (c)

for some c ∈ [udis(u)− 1
2γm,n,p

, udis(u) + 1
2γm,n,p

), Note that ∥u− c∥ ≤
√
kγ−1m,n,p since they lie in

the same hypercube, then we have

|pU pc(u)− pU (u)| = |pU (c)− pU (u)| ≤ L∥u− c∥ ≤ L
√
kγ−1m,n,p

according to Lipschitz continuity.

Proof of Lemma 3. Denote Cm(u) := # of u ∈ Um, then Cm(u) ∼ Binomial(m, pU dis(u)) for any
u ∈ AC,γ−1

m,n,p
. Therefore, pUdis

m
(u)−pU dis(u) = Cm(u)/m−pU dis(u) is a zero-mean, sub-Gaussian

with ψ2-norm bounded by κ
√
pU dis(u)(1− pU dis(u))/m for some universal constant κ > 0. The

Hoeffding’s inequality implies that for any εm,n,p > 0,

P(|pUdis
m
(u)− pU dis(u)| ≥ εm,n,p) ≤ 2 exp

(
−

cε2m,n,p
pU dis(u)(1− pU dis(u))/m

)
≤ 2 exp

(
−cmε2m,n,p

)
for some constant c > 0. Applying a union bound over x ∈ AC,γ−1

m,n,p
and noticing that

|AC,γ−1
m,n,p

| ≤ (2Cγm,n,p)
k, we have

P(∃u ∈ AC,γ−1
m,n,p

s.t. |pUdis
m
(u)− pU dis(u)| ≥ εm,n,p) ≤ 2 exp(−cmε2m,n,p)(2Cγm,n,p)k

≤ 2 exp(−cmε2m,n,p + k log(2Cγm,n,p)).

Therefore, the failure probability goes to 0 asm,n, p→ ∞, according to our assumptions on εm,n,p
when m,n, p→ ∞.

57

	Introduction
	Reconstructing the Joint Latent Space for Hypergraphs
	Notation
	Setup and the General ReLaSH
	A Joint Embedding Approach and its Identifiability Conditions
	Score-based Joint Embedding Space Reconstruction

	Theoretical Results
	Experiments
	Experiment Setup
	Generating synthetic hyperlinks with attributes

	Conclusion
	Additional Theoretical Results
	Supplementary for Numerical Results
	Algorithms
	Additional Simulation Results of the Embedding Procedure
	Additional Simulation Results of the Synthetic Data Analysis
	Additional Results for Real Data Analysis
	Co-citation Hypergraph with Abstract Attributes
	Recipe Hypergraph with Nutrition Attributes
	Medical Hypergraph with Patient Attributes

	Fréchet Embedding Distance (FED)
	Evaluation metric calculation
	Calculation of FED
	Means and Covariances
	Comparison with Benchmarks of Means, Covariances, and FEDs

	Details and implementation of the generative models
	ReLaSH and Gau-Diff
	GANs
	VAE
	Flow-based Generative Models

	Proofs of Main Results

