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ABSTRACT

Hypergraph network data, which capture multi-way interactions among entities,
have become increasingly prevalent in the big data era, spanning fields such as so-
cial science, medical research, and biology. Generating synthetic hyperlinks with
attributes from an observed hypergraph has broad applications in data augmenta-
tion, simulation, and advancing the understanding of real-world complex systems.
This task, however, poses unique challenges due to special properties of hyper-
graphs, including discreteness, hyperlink sparsity, and the mixed data types of
hyperlinks and their attributes, rendering many existing generative models unsuit-
able. In this paper, we introduce ReL.aSH (REconstructing joint LAtent Spaces for
Hypergraphs with attributes), a general generative framework for producing real-
istic synthetic hypergraph data with hyperlink attributes via training a likelihood-
based joint embedding model and reconstructing the joint latent space. Given a
hypergraph dataset, ReLaSH first embeds the hyperlinks and their attributes into
a joint latent space by training a likelihood-based model, and then reconstructs
this joint latent space using a distribution-free generator. The generation task is
completed by first sampling embeddings from the distribution-free generator and
then decoding them into hyperlinks and attributes through the trained likelihood-
based model. Compared with existing generative models, ReLaSH explicitly ac-
counts for the unique structure of hypergraphs and jointly models hyperlinks and
their attributes. Moreover, the likelihood-based embedding model provides ef-
ficiency and interpretability relative to deep black-box architectures, while the
distribution-free generator in the joint latent space ensures flexibility. We theo-
retically demonstrate the consistency and generalizability of ReLaSH. Empirical
results on a range of real-world datasets from diverse domains demonstrate the
strong performance of ReLaSH, underscoring its broad utility and effectiveness in
practical applications.

1 INTRODUCTION

Hypergraph data capture multi-way interactions among entities, such as co-occurrence, collabora-
tion, and co-functioning, (Benson et al., 2016; Battiston et al., 2020), and have become ubiquitous,
spanning areas including biology (Rhodes et al., 2005; Nepusz et al., 2012; Feng et al., 2021), medi-
cal research (Johnson et al., 2016; 2023), and the social sciences (Zhu et al., 2019; Ji et al., 2022; Wu
et al., 2024). Generating hypergraphs with hyperlink attributes has broad applications in data aug-
mentation (Wei et al., 2022; Zhou et al., 2025), simulation (Nguyen & Le, 2024), and understanding
real-world complex systems (Torres et al., 2021). For example, Intensive Care Unit (ICU) records
can be viewed as a symptom co-occurrence hypergraph with hyperlink attributes: for each patient
profile, the co-occurrence of symptoms and diseases forms a hyperlink, while other patient infor-
mation constitutes hyperlink attributes. Generating synthetic hyperlinks with attributes from the
symptom co-occurrence hypergraph corresponds to generating synthetic patient profiles, enabling
applications such as privacy-preserving data sharing across medical centers and patient simulations.
Fig. 1 showcases a synthetic patient profile produced by ReL.aSH. The widespread need across fields
to generate realistic hypergraphs with hyperlink attributes calls for a general generative model ar-
chitecture for this task.
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Personal Information

Name: Jane Doe Gender: [IMale  XIFemale Religion: Catholic
Marital Status: [1Single [XMarried [1Divorced [1Widowed []Separated [JLife Partner

Ethnicity: X] White [ 1Black [1Hispanic/Latino[ ] Asian [] American Indian/Alaska Native [] Other
Lifetime: 86.19 yrs Hospital Stay Time: 14d 19h ICU Stay Time: 8d 6h
Representative Major Diseases Other Diseases and Complications Record

Hyperlipidemia; Hyperpotassemia; Pneumococcus infection; Atrial fibrillation;
Primary cardiomyopathies; Long-term (current) use of anticoagulants;

Coronary Atherosclerosis

Congestive Heart Failure Chronic systolic heart failure; Abdominal aneurysm, ruptured;
Chronic Kidney Disease Embolism and thrombosis of iliac artery; Chronic obstructive asthma;
Intracerebral Hemorrhage Chronic airway obstruction; Noninfectious gastroenteritis and colitis;
. Hemorrhage of gastrointestinal tract; Acute kidney failure; Sinoatrial node dysfunction;
Dementia o 8 4 Y

Hematoma complicating a procedure; Personal history of malignant neoplasm of breast.

Total Diseases: 23

Figure 1: An example of synthetic ICU medical record forms generated from ReLaSH, trained
on a symptom co-occurrence hypergraph from Johnson et al. (2016), which includes 3,000 ICU
patient profiles and 2,230 distinct disease and symptom codes. The disease combinations in this
synthetic record reflect the characteristics of an aged, medically complex ICU patient, where the
co-occurrence of symptoms often leads to the development of new syndromes. For example, anti-
coagulant use in the setting of atrial fibrillation increases the risk of intracerebral hemorrhage and
gastrointestinal bleeding (Lopes et al., 2017; Scridon & Balan, 2023), and they co-occur on the
record.

Generative models are trained to learn the distribution of real-world observations and to generate
novel yet realistic samples (Kingma & Welling, 2013; Goodfellow et al., 2014). Recent research
has witnessed many powerful generative architectures, including variational autoencoders (VAEs)
(Kingma & Welling, 2013), generative adversarial networks (GANs) (Goodfellow et al., 2014; Ar-
jovsky et al., 2017), flow-based models (Dinh et al., 2016; 2014; Kingma & Dhariwal, 2018), score-
based and diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020), and
autoregressive models (Van Den Oord et al., 2016; 2017), with notable successes in tasks includ-
ing image generation (Karras et al., 2019; Dhariwal & Nichol, 2021; Rombach et al., 2022), audio
generation (van den Oord et al., 2016; Kong et al., 2021), and speech synthesis (Shen et al., 2018).
However, most of these popular models are designed for continuous data and do not directly apply to
discrete structures such as hypergraphs. Another thread of work studies generative modeling for dis-
crete data, including extending GANs for text and audio generation (Yu et al., 2017; Nie et al., 2018),
and diffusion models for categorical variables (Austin et al., 2021; Hoogeboom et al., 2021). These
approaches, however, often suffer from computational and storage limitations and typically do not
account for the special structure of hypergraphs. On the other hand, existing graph generative mod-
els (You et al., 2018; Chen et al., 2023b) primarily focus on generating graphs that capture pairwise
relations, and do not extend directly to hypergraph generation. Prior work has considered hyperlink
representation learning and generation (Jo et al., 2021; Wu et al., 2025), but these models do not
incorporate hyperlink attributes. Representation learning on pairwise graphs with edge attributes
has also been studied (Wang et al., 2024), yet it does not apply to generating hypergraphs capturing
multi-way interactions with hyperlink attributes. A generative model architecture for hypergraphs
with hyperlink attributes is greatly needed.

In this work, we introduce ReLaSH (REconstructing joint LAtent Spaces for Hypergraphs with
attributes), a generative model architecture for hypergraphs with hyperlink attributes. Given an
observed hypergraph with hyperlink attributes, ReLaSH first trains a likelihood-based joint em-
bedding model and embeds the observed hypergraph together with hyperlink attributes into a joint
low-dimensional latent space, then reconstructs this joint latent space using a distribution-free gen-
erator. Synthetic hyperlinks with attributes are then generated by first sampling embeddings from
the distribution-free generator in the joint latent space and then decoding the embeddings via the
trained likelihood-based model. Below, we summarize our main contributions:

1. Methodologically, we introduce ReLaSH, a generative model architecture for generating
realistic synthetic hypergraphs with hyperlink attributes. ReL.aSH consists of a likelihood-
based joint embedding model and a distribution-free generator in the joint latent space. The
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likelihood-based joint embedding model provides efficiency and interpretability relative to
deep architectures, while the distribution-free generator offers flexibility in the latent space.

2. Theoretically, we show that the KL divergence between the distributions of true samples
and generated ones can be decomposed into three parts. The first two parts correspond to
errors arising from training the likelihood-based joint embedding model, whereas the third
depends on the discrepancy between the distributions of true and generated embeddings in
the joint latent space. Notably, this analysis shows that ReLaSH circumvents the curse of
ambient dimensionality in high-dimensional hypergraphs by exploiting the special structure
of hypergraphs through the likelihood model, so that the overall error rate is dominated
by errors from the relatively low-dimensional latent space rather than the original high-
dimensional problem.

3. Numerically, we evaluate ReLaSH on three tasks: generating synthetic medical records
from the MIMIC-III dataset (Johnson et al., 2016); generating new recipes from the ERRN
dataset'; and generating reference author lists with top keywords from a co-citation dataset
(Ji et al., 2022; Ke et al., 2023). In all tasks, ReLLaSH efficiently generates realistic hy-
perlinks with reasonable hyperlink attributes and achieves superior performance compared
with competing methods, demonstrating its broad utility and advantages for this task. Ad-
ditional simulation results further demonstrate the effectiveness of ReLaSH.

The remainder of the paper is organized as follows. Section 2 introduces the ReLaSH framework.
Section 3 presents the theoretical results. Section 4 reports numerical experiments on three real-
world hypergraph generation tasks. Section 5 concludes with a discussion and outlines potential di-
rections for future research. Additional materials, including additional theoretical results, algorithm
details, simulation study results, experimental settings, and proofs, are provided in the appendix.

2 RECONSTRUCTING THE JOINT LATENT SPACE FOR HYPERGRAPHS

2.1 NOTATION

For positive real numbers a and b, we define ¢ V b = max(a,b) and a A b = min(a,b). Let
||A|| 7 be the Frobenius norm of matrix A, || A||» be the spectral norm, and A;; denote its element
at the i-th row and j-th column. For two sequences of positive real numbers a,, and b,,, we write
an, = O(by) or a, < by, if there exist constants N and C such that a,, < Cb,, for all n > N.
For random variable sequences X,, and Y,,, we write X,, = O,(Y,,) if for any ¢ > 0, there exists
a constant C; > 0 such that sup,, P(|X,,| > C.|Y,|) < e. For two probability distribution P, Q

defined on the same sample space X, we denote the KL-divergence from @ to P as dxr,(P||Q) =

Y wex P(x)log(P(x)/Q(z)).
2.2 SETUP AND THE GENERAL RELASH

We denote an observed hypergraph with hyperlink attributes by H(V,,, &, X)), where V,, =
{v1,...,v,} is the set of n nodes in the hypergraph, £,, = {ei,..., e} is the set of observed hy-
perlinks, and X,,, = {z1,..., 2} collects the attributes associated with each of the m hyperlinks.
For simplicity, let V,, = [n] = {1, ..., n}; each hyperlink is then a subset of [n] indexing the nodes
that form it. Given #([n], &, Xy ), the goal is to generate a synthetic hypergraph H([n], €, X,
where m denotes the number of generated hyperlinks, En = {€1,...,€m} is the set of generated
hyperlinks, and X, = {Z1,..., %} is the corresponding set of attributes.

In this section, we introduce the general ReLaSH framework for the hypergraph generation task.
Fig. 2 presents the pipeline of ReLaSH. In brief, ReLaSH first jointly embeds the hyperlinks and
their attributes into a latent space by training a likelihood-based model; it then reconstructs this joint
latent space via a distribution-free generator; and finally generates new hyperlinks with attributes
by decoding sampled embeddings from the joint latent space using the trained likelihood-based
model. Below, we describe these three steps in sequence. Sections 2.3 and 2.4 introduce the specific
likelihood-based model and the latent-space generator used in this paper, respectively.

"https://www.kaggle.com/datasets/hugodarwood/epirecipes/data
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Figure 2: The general pipeline of ReLaSH.

Embedding hyperlinks with attributes to the joint latent space. To build the likelihood-based
embedding model, we partition the dimensions of the joint latent space into three blocks with di-
mensions ki, ks, and kg, corresponding respectively to attributes only, attributes and hyperlinks
jointly, and hyperlinks only. We associate each node i with a latent embedding z; € RF2+ks
and a degree parameter o; € R to capture heterogeneity in node popularity. The overall rate
of a;’s, i€, Amy, = nt > i, a serves to control hyperlink sparsity in the hypergraph (Wu
et al., 2024): the smaller &, the sparser the hyperlinks. The attributes are associated with a
latent loading matrix B € RP*(k1+k2) and an intercept vector v € RP, where p is the number
of attributes. We also associate each hyperlink and its attributes with a joint latent embedding
u = (uT u@T BT ¢ RF+k2+ks drawn from an unknown distribution Pys; for conve-

nience, we write u(*?) = (0T wPT)T and u®?) = (u@T WG, Let Uy, = {u1,..., um}
denote the joint embeddings of the observed hypergraph H([n], £, Xpn), and let Z,, = {z1,..., 2, }
and o, = («,...,,). Then U, indeed collects m realizations from Py;. Consider a random

hypergraph H,, », = H([n],{E1,...,En},{X1,...,Xm}), of which H([n], &y, Xy,) is a sin-
gle realization. Let Py, |u4,..2,,a.,B,y denote the distribution of H,, , conditional on Uy, Zy,
ap, B, and . This defines a probability measure over the product space (P([n]) x .A)™, where
P([n]) = {e : e C [n]} is the power set of [n], and A is the attribute space. Given all embeddings
and parameters, we consider the factorization

m

Pt Zsn By = || P B 10X D s, 2, By
j=1

which implies that dependency in node co-occurrence and attributes are characterized by the em-
beddings, and different hyperlinks are conditionally independent; similar assumptions are widely
adopted in the literature on latent space network models (Ma et al., 2020) and hypergraphs (Ke
et al., 2019). Additionally, decomposing the latent space into (k1, ko, k3) dimensions permits a
factorization of the joint likelihood, where

PH([n]a{Ej}v{XJ})‘UJ:Zvua'n:B"Y = PH([n],{Ej})|u§.23>,Z,,L,a” ’ ]P)XJ ‘U_;lz)’B,'Y.

Here, Py (1,1 E})[u9), 2, ,a,, 1S the hyperlink-generation model and P x|, a2) p - is the attribute gen-
eration model; dependence between hyperlinks and their attributes is captured via the shared latent
embedding u(?). Under a specified likelihood, ReLaSH obtains embeddings (L?m, Z,, 60, B, 4) via
optimizing a joint loss from the likelihood model. Section 2.3 introduces a specific likelihood model
for this task.

Reconstructing the joint latent space. The joint embeddings U, constitute an estimated sample
of latent characteristics of the observed hyperlinks and attributes in the joint embedding space. In
the second step, ReLaSH trains a distribution-free generator on this estimated sample. Examples of
such generators include normalizing flows (Kingma & Dhariwal, 2018), kernel density estimation
(Silverman, 2018), and score-based generative models (Song et al., 2020). Section 2.4 specifies the
score-based generator and its implementation used in this paper. ReLaSH then produces U/,,, from

the generator and separates it by dimension to obtain Z;{,(,} %) and Z;{g 3,
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Generating new hyperlinks with attributes. Finally, given the generated embeddings }Si %) and
Z:l,(,? 3), ReLaSH decodes them stochastically through the fitted likelihood models to obtain a syn-
thetic hypergraph H([n], €, Xz ), with hyperlinks drawn from P, (L.EE) 2. 4 and attributes

drawn from P

TS B4 respectively.

2.3 A JOINT EMBEDDING APPROACH AND ITS IDENTIFIABILITY CONDITIONS

The embedding approach in the first step of ReLaSH can be flexibly chosen and designed domain-
adaptively. In this section, we specify a joint embedding likelihood model implemented in this paper.
Specifically, for each e C [n], let Py} (£1)ju 2,0, (B = €) = [lic. pi(u®®) [Tige (1-
pi(u®)) with p;(u®) = o(u® Tz + a;), where o(-) = exp(-)/(1 + exp(+)) is the sigmoid
function. The distribution P X[u(2), By is specified by z = 7+Bu(12) +€, where € is a p-dimensional
vector of independent, mean-zero random errors with sub-Gaussian tails (Vershynin, 2018) chosen
to accommodate different attribute types (e.g., Gaussian for continuous attributes and Bernoulli for
binary attributes). Our choice of embedding models is motivated by prior work with theoretical
support on hyperlink generation (Wu et al., 2024) and joint attribute modeling in graphs (Zhang
et al., 2022; Li et al., 2025), yet our setting differs substantially and therefore requires new analysis
and justification. These analyses are presented in Section 3 and in Appendix A.

To obtain embeddings from the observed hypergraph H([n], £, Xy ), We propose to optimize a
joint loss based on the likelihood models. Specifically, let

EH = - IOg ]P)H([n],gm)\UffB),Zn,an = - Z [1{1697}95{ - 10g{1 + exp(eﬁ)}]
j=1i=1
with 617 = u§-23)Tzi +oajand by = 300 [lzy — v — Bu;u)”%. We optimize the joint loss

LU, Z,B,a,y) = €y + M4, where A > 0 is a weight parameter that balances the contri-
butions from each part. To ensure identifiability during the embedding and estimation proce-
dure, we need to impose additional structural constraints. Define the node embedding matrix as
Z = (21, ,2,) € R*(F2tks) and let B = (B; By) € RP*(F1tk2) The identifiability of the
joint embedding model, i.e., the distribution of P;; and Z, o, B,y is defined as follows.

Definition 1. (Identifiability of the joint embedding model.) The joint embedding model is identifi-
able if for any two sets of model parameters (Py, Z, o, v, B) and (P}, Z', o/ ,~', B'),

a+ 20 Lo 4 72U g 4+ BUID L gy
lmply (PUa Z7 a, 7, B) = (PU’7 Zl7 0/7’7/) B/)

The following theorem ensures the identifiability of the embedding parameters under a set of iden-
tifiability conditions.

Theorem 1. Under the following conditions: (C1) Ep, [U] = 0; (C2) Ep, [UPIUCIT] = 1777
is a diagonal matrix with distinct positive diagonal elements; (C3) Ep, [UDUMT] = %B;—Bl isa

diagonal matrix with distinct positive diagonal elements; (C4) Ep, [UDUPT] = 04, x p,, the joint
embedding model is identifiable according to Definition 1.

Such identifiability conditions have been widely considered in the literature; see, e.g., (Wu et al.,
2025; Li et al., 2025). In general, if the true (Py, Z, B, «,7y) does not satisfy the conditions in
Theorem 1, we can apply a unique transformation to enforce the constraints while keeping the joint
distribution of hyperlinks and attributes unchanged. Therefore, we jointly embed the hypergraph
and attributes by minimizing ¢(U, Z, B, «, ) under identifiability constraints designed based on
Theorem 1. Full algorithmic details are provided in Appendix B.1.

2.4 SCORE-BASED JOINT EMBEDDING SPACE RECONSTRUCTION

In this section, we specify the score-based generator in the joint latent embedding space imple-
mented in this work. Our construction follows score-based generative modeling through stochastic
differential equations (SDEs) (Song et al., 2020): a forward SDE gradually perturbs the data into
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Gaussian noise, and a reverse-time SDE generates samples from noise using score functions learned
via denoising score matching (Hyvérinen & Dayan, 2005; Song et al., 2020). A key difference in
our setup is that we train score functions using unobserved embeddings rather than observed data.

Specifically, we define a continuous-time forward diffusion process initialized from U

AU, = = Updt + V2dW,, Uy ~ Usn, (1)
where {W; },c(0, 1) is a standard k-dimensional Wiener process with k = k1 +ka+ks. Let N = T'/h
denote the number of discretization steps with step size h. Let sp : R¥ x [0, 7] — R¥ be the score
network, a multilayer perceptron (MLP) with parameters 6, to approximate the score function. The

parameter 6 is learned via the denoising score matching objective (Vincent, 2011), constructed using
the learned embeddings (Wu et al., 2025):

N

1

) = ZAZ T Z By fuo [|| 80 (tin, 1h) — Vi, log pin (win|uo) H;L
=0 U()El;{m

where {up, }7Y, are diffused samples in the forward process (1) at time (h, V log p;(+) is the score
(gradient of the log-density of Uy), pin (uin|ug) is the marginal density of the forward process given
ug, and A\, = 1/E{||Vy,, log pin(win | uo)||3} are nonnegative weights that balance different time
steps. To construct the score-based generator, for each ! € {0,1,...,N —1} and ¢ € [lh, (I + 1)h],
we hold the score network fixed at the grid time and obtain

AU = (U +255(Us_yp, T — 1)) dt + V2 dW,,
where TV, is a standard k-dimensional Wiener process independent of W;. To sample m embed-

dings, we simulate the above reverse-time SDE m times, each initialized at t = 0 with Uj~
N(0, I1,). Collecting the terminal states yields the synthetic embeddings Uz, = {11, ..., U }-

3 THEORETICAL RESULTS

Our theoretical analysis in this section considers the following setup. The node embeddings
Z, = {z1,..., 20}, the degree parameters a,, = (a,...,q,) ", and (B,~) are treated as fixed
parameters. The hyperlink embeddings U,, = {u1,...,un} consist of m i.i.d. draws from the
hyperlink-embedding distribution P;;. Conditioned on (,y,, Z,,, &n, B, ), the observed hypergraph
is one realization from Py, |u1,..2,. ,a.,B,y- Our goal is to understand how close the distribution of
synthetic hyperlinks and attributes generated by ReL.aSH is their true distribution under this model.
Let P g x U) denote the joint distribution of a hyperlink F, its associated attribute X, and the cor-
respondmg joint latent embedding U. Let P denote the margmal distribution of a hyperlink em-

bedding U sampled from the latent space generator trained on U, and let IP’( 2,%,0) denote the joint
distribution of U, and the hyperlink and attributes generated from ]P’H([n] (B} AX D0 Bl B3
Note that the estimated embeddings comes from one realization of Py, 14,.. 2, ,Ian, B,y Py and
]P’( £,% .07 are indeed defined conditioned on U,,,, Z,, oy, B, and 4.

Lemma 1. IfU,,, Z,, a,, B, and v are available and replace (Z;lm, 2n, Qp, B,&) in ReLaSH, we
have dKL(P(E,X,U) | P(E,X,U)) = dkL(Py H PU)-

)Y

Lemma 1 states that the generative error for high-dimensional hyperlinks and attributes can be re-
duced to the generative error of low-dimensional hyperlink embeddings, under an ideal scenario
where the true latent embeddings are available to use. In practical scenarios where these embeddings
are unobserved and need to be learned from the data, the error from the embedding algorithm needs

to be considered. Conditioned on U,,,, let P’ (B.X.0) denote a random measure for the joint distribu-

tion of a generated hyperhnk embedding U and its associated hyperlink E and attribute X, using the

estimated parameters Zn, B &, and 4. More formally, this measure is [/ (B X0 o 2 B4 , but we

use the simpler notation for clarity. The randomness of this distribution arises from the observed hy-
pergraph H([n } Em, Xm) given (Unm, Zy, B, o, ), which further induces randomness in the learned
embeddmgs (U, Zn, B, @,4) and consequently in the distribution of (£, X, /). Similarly, define
IP” = IP”U‘ U2 Boas 3 the random measure on U conditioned on the learned embeddings. The
next theorem shows that the generation error can be decomposed into three parts.
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Theorem 2. The KL-divergence between the true distribution P g x 1y and the generated distribu-
tion IP’( B.%.0) admits the following decomposition:

dkr, (]P)(E,X,U) || P(E7X7U)) = A(Zn,B,(x,'y)-estimalion + A]P’U-extimalion + Alazent-reconstmction7
where the exact forms of the three components are given in the proof of the theorem (Appendix C).

As their names indicate, the first error term depends on the estimation error of (Z,,, B, a, ), the
second on the recovery of the joint latent embedding distribution, and the third on the reconstruction
of the joint latent space. Next, we analyze these three terms under the specific embedding approach
in Section 2.3 and the score-based generator in Section 2.4. We first analyze Az, . o,). Follow-
ing the discussion in Wu et al. (2024) on how the sparsity parameter &, , affects the hypergraph
embedding procedure, we introduce the following assumption on &y, .

Assumption 1 (Hyperlink sparsity). As m,n,p — 00, exp(@um,n) 2 log(m VvV n)/(m An).

When m =< n, this sparsity scaling is consistent with the sufficient order in Proposition 2.2 and
the necessary order in Proposition 2.1 of Wu et al. (2024), up to a logarithmic factor. Further, we
consider the following assumption on the embedding space.

Assumption 2 (Embedding space). Define opnp = {(m An A p)exp(Qmn)}y =2 The mini-
mum eigenvalue of Ep,, [UU "] is lower bounded by a constant, and eigenvalues of Ep,, [UU ] are

distinct with their gaps lower bounded by a constant. For the m realizations of Py in Uy, it holds
that that ||m=" 37" ujllp = O(Omnp). and [|m=" 300 ujuf — Ep, [UUT]|[F = O(07, ,, ),

m,n,p
_ m 2 T _ m 2 3T
Im =7 uP T = 002, ) Im 2T WP T e = O(02, ).

With Assumptions 1 and 2, we have the following theoremon Az, B o.4)-

Theorem 3. Suppose that Assumptions 1 and 2 hold, and A\ < exp(@ym, ), then as (m,n) — oo,
the rate of estimation-related error satisfies

1

A(Z,,L,B,oz,’y)-estimation = Op (

log(m V n)
(nVp) ) '

min{m,n, p}

Theorem 3 implies that if m < n < p, the error introduced by estimating (Z, B, «, y) is asymptoti-
cally negligible. We defer the analysis of Ap,, estimation t0 Appendix A due to page constraints, as it
requires defining a discretization over the support of Pyy. To study Ajyentreconstructions We follow the
theoretical development of Chen et al. (2022), noting that our score networks are trained on learned
embeddings rather than observed data. Let p°® denote the marginal density of the joint embeddings
U, and let p;g denote the law of U, in the forward process (1). Under the following assumptions
(Block et al., 2020; Lee et al., 2022; Chen et al., 2022), we bound the generative error in the joint
embedding space.

Assumption 3. The learned score network sz(u,t) satisfies for any 1 < k < N,
Eveps, [V10g 05, (U) — s4(U,kh)||> < 5. The distribution of estimated embeddings has a
bounded second moment, i.e., My = B ||U||> < co. Fort € [0,T], Vlog p§ is L-Lipschitz.

Proposition 1 (Theorem 2 in Chen et al. (2022)). Under Assumption 3, if L > 1,h < 1 and
T > 1. We have Ajent-reconsirucion < (My + K)e™T + Te? + N=*KT?L2. Then by choosing
T = log((My + K)/e3) and N = Q(KTL?/e3), we have Aent-reconstruction = O(TE€D).

The first error term quantifies the distance between Uz and the standard Gaussian distribution in the
forward diffusion process, which decays exponentially in 7". The third term accounts for errors aris-
ing from discretizing the SDE. Regarding the score-approximation error 2, Chen et al. (2023a) stud-
ied a specific neural network construction and demonstrated that the upper bound on the sample com-
plexity of score estimation is exponential in the score network dimension. This sample-complexity
result for score estimation highlights the curse of dimensionality in high-dimensional generative
modeling tasks. By jointly embedding the hypergraph and attribute data into a low-dimensional
continuous space and reconstructing this joint latent space, we avoid training a high-dimensional
score network or other high-dimensional distribution-free generators, thereby significantly improv-
ing efficiency.
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4 EXPERIMENTS

In this section, we empirically evaluate ReLaSH for generating hypergraphs with hyperlink attributes
on three datasets. We first describe the experimental setup and then report the numerical results.
Additional simulation study and implementation details are provided in Appendix B.

4.1 EXPERIMENT SETUP

Datasets. We use three datasets: (i) the

co-citgtion hypergraph data from MAD- Aw.l Ax,l Ax, | FEDJ
Stat (Ji et al., 2022) and MADStaText (Ke ReLaSH-2 3.260 2.989 1.435 0532
et al., 2023), where authors are nodes, co- ReLaSH.-2 27.794  2.989 1.435  0.013
cited authors in a statistical journal pa- ReLaSH-16  2.624 3.681 1.655  11.738
per form hyperlinks, and TF-IDF values ReLaSH.-16 6230  3.681  1.655  9.049
(Sparck Jones, 1972) of words with re- Gau-Diff 4268 3497 1719  39.731
spect to the corresponding paper abstracts RealNVP  3.958 33240 2526  27.685
are hyperlink attributes; (ii) the recipe WGAN 3506 10534 2.176  21.053

VAE 48.450  11.499 4.134 9.374

hypergraph dataset®, where food ingredi-
ents are nodes, the set of ingredients in
a recipe forms a hyperlink, and meta-
data such as cuisine type constitute hy-
perlink attributes; and (iii) the symptom
co-occurrence hypergraph from MIMIC-
III (Johnson et al., 2016), where medical symptoms are nodes, symptoms co-occurring in a patient
profile forms a hyperlink, and the remaining patient notes are hyperlink attributes. Details of these
hypergraph datasets are provided in Appendix B.4.

Table 1: Results for the patient profile generation task.
Scales of Ay, Ax,, Ax,, FED are 1074, 1073,
1071, 1072, respectively.

Baselines. We compare ReLLaSH with 4 methods that can be used to produce synthetic hyperlinks
with attributes: Gau-Diff (Song et al., 2020), ReaINVP (Dinh et al., 2016), WGAN (Arjovsky et al.,
2017), and VAE (Kingma & Welling, 2013). We refer readers to Appendix B.7 for more details and
discussion of these methods.

4.2 GENERATING SYNTHETIC HYPERLINKS WITH ATTRIBUTES

Evaluation metrics. The task aims

to generate realistic hyperlinks with at- Aw.l Ax.l Ax.l FED]
tributes that preserve properties of the ob- ReLaSH-6 1.996 8578 1887  1.246
served hypergraph from different models. ReLaSH.-6  3.890 8.578 1.887  5.481
Following Wu et al. (2025), we evalu- ReLaSH-24  1.626  8.608 1.887  1.454
ate performance using the RMSE of the ReLaSH.-24 2816  8.608  1.887  6.451
hypergraph node covariances (Ay,,), the Gau-Diff 1.672 10.016  1.824  5.060

RealNVP 1.668 12.646 1.863 3.948
WGAN 2.247 8.671 1.885 1.253
VAE 9.972 9.425 1.889 1.358

attribute means (Ay,_ ), and the attribute
covariances (Ay,). In addition, we re-
port FED, a generalization of FID used in

evaluating visual generation tasks (Heusel Table 2: Results for the co-citation hypergraph gener-

et al.,, 2017), adapted to the hypergraph ation task. Scales of Ay, Ax_, Ay, FED are 1073
generation setting. Details of these met- 10-2.10-1. 101 respeét’ivelym’ v’ ’

rics are provided in Appendix B. For each
metric, a lower value indicates better per-
formance.

Results & discussion.

The results are summarized in Tables 1, 2, and 3. In these tables, ReLaSH-k denotes that ReLaSH
is trained with latent-space dimension k, and ReLaSH.-k further denotes that, during generation, a
calibration step is applied at the end so that the node degree sequence of the generated hypergraph
matches that of the observed hypergraph. For each metric, the best result is highlighted in bold
and the second-best is underlined. Across the three tasks, ReLaSH exhibits robust and outstanding

Mttps://www.kaggle.com/datasets/hugodarwood/epirecipes/data
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performance in terms of the quality of the generated hyperlinks and their attributes. Figure 1 (in the
Introduction) and Figure 3 show examples of generated samples for these three tasks. The rationale
for the generated medical record is described in the Introduction; below we discuss the other two
cases.

The left half of Fig. 3 presents a generated reference-author list with top keywords by ReLaSH-
24. Tibshirani and Hastie are seminal contributors to regularization and variable-selection methods,
particularly the LASSO. The remaining authors on the list are leading researchers in survival analysis
and statistical methodology, aligning with the keywords in the abstract and indicating a coherent
methodological focus at the intersection of high-dimensional variable-section and survival models.

The right half of Fig. 3 shows a gener-

ated recipe named ‘“Mediterranean Fisher- Aw.l Ax. !l Ax,] FEDJ]
man’s Bean Stew,” produced by ReLaSH..- ReLaSH-2 1978 2236  0.894 0.293
16. By comparing against meals with sim- ReLaSH.-2 7504 2236  0.894  0.182
ilar ingredient combinations in the train- ReLaSH-16 2355  1.533  1.112  0.766
ing set, we confirm that no identical recipe ReLaSH.-16  1.847 1533  1.112  0.180
exists in the source data, demonstrating Gau-Diff 2375 2154 4256 0.802
that the generated cuisine is genuinely RV?/%I\,LXIP 22‘;%‘; 211.144268 ?gg% 8382
novel rather than a memorized replica- VAE 21587 0883 5180 11.553

tion. The dish resembles a Mediterranean

;)r Itberslan-sgge ﬁsfl)l atnd bean stevz, ls1m%- Table 3: Results for the recipe generation task. Scales
ar 1o >panish or rortuguese coasta’ Cul- e A A, Ay ,FEDare 1073,1072,1072, 101,
sine. Its high-protein, low-fat profile is v " v

consistent with ingredients like lean fish
and legumes, while saffron, fennel, and
wine reflect authentic regional flavor. These results highlight ReLaSH as a powerful and efficient
method for generating hypergraphs with attributes, even when trained on relatively small datasets,
supporting applications such as the creation of new recipes. Additional remarks and extended ex-
amples are provided in Appendix B.4.

respectively.

Per Anderson ” Krzysztof Burdzy ‘ .
Ludwig Fahrmeir H Trevor Hastle @

| Patrick Heagerty ” Christian Houdre

m &"‘ Mediterranean
5l Fisherman’s
venele o *l‘ Bean Stew
3 \
1 Rating: 4.22/5
parameter Calories: 228 kcal

- ' rﬂ A\ Fat: 9.82 g
. / % - Q (4 Protein: 46.9 g
~ A | Sodium: 264 mg

Figure 3: Examples of synthetic reference author list (left) and synthetic recipe (right) from ReL.aSH.

coefficient

‘ M. C. Jones ” Charles Kooperberg H Runze Li

‘ Kung Yee Liang ” John Nelder H Marcello Pagano ‘

‘ Ross Prentice H Brian Reich H Peter X. K. Song ‘

‘ Robert Tibshirani H Scott Zeger H Hao Helen Zhang |

5 CONCLUSION

We introduce ReLaSH, a general generative framework for hypergraphs with hyperlink attributes by
bridging a likelihood-based joint embedding model with a distribution-free latent space generator.
By embedding hyperlinks and their attributes into a shared latent space and reconstructing that space
prior to decoding, ReLaSH explicitly accounts for the discrete nature of hypergraph structure, hyper-
link sparsity, and mixed data types, while avoiding heavy training on the original high-dimensional
data. Our analysis presents the consistency and generalizability for the framework, and experiments
across diverse real-world datasets demonstrate its strong empirical performance, highlighting Re-
LaSH as a practical tool for the hypergraph generation task.

This work opens several directions for future research. First, extending ReLaSH to dynamic and
temporal hypergraphs, weighted hyperlinks, and richer attribute modalities would broaden its ap-
plicability while introducing new challenges. Second, conditional generation (e.g., conditioning
on subsets of nodes, attributes, or constraints) could enable targeted simulation and counterfactual
analysis. Third, tighter theoretical results, such as uncertainty quantification for generated struc-
tures, would further strengthen its theoretical guarantees. We view ReLL.aSH as a step toward reliable
and flexible generative modeling for hypergraph data.
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APPENDIX

We provide additional theoretical results, experimental details with extended numerical results, and
proofs in the appendix. Appendix A presents additional theoretical results. Appendix B collects
supplementary materials for experiments, including additional numerical results on simulated and
real-world data and details of the evaluation metrics and implementations. Proofs of the theoretical
results are in Appendix C.

A ADDITIONAL THEORETICAL RESULTS

We start with a discussion of the identifiability of the embedding model introduced in Section 2.3.
First, we emphasize that the identifiability conditions in Theorem 1 are sufficient but not necessary.
For instance, (C3) may be replaced by (C3*) B; contains a k1 X k; unit lower-triangular matrix,
or (C3#**) p~1 B1T By = Ij,. The identifiability conditions in Theorem 1 are chosen according to
the literature (Wu et al., 2025). Other identifiability conditions can be adopted in our framework
as well. Additionally, we address identifiability up to column sign flips by fixing the sign of all
coordinates in the first hyperlink embedding vector and adjusting the estimators accordingly. In the
following, we specify the constraint sets for the embedding and the parameter estimation proce-
dure. Let the degree parameter be o = (aq,--- ,a,)" € R™, the hyperlink embedding matrix be
Up = (U1, ytum) | = (U,g) U,Sf) Uy(,f’)) € R™*K where K = ki + ko + k. Furthermore,

denote the block submatrices of U, as U,%Q) = (Ufnl) U,gf)) and U,ng) = (Ur(r?) Ug’)). Under the

parametrization conditions outlined in Theorem 1, we define the feasible region:

F(©):={(Un,Z B,a,7) | © =0 05,07 =1,a" + U 2T 06X =1,7/7 + U2 BT,
max{”a - am,nln”OOv?é%ﬁ H22H2} < M17max{||'y||oo7{n?g](HBZ-*HQ} < Ma,

m[ax] lujllz < (My A Ms),and — Chyy < @ < —C'Chry -
JE[M

2)
where M1, My > 0, C' € (0,1), and the boundary parameter C,, ,,, which may diverge slowly
as m,n — oo, accounts for the sparsity of hyperlinks. An ideal choice of C,, ,, would satisfy
Gmn =< —Cpyn and exp(@m,n) < exp(—Cyy, n). Following Proposition 3.2 in Wu et al. (2024), we
suggest setting Cy, , = —C" log( "7, |e;|/(mn)) for some constant C” > 1.

In the embedding step, we attain (U, Z, B, &,4) by solving:
min U, Z,B,a,"). 3
Wz B ere R ©

In what follows, we present additional theoretical results that characterize the error rates of the
embedding and estimation procedure.

Theorem 4 (F-consistent estimation of O, ©X). Let ©* = [©1* ©X*] be the true parameters,

and © = [0 ©X] be the estimated version derived by the optimizers (U,Z, B, é&,4). Under
Assumption 1 and the condition that (U*, Z*, B*, a*,~*) € F(©), we have

V(M V n) exp(am,n) log(m V n) + 4X2(m V p)
(exp(—Chn) A N) '

1©—~©"llr =0, (

Remark 1. Theorem 4 implies that if m < n < p, exp(a;,, ,) < exp(—Ciy, ), and with Assump-
tion 1, the optimizers achieve F-consistent, i.e. m 16 — ©*||r = 0,(1), implies that for any
set of Uy, from the distribution Py, the estimation is precise.

Remark 2. We conducted simulation experiments regarding the embedding procedure, as detailed

in Appendix B.2, to validate the theoretical error rate.

Remark 3. The error bound in Theorem 4 depends jointly on the sparsity parameter of the hyper-
graph Gy, , and the regularization weight \. Consequently, \ should be tuned in accordance with
the observed sparsity in order to balance these two sources of error. Simulation results presented in
Appendix B.2 further indicate that while the tuning of A does not substantially affect the accuracy
of estimation, it may influence the stability of the gradient descent procedure.
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Remark 4. Moreover, when m < n =< p and A\ < exp(a;,, ,,) < exp(—Cy, ), the error rate in
Theorem 4 is dominated by the hypergraph embedding error rate (Wu et al., 2024), and the error
from the attribute part is of smaller order.

Corollary 1. (F-consistent estimation of the embedding and parameters) Let (U , A , B , (v, 4) be the
optimizers, and (U*,Z*, B*, a*,~*) be the true embeddings and parameters satisfying the con-
straints in the feasible region F(©). Denote

5 _ V(M V n) exp(aum,,n) log(m vV n) + 4X2(m V p)
o Vi (eXD(—Com) A V) |
As (m,n) — oo and with Assumption 1, 2, we have F-consistent error of the embedding and
parameters that || — a*||2 = Op(6mmp), |U = U*||lr = O, (\/m(n —|—p)/(np)5m,n,p) 1z -
Z*|lp = OpOmonp) 17 = 7*ll2 = Op(6mn,p)s ||B — B*||r = Op(0m,np)-
To address identifiability, we apply the transformations in Remark 5, whose details are deferred to

Appendix C, and which introduce an additional source of error in the embedding procedure. The
following theorem characterizes this error.

Theorem 5. Let H([n], Em, Xim) be the hypergraph generated from underlying embeddings Uy, Z,,
and parameters o, v, B, where Uy, are m realizations from Py. Let (U, Z, B, &, %) be the optimiz-
ers, then with Assumption 1, 2 and as (m,n) — oo, we have ||d—all2 = Op(0mnp), [U=Unllr =

Oy (Vo D)D) s 112 = 215 = OplGmnp): 15 =2 = Op(Ommin)s 1B~ Bllr =
Op(57rl,n,p)-

Next, we discuss Ap,, via a discretization strategy (Wu et al., 2025). In general, analyzing the joint
embedding-related error Ap,, estimation 1S challenging, as it requires comparing the distribution of the
estimated embeddings based on m observations, U,,, = {u1, ..., un}, from the continuous latent
distribution P;. To address this, we adopt a discretization strategy to bridge these two quantities
and analyze the error term step by step. We first introduce Assumption 4 and analyze Ap,, estimation
under these conditions.

Assumption 4 (Support of Pr;). The support of Py satisfies supp(Py) C {u € R¥ : |lufo <
(M1 A M)} for the constant My, My in 2.

Let U% denote a discretized version of U, with distribution pyras = dPpas /dp(U®), defined as
pas (udi®) = f[um»_ L ey 1 )nSupp(PU)pU(u) dp(u) for any u®™ € A, o= f{ace
29m,n,p’ 29m,n,p > m,m,p

R* @ Jlallee < C, a; € 5 L_ .7 Vi € [k]}, where C = M; A M,, and Ym,n,p 1S @ sequence
m,n,p

diverging to co as m,n,p — oo. Since Pyus and Pr; are defined on different sample spaces, they

are not directly comparable. To address this, we introduce the random vector UP¢, defined on the

same sample space as U, whose density is piecewise constant.

Without loss of generality, let supp(Py) = [~C — 2Vmnp) b C + (2Ymmnp) 1), which
forms a hypercube centered at 0 with side length 2C' + (Vy,n,p) "' in each coordinate. This
hypercube can be perfectly partitioned into finitely many disjoint intervals of length 77;’1“’}, per
coordinate. Define Py as follows: for any u € supp(Py), let u®(u) € Ay -1 satisfy
u € [u(u) — (2Vmmp) "L, v (u) + (29m.np) 1), and define the probability density of UP®

dPype
as pyre (u) = d#(z};e) (u) = 'Yy’%,n’p j‘[udig(,u)_(Q.ymﬂlwp)—l7udis(u)_;’_(gfymwn’p)fl) pu(u) dﬂ(u)

Lemma 2. U?° is a well-defined random variable on supp(Py ) in the sense that its probability
density py(-) integrated to 1.

Next, we show that the distance between pyre (1) and py(u) is uniformly bounded, which quantifies
the distance between Py and Pyr.
Theorem 6. Suppose py () is L-Lipschitz continuous on its support. Then, for any u € supp(Py),

there is |pyre (u) — py(u)| < L\/E’yn_%ln’p.
In our setting, the hypergraph with m hyperedges is constructed on the m observations U,,,. Let
Py denote the empirical distribution of m realizations Uy = {uf®, ug®, -, udy}, defined by

m ) m
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pyss(u) = #{u € Un}/m, Vu € A, -1 . We can then show that the distance between Pras
s Ymyn,p

and the empirical distribution Pysss based on m realizations is bounded as in Lemma 3.

Lemma 3. LetU,, be a collection of m realizations from Pyas. For any sequnce of €y, n p Satisfying

Emmp > \/k10g(2CYmnp)/m as m,n,p — oo, then there is P{Vu € A, . |pUd,\( ) —

plx{ﬁ,’f (u)| S Em,,n,p} — 1 as m,n,p — O0.

When U,,, is replaced by U445, the corresponding estimators must be adjusted. We project the es-

timators {a, - ,Up,} onto A, 4z, by defining ags = arg mingea  _, |z — 4;||. Then
Ymin,p Ymin,p
afs, ags, - -+, 4% have a probability mass function defined as pq (u) = #{u € Uy, }/m. To bet-

ter understand the distance between the distributions of /% and U, we require tighter entry-wise
consistency results beyond the average error rate of the estimators, which is left as future work.

B SUPPLEMENTARY FOR NUMERICAL RESULTS

B.1 ALGORITHMS

To jointly embed the hypergraph and its corresponding attributes by minimizing the loss function
(U, Z, B, «,), we consider using a projected gradient descent algorithm similar to (Ma et al.,
2020), which is commonly employed for solving constrained optimization problems. The algorithm
is summarized in Algorithm 1 below.

Algorithm 1 Projected Gradient Descent for Joint Embedding

Require: Initial embeddings U (), Z(0), (o), initial parameters B(g),Y(0), observed hypergraph
connection matrix H and attribute matrix X, learning rate 7, likelihood weight parameter A,
maximum number of iterations 7T’

1: fort =1toT do (12) 23)
2 Compute 6()5 = lm’y(Tt_l) + U(t 1)BT and @g_l) = lmag_l) + U(tfl)ZT
3: U(l) U((tl)n nuw Vo li—1y = U(Ql) + Mgy (X — fix(@fg_n))BL(t—l)
2 2
4 UI;((t)) = U((tz1) —nue Ve lg_1) = U((tll) +npe {MX - f;‘(@()gil)))Bl(t_l) +(H -
o(OG_1))Z2,t-1))}
3 3

U((t)) = U((t)1) - 77U(3)VU(3)£ t—1) = U((t 1) + 77U(3>( ( (t— 1)))23 (t—1)

Zy = Zi-1) —nzVzla-1) = Z—y +nz(H — o(Of]_ 1)))32 (t—1)

oty = a—1) — NaValit-1) = a—1) + na(H — (@g_l)))Tl

By = B—1) —18VBLi—1) = Bu—1) + M\p(X — fl;(@fi_l)))U(f)l)

Yy = Ve—1) = M Valie-1) = V1) + My (X = f4(OF 1)) "L

10: Project the parameters and embeddings (U(t), Z(t), ), B(t) to the constraint set, with the
transformation in Remark 5.

11: end for o .

12: return (Ucry, Zery, o1y, Bery, vry) as (U, Z, &, B, 7).

R R A

For the initial values (U, (0)> Z(o), a0y B(O),fy(o)) and choices of step sizes, we adapt the initializa-
tion method based on universal singular value thresholding (Chatterjee, 2015) and step size choice
proposed by (Ma et al., 2020). The initialization algorithm is shown in Algorithm 2. Also, Moreover,
the step sizes in Algorithm 1 are set as:

Ui n .
Na =My =5 Nz =7 51B= JMuey = ——~—fori=1,2 3.
= o "~ Bl HU 2,

B.2 ADDITIONAL SIMULATION RESULTS OF THE EMBEDDING PROCEDURE

In this section, we present additional simulation results of the embedding procedure.
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Algorithm 2 Initialization by Singular Value Thresholding

Require: Hypergraph matrix H, hyperlink attribute matrix X, latent embedding dimensions
(kla kQa k3)

1: Let Z alusz be the singular value decomposition of H, and denote pP= ZU >rn UiuivT as
the low-rank approximation of H. Elementwisely project P into [1e~*1, 1] to obtain P, and
take O = loglt(P).

2: Take a(g) = -0 1m, andlet U'A’V'T as the singular value decomposition of ©7 —a )1, =
A /1 /2 _ i 11/2
Jm©H | then take U = Uk r A kaths Z(0) = Vo Vi ks Mt ks
3: Treat X as a noisy version of G)X , denoted as ©X.
4: Take (9 = =0%1,,, and regress J,,©% on U((g)) to obtain By (g). Then take the residual
as R =J,0%X - U ((g)) 3 (0> denote its singular value decomposition as UAVT, and denote

By = V& Vkl 1/ 2 U((&)) =4 %UklAk{ to satisfy the identifiability conditions.
5: return (U(o), Z(0)» (0> B(o)> ’7(0))

Specifically, for a (k2 + k3)-dimensional latent space, we randomly divide the n nodes into (ks +k3)
nearly equal-sized groups, where the group sizes may differ by at most 1. The node embeddings Z,,
are then independently generated as follows. For node 7 belonging to the ¢-th group, its embedding
z; is drawn from the truncated Gaussian distribution J\/[_171](1k2+k3 — e, X, ), where e; is the
unit vector with the ¢-th element being 1 and the others 0, and [—1, 1] indicates truncation on each
coordinate.

The hyperlink embeddings {4,,, are generated from a Gaussian distribution -/\[[71,1] (0, Xy ), ensuring
that the identifiability condition Z;n:l u; = 0y is approximately preserved. For the regression
parameters (B, 7), we generate -; i.i.d. from Uniform([—1, 1]), and each column B; independently
sampled from A (0, X ). The variance-covariance matrices Y 5,Y,, Xy are defined such that the
(i,7)-th entry is 0.2p/"~7! with p € {0,0.5}. The degree heterogeneity parameters c; are generated
from the uniform distribution [@y, , — 1, &, + 1] for the sparsity parameter &y, ,, specified in each
experimental setting.

We first examine how the sample size and latent dimension jointly affect estimation accuracy.
We set ky = ko = k3 with k € {6,9,12}, a;,,, = —3, and m = 10n = 10p with
n € {100,200, ...,1000}. The weight parameter X is chosen such that A = 0.2, matching the order
of exp(aj, ,,). Figure 4, 5 shows the relative Frobenius error of ©, ©X, © as a function of n for dif-
ferent latent dimensions k. The error decreases approximately at the rate (mAnAp) =2 = n=1/2,in
agreement with the bound in Theorem 4. Increasing k leads to higher estimation errors: intuitively,
a larger latent dimension increases model complexity, which amplifies variance in estimation. This
dependence on k does not explicitly appear in the bound of Theorem 4 (which assumes fixed k), but
follows from its proof in Appendix C. When the coordinates of the embeddings are more correlated
(when we set p = 0.5), the error remains of similar magnitude, with a mild increase as k increases.

Estimation error of Theta"H versus n Estimation error of Theta®X versus n Estimation error of Theta versus n

k 0.20 k k
-6 -6 -6

9 9

= - 12
I:/ 0.75
£

250 500 750 1000 250 500 750 1000 250 500 750 1000
n n n

Figure 4: Estimation error under p = 0 versus sample size based on 30 Monte Carlo repetitions.

To further investigate the scaling behavior, we plot the logarithm of the estimation error against
log(m A n A p) in Figures 6 and 7. In both cases, the relationship appears approximately linear,
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Estimation error of Theta"H versus n

Estimation error of Theta®X versus n Estimation error of Theta versus n

k k 1.00 k
-6 020 -6 -6
) 12 9 " 9 . 9
_ - 12 < - 12 == - 12
© E © E 015 © & 0.5
% B QlE
=| os = =
0.10 0.50
0.4 0.05 0.25
250 500 750 1000 250 500 750 1000 250 500 750 1000
n n n
Figure 5: Estimation error under p = 0.5 versus sample size based on 30 Monte Carlo repetitions.

which aligns with the 7~/ rate predicted by Theorem 4. As shown in Table 4, the observed linear
trend, with a slope of approximately —0.5, is consistent with the theoretical bounds, which suggest
that the estimation errors for ©X, @, and © are of order O, (n~'/2).

log-log error plot for ©

log-log error plot for o log-log error plot for o*

k k 0.0- k

N
°

60 65

log(min(m, n, p))

60 65 70 45 50 60 65 70 45 50

Iog?;win(m, n, p)) Iogd(rdnin(m, n, p))
Figure 6: Log-log plot of estimation error versus sample size for p = 0, based on 30 independent
Monte Carlo repetitions.
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Figure 7: Log-log plot of estimation error versus sample size for p = 0.5, based on 30 independent
Monte Carlo repetitions.

From the perspective of the error bound derived in Theorem 4, we regress the estimation error of

©f on % using a log—log plot, as illustrated in Figure 8. It is noteworthy that the regression

based on this term performs better than directly regressing on (m A n), with the slope of nealy 0.5.

To be more precise, our analysis focuses on two aspects: (i) the effect of varying p on the estimation
error of ©X, and (ii) the effect of varying n on the estimation error of ©*7. Preliminary experiments
suggest that the correlation parameter p in hyperlink embeddings has a negligible effect on the
results. Therefore, we fix p = 0.5 for all subsequent experiments, as this correlation introduced
is commonly encountered in various scenarios. Additionally, we scale k to k € {6,12,24} to
demonstrate the robustness of our algorithm in handling more complex data.

We fix m = 5000, n = 500, A = 0.2, p = 0.5, & n, = —3, and vary p € {100, 200, ...,1000}
to estimate the errors of © and ©X (Figure 9). The results confirm our theoretical expectation:
the estimation error of © remains generally unchanged as p varies, because the associated error
term does not depend on p and the attribute dimension has minimal impact on hypergraph structure
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p=0 p=0.5
Error Type |k Slope 95% CI of Slope Slope 95% CI of Slope
6 | -0.4902 |—0.4951, —0.4854] | -0.4697 [—0.4744, —0.4650
of 9 | -0.5158 [-0.5365, —0.4951] | -0.5028 [—0.5262, —0.4795
12 | -0.5470 [-0.5852, —0.5087] | -0.5546 [—0.5948, —0.5145
6 | -0.5117 |—0.5150, —0.5085] | -0.5212 [-0.5270, —0.5153
X 9 | -0.5125 [-0.5163, —0.5087] | -0.5300 [—0.5387, —0.5213
12 | -0.5128 [—-0.5165, —0.5090] | -0.5321 [-0.5418, —0.5223
6 | -0.4907 |—0.4955, —0.4860] | -0.4711 [—0.4758, —0.4663
© 9 | -0.5157 [-0.5360, —0.4954] | -0.5035 [—0.5265, —0.4806
12 | -0.5462 [—0.5837, —0.5088] | -0.5541 [—0.5935, —0.5147
Table 4: Slope and confidence intervals for p = 0 (left) and p = 0.5 (right).
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Figure 8: Log-log plot of estimation error of @ versus i
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(right), based on 30 independent Monte Carlo repetitions.

-35 -3.0

-4.0

og(

logmax(m, n))
min(m, n)

for p = 0 (left) and p = 0.5

% | Slope (p =0) 95% CI(p=0) | Slope (p = 0.5) 95% CI (p = 0.5)
6 0.5596 0.5522, 0.5669 0.5361 0.5285, 0.5438
9 0.5886 0.5621, 0.6150 0.5738 0.5443, 0.6032
12 0.6240 0.5773, 0.6707 0.6327 0.5838, 0.6817

Table 5: Slope and confidence intervals for p = 0 (left) and p = 0.5 (right).
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estimation. In contrast, the estimation error of ©X decreases with increasing p, in an approximately
power-law pattern. This is intuitive—higher-dimensional attribute information facilitates more ac-
curate recovery of the underlying attribute-based structure.

k=6 k=12 k=24

0.4- Error type Error type Error type
e -0 0751 =

- o - of - of

0.4-

0.2-

250 500 750 1000 250 500 750 1000 250 500 750 1000

P P P

Estimation Error
Estimation Error
Estimation Error

°

@

g

Figure 9: Estimation error versus attribute dimension p, averaged over 30 Monte Carlo repetitions.

To further examine this scaling relationship, we plot the estimation error of ©X against p on a log—
log scale (Figure 10). The observed linear trend confirms the power-law behavior. The figure also
shows the 95% confidence interval for the slope and for the expected value of the error.

k=6 k=12 k=24
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Figure 10: Log—log plot of estimation error versus p, based on 30 independent Monte Carlo repeti-
tions.

Similarly, we exanmine the estimation error of both ©F and ©X as n varies in the set
{100,200, ...,1000}, while fixing m = 5000, p = 500, &, = —3, p = 0.5, and A\ = 0.2.
As shown in Figure 11, the error associated with the attribute-based part, OX, remains relatively un-
changed as the node size n increases. In contrast, the error associated with hypergraph estimation,
©f exhibits a clear power-law trend.

k=6 k=12 k=24
20-
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Figure 11: Estimation error versus node size n, averaged over 30 Monte Carlo repetitions.

To gain further insight, we plot the estimation error on a log—log scale, as shown in Figure 12.
This plot illustrates that the error associated with hypergraph modeling (©%) follows a power-law
trend with respect to n. The figure also shows the 95% confidence interval for the slope and for the
expected value of the error.

We next explore the influence of the sparsity parameter &, ,, under varying latent dimensions. We
set £ € {6,9,12}, m = 10n = 5000, A = 0.2, and —&,,, € {0.5,1,...,3.5,4}. To focus
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Figure 12: Log-log plot of estimation error versus n, based on 30 independent Monte Carlo repeti-
tions.

on sparse hypergraph settings, we narrow the possible interval of degree parameters by setting
a; ii.d. ~ Uniform[&,, , — 0.5, @ + 0.5] for any ¢ € [n]. Figure 13 shows that the estima-
tion errors of © and © increase approximately proportionally to exp(—@&m,n ), which aligns with
the findings of (Wu et al., 2024), while the error of ©X remains stable. This is reasonable because
changes in the hypergraph sparsity will not affect the attribute component ©X . The slower growth
rate for © compared to © is also expected, because of the stabilizing contribution from ©X.

k=6 k=9 k=12

Error type 084 Error type
- O
- 0
-0

Error type

06-

06-

0.4-

Estimation Error
°
Estimation Error

Estimation Error

Figure 13: Estimation error under p = 0 versus sparsity parameter c,, , based on 30 Monte Carlo
repetitions.

To further confirm the exponential scaling, we plot log-error of O © versus —a, ,, in Figure 14 .
The fitted slopes confirm the exponential dependence predicted by Theorem 4.
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Figure 14: Log—log plot of estimation error versus sparsity parameter &, , for p = 0, based on 30
independent Monte Carlo repetitions.

Finally, we investigate the influence of the weight parameter A\ on estimation performance. We fix
k € {6,9,12}, n = 500, &, , = —2, and vary A € {0.05,0.1,...,1.25}. To better visualize
potential differences, we consider two sample sizes, m € {500,2000}. The results are presented in
Figures 15 and 16. Across both settings, the estimation errors remain largely unchanged as A varies,
suggesting that the choice of A\ has minimal impact on accuracy.

From a practical standpoint, we include A\ primarily as a stability-enhancing tuning parameter.
Specifically, a smaller A allows the algorithm to converge with a larger step size 7, leading to faster
execution without degrading estimation accuracy.
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Figure 15: Estimation error versus varying A values for m = 500, averaged over 30 Monte Carlo
repetitions.
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Figure 16: Estimation error versus varying A values for m = 2000, averaged over 30 Monte Carlo
repetitions.

B.3 ADDITIONAL SIMULATION RESULTS OF THE SYNTHETIC DATA ANALYSIS

We conduct simulation studies on synthetic datasets to assess the performance of the whole pipeline
of the proposed method ReLaSH. To demonstrate the ability of our algorithm to recover the underly-
ing structure of a given hypergraph and its associated attributes, we compare it with other generative
models, i.e. Gaussian Diffusion Models (Gau-Diff), Generative Adversarial Networks (GANSs), Re-
alNVP, and Variational Autoencoders (VAE). Regarding these methods, we treat each hyperedge as
a binary vector and concatenate it with the attribute vector. To ensure fairness in the comparison,
we calibrate these algorithms to align with the 0-1 valued hyperlinks. Details of these methods are
provided in the Appendix B.7.

We assess the generative performance of different methods using the Root Mean Squared Error
(RMSE) of the means and variance-covariances of node co-occurrence and attributes vector. Addi-
tionally, we defined a task-specific error metric called the Fréchet Embedding Distance to evaluate
the performance of each method. Details of error metrics can be found in Appendix B.6, B.5. The
settings of simulation experiments and results of error metrics are shown in details in Appendix B.3.

Regarding the settings of synthetic data analysis, specifically, for a (ke + k3)-dimensional latent
space, we randomly divide the n nodes into (k2 + k3) nearly equal-sized groups, where the group
sizes may differ by at most 1. The node embeddings Z,, are then independently generated as follows.
For node ¢ belonging to the ¢-th group, its embedding z; is drawn from the truncated Gaussian
distribution /\/[,1’1] (1kytks — €4, 22), where e; is the unit vector with the ¢-th element being 1 and
the others 0, and [—1, 1] indicates truncation on each coordinate.

The hyperlink embeddings i4,,, are generated from a Gaussian distribution ./\/[,1}1] (0,%y), ensuring
that the identifiability condition Z;":l u; = Oy is approximately preserved. For the regression pa-
rameters (B, ), we generate ; i.i.d. from Uniform([—1,1]), and each column B; independently
sampled from A (0, X 5). The variance-covariance matrices X5, ,, Xy are defined such that their
diagonal entry is 0.2, with other entries being all 0. The degree heterogeneity parameters o; are gen-
erated from the uniform distribution [®, n, — 1, G, + 1] for the sparsity parameter &y, ,, specified
in each experimental setting. Once all parameters and embeddings are generated, we can construct
the hyperlinks according to the hyperlink generation model. The hyperlink-related attributes are
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generated as X;; ~ N ((1m’yT +U (12)BT)j £ 1) , where the generation process is independent

for each j € [m] and ¢t € [p]. That is, Gaussian noise is introduced during the generation, which is
commonly observed in real data structures.

We assess the generative performance of different methods using the Root Mean Squared Error
(RMSE) of the means and variance-covariances of node co-occurrence and attributes vector. Addi-
tionally, we defined a task-specific error metric called the Fréchet Embedding Distance to evaluate
the performance of each method. Details of error metrics can be found in Appendix B.6, B.5. Each
time we generate m = 32m new hyperlinks together with attributes by each generative model.

We take the settings of k& € {6, 12,24, 48} and m,n € {200,400, 800, 1600}, and limit the eval-
uation to ReLaSH (and the calibrated version ReLaSH.), Gau-Diff, ReaINVP, and WGAN due to
the poor performance of VAE and constraints on computational resources and time. The runtime
required by the VAE is approximately four times longer than that of other competing methods. In
the real data analysis section, we will demonstrate its relatively poor performance, particularly in
terms of both the first and second-order moment errors for the hypergraph and attributes estimation.
The RMSE results are provided in Table 6, 7, 8, 9 respectively, and the FED results are provided in
Table 10, 11. The FED for each method is calculated using Algorithm 3, where the same maximum
iteration steps are imposed for all methods, and identical early stopping conditions are applied.

Generally, we observe that as m increases, the error metrics generally decrease due to the increasing
data size, which allows for better utilization of available information, resulting in improved perfor-
mance.

We use bold to highlight the best result in each experimental setting and underline the second-best
result. For the RMSE of the hyperlink vector mean, note that all calibrated methods yield the same
result, so we do not emphasize these results. It is important to note that the RMSE for the calibrated
methods reflects only the error between the training data and the benchmarks, while for ReL.aSH, the
RMSE accounts for two sources of error: the error between the training data and the benchmarks,
as well as the error between the generated data and the training data. As a result, the RMSE for
ReLaSH is generally larger than that of the calibrated methods. In terms of the RMSE of the mean
attribute vector, ReLaSH consistently performs the best, while RealNVP performs well occasionally,
and WGAN shows slight improvement as the data scale increases.

In terms of RMSE of covariances and FED, ReLaSH generally outperforms the other three gen-
eration approaches. Generally, Gau-Diff requires the most memory, while RealNVP is the most
time-consuming method among the four. WGAN performs comparably to ReLaSH under limited
computational resources, but it yields worse results in terms of error metrics. As the latent dimension
k, or the values of m and n, increase (i.e., as the synthetic data structure becomes more complex), the
number of epochs required for achieving similar results to ReLaSH by the other methods increases
substantially, leading to a corresponding increase in running time. However, ReLaSH constructs the
diffusion model in a low-dimensional continuous embedding space, thereby avoiding the need to
train a high-dimensional score network. This significantly reduces sample complexity and enhances
both efficiency and accuracy.

B.4 ADDITIONAL RESULTS FOR REAL DATA ANALYSIS

In this section, we provide additional results on real data analysis to further assess the quality of the
synthetic outcomes.

B.4.1 Co-CITATION HYPERGRAPH WITH ABSTRACT ATTRIBUTES

The MADStat dataset we utilized contains citation information for over 83,000 papers published
across 36 journals between 1975 and 2015, while MADStaText includes the abstracts of all these
papers. We focus on the top n = 1,000 authors most frequently cited during this period, resulting
in a dataset of 35,143 papers that cite at least two of these top authors. Given the large size of
this dataset, among all the methods discussed previously, only ReLaSH can effectively handle such
a large volume of data, owing to the dimension reduction procedure it offers. Consequently, we
further narrow the scope by selecting the top m = 2,000 papers that cite the greatest number of
these authors. To construct the co-citation hypergraph, we treat each top author as a node, with
each paper forming a hyperlink. Specifically, if a paper cites a top author, the corresponding node
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Embedding Dimension k = 6 (k1 = k2 = k3 = 2)
m Method Objects n =p =200 n =p =400 n =p = 800 n =p = 1600
Mean Cov Mean Cov Mean Cov Mean Cov

ReLaSH | Hypergraph | 0.0242 0.0069 0.0242  0.0053 0.0243  0.0042 0.0242  0.0041
Attributes 0.0740  0.0428 0.0703 0.0409 0.0772 0.0351 0.0732 0.0351

ReLaSH. | Hypergraph | 0.0243 0.0374 0.0240 0.0385 0.0241 0.0378 0.0239 0.0405
Attributes 0.0740  0.0428 0.0703 0.0409 0.0772 0.0351 0.0732 0.0351

200 Gau Diff | Hypergraph | 0.0243  0.0054 0.0240 0.0053 0.0241 0.0053 0.0239 0.0052
Attributes 0.0873  0.0683 0.1071 0.0567 0.1025 0.0564 0.0965 0.0548

RealNVP | Hypergraph | 0.0243  0.0054 0.0240 0.0053 0.0241 0.0052 0.0239 0.0052
Attributes 0.0731 0.0575 0.0707 0.0545 0.0769 0.0563 0.0734 0.0549

WGAN | Hypergraph | 0.0243 0.0143 0.0240 0.0108 0.0241 0.0165 0.0239 0.0221
Attributes 0.3485 0.1697 0.1425 0.1495 0.0892 0.0919 0.0813 0.0864

ReLaSH | Hypergraph | 0.0178 0.0047 0.0201 0.0039 0.0171 0.0032 0.0180 0.0030
Attributes 0.0472  0.0292 0.0511 0.0265 0.0535 0.0241 0.0519 0.0246

ReLaSH. | Hypergraph | 0.0176 0.0414 0.0200 0.0436 0.0169 0.0432 0.0178 0.0434
Attributes 0.0472  0.0292 0.0511 0.0265 0.0535 0.0241 0.0519 0.0246

400 Gau Diff | Hypergraph | 0.0176 0.0050 0.0200 0.0051 0.0169 0.0051 0.0178 0.0051
Attributes 0.0712  0.0676 0.0911 0.0559 0.0929 0.0547 0.0878 0.0541

RealNVP | Hypergraph | 0.0176 0.0051 0.0200 0.0051 0.0169 0.0051 0.0178 0.0051
Attributes 0.0476  0.0547 0.0512 0.0526 0.0539 0.0542 0.0520 0.0540

WGAN | Hypergraph | 0.0176 0.0131 0.0200 0.0133 0.0169 0.0138 0.0178 0.0175
Attributes 0.2332  0.1714 0.0790 0.1279 0.0634 0.0639 0.0587 0.0588

ReLaSH | Hypergraph | 0.0138 0.0037 0.0130 0.0028 0.0125 0.0023 0.0127  0.0021
Attributes 0.0359  0.0238 0.0411 0.0207 0.0363 0.0178 0.0381 0.0184

ReLaSH. | Hypergraph | 0.0137 0.0427 0.0129 0.0441 0.0122 0.0461 0.0125 0.0470
Attributes 0.0359  0.0238 0.0411 0.0207 0.0363 0.0178 0.0381 0.0184

300 Gau Diff Hype_rgraph 0.0137 0.0047 0.0129 0.0050 0.0122 0.0051 0.0125 0.0051
Attributes 0.0544 0.0788 0.0944 0.0579 0.0960 0.0529 0.0896 0.0556

RealNVP | Hypergraph | 0.0137 0.0050 0.0129 0.0050 0.0122 0.0051 0.0125 0.0051
Attributes 0.0352 0.0648 0.0414 0.0545 0.0367 0.0521 0.0384 0.0555

WGAN | Hypergraph | 0.0137 0.0085 0.0129 0.0088 0.0122 0.0111 0.0125 0.0195
Attributes 0.0789 0.1812 0.0614 0.0958 0.0537 0.0506 0.0491 0.0406

ReLaSH | Hypergraph | 0.0089 0.0033 0.0091 0.0022 0.0091 0.0017 0.0088 0.0016
Attributes 0.0278  0.0185 0.0286 0.0160 0.0262 0.0140 0.0274 0.0138

ReLaSH. | Hypergraph | 0.0084 0.0439 0.0088 0.0449 0.0090 0.0458 0.0087 0.0469
Attributes 0.0278  0.0185 0.0286 0.0160 0.0262 0.0140 0.0274 0.0138

1600 Gau Diff | Hypergraph | 0.0084 0.0046 0.0088 0.0049 0.0090 0.0050 0.0087 0.0050
Attributes 0.0516 0.0741 0.0879 0.0581 0.0820 0.0552 0.0831 0.0547

RealNVP | Hypergraph | 0.0084 0.0048 0.0088 0.0049 0.0090 0.0050 0.0087  0.0050
Attributes 0.0277 0.0578 0.0287 0.0537 0.0263 0.0543 0.0275 0.0545

WGAN Hypergraph | 0.0084 0.0084 0.0088 0.0095 0.0090 0.0136 0.0087 0.0205
Attributes 0.0587 0.1883 0.0437 0.0590 0.0458 0.0452 0.0426 0.0358

Table 6: RMSE results for means (columns with “Mean”) & covariances (columns with “Cov’’) of
ReLaSH, ReLaSH,, Gau-Diff, ReaINVP and WGAN when latent dimension is £ = 6. Each value
comes from the mean of 20 repetitions.
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Embedding Dimension k = 12 (k1 = ko = k3 = 4)

m Method Objects n =p =200 n =p =400 n =p = 800 n =p = 1600
Mean Cov Mean Cov Mean Cov Mean Cov

ReLaSH | Hypergraph | 0.0351 0.0137 0.0252 0.0081 0.0298 0.0097 0.0302  0.0099
Attributes 0.0782 0.0583 0.0748 0.0510 0.0782 0.0502 0.0736 0.0461

ReLaSH. | Hypergraph | 0.0310 0.0367 0.0251 0.0306 0.0263 0.0336 0.0285 0.0280
Attributes 0.0782 0.0583 0.0748 0.0510 0.0782 0.0502 0.0736 0.0461

200 Gau Diff Hypqrgraph 0.0310 0.0130 0.0251 0.0130 0.0263 0.0132 0.0285 0.0130
Attributes 0.0907 0.0852 0.1151 0.0800 0.1074 0.0753 0.0970 0.0797

RealNVP | Hypergraph | 0.0310 0.0133 0.0251 0.0130 0.0263 0.0132 0.0285 0.0130
Attributes 0.0797 0.0765 0.0772 0.0786 0.0780 0.0754 0.0734 0.0799

WGAN Hypergraph | 0.0310 0.0212 0.0251 0.0126 0.0263 0.0158 0.0285 0.0188
Attributes 0.3304 0.2025 0.2052 0.1078 0.1106 0.0942 0.0816 0.0719

ReLaSH | Hypergraph | 0.0190 0.0081 0.0175 0.0057 0.0176 0.0047 0.0179 0.0044
Attributes 0.0534 0.0427 0.0514 0.0339 0.0553 0.0339 0.0554 0.0335

ReLaSH. | Hypergraph | 0.0184 0.0357 0.0182 0.0356 0.0179 0.0397 0.0178 0.0389
Attributes 0.0534 0.0427 0.0514 0.0339 0.0553 0.0339 0.0554 0.0335

400 Gau Diff | Hypergraph | 0.0184 0.0128 0.0182 0.0129 0.0179 0.0129 0.0178 0.0129
Attributes 0.0792 0.0863 0.0960 0.0741 0.1055 0.0783 0.0905 0.0803

RealNVP | Hypergraph | 0.0184 0.0131 0.0182 0.0130 0.0179 0.0129 0.0178 0.0129
Attributes 0.0555 0.0780 0.0525 0.0720 0.0557 0.0782 0.0554 0.0804

WGAN Hypergraph | 0.0184 0.0152 0.0182 0.0131 0.0179 0.0184 0.0178 0.0296
Attributes 0.1838 0.1588 0.0822 0.1146 0.0640 0.0834 0.0610 0.0628

ReLaSH | Hypergraph | 0.0121 0.0053 0.0123 0.0039 0.0126 0.0035 0.0129 0.0030
Attributes 0.0402  0.0301 0.0380 0.0262 0.0366 0.0244 0.0402 0.0236

ReLaSH. | Hypergraph | 0.0126 0.0364 0.0122 0.0408 0.0126 0.0449 0.0128 0.0471
Attributes 0.0402  0.0301 0.0380 0.0262 0.0366 0.0244 0.0402 0.0236

800 Gau Diff Hype_rgraph 0.0126  0.0125 0.0122 0.0127 0.0126 0.0129 0.0128 0.0131
Attributes 0.0618 0.0862 0.0950 0.0785 0.0994 0.0758 0.0865 0.0767

RealNVP | Hypergraph | 0.0126 0.0129 0.0122 0.0128 0.0126 0.0129 0.0128 0.0131
Attributes 0.0394 0.0731 0.0385 0.0760 0.0368 0.0755 0.0399 0.0766

WGAN Hypergraph | 0.0126 0.0103 0.0122 0.0118 0.0126 0.0171 0.0128 0.0385
Attributes 0.0779 0.1672 0.0505 0.0615 0.0502 0.0519 0.0486 0.0469

ReLaSH | Hypergraph | 0.0098 0.0046 0.0099 0.0029 0.0102 0.0026 0.0105  0.0020
Attributes 0.0284 0.0221 0.0259 0.0192 0.0247 0.0172 0.0236 0.0168

ReLaSH. | Hypergraph | 0.0095 0.0405 0.0096 0.0419 0.0099 0.0401 0.0101 0.0399
Attributes 0.0284 0.0221 0.0259 0.0192 0.0247 0.0172 0.0236 0.0168

1600 Gau Diff | Hypergraph | 0.0095 0.0123 0.0096 0.0128 0.0099 0.0130 0.0101 0.0872
Attributes 0.0547 0.0877 0.0850 0.0779 0.0836 0.0789 0.0128 0.0794

RealNVP | Hypergraph | 0.0095 0.0128 0.0096 0.0129 0.0099 0.0130 0.0101 0.0128
Attributes 0.0286 0.0735 0.0262 0.0753 0.0277 0.0785 0.0298 0.0793

WGAN Hypergraph | 0.0095 0.0082 0.0096 0.0089 0.0099 0.0095 0.0101 0.0098
Attributes 0.0570 0.0885 0.0450 0.0620 0.0467 0.0597 0.0402 0.0610

Table 7: RMSE results for means (columns with “Mean”) & covariances (columns with “Cov’’) of
ReLaSH, ReLaSH., Gau-Diff, ReaINVP and WGAN when latent dimension is k = 12. Each value
comes from the mean of 20 repetitions.
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Embedding Dimension k = 24 (k1 = k2 = k3 = 8)

m Method Objects n =p =200 n =p =400 n =p = 800 n =p = 1600
Mean Cov Mean Cov Mean Cov Mean Cov
ReLaSH | Hypergraph | 0.0329 0.0140 0.0389 0.0133 0.0345 0.0149 0.0371 0.0128
Attributes 0.0808 0.0709 0.0817 0.0703 0.0790 0.0653 0.0834 0.0685
ReLaSH. | Hypergraph | 0.0245 0.0179 0.0264 0.0191 0.0319 0.0187 0.0246 0.0240
Attributes 0.0808 0.0709 0.0817 0.0703 0.0790 0.0653 0.0834 0.0685
200 Gau Diff Hypqrgraph 0.0245 0.0284 0.0264 0.0289 0.0319 0.0296 0.0246 0.0296
Attributes 0.0971 0.1089 0.1198 0.1104 0.1071 0.1131 0.0978 0.1117
RealNVP | Hypergraph | 0.0245 0.0288 0.0264 0.0289 0.0319 0.0296 0.0246  0.0296
Attributes 0.0818 0.1012 0.0815 0.1102 0.0789 0.1134 0.0839 0.1119
WGAN Hypergraph | 0.0245 0.0257 0.0264 0.0212 0.0319 0.0257 0.0246 0.0309
Attributes 0.2503 0.2018 0.1372 0.1167 0.2365 0.1291 0.3456 0.1334
ReLaSH | Hypergraph | 0.0185 0.0093 0.0180 0.0077 0.0177 0.0071 0.0208 0.0063
Attributes 0.0563 0.0541 0.0554 0.0492 0.0584 0.0470 0.0580 0.0481
ReLaSH. | Hypergraph | 0.0186 0.0204 0.0195 0.0271 0.0182 0.0315 0.0191 0.0402
Attributes 0.0563 0.0541 0.0554 0.0492 0.0584 0.0470 0.0580 0.0481
400 Gau Diff | Hypergraph | 0.0186 0.0285 0.0195 0.0287 0.0182 0.0295 0.0191 0.0288
Attributes 0.0799 0.1146 0.0974 0.1080 0.0990 0.1083 0.0789 0.1092
RealNVP | Hypergraph | 0.0186 0.0289 0.0195 0.0288 0.0182 0.0296 0.0191 0.0288
Attributes 0.0576  0.1073 0.0560 0.1072 0.0585 0.1084 0.0581 0.1094
WGAN Hypergraph | 0.0186 0.0193 0.0195 0.0183 0.0182 0.0263 0.0191 0.0334
Attributes 0.1951 0.1184 0.0774 0.0948 0.0717 0.0840 0.2848 0.1141
ReLaSH | Hypergraph | 0.0147 0.0073 0.0130 0.0058 0.0142 0.0050 0.0127 0.0044
Attributes 0.0418 0.0402 0.0404 0.0364 0.0400 0.0339 0.0431 0.0334
ReLaSH. | Hypergraph | 0.0145 0.0128 0.0128 0.0344 0.0140 0.0430 0.0128 0.0448
Attributes 0.0418 0.0402 0.0404 0.0364 0.0400 0.0339 0.0431 0.0334
300 Gau Diff | Hypergraph | 0.0145 0.0281 0.0128 0.0282 0.0140 0.0289 0.0128  0.0300
Attributes 0.0725 0.1139 0.1022 0.1123 0.1035 0.1110 0.0757 0.1069
RealNVP | Hypergraph | 0.0145 0.0287 0.0128 0.0283 0.0140 0.0289 0.0128  0.0300
Attributes 0.0407 0.1044 0.0402 0.1116 0.0405 0.1111 0.0431 0.1070
WGAN Hypergraph | 0.0145 0.0128 0.0128 0.0269 0.0140 0.0523 0.0128 0.0459
Attributes 0.0645 0.0865 0.0572 0.0744 0.0523 0.0617 0.0645 0.0757
ReLaSH | Hypergraph | 0.0098 0.0058 0.0115 0.0056 0.0097 0.0057 0.0095 0.0053
Attributes 0.0286 0.0314 0.0281 0.0309 0.0275 0.0332 0.0272 0.0298
ReLaSH. | Hypergraph | 0.0095 0.0328 0.0112 0.0342 0.0091 0.0309 0.0088 0.0301
Attributes 0.0286 0.0314 0.0281 0.0309 0.0275 0.0332 0.0272 0.0298
1600 Gau Diff | Hypergraph | 0.0095 0.0280 0.0112 0.0272 0.0091 0.0279 0.0088 0.0283
Attributes 0.0637 0.1276 0.0618 0.1173 0.0628 0.1121 0.0597 0.1083
RealNVP | Hypergraph | 0.0095 0.0287 0.0112 0.0282 0.0091 0.0263 0.0088 0.0251
Attributes 0.0281 0.1172 0.0280 0.1132 0.0285 0.1104 0.0276 0.1036
WGAN Hypergraph | 0.0095 0.0105 0.0112 0.0224 0.0091 0.0300 0.0088 0.0666
Attributes 0.0496 0.1053 0.0458 0.0648 0.0441 0.0579 0.0457 0.0466

Table 8: RMSE results for means (columns with “Mean”) & covariances (columns with “Cov’’) of
ReLaSH, ReLaSH., Gau-Diff, ReaINVP and WGAN when latent dimension is k = 24. Each value
comes from the mean of 20 repetitions.
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Embedding Dimension k = 48 (k1 = k2 = k3 = 16)

m Method Objects n =p =200 n =p =400 n =p = 800 n =p = 1600
Mean Cov Mean Cov Mean Cov Mean Cov
ReLaSH | Hypergraph | 0.0810 0.0260 0.0815 0.0260 0.0990 0.0299 0.0840 0.0368
Attributes 0.0863 0.1137 0.0807 0.1043 0.0938 0.1034 0.0872 0.1000
ReLaSH. | Hypergraph | 0.0281 0.0289 0.0263 0.0282 0.0268 0.0314 0.0291 0.0382
Attributes 0.0863 0.1137 0.0807 0.1043 0.0938 0.1034 0.0872 0.1000
200 Gau Diff Hypqrgraph 0.0281 0.0533 0.0263 0.0526 0.0268 0.0559 0.0291 0.0551
Attributes 0.0992 0.1575 0.1199 0.1581 0.1241 0.1543 0.1047 0.1550
RealNVP | Hypergraph | 0.0281 0.0538 0.0263 0.0526 0.0268 0.0559 0.0291 0.0551
Attributes 0.0850 0.1523 0.0808 0.1590 0.0938 0.1551 0.0874 0.1553
WGAN Hypergraph | 0.0281 0.0290 0.0263 0.0427 0.0268 0.0393 0.0291  0.0288
Attributes 0.1421 0.2809 0.1414 0.5243 0.1201 0.3009 0.0936 0.1969
ReLaSH | Hypergraph | 0.0418 0.0180 0.0305 0.0139 0.0198 0.0136 0.0214 0.0104
Attributes 0.0590 0.0819 0.0640 0.0717 0.0682 0.0697 0.0593 0.0678
ReLaSH. | Hypergraph | 0.0179 0.0176 0.0195 0.0136 0.0194 0.0159 0.0174 0.0220
Attributes 0.0590 0.0819 0.0640 0.0717 0.0682 0.0697 0.0593 0.0678
400 Gau Diff | Hypergraph | 0.0179 0.0529 0.0195 0.0530 0.0194 0.0556 0.0174 0.0549
Attributes 0.0944 0.1667 0.1114 0.1557 0.1099 0.1501 0.0834 0.1539
RealNVP | Hypergraph | 0.0179 0.0535 0.0195 0.0531 0.0194 0.0556 0.0174 0.0549
Attributes 0.0601 0.1623 0.0628 0.1567 0.0686 0.1510 0.0590 0.1542
WGAN Hypergraph | 0.0179 0.0247 0.0195 0.0370 0.0194 0.0255 0.0174 0.0226
Attributes 0.0939 0.2347 0.1011 0.2433 0.0767 0.1589 0.0691 0.1597
ReLaSH | Hypergraph | 0.0209 0.0108 0.0139 0.0079 0.0136 0.0085 0.0130 0.0062
Attributes 0.0460 0.0579 0.0452 0.0511 0.0481 0.0505 0.0472 0.0500
ReLaSH. | Hypergraph | 0.0137 0.0127 0.0122 0.0190 0.0138 0.0252 0.0129 0.0273
Attributes 0.0460 0.0579 0.0452 0.0511 0.0481 0.0505 0.0472 0.0500
300 Gau Diff | Hypergraph | 0.0137 0.0530 0.0122 0.0523 0.0138 0.0554 0.0129 0.0553
Attributes 0.0816 0.1655 0.1116 0.1514 0.1022 0.1536 0.0727 0.1548
RealNVP | Hypergraph | 0.0137 0.0539 0.0122 0.0524 0.0138 0.0554 0.0129 0.0554
Attributes 0.0459 0.1583 0.0457 0.1526 0.0485 0.1544 0.0428 0.1550
WGAN Hypergraph | 0.0137 0.0208 0.0122 0.0251 0.0138 0.0107 0.0129 0.0183
Attributes 0.0811 0.1395 0.0663 0.1663 0.0671 0.0933 0.0551 0.0754
ReLaSH | Hypergraph | 0.0173  0.0097 0.0102 0.0086 0.0097 0.0080 0.0090 0.0054
Attributes 0.0328  0.0525 0.0322 0.0491 0.0326 0.0495 0.0318 0.0472
ReLaSH. | Hypergraph | 0.0105 0.0127 0.0085 0.0169 0.0095 0.0184 0.0087 0.0204
Attributes 0.0328  0.0525 0.0322 0.0491 0.0326 0.0495 0.0318 0.0472
1600 Gau Diff Hypgrgraph 0.0105 0.0526 0.0085 0.0521 0.0095 0.0555 0.0087 0.0559
Attributes 0.0653 0.1609 0.1061 0.1555 0.0978 0.1520 0.0811 0.1525
RealNVP | Hypergraph | 0.0105 0.0535 0.0085 0.0522 0.0095 0.0555 0.0087 0.0559
Attributes 0.0319 0.1510 0.0385 0.1570 0.0333 0.1528 0.0301 0.1527
WGAN Hypergraph | 0.0105 0.0121  0.0085 0.0185 0.0095 0.0098 0.0087 0.0367
Attributes 0.0856 0.0912 0.0824 0.1415 0.0582 0.0710 0.0479 0.0547

Table 9: RMSE results for means (columns with “Mean”) & covariances (columns with “Cov”’) of
ReLaSH, ReLaSH., Gau-Diff, ReaINVP and WGAN when latent dimension is k = 48. Each value

comes from the mean of 20 repetitions.
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m Method n=p=200 n=p=400 n=p=800 n=p=1600
Embedding Dimension k = 6 (k1 = k2 = ks = 2)

ReLaSH 0.3540 0.2598 0.1561 0.1452
ReLaSH. 0.3624 0.1843 0.1884 0.2111

200  Gau Diff 0.3608 0.3245 0.4331 0.5995
RealNVP 0.3817 0.3280 0.3791 0.5638
WGAN 0.4278 0.2789 0.1673 0.1933
ReLaSH 0.1642 0.1756 0.1268 0.1341
ReLaSH. 0.2977 0.2965 0.3499 0.2740

400  Gau Diff 0.1764 0.1496 0.2627 0.3947
RealNVP 0.1775 0.1467 0.2819 0.4273
WGAN 0.2202 0.2426 0.2867 0.2766
ReLaSH 0.2199 0.1862 0.0792 0.0720
ReLaSH. 0.3112 0.3379 0.3688 0.3982

800  Gau Diff 0.1725 0.0892 0.1561 0.2866
RealNVP 0.1778 0.1143 0.1682 0.2949
WGAN 0.2215 0.1901 0.2582 0.2293
ReLaSH 0.1670 0.0766 0.1381 0.1225
ReLaSH. 0.1666 0.1721 0.2752 0.5741

1600  Gau Diff 0.1634 0.0793 0.1344 0.2172
RealNVP 0.1334 0.1842 0.0995 0.1994
WGAN 0.1618 0.2282 0.1962 0.1737

m Method n=p=200 n=p=400 n=p=800 n=p=1600
Embedding Dimension k = 12 (k1 = k2 = ks = 4)

ReLaSH 0.9794 0.6914 0.6056 0.6034
ReLaSH. 1.0132 0.6824 0.5676 0.5067

200  Gau Diff 1.1343 0.9088 1.3026 1.4973
RealNVP 1.3139 1.0591 1.2460 1.5199
WGAN 1.6482 1.4013 0.7556 1.3379
ReLaSH 0.7072 0.4392 0.2884 0.2246
ReLaSH. 0.6191 0.4158 0.3129 0.2952

400  Gau Diff 0.6172 0.4947 0.6941 0.9002
RealNVP 0.7296 0.5701 0.8043 0.9341
WGAN 0.8856 0.6497 0.3500 0.2412
ReLaSH 0.4775 0.3718 0.2037 0.2398
ReLaSH. 0.4546 0.3552 0.3431 0.3174

800  Gau Diff 0.4071 0.3575 0.5120 0.7380
RealNVP 0.4533 0.4206 0.4720 0.7130
WGAN 0.4418 0.5541 0.3687 0.3399
ReLaSH 0.3595 0.3217 0.2843 0.2204
ReLaSH. 0.3745 0.2854 0.2679 0.2589

1600  Gau Diff 0.3529 0.3321 0.3795 0.5534
RealNVP 0.4275 0.3232 0.3423 0.5177
WGAN 0.3845 0.3974 0.4582 0.4952

Table 10: FED results for ReLaSH, ReLaSH., Gau-Diff, ReaINVP and WGAN when latent dimen-
sion is k£ = 6, 12. Each value comes from the mean of 20 repetitions.
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m Method n=p=200 n=p=400 n=p=800 n=p=1600
Embedding Dimension k = 24 (k1 = k2 = ks = 8)

ReLaSH 3.7876 2.3795 1.7776 1.4888
ReLaSH. 4.0077 2.5164 1.8760 1.3280

200  Gau Diff 3.9593 3.4421 3.2590 3.2990
RealNVP 4.1992 3.7454 3.2969 3.3342
WGAN 3.0621 1.9154 1.5121 1.1528
ReLaSH 2.3870 1.3333 0.8480 0.5496
ReLaSH. 2.3198 1.3818 0.8407 0.6347

400  Gau Diff 2.0714 1.7287 1.8749 1.7820
RealNVP 2.3455 1.7374 1.8147 1.8179
WGAN 2.5758 1.7842 1.5667 0.8110
ReLaSH 1.6894 1.0641 0.6340 0.4274
ReLaSH. 1.5742 0.9923 0.7313 0.6584

800  Gau Diff 1.5422 1.1280 1.2945 1.5734
RealNVP 1.7499 1.2599 1.3955 1.5954
WGAN 1.8389 0.9427 0.9342 0.5240
ReLaSH 1.2875 0.9731 0.5482 0.3740
ReLaSH. 1.1986 1.0372 0.8542 0.6594

1600  Gau Diff 1.4199 1.0037 1.4529 1.5630
RealNVP 1.4597 1.6384 1.3294 1.2934
WGAN 0.9762 0.9205 0.7708 0.7188

m Method n=p=200 n=p=400 n=p=800 n=p=1600
Embedding Dimension k = 48 (k1 = k2 = ks = 16)

ReLaSH 15.3227 11.4013 9.8524 9.1217
ReLaSH. 16.9249 11.9277 9.1791 9.2782
200  Gau Diff 17.5939 14.7371 13.4529 14.4237
RealNVP 18.0527 15.0858 13.5804 14.4640
WGAN 15.9366 12.1945 10.5906 9.4059
ReLaSH 9.2837 4.2397 2.3041 1.7503
ReLaSH. 9.7989 4.4413 2.4005 1.6694

400  Gau Diff 9.1772 5.3424 4.3290 4.3520
RealNVP 9.8230 5.6104 4.4242 4.3550
WGAN 8.4115 3.8713 2.2187 1.6203
ReLaSH 6.1817 29811 1.7799 1.0864
ReLaSH. 6.0745 2.9594 1.7735 0.9799

800  Gau Diff 5.9200 3.3151 3.1729 3.0181
RealNVP 6.2765 3.6356 3.2323 3.0597
WGAN 5.1394 2.3107 1.4140 0.9230
ReLaSH 3.5762 1.7204 0.9726 0.5382
ReLaSH. 4.2942 1.6382 1.0038 0.6389

1600  Gau Diff 4.5040 2.2186 2.3887 2.5871
RealNVP 4.6260 2.6337 2.3902 2.6417
WGAN 3.7429 1.6919 1.0535 0.7648

Table 11: FED results for ReLaSH, ReLaSH., Gau-Diff, ReaINVP and WGAN when latent dimen-
sion is k = 24, 48. Each value comes from the mean of 20 repetitions.
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appears in the hyperlink representing that paper. As noted in (Ji et al., 2022), co-citing two authors
in an article suggests that they likely share common research interests. In our application, this co-
citation setting provides a hypergraph with sufficient density, which justifies the construction of the
co-citation hypergraph as described above.

To construct the attributes corresponding to each hyperlink, we use the abstract data of each paper.
We consider the pre-processed corpus of 2,106 words from the dictionary generated by Ke et al.
(2023), and further refine this list by removing words that do not appear in the top m = 2,000
papers. This leaves us with p = 2,039 words for analysis. To construct the p-dimensional attribute
vector for each hyperlink, the ¢-th entry of the vector is set to the TF-IDF value (Sparck Jones, 1972)
of the ¢-th word in relation to the abstract of the corresponding paper.

We use each approach to generate m = 32m hyperlinks and corresponding attributes. The perfor-
mance of each method is evaluated using the RMSE of the sample means and covariances of the
generated hyperlinks, compared against those of the overall population consisting of the top 5,000
most-cited papers from the selected authors. We also assess the performance by comparing ReLaSH
with other calibrated methods (i.e., ReLaSH., Gau-Diff, ReaINVP, WGAN, VAE) in terms of the
RMSE of the hypergraph node means, denoted as (Ay,, ), as summarized in Table 12.

ReLaSH-6 ReLaSH-24 Caliberated methods
Ay ) 3.20 2.59 3.57

Table 12: Ay, for different generation methods for the co-citation hypergraph generation task. The
scale of Ay, is 1072

Additionally, the Fréchet Embedding Distance (FED) is computed with respect to the chosen latent
dimension, with the dimension selection procedure outlined in Appendix B.6. Based on the cross-
validation results presented in Table 13, we select k; = ko = k3 = 2 and generate benchmarks for
the embedding machine £7 using the population data.

To evaluate the coherence and plausibility of the synthesized statistical research articles, we ran-
domly sampled several papers from the result generated by ReLaSH-24, as shown in Table 14. We
then analyzed the relationship between their cited authors and their top 10 TF-IDF keywords. The
analysis examined whether the referenced scholars are thematically aligned with the identified key-
words and what research areas such combinations are likely to represent in contemporary statistical
literature.

Table 14: Citation authors and top keywords in abstracts of sample papers. Authors are sorted
alphabetically by surname.

Paper ID Cited Authors Top Words

21029 Kuang Fu Cheng; David Clayton; Paul Gustafson; Ming time, study, missing, effect, censor,
Tan; Jeremy Taylor; Bruce Turnbull; Aad Van Der Vaart; random, event, covariate, survival,
James Ware; Lang Wu hazard

45756 Raymond Carroll; Songxi Chen; Kuang Fu Cheng; Jianqing  select, regression, asymptotic, vari-

Fan; Jian Huang; Jianhua Huang; Roger Koenker; Gérard  able, linear, coefficient, study, pro-
Letac; Chenlei Leng; Bing Li; Runze Li; Danyu Y. Lin;  cedure, covariate, quantile
Nicholas Polson; Jing Qin; Jane-ling Wang; Lan Wang;

Yichao Wu; Song Yang; Ming Yuan

Continued on next page

Latent dimension  FID by cross validation

k=6 0.257
k=12 0.329
k=24 0.627

Table 13: Cross-Validation results for the co-citationship hypergraph.
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Table 14 — continued from previous page

Paper ID Cited Authors Top Words

45969 Claudia Czado; Victor De Gruttola; Peter Diggle; Alan effect, time, Bayesian, spatial, ran-
Gelfand; Marc G. Genton; Barry Graubard; Hemant Ish- dom, prior, mixture, algorithm,
waran; Wesley Johnson; Jean-francgois Le Gall; Nicholas mix, study
Polson; Stephen Portnoy; Lee-jen Wei; Scott Zeger

19872 Per Anderson; Krzysztof Burdzy; Ludwig Fahrmeir; Trevor  select, effect, coefficient, linear,
Hastie; Patrick Heagerty; Christian Houdré; M. C. Jones;  study, regression, variable, param-
Charles Kooperberg; Kung Yee Liang; Runze Li; John eter, hazard, covariate
Nelder; Marcello Pagano; Ross Prentice; Brian Reich; Pe-
ter X. K. Song; Robert Tibshirani; Scott Zeger; Hao Helen
Zhang

Regarding article 21029, the cited authors are highly recognized for their contributions to survival
analysis, missing data methodology, and longitudinal studies. The keywords are emblematic of liter-
ature in survival and event-time analysis, particularly relating to censoring, time-to-event data, and
covariate effects. This combination strongly suggests that the article addresses methodological inno-
vations in survival analysis, such as handling missing or censored data in longitudinal studies. The
citation-keyword pairing is highly credible, reflecting how such topics are addressed in biostatistics
and epidemiological statistics.

The referenced scholars in article 45756 are prominent in the fields of high-dimensional statistics,
variable selection, and regression modeling. The keywords reinforce this focus, centralizing on vari-
able selection, regression techniques (linear and quantile regression), and asymptotic theory. Such
an article would likely present advances in model selection procedures or regularization methods for
high-dimensional data, possibly investigating their theoretical properties or empirical performance.
The co-occurrence of these citations and keywords is typical for methodological developments in
regression analysis.

For the result of article 45969, these authors are well-known for their work in Bayesian methods,
spatial statistics, and hierarchical modeling. The keywords suggest a concentration on Bayesian
spatial analysis, mixture models, and computational algorithms for inference under complex hier-
archical or spatial structures. The configuration of cited authors and keywords is consistent with
research focused on Bayesian computation or spatial modeling for temporal or clustered data.

Overall, the pairing of cited authors and prominent keywords in these synthesized articles is highly
consistent with the structure and topical alignment found in authentic statistical methodology papers.
Each article demonstrates an internally coherent thematic structure, where the cited scholars are
authoritative within the research area denoted by the keywords. Therefore, our generative method,
ReLaSH, can support the prediction of emerging trends in the statistical community and facilitate
the identification of co-citation relationships between specialists and their research interests.

B.4.2 RECIPE HYPERGRAPH WITH NUTRITION ATTRIBUTES

The “Epicurious — Recipes with Rating and Nutrition” dataset contains 17,736 recipes information
lifted from http://www.epicurious.com/recipes-menus, each accompanied by user
ratings, nutritional information, and ingredient lists. Naturally, each recipe can be represented as

a hyperedge of ingredients, with ratings and nutritional variables (“calories”, “sodium”, “protein”,
and “fat”) serving as hyperedge attributes.

Note that the attributes in the recipe dataset vary in both scale and interpretation, so we apply z-score
standardization to the attribute set before training the generative models to ensure comparability
across features. The summary of attributes are listed in Table 15.

For pre-processing, we consolidated ingredient names with the same or highly similar meanings
(e.g., “green onion” and “spring onion”, “chili pepper” and “hot pepper”), and removed ingredients
appearing in only a single recipe. To mitigate issues caused by missing information, we retained only
recipes containing at least seven ingredients, resulting in a population dataset of 789 recipes with

200 distinct ingredients. From this population, we randomly selected 300 recipes as the training

*https://www.kaggle.com/datasets/hugodarwood/epirecipes/data
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Ratings Calories Protein  Fat  Sodium
Mean 4.192 430.04 17.46 2290 45590
Std. Error  0.598 257.24 16.41  17.37 429.33

Table 15: Means and standard errors for recipe attributes.

dataset, where each recipe is associated with five hyperedge attributes. We use each approach to
generate 1 = 32m hyperlinks and corresponding attributes.

Specifically, in the recipe dataset, the attribute dimension is relatively small (p = 5) compared to
the size of the hypergraph node set (n = 200), and all attributes are continuous variables. There-
fore, in the embedding procedure of ReLL.aSH, we set ko = k3 = 0, which implies that the attribute
embedding reduces to an identity mapping. Consequently, after embedding the hypergraph into a
k1-dimensional latent space, we concatenate the latent embedding of each hyperedge with its corre-
sponding attributes, and then train diffusion models on the concatenated data. Intuitively, the latent
variables obtained through embedding represent underlying structural features of each hyperedge,
whereas the attributes provide interpretable features for each recipe. Thus, concatenating the two
and performing generation constitutes a natural modeling strategy, which further demonstrates the
flexibility of our proposed method.

We also assess the performance by comparing ReLaSH with other calibrated methods (i.e.,
ReLaSH., Gau-Diff, ReaINVP, WGAN, VAE) in terms of the RMSE of the hypergraph node means,
denoted as (A4, ), as summarized in Table 16.

ReLaSH-2 ReLaSH-16 Caliberated methods
Ay | 9.38 8.33 8.27

Table 16: Ay, for different generation methods for the recipe hypergraph generation task. The scale
of Ay, is 1073,

Similarly, the Fréchet Embedding Distance (FED) is computed with respect to the chosen latent
dimension. Based on the cross-validation results presented in Table 17, we select k = 2 and generate
benchmarks for the embedding machine £7 using the population data.

Latent dimension  FID by cross validation

k=2 0.194
k=4 0.427
k=28 13.630
k=16 14.064

Table 17: Cross-Validation results for the recipe hypergraph.

We examine individual recipes synthesized by ReLaSH.-16, which generally performs the best
among all the generation models, to emphasize the quality of generation. Table 18 presents sev-
eral randomly selected samples. For interpretability, we assign descriptive names corresponding to
real-world cuisines, and all generated recipes resemble authentic dishes. Each sample demonstrates
ingredient combinations and nutritional profiles that are both plausible and balanced, particularly
for seafood-forward, legume-based, or mixed salads and stews from the Mediterranean and North-
ern Europe. The coherent ingredient pairings and reasonable macronutrient compositions highlight
the applicability of the generated results to realistic culinary settings.
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Table 18: Generated recipe samples from ReLaSH.. All nutritional values are reported per entire
recipe portion.

Rating Calories Fat Protein  Sodium

(outof 5)  (kcal) (g) (2 (mg) Ingredients

Recipe Name

bean, chickpea, chile pepper,

Mediterranean clam, cod, fennel, halibut
Fisherman’s 422 228 982 469 264 1, €0, » nalibut,
lentil, potato, saffron,
Bean Stew . .
tomato, onion, wine
Hearty carrot, celery, cinnamon,
Mediterranean 4.21 430 16.36 32.96 482 legume, lemon, parsley,
Legume Soup pasta, potato
Scandinavian cilantro, citrus, clam
Creamy Seafood 3.74 237 10.98 17.75 1117 S >
cod, dill, milk, cream, onion
Chowder
Sesame Tuna sesame, spice, tomato
Mediterranean 4.40 526 36.24 224 518 tuna é per ’ ’
Salad - Pepp
. basil, fruit, grape,
Mecli\;[tizgirllean 4.33 778 49.77 63 623 mussel, parsley, pecan,

tomato, spirits

The “Hearty Mediterranean Legume Soup” can be characterized as a Mediterranean vegetable and
legume soup, recalling Italian minestrone or Middle Eastern harira. With pasta, root vegetables,
beans, and aromatic herbs, the nutrition profile is realistic for a hearty soup, rich in protein and
complex carbohydrates yet moderate in fat.

The “Scandinavian Creamy Seafood Chowder” is a Scandinavian-inspired creamy seafood chowder,
featuring cod, clam, dill, and citrus. Its nutritional composition is plausible for a chowder: adequate
protein, moderate fat, and elevated sodium due to seafood and seasoning.

The “Sesame Tuna Mediterranean Salad” represents a fusion-style salad that combines Mediter-
ranean and Asian influences, pairing tuna with sesame, tomato, and peppers. The higher fat content
is attributable to sesame, while protein derives from tuna, reflecting the nutritional profile of con-
temporary main-course salads.

Finally, the “Mediterranean Mussel” is a classical Mediterranean mussel cuisine, integrating mus-
sels, pecans, tomato, and basil, with spirits to enhance flavor. Its high protein and fat levels are
consistent with shellfish and nut components, while the addition of fruit and herbs signals modern,
health-oriented culinary trends.

To provide a comprehensive illustration of the cuisines, we construct a plot that aggregates the
ingredients of each recipe, as shown in Figure 17.

B.4.3 MEDICAL HYPERGRAPH WITH PATIENT ATTRIBUTES

We also apply ReLaSH and other competitive approaches to a symptom co-occurrence hypergraph
constructed from electronic medical records of ICU patients. Specifically, we use the Medical Infor-
mation Mart for Intensive Care (MIMIC-III; (Johnson et al., 2016)) dataset, which contains clinical
data from over 45,000 patients at Beth Israel Deaconess Medical Center in Boston between 2001
and 2012.

In MIMIC-III, we focus on more than 10,000 patients who experienced an ICU stay and for whom
a death record is available. To construct the population hypergraph, we consider 4,951 informative
patient records with more than 15 co-occurring diseases—an indicator of severe health conditions,
covering 2,230 distinct diseases. From this population, we randomly sample 2,000 records as the
training set.

In this hypergraph, each node represents a symptom, and each hyperlink corresponds to a patient
profile, with the incident nodes being the symptoms recorded for that patient. The attribute set of
each hyperlink is derived from patient metadata, including lifetime, ethnicity, marital status, religion,
gender, ICU length of stay, and overall hospital length of stay. Among these, ethnicity, marital status,
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Mediterranean
Fisherman’s Bean Stew

Rating: 4.22
Calories: 228 kcal
Fat: 9.82 g
Protein: 46.9 g
Sodium: 264 mg

Hearty Mediterranean
Legume Soup

Rating: 4.21
Calories: 430 kcal
Fat: 16.36 g
Protein: 32.96 g
Sodium: 482 mg

Scandinavian Creamy
Seafood Chowder

Rating: 3.74
Calories: 237 kcal
Fat: 10.98 g
Protein: 17.76 g
Sodium: 1117 mg

Sesame Tuna
Mediterranean Salad

Rating: 4.40
Calories: 526 kcal
Fat: 36.24 g
Protein: 22.4 g
Sodium: 518 mg

Modern Mediterranean
Mussel & Fruit Salad

Rating: 4.33
Calories: 778 kcal
Fat: 49.77 g
Protein: 63 g
Sodium: 623 mg

Figure 17: Illustration of generated cuisines.
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religion, and gender are categorical variables, which we encode as integers. We use each approach
to generate m = 32m hyperlinks and corresponding attributes. Since the attribute dimension is
substantially smaller than the hyperlink dimension, we adopt the same identity mapping strategy as
in the recipe example for generation in ReLaSH and ReLaSH..

We also assess the performance by comparing ReLaSH with other calibrated methods (i.e.,
ReLaSH., Gau-Diff, ReaNVP, WGAN, VAE) in terms of the RMSE of the hypergraph node means,
denoted as (A4, ), as summarized in Table 19.

ReLaSH-2 ReLaSH-16 Caliberated methods
2.52 5.75 1.14

Ay,

Table 19: Ay, for different generation methods for the patient profile generation task. The scale of
A?-Lm is 1073,

Similarly, the Fréchet Embedding Distance (FED) is computed with respect to the chosen latent
dimension. Based on the cross-validation results presented in Table 20, we select k = 2 and generate
benchmarks for the embedding machine £7 using the population data.

Latent dimension  FID by cross validation

k=2 0.030
k=4 0.223
k=28 0.243
k=16 0.365

Table 20: Cross-Validation results for the symptom co-occurrence hypergraph.

Furthermore, we examine the patient profiles generated by ReL.aSH-2 using the MIMIC-III dataset.
For categorical variables such as marital status, ethnicity, religion, and gender, we calibrated the
generated outputs against the original training data to preserve the marginal proportions of each
category. Examination of continuous variables including ICU stay duration, hospital stay duration,
and patients’ lifetime data revealed no outliers or abnormal values, indicating that the generated data
are clinically reasonable. We randomly sampled 10 patient profiles from the generated set, as shown
in Table 21.

Table 21: Sampled Patients: Personal Information and Major Diseases

ID Numeric Attributes I];Igrnber of Demographics Representative Major Diseases
iseases
Catholic Coronary Atherosclerosis;
ICU stay: 8.25 days White Congestive Heart Failure;
1 Lifetime: 86.19 years 23 Married Chronic Kidney Disease;
Hospital Stay: 354.94 hrs Female Intracerebral Hemorrhage;

Dementia

ICU stay: 7.88 days

Protestant Quaker
White

Atrial Fibrillation;
Congestive Heart Failure;

2 Lifetime: 74.42 years 20 Widowed Hypertension;
Hospital Stay: 413.36 hrs Mal Acute Kidney Failure;
ale Diabetes Mellitus
ICU stay: 6.54 days Not.Spemﬁed Mahgr}ant .Neoplas.m; ~
L White Chronic Kidney Disease;
3 Lifetime: 75.72 years 16 - . . .
Hospital Stay: 314.68 hrs Single Cerebral Embolism With Infarction;
) ) Male Heart Failure
ICU stay: 14.16 days Ep1§copahan Dlabet.es Melhtus (Uncontrolled);
o White Chronic Kidney Disease (Stage V);
4 Lifetime: 77.55 years 36 . Ture: .
Hospital Stay: 512.29 hrs Married Heart Fal ure; Sepsis; o
’ ’ Male Hepatic Transplant Complications
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Number of

Patient Numeric Attributes Di Demographics Representative Major Diseases
iseases
. Graft-Versus-Host Disease;
ICU stay: 7.05 days gv‘;ltitsepe“ﬁed Atrial Fibrillation:
5 Lifetime: 57.35 years 16 Sinole Acute Vascular Insufficiency
Hospital Stay: 362.37 hrs & of Intestine;
Male .
Implant Infection
Catholic Diabetes Mellitus
ICU stay: 8.84 days Black (With Ketoacidosis);
6 Lifetime: 67.53 years 22 Married Acute On Chronic Diastolic
Hospital Stay: 563.22 hrs Heart Failure;
Female . .
Sepsis; Thrombocytopenia
ICU stay: 16.95 days Not.Spemﬁed Secondary Mqhgnant Neoplasms
Y White (Intra-Abdominal, Nervous System,
7 Lifetime: 70.73 years 21 - L
Hospital Stay: 515.13 hrs Single Bone, Other Sites); .
’ ) Male Tuberculosis Of Ureter; Dementia

ICU stay: 2.86 days

Protestant Quaker
White

Atrial Fibrillation;
Congestive Heart Failure;

8 Lifetime: 41.29 years 31 Acute Kidney Failure;

Hospital Stay: 341.52 hrs Widowed Subdural Hemorrhage;
Male .
Septic Shock
Malignant Neoplasm of
ICU stay: 8.80 days Cathohc Bronchug and. Lung;
e White Heart Failure;
9 Lifetime: 66.34 years 28 . o .
Hospital Stay: 654.82 hrs Married Chron}g Pain Syndrome;
’ ’ Female Hepatitis C;
Severe Sepsis
Buddhist Diabetes Mellitus;
ICU stay: 4.00 days Asian Chronic Kidney Disease (Stage V);
10 Lifetime: 80.60 years 13 Divorced Acute Diastolic Heart Failure;
Hospital Stay: 136.56 hrs Female Acute Respiratory Failure;

Dysthymic Disorder

It is worth noting that the number of diseases per patient is relatively high, since during preprocessing
we restricted the dataset to ICU patients with at least 15 documented conditions. This reflects
the severe health status typical of such cohorts. The demographic characteristics of the generated
patients also appear consistent with real-world ICU populations.

To illustrate, we closely examine the set of co-occurring diseases for the first generated patient pro-
file. The disease combination observed is highly representative of older, medically complex ICU
patients. Chronic conditions such as hyperlipidemia, hypertensive chronic kidney disease, coro-
nary atherosclerosis, atrial fibrillation, cardiomyopathy, chronic systolic heart failure, and dementia
collectively suggest substantial long-term cardiovascular, renal, and neurologic impairment. Su-
perimposed acute complications—including intracerebral hemorrhage, abdominal aortic aneurysm
rupture, gastrointestinal bleeding, acute kidney injury, and embolic or thrombotic events—are well-
known, life-threatening occurrences frequently encountered in critically ill patients with multiple
comorbidities.

Importantly, there is considerable overlap between pre-existing chronic conditions and their acute
manifestations. Similarly, congestive heart failure and chronic kidney disease exacerbate one an-
other (the so-called “cardiorenal syndrome”), and this interaction is frequently observed in ICU co-
horts. Infectious complications (e.g., pneumococcal infection) and procedural complications (e.g.,
procedure-related hematoma) are also prevalent in this context. Respiratory comorbidities (such as
chronic obstructive asthma or airway obstruction), gastrointestinal conditions, and prior malignancy
further reflect the clinical complexity of elderly ICU patients with multimorbidity and high risk of
adverse outcomes.

Taken together, the coexistence of chronic diseases, acute organ failures, infections, and iatrogenic
complications is highly characteristic of ICU populations, particularly among older adults. The gen-
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erated case therefore mirrors realistic clinical scenarios commonly observed in critical care cohorts
such as MIMIC-III.

B.5 FRECHET EMBEDDING DISTANCE (FED)

In generative modeling, Fréchet Inception Distance (FID) is a widely used metric for evaluating the
quality of generated samples, particularly in visual tasks. FID compares the feature representations
(e.g., from the coding layers) of two datasets (e.g., real images and Al-generated images) using a
pre-trained Inception model, such as Inception-v4. The difference between the two populations is
measured by calculating the Fréchet distance, assuming that both distributions follow a Gaussian
distribution. This distance is computed using the means and covariances of the respective distri-
butions. While FID has proven effective for evaluating generative models in vision-related tasks,
its applicability is limited in other domains, as it relies on pre-trained Inception models specifically
trained on visual data.

To overcome this limitation, FID has been adapted into specialized variants for different domains.
For instance, Fréchet Audio Distance (FAD) (Kilgour et al., 2018) has been proposed for evaluating
music enhancement algorithms, Fréchet Video Distance (FVD) (Unterthiner et al., 2019) is used
for generative models of video, and Fréchet ChemNet Distance (FCD) (Preuer et al., 2018) is used
for evaluating Al-generated molecules. These variants maintain the core idea of FID, but they are
customized to better suit the unique characteristics of their respective domains.

In a similar vein, we extend the idea of FID to our own task by introducing Fréchet Embed-
ding Distance (FED). FED generalizes FID for generative tasks where no pre-trained models are
available for evaluation. Specifically, for a given generative task 7', we define a “true” dataset
XM = {2 }ic [n,] TEPresenting real data, and a generated dataset X*" = {25} ;c[,,,.,) sampled
from the generative model being evaluated. To compute FED, we introduce an embedding machine
ET : X — RX, which maps the data points into a continuous embedding space that captures the
essential features of the original data. Once the data points are mapped into this embedding space,
FED calculates the distance between the distributions of the true and generated datasets as

1_-;1_3])(‘)(%1'%7 Xgen) — ||Iutrue _ ugenu% + Tr(ztrue + yeen _ Q(eruezgen)l/Q)’

where ™, ;£ are the sample means of {E7 (%) }ic s {€7 (257) i[> and X7, T8 are

the sample covariance matrices of {€7 (1) }icny]» {€7 (457) }ieng]- Which provides a flexible

and robust evaluation metric for generative models in various tasks.

Thus, similar to how FID has been adapted for different domains, we introduce FED as a flexible and
robust evaluation metric for generative models across a variety of tasks. FED generalizes the concept
of FID by eliminating the dependence on pre-trained models. Furthermore, it proves particularly
useful in scenarios where data distributions are too complex to compare directly, such as the high-
dimensional hyperedges together with attributes explored in this study.

B.6 EVALUATION METRIC CALCULATION

In this subsection, we provide a detailed explanation of how we compute the quantities used in the
evaluation steps for both the simulation experiments and real data analysis.

Given an observed hypergraph H([n],&m, X)), where &, = {e1,ea, -+ ,en} and X, =
{z1,22, -+ ,zm}, we encode each hyperlink as a binary vector e; € {0,1}", where the i-th el-
ement of e; indicates whether node 4 is connected to the hyperlink. We then concatenate e; with
the corresponding attribute vector z; to form an (n + p)-dimensional vector h; = (e; ;), which
encodes the complete information of the j-th hyperlink in the observed hypergraph. Consequently,
the dataset used to train the generative models (i.e. Gau-Diff, WGAN, RealNVP, VAE) compared
with our method is D¢ = {h;} ;.

Similarly, for the generated hypergraph H([n], £, X)), where £z = {é1,--- ,ém} and Xy =
{Z1,- -+, Zm}, we encode the hyperlinks in the same manner as the observed hypergraph, resulting
in the dataset D" = {h;}7" .

Also, for the random hyperlink E and its random attributes X, we denote H = (E X) as the
encoded random vector, in the same manner as above.
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B.6.1 CALCULATION OF FED

To calculate the Fréchet Embedding Distance (FED), we first define an embedding machine £7 and
optimize its parameters using the gradient descent method. For each hyperlink data point h;, we
aim to minimize the following loss function:

n

0 (ug) = m (ug) + M x (ug) = =Y {bg(l +exp(ul™ Tz + ) — by (Wl T2+ ai)}

—)\i[ T + )2 — xji(u; (27, —&-%)},

where z;, b;, a;, y; represent the true node embeddings and associated parameters. We optimize this
loss using the gradient descent approach as in Algorithm 3, which updates {u, };h:l during each
iteration. The initialization steps are the same as in Algorithm 2. This procedure allows us to ob-
tain the embeddings {7 (h;) L., for the observed hypergraph and {€ T (h)) ;7"”:1 for the generated
hypergraph. Finally, we compute the FED between the two datasets according to its definition, i.e.

FED(Diue, Dgen) 1= FID({E7 (h;)}7y {ET (hy)}72,).

Algorithm 3 Projected Gradient Descent for Embedding Machine £7 in FED Calculation

Require: Initialized U, known embeddings and parameters {c,~, Z, B}, generated hypergraph
matrix H and according attribute matrix X, learning rate 7, likelihood weight parameter A,
maximum number of iterations 7.

:fort =1to7 do 23T (17
. H —q17 4+ T
Calculate @(t = al,, U(t D Z, and @(t = =~1,, + U(t 1)
1
U((t)l) nU(l)vU(l)K (t—1) — U(t—l) + )\nU(l)(X - fA( (t—l)))BL(t—l)
: U(2) U((f)l) nue Ve le—1) = U((tzll) +nye {MX — f,/zx(@()i_n))Bl(t—l) +(H -
U(@(t71))22,(t71))}
U((t)) - U((tzl) — e Voo li-1) = U((tzl) + nye (H — U(@gﬂ)»z&(til)
Project the embedding Uy to the constraint set, with the transformation in Remark 5.
end for
return U7 as {7 (h;)} ;e for further FED calculation.

AW N~
S
=0

For the synthetic data analysis, we directly utilize the true node embeddings and associated pa-
rameters (z;, b;, «;, ;) from the data generation procedure. In contrast, for the real data analysis,
we construct the reference node embeddings and corresponding parameters (z;, b;, «;, ;) by em-
bedding the population hypergraph together with its attributes. For instance, in the co-citationship
dataset, we analyze a training set of 2, 000 papers, which is sampled from a larger population of
5,000 papers. To obtain a fair comparison, we embed the entire population dataset to derive the
reference embeddings and associated parameters (z;, b;, a;, v;).

To select the latent space for the embedding machine, we use cross-validation to determine the
optimal latent dimension. For each chosen dimension k, we split the population hypergraph into
a training set and a testing set, with 80% of the nodes and attributes used for training and the
remaining 20% for testing. We then perform the embedding procedure on both the training and
testing sets to estimate the hypergraph embeddings, denoted as 2" . and . Next, we calculate

train test®
the Fréchet Inception Distance (FID) between U, and UL, denoted as FIDy,, and compare the FID
values across different latent dimensions k. The dimension that minimizes the FID is selected as the
optimal latent dimension for the embedding machine £7, and the corresponding (Z;, bl, &, 4;) are

used as benchmarks for the embedding machine.

The cross-validation results for the three real datasets are shown in Appendix B.4 respectively, in-
dicating that £ = 2 or ky = ko = ks = 2 is selected for all three datasets. This choice is based
on the fact that low-dimensional latent spaces yield the smallest error, thus it provides a much fairer
benchmark for comparing different generative models.
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B.6.2 MEANS AND COVARIANCES

As outlined in the setup of simulated data, we assume that the hyperlink embeddings {u; };”Zl are
drawn from a distribution Py;. Using this assumption, we can compute the expected occurrences of
the nodes as well as the covariances between the occurrences of the nodes by considering E(E) and
cov(E;, E;), and the expected mean E(X) and covariances of attributes cov(X;, X;).

ForE(H)=E(E X), we have
E(H;) = Ep, [E(H:|U)] = Ep, [E(E:|U)]1(i<n) + Epy [E(X3]U)]L(i5n)
= Epy[o(2 U™ + ai)|Licn) + By [(0] U + 7)1 (i),
where H; is the i-th coordinate of H.
Similarly, for cov(E;, E;) and cov(X;, X;), we have
cov(Es, Ej) = Ep, [cov(E;, Ej | U)] + cove,, (Ep, [E; | U], Epy [E; | U])
= covp, (Ep, [E; | U], Epy [E; | U])
=Bz, [0(2f U + i) (2] U + )]
— Epy [0(zf U + 0))|Epy [o(z] U + ay)),
and
cov(X;, X;) = Ep, [cov(X;, X, | U)] + cove, (Ep, [X; | U], Ep, [X; | U])
= covp, (Ep, [X; | U], Ep, [X \U])
= Ep, [(b UM +3)][(b] UM + ;)]
— B, (0] UM + %‘)]EIPU [(b]T U 4 ;).

In our evaluations on real-world datasets, these expectations are approximated by their empirical
counterparts, as illustrated below.

B.6.3 COMPARISON WITH BENCHMARKS OF MEANS, COVARIANCES, AND FEDS

Since directly computing the expectatlons E(H;) and covariances cov(H;, H;) based on the distri-
bution Py is generally challenging, in synthetic data analysis, we approx1mate them using Monte
Carlo integration with N = 20, 000 samples. Specifically, for a given set of parameters and node
embeddings (B, Z, o, y), we generate a test set of embeddings 24'*' = {u$*}_, and then generate
a hypergraph with attributes H"*'([n], En, Xn) according to the hypergraph generation model. We

encode H'([n], Ex, Xn) into hyperlink sets {h{*},, and take the sample mean E(E),E(X)

as an approximation of E(E), E(X), while the sample variance cov(E, E),cov(X, X) provides an
approximation of cov(H, H),cov(X, X). In real data analysis, we directly utilize the sample mean
and variance of population data as an approximation of cov(H, H),cov(X, X).

To calculate the RMSE of the means and variance-covariances of node co-occurrence and attributes
vector from the generated hypergraph #([n], £5,, X7,), we first encode the generated hypergraph as
vectors {€;}}L, {;}L;, then calculate the sample means and sample covariances of both popula-
tions as E(E), E(X) and ¢cov(E, E), cov(X, X). We then calculate the RMSEs for each population
by computing:

L669(E, B) = (B, E)| . —=IB(E) BB,

%nco”v(X,X) — V(X X)||p. ;ﬁ@m — B

Since we are comparing our method for mixed data types with other generative models that focus on
continuous data, we perform calibrations on such methods (e.g. ReaNVP, WGAN, Gau-Diff, VAE,
and so on) to ensure a fair comparison. Recall that the hyperlink data is encoded as binary vectors
in the first n dimensions, while the generative models produce (n + p)-dimensional continuous
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vectors. To map the first n dimensions of the continuous vectors to hyperlinks, we incorporate a
gen  gen

calibration step based on the observed hypergraph H([n], &, X ). Let {[y5 ;. y5 ] szl represent

the generated (n + p)-dimensional vectors, where yi*; € R” and y5; € RP for each j € [1m].
gen gen

Denote the i-th coordinate of y7 ; by ¥ ;. and let 7; be a threshold for each ¢ = 1,2,. .., n. Define

15 = Ly >y, where 1 is the indicator function. The thresholds {7;}7; are selected such that
) NI

the following condition holds for each i € [n]:

m m
1 ~egen L .
= Yi,5i = m €ji-
j=1 j=1

This calibration step effectively decreases the error from the hypergraph part, as it mimics the distri-
bution of node co-occurrence in the observed hypergraph. The rationale behind is to ensure that the
node degree sequence of the generated hypergraph matches that of the observed hypergraph. Finally,
we replace the y§}’s with their calibrated versions §{"; s, which are binary-valued variables that rep-

1,3 »J o )

resent a hyperlink. The calibrated encoded vector becomes D= = {h; }7", = {[415], Y5 3]} 11>

representing a hypergraph with 77 hyperlinks, where the j-th hyperlink is associated with an attribute
n

vector y5 ;.-

In this way, we can also introduce a variant of ReLaSH, denoted ReLaSH, (calibrated ReLaSH),
which generates hyperlinks not by sampling from the connection probability matrix P = logit(©),

but by calibrating P with respect to the training data as described above. Consequently, ReL.aSH.
achieves performance comparable to competing generative models in terms of the RMSE of hyper-
link vector means, and in both synthetic and real data experiments, we observe that ReLaSH,, attains
state-of-the-art results on certain error metrics in specific settings.

For the FED, we generate D' = {& T(h}“t)}é\;l as the ground truth. We then compute the FED
between the test dataset and the generated dataset using the formula FED (D', D&),

B.7 DETAILS AND IMPLEMENTATION OF THE GENERATIVE MODELS

In this subsection, we describe the details of the implementation of the methods used in our simula-
tion studies and real data analysis.

B.7.1 RELASH AND GAU-DIFF

A diffusion model consists of a forward process and a reverse process. In the forward process,
Gaussian noise is gradually added to the original data, eventually transforming it into pure noise.
In the reverse process, denoising neural networks are trained to remove the noise and recover new
samples from the data distribution.

Specifically, for both the ReLaSH and the Gau-Diff, we consider the Ornstein-Uhlenbeck process,
which is described by the following Stochastic Differential Equation (SDE) in the forward process:

dU; = —U, dt + V2 dW4, 4)

where {W}c[o,r is a standard Wiener process. Under mild conditions, as noise is gradually added
to the data over time, the resulting perturbed realizations will approach a standard multivariate Gaus-
sian distribution for sufficiently large T'. The reverse process, which generates new realizations from
the noisy output, is given by another SDE:

AU = (UF + 2log pr—o(UF)) dt + V2d W, )

where V log p(-) is the score function at time ¢. Since direct sampling from this SDE is computa-
tionally infeasible, we discretize the process with a step size h > 0 and train deep neural networks
to estimate the score functions at T'/h discrete time steps.

The Ornstein—Uhlenbeck forward process specified can also be expressed as U, = e ‘U +
V1—e2tz, with 2 ~ N(0,I4). The conditional score has a closed-form expression, i.e.,

Vu, logpi(ui|ug) = —z/0y with 0?2 = 1 — e~ 2. Plugging this into the general objective, the
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loss simplifies to £(6) = % Eug b, [ Hse(ut, t)or + z||; ] which is the form used in our implemen-

tation.

In Gau-Diff, we train a diffusion model on the encoded (n + p)-dimensional vectors {h;}.; with
the Ornstein-Ulhenbeck process as shown above. In ReLaSH, diffusion models are trained on the
k-dimensional continuous spaces, with the same architecture as in Gau-Diff without the calibra-
tion step. We refer to the diffusion model architecture as outlined in https://github.com/
yang-song/score_sde. The score neural network is set as a 5-layer MLP, which is enough
to avoid overfitting during generation of tabular data. For optimization, we use Adam (Kingma &
Ba, 2014) and follow the schedule therein. The models are all trained for fixed epochs for ReLaSH,
while trained for a larger fixed epochs for Gau-Diff, with fixed batch size of 128. The difference
in required epochs comes from the fact that the diffusion model in ReL.aSH only works on a pop-
ulation of k-dimensional vectors, while the diffusion model in Gau-Diff works on a population of
(n + p)-dimensional vectors with k < n + p. Therefore, the dimension reduction performed by our
algorithm successfully boosts the speed of hypergraph generation and enhances performance in all
error types.

In the application to real datasets, we employ the Forest Diffusion method proposed by Jolicoeur-
Martineau et al. (2024), which leverages XGBoost, a widely used Gradient Boosted Tree (GBT)
technique, instead of neural networks to learn the score function. Owing to its substantial compu-
tational cost, Forest Diffusion is applied only to the ReLLaSH and ReLaSH, methods, as both train
the generative model in the embedded latent space of relatively low dimension. Forest Diffusion
also provides an R implementation, which ensures a smooth integration with our entirely R-based
pipeline. In contrast, Gau-Diff requires training directly on the full dataset of dimension (n + p), for
which we instead adopt the standard diffusion model described earlier with a simple architecture.
This comparison highlights the scalability advantage of our dimension reduction framework.

B.7.2 GANSs

Generative Adversarial Networks (GANs) (Goodfellow et al., 2020) are a class of generative models
based on a game-theoretic framework between two neural networks: the generator and the discrimi-
nator. The generator aims to produce synthetic samples from random noise, while the discriminator
attempts to distinguish between real samples from the dataset and those produced by the generator.

However, this setup is often plagued by issues such as vanishing gradients and mode collapse, partic-
ularly when the discriminator becomes too strong, leaving the generator with poor learning signals.
To address these challenges during training, we employ the Wasserstein GAN (WGAN) (Arjovsky
et al., 2017) in our experiments. WGAN introduces the Wasserstein-1 distance as the divergence
metric between real and generated data distributions, providing smoother gradients and significantly
improved training stability, with the loss formulated as:
mén f%llili?l Eimpoa [ ()] = ELop) [f(G(2))],

where f is a 1-Lipschitz function parameterized by the discriminator. Unlike the classic GAN
discriminator, the WGAN critic outputs real-valued scores for how “real” a sample appears, rather
than a probability. To enforce the Lipschitz constraint, weight clipping (or, in improved versions,
gradient penalty) is used during training.

For all simulation experiments, the WGAN is trained for a fixed number of epochs, ranging from
1500 to 15000, with a consistent learning rate and a latent dimension fixed at 50 to handle synthetic
datasets of varying complexity across all settings. In each real data experiment, we adjust the number
of training epochs based on the dataset’s complexity, considering limited computational resources,
and have saved the specific settings for each dataset to ensure reproducibility. We observe that
WGAN exhibits stable convergence under these configurations and is comparable to ReLaSH in
terms of run time. We apply the early stopping mechanism which monitors the generator’s loss,
halting training if there is no improvement for patience epochs to prevent overfitting.

B.7.3 VAE

Variational Autoencoders (VAEs) represent a class of generative models that fuse principles from
autoencoders and probabilistic graphical models (Kingma & Welling, 2013). VAEs learn an approx-
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imate posterior distribution over latent variables by maximizing a lower bound on the ELBO. The
model consists of an encoder network that parameterizes a variational distribution over the latent
space, and a decoder network that reconstructs data from latent codes. The loss function includes
both a reconstruction term and a regularization (KL divergence) term encouraging the latent distri-
bution to remain close to a chosen prior, commonly the standard normal distribution.

In our experiments on real world datasets, we observe that VAE training is significantly more time-
consuming compared to WGAN and ReLaSH. Furthermore, the quality of generated samples, as
evaluated by our downstream metrics, systematically lags behind that of the other generative ap-
proaches in our comparative study. As a result, we exclude VAE from large-scale experiments
involving scalable m, n, p, K to maintain feasibility and focus our analysis on more tractable and
performant alternatives.

B.7.4 FLOW-BASED GENERATIVE MODELS

Flow-based generative models provide exact data likelihood evaluation and support efficient sam-
pling by learning a sequence of invertible (bijective) transformations between the data space and
a simple latent space. The central concept is to represent a complex data distribution by mapping
observed data  to latent variable z via an invertible function f, so that z = f~!(z). The density of
data points can then be computed exactly using the change of variables formula

log p(z) = logp(2) +log |J-1(2)],

where Jy-1 is the Jacobian matrix of the inverse mapping. Typical flow-based models include
NICE (Dinh et al., 2014), ReaNVP (Dinh et al., 2016), Glow (Kingma & Dhariwal, 2018), Masked
Autoregressive Flows (MAF) (Germain et al., 2015), PixeIRNN (Van Den Oord et al., 2016) and so
on. NICE and RealNVP use affine coupling layers and can be flexibly applied to continuous vector
data of arbitrary dimensionality, while Glow, i-ResNet, PixeIRNN, and some hierarchical models are
specifically designed for image generation and utilize architectural components that exploit spatial
locality and dependencies within images. These designs are less suitable for plain vectors where
such spatial structure is absent, making direct extension to general vector-valued data challenging
and sometimes inefficient.

In this work, we select ReaNVP because of its modular structure and its generalizability to vector-
based data. For all experiments, the ReaINVP is trained for a fixed number of epochs with a con-
sistent learning rate. For optimization, we use Adam (Kingma & Ba, 2014) and follow the schedule
therein. To enhance the robustness of the algorithm and prevent overflow of values, we apply stan-
dardization in the training and generating process. Also, we apply the early stopping mechanism
which monitors the generator’s loss, halting training if there is no improvement for patience epochs
to prevent overfitting. The run time of RealNVP is about double of Gau-Diff, while the metric results
are quite similar to the compared methods.

C PROOFS OF MAIN RESULTS

Proof of Theorem 1. Suppose two sets of model parameters (Py,Z, «,v,B), and
(Py+, Z',a/,~', B’) yield the same distribution for hyperlinks and attributes, i.e.,

a+ 22U Lo 4 770 and v+ BU? £y 4 pU0Y

First, by taking the mean on both sides, we obtain o = o’ and v = 7/, thus we have

ZU@) £ 777" and BUtD £ 'yt

Next, we demonstrate that P;; and Z, B are identifiable up to sign permutations. Suppose there exists
an invertible matrix A such that U¥’ £ ATU®3) and define Ep, [TIUTEIT] = 1777 =

D and Ep,, [UP'UET) = LZ/T 7" = D', both of which are diagonal matrices with distinct
positive diagonal elements. Thus, we have:
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Apa T = tagrga Ty [y @)
n n u’
= ATEp, [UPPUPT)A = ATDA,

which implies that
D =AATDAAT 2 (MD?)(MD?)T,

where M = AAT. By the Cholesky decomposition, we conclude that M Dz = D=W for some
orthogonal matrix W, meaning that W = D’%MD%, and I = WTW = D’%MTMD%, i.e.
M2 =1, and M is positive semi-definite. Therefore, M = AAT = I, A must be an orthogonal
matrix. Furthermore, since AT DA = D', where both D and D’ are positive diagonal matrices with
distinct elements, we deduce that A must also be a sign permutation matrix. Therefore, we conclude

that U3 £ ATU(3) and 7' = ZA~ 7, ie., Py and Z are identifiable up to sign permutations.
To resolve the identifiability issue up to column sign flips during estimation, we fix the sign of all
coordinates in the first row of U,,.

Next, suppose there exists an invertible matrix F' such that U(12" £ FTy(2) and B’ = BF-T.

_(Fu1 Fip .
Let FF = <F21 F22>,sothat.

v L pTU® 4 FLU®, and U £ FLUD + FLU® .

Since we have already shown that U(2) £ [7(2)"_ it follows that
0 = Ep,, U U@ T )= Ep, [UDUDT] + B Ep, [UPURT] = B Ep, [UQURT),

Ep,, [UP'UP T =FEp, [UNUPT] + FyEp, [UPUPT] = FyEp, [UPTUPT],
thus, Fo1 = Ogyxky» Fo2 = Ik,, and Fio = Ok, xk, -

For the loading matrices B and B’, we have:

B Boi\ _p_pgpT_ By By \ (KL 0 _ B F\y By
Bis B Bi, B 0 I, By, F\y By)’
which implies that B}, = By and Bj, = Bas.

/
Under condition (C3), we assume that B] = (g}”) and B; = (gi;) both contain unit lower
12
triangular matrices, i.e., By; and Bf; are both unit lower triangular matrices. We conclude that
Fy1 is a unit upper triangular matrix because By; = B, F}|. By checking each of the diagonal
elements of By; and BhFlTl, we can conclude that all the off-diagonal elements of F; should be
0, i.e. F11 = Ij,. This leads us to conclude that U () and B are both identifiable, and the strict

identifiability holds for all parameters.

On the other hand, if the identifiability condition is (C3) %BTB = Iy, it follows that F; = I3.

It’s also easy to show that with (C3**), F; will be a sign permutation matrix, and the identifiability
can be resolved by arranging the sign of the first column in each matrix. In practice, we use (C3) or
(C3*¥) instead of (C3*) because it offers a more natural estimation procedure.

O

Remark 5. In the case where the true parameters (Uy,, Z, B, «, ) do not satisfy the conditions in
Theorem 1, we can apply the following transformation w.r.t. the observations.

Firstly, compute O™ and ©X as defined respectively. Define o* = o + %ZU},?‘{S)TI,W and v* =

v+ LBULY 1, and let U = J,,Up.
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Secondly, we transform (U,,, Z, B) such that ©X and ©" remain unchanged and the orthogonality
condition U,(f )J_U7(,L1)7 Uf,?) is satisfied by orthogonal transformation. Specifically, let

U(l)// — (Im _ U(Q)/(U(Q)/TU(Q)/)_1U(2)/T)U(1)/7

U(S)/I _ (Im _ U(2)I(U(2)/TU(2)I)71U(Q)/T)U(S)/.
To preserve the matrix product, we update By = By +(U@'TURN1y@ Ty BT and 7" =
Z3 + (UATUONH-y@ATUGY ZL . Then combine U = [URr y®)"].

At this stage, we need to rotate (U,,, Z, B) to satisfy the conditions (C2) and (C3). Let V =
diag(0},03, ..., 04 1), where o7 > 03 > --- > op_ . are the eigenvalues of

L(Z/TZ/)I/Q(U(%)//T Uy (2T 7)1/
mn ’
and let T be the (ko + k3) x (k2 + ks3) matrix whose columns are the corresponding eigenvectors.
Define U3 = UG and Z* = Z'G~ ", where G = (Z'7 Z' /n) /2T V=1/4,
Similarly, let W = diag(03,63, . ..,0% ), where 63 > 035 > --- > 07 are the eigenvalues of
1
mp

(BIB1)1/2(U(1)HTU(1)N)(BIB])1/27

and let D be the ki x ki matrix whose columns are the corresponding eigenvectors. Define
UV = UV'K and Bf = BiK~", where K = (B] B1/p)"?DW~Y4. Finally, we take
B* = [Bf Bjl,andU* = [UM* U+

Thus, we obtain the transformed parameters (U*, B*, Z* «*,~v*), and the transformed parame-

ters of distributions (0%, ©H*) = (06X 0M), meaning that the distribution of hyperlinks and
attributes remains unchanged after the transformation.

Remark 6. In general, if the true Py and Z, B, o,y do not satisfy these constraints, a transfor-
mation of Py, Z, B, o, can also be made so that the constraints are met, and the distribution of
hyperlink and attributes remains unchanged.

Firstly, define & = o + ZEp, [U?] and 5y = v + BEp, [U?)], and let U' = U — Ep,, [U].

Secondly, we transform (Py, Z, B) such that the distribution for hyperlinks and attributes remain
unchanged and the orthogonality conditions Bp, [UP UM T) = 04, xp,, Ep, [T U T] = gy ks
are satisfied by orthogonal transformation. Specifically, let

U(l)/l _ U(l)/ . E[PU [U(I)IU(Q)IT](]EPU [U(Q)/U'(Q)/T])fllj’(2)/7
U(3)// — U(3)/ _ E]P’U [U(3)/U(2)/T](EPU [U(Q)IU(Q)/T])_lU(2)/.

To preserve the matrix product, we update By = By +(Ep, [UR U T~ 1Ep, [T T B
and 74" = Z3 + (Ep, [UD' U T 1Ep, [UR' UGV T Z.

At this stage, we need to rotate (Py,Z, B) to satisfy the conditions (C2) and (C3). Let V =
diag(o%,03,..., 04, 1 1.), where i > 03 > --- > o}, are the eigenvalues of

l (Z/TZ/)I/Q (EIPU [U(23)//U(23)//T])(Z/TZ/)1/27

n
and let T be the (ko + k3) x (ko + ks3) matrix whose columns are the corresponding eigenvectors.
Define U = GTUP and Z = Z'G~ ", where G = (Z'7 Z' /n)'/?Ty—1/4,

Similarly, let W = diag (83,03, . ..,0p ), where 63 > 65 > --- > 6% are the eigenvalues of
1
5(3331)1/2(]&9[/ [T (B By,

and let D be the k1 x ki matrix whose columns are the corresponding eigenvectors. Define v =
KTUW and By = B1K~ ", where K = (BlTBl/p)l/QDwfl/zl.

Thus, we obtain the transformed model parameters (P, B, Z,&,7), keeping the distribution of
hyperlinks and attributes unchanged after the transformation.
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Proof of Lemma 1. In the following, we slightly abuse the notation by letting (x) denote the count-
ing measure when z is discrete, the Lebesgue measure when x is continuous, and the product of the
counting measure and the Lebesgue measure when x involves both discrete and continuous compo-
nents.

‘We can see that

dP E.X,U
S (B X U)

dKL(P(E,X,U)HP(E,X,ﬁ)) = EIF’(E,X,U) log dIP(E-Yx,U)(E,X,U)
| (—aExs  (EXU)

APy ([n] (B} {XD)|U.Zn .o, B.y) dPy (U)
L | anCA 2,60 (X Uy (U)
= LPex,u) (108 TP

H([n] (B} (X0, 2.0, B.y) dPy (U)
L dp(H([n] {E}.{X})) (B, X,U) )

le’U((L;)( )
du(0
= EP(E,X,U) IOg ‘ﬂ;:"JT)([]) = dKL(PU”Pf])
L au(0)
O
Proof of Theorem 2. We’re going to show that
dkr, (P(E,X,U) || P(Evf(yﬁ)) = A(ZH,B,Q,'\/)—estimation + AIF’U—estimalion + Alatenl—reconstruction7
where the three components are given by:
AP ([(n].{B} (X}U. 2, B.a7)
A g, log O (E1, ) (B, X, )
(Zn,B,a,y)-estimation (B,X,U) dPH([n] (B} AR} %0, B.6.4) (E )
dp(H([n] {E}.{X})) e
dPy dP,
dPy (U) U) =)
du(U du(U du(U
AIP’U-eslimation = E]PU log % + E]PU log ;}»/7) g 5[;/”7)
m U
d,u(U)( ) U) dp(0) (U)
P
du((/{lgb) (U)
Alatem-reconstruction = EIP’(;{"L IOg daP’-
u
du(D) ()
Here, P;; denotes the marginal distribution of the estimated attribute embeddings {1, - , @y }

given the ©observed U, and we assume absolute continuity of all log-ratios with respect to a common
base measure L.

Note that

dkr (P, x,0) ||P/(E’j(,(}))

dP

d,u((§’§)[(]J)) (EaXv U)

= EP(E,X,U) log dPEE <o

du(B,X.0) (B, X,U)

APy ([n] {BY (XD |U.Zn.B.a.y)

_&, log 4t (8. e (O X Uty (U)

(e ol (B)AX)10.20.8.85) (X, U)- o

L du(H([n],{E},{X})) du(U

APy ([n] (B} (XD |U.Zn.B.a.y)

= log  —autrttaltEy. gy (B X U)
P, x0) AP (0], (B} {X})|0. 2 B.6.A) (B, X,U)

L du(H([n],{E},{X}))

dP
ann (Y)

+Epip x0) {1089 7
du(U)( )

U
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Here, we denote

APori((n) (B} (XD)|U.Zn.B.a) ([ U

Ato poro log § ety ixh) - (B X U)

(Z5,B,a,v)-estimation (B,X,U) dp?-t([n],{é},{X})\ﬁ,z"n,é,a,:y)( U)
b )

dp(H([n) {E},{X}))

: AP ([n] {E} {X})|U. Zp . B.ay) AP (n] (B} AR})|T. 20 . B.6A) . .
since MEDRIARS ) (E,X,U) and P MCTORENEAY) (E, X,U) only differs in

the estimated version and the true (Z,,, B, a, ) with the same (F, X, U) plug-in.

To decompose the second term, we consider

dPy (U) dPy (U) u,ﬁ( )
du(U dp(U du(U
Ep s x vy |108 51;'.) = Epp x.0) |108 d?li’(») +Epp x0y |log g]}g’.)
() T (U] 2 (U)
ap(U) o ap(U)
dP
Lo (U) &)
du(U du(U
= ]EPU log % } + ]EPU log ﬁ
du(U)( ) du(U)( )
Py, P,
2(U) 2 (U)
dp(U) dp(U)
—]E]pam log 7, o +E]}»L~{m log K o
du(0) du(0)

The first three terms primarily depend on the distance between Py and IP; , and are collectively
denoted as Ap,, .estimation- The final term corresponds to the diffusion error on observations of Py, ,
and is denoted as Ajent-reconstruction-

O

Proof of Theorem 4. Denote H = {hji}jen)icim] and X = {Zji} c[n],ic[m] as the hypergraph
connection matrix and the attribute matrix, respectively, where hj; = 1(;c. 1 and xj; represents
the i-th attribute associated with hyperlink e;. We consider minimizing the objective loss function

L(U, Z, B, a, ), and the optimal solution (U, Z,B, a4, %) implies that

0<L(U*,Z*,B*,a",y*) = L(U, Z, B,&,%)

N hi(Of — 05 = (fu(O)) — fu(05%))

=1 i=1

+A 2;:(0% — O%*) — (fx(0F) — fx(©%"))
j=11i=1

S A * * 1 A * A

= 3D O — O (s — S (O) = 5 IH (OO — 6l
=1 i=1
A SO - X w037 - Lk (@X)eX - X2
Ji i J X Jji 9 Ji ji Ji ’

j=11i=1

where C:)ji = aji(:);g +(1- aji)@;-g*, and éﬁ = aji@ﬁ +(1- aji)G)ﬁ* for some aj;, b;; € [0, 1].
Here, we have fy(z) = log(1 + exp(z)), and fx(z) = 322. Denote Ey = H — f;(©7%),
Ex =X-—f% (©X*). Since we require that both true parameters and estimated ones should belong
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to the feasible parameter space F(©), we have the above equation transferred into:

1 ~ N
Liin(min  f(©2). 00 [
i,7,0H e F(O)
L i e A *
<  Juin nemet —ef ||%+*||@X—@X %
1,7,0H € F(O)

<< Eg,0" —0M"* > 1\ < Ex, 60X —0X* >
< || Eg ||orank(6F — ©1%)||6 — 0% || p + \||Ex|2rank(©% — ©%%)(|6% — 0% ||

< \[20ka + ks + DIBa]3 + 2k + ko + DR Ex [31/[07 - 072 4 [6% — 0|12

= \/Q(kz + ks + DI Exll3 + 20k + k2 + 1) Ex |30 — 07 .
Note that min; ; 5r¢ 7o) f}j’,(éﬁ) 2 exp(—Ci,p), we should consider the bound of
Bl [ Ex|l2-
For || Egr||2, we prove that P(||Ex||2 2 v/(m V 1) exp(Gim, ) log((m A n)/e)) < e. Let
B = (M 1Y
we have Amax(EfErr) = Amax(EfEm), so that ||Ex|l2 = ||Exm|l2. We introduce Lemma 4 to

bound it.

Lemma 4 (Theorem 5 from (Chung & Radcliffe, 2011)). Let X1, Xo,--- , X, be independent
random n x n Hermitian matrices. Moreover, assume that || X; — B(X;)||2 < M for all i, and put
v: = |3 Var(X;)||2. Let X =3, X, then for any a > 0,

CL2
P X —E(X <2 521 onma/2 )
(IX ~ E(X)[|2 > a) < nexp< 2u2+2Ma/3>

Let £’/ be the (m + n) x (m + n) matrix with 1 in the (j,i) and (i, j) positions and 0 elsewhere.
Therefore, we represent Ep; = S Y Y = 5 S (R — o(©F%)) EZ™ . Note
that EY 7™ = 0 40) x (men)» Y772 < 1, and E(YP4)2 = (0(01%) -0 (©1%)2) (BT +
EmtimE) thus

v = ZZE (Y3m+i2||, = max{max Z @H* — o ﬁ)Q max 0(@%*) - 0(@%)2}

j€[m] i€[n]

j=11i=1 j€[m)]
< (mvVn) maxo(@H*).
YK
For any ¢ > 0, we take a = \/S(m\/n) maxj’ia(@ﬁ*)log@(m\/n)/s), and note that

exp(@m.n) 2 (m An)~tlog((m An)) implies that there exist large enough m, n s.t. exp(&m n) =

~ ~

(m A n)~'log((m A n)/e), and max;; o(©5*) > 3(m A n)~tlog(4(m A n)/e). Therefore,
(m V n)max;,; o(05*) > 2\/3(m V n)max;; o(©*)log(4(m VvV n)/c)/3, and Lemma 4 im-
plies that

P(|Exll2 2 \/ (mV n) max o (07*)log(4(m v n)/c)))

7,1

3(m V n) max; ; o(©5*)log(4(m V n)/e)
2(m V n)max; ; o(O5*) + 2\/3(m V n)max; ; o(©4)log(4(m VvV n)/e)/3
< 4(mV n)exp(—log(4(mVn)/e)) =e.

< 2nexp(—

)

Moreover, note that exp(@m, ») < max; ; o(©*), there is

P(|[Exl2 2 \/(m V1) exp(@m,n) log(4(m vV n)/e))) <e,
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then the desired result follows.

For ||Ex||2, note that the noise term is sub-Gaussian with zero mean; therefore Theorem 4.4.3
from (Vershynin, 2018) implies that

P(|Exll2 > CK(vm + /p + 1)) < 2exp(—t?)
for some constant C, and we also have K = max; ; || Xji|ly, = maxiep) [let]ly, as a bounded
constant, since the noise term is assumed to be sub-Gaussian, therefore we have ||Ex|2 =

O,(v/m + p).
In all, with the assumption that exp(&m, ) < exp(—Cp, ), We arrive at the result that

vV (mV n) exp(am,n) log(m vV n) + 4X2(m V p)
(exp(—Chmn) A N) '

1© - ©%|lFr =0y <
O
Proof of Theorem 3. By taking the hyperlink and attribute F', X, and the corresponding embedding

U as random parts of the random function, we have:

O (21, 05) =l (2,05 | B, X,U) = Liep(U® T2 + o) —log(1 + exp(U T z; + o)),

1
a(biy i) i= La(bs,yi | B, X, U) = 2;(v; + U b)) — 5(%‘ + U2 Tp,)2,

where b; denotes the i-th row of matrix B, so as the lAJl and z; denotes the i-th element of the
attribute vector X.

Then we expand two error terms to the second order:

5 1/ —5\" 5
O (ziyaq) — 01 (30, &) = VL (3, 6u) T <ZZ Zl) + = <ZZ %l> V24 (%, &) <ZZ Zl) )

o — G ) 2\ -y a; — &

bi— b\ 1 (b—b) bi — b
la(bs, i) — Ca(bi,5i) = VO Bifz'—r(i_f)Jr(i_f) V205 (b, (i_ﬁi)>
2(bi, Vi) — La(bi, i) 2(bi, i) i) Tl =4 2(bi, Vi) Y

for some (Z;, &;) being the linear combination of (z;, «;) and (2;, &;). Note that
o 7(23) exp(UPDT 2, + &) (U@3
Vi (2,00) =1, - A )
1(Z (67 ) (S < 1 1 + eXp(U(Q?’)Tzi i Oél) 1

exp(UPT 3, + &) U@\ e\ "
(I+exp(U 7Tz +a))? \ 1 1

V201(3,64) =

for the ¢; error, and also

“ R (12)
Vo (bi, 4i) = (i — (5 + U D) <U1 > :

T
9, 7 A\ _ U(12) U(12)
V 52(%%) - < 1 1 .

To consider the

A(Zn 1B»0l7’)’) — estimation

dPH(["]v{E}Y{X}\U,ZH,B,(,, )
L ELIXD) (E,X,U)

:EP(EXU) log = (] {E} X))
X, H(n],{E} {X}|U,2n,B,&,7)
- By X U)

dP’H([n],{E}\U(23>‘Zn,n/) d]PH([n]‘{XHU(l2),B,'y)
_E tog  —aeertal. e EOVL ) oy (X O)
(=0 TPy (], 1811029, 2 ,0) (E,U) TPy (1, 1231002),8,5) (X,U)

dp(H([n].{E})) dp(H([n],{X}))

=Epy.0, Z 01 (20, ;) = 01(2i,644) | + Epiy ) Z Ca(bs, i) — L2(bi %) |
i€[n] i€[p]
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we should analyze the expectation over (E, X, U) by first conditioning on U, i.e.,
IEIP)(E U) ‘gl (Zi7 ai) 4! (217 é‘z)|

= EPU]EP’H( n],{E}|U) [ (2, i) — £1(Zi, Gy)|

‘- expUTzi+ ;) exp(UPT2 4+ 4y) CONMS
=Ty exp(U) Tz + ;) 14+exp(UT3; + &) 1 a; — &
LE |1 eUTE A (m—z (U (U (-
U2 (14 exp(UPITE + @))% \i — @ 1 1 a; — @

exp(UPHT 2z + ay) B exp(UPHT 2, + &)
1+exp(UPHTz +a;)  1+4exp(U) Tz + ;)

~ 2
Zi — 2§
Oéifdi

Z; — 21‘
a; — o 2
(23) 23)\
+ C1 exp(Qm,n) Amax ([EPU <U1 ) (Ul )

where we can further expand
Ep { exp(UP Tz + o) B exp(UPT 2, + &) H
YU +exp(UE) Tz + ;) 1+exp(U) Tz + &)
exp(U(23)Tzl’- + o) ((](23)>—r (Zz _ 5’1)

- (1+exp(UPT 2L+ a}))? 1 a; — &;

U Zi— %
1 a; — di

Therefore, by combining Assumption 2, we have
Ep g 0 [01(2i, ) — €1(2i, 44)| < exp(Qim,n)

)

2

S Cl eXp(am,n)EPU

2

Zi—éi
O(i—ééi
()
Vi — Vi
) <

2

2

2
And also, for the attributes part, we have
EP(X,U) |£2(biv %) — o (i)zv '3’1)'

a2\ "
= Ep, Ep (z: — (B + UMD Thy)) (U )

x|u(12) 1

S () 6
2\ — i 1 1 Vi — Y

3o (bi—b T a2y fpaN " b,_g

27 \yi — % 1 1

3 U(12) U(12 b —b

o (3| (157) (1) DH(

By combining the results above, we have

IN

IA

~ 2
[y
Vi —’%’ 2

A(ZmBﬂ,'y) estimation

=Bppp | O Gz, ai) = (2, 4:) | +Eryyy | D C2(bisyi) — C2(biy5i)

i€[n] i€lp]
< Z Ep g o 101 (205 i) — b1(24, 66)] + Z Ep .o [€2(bisvi) — Ca(bs, )|
i€[n] i€[p]
n 5 3 2 p b B 2
< exp(@mn i Zi n <z_’b)
p( ); (ai_ai) 9 ; Yi =i/ o

= exp(@mn){1Z = Z|3 + & — al3} + {I1B = Bll% + 17 — 3},
then by combining Theorem 5, the desired result follows.
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Proof of Corollary 1. First, due to the identification conditions, we have

ki v
thus
AT T X
1m[‘i“ -1, a*} <H1 17 (6 — @)‘ <16 - 0*|r,
ol K -
F
ie.,
al’ a*]’ 1 4
v < —— 6 = 0% ||r = Op ().
'M i £ 18- 0%l = Oyl6mn

As a consequence,
U@ ZT @) z:T |,
= 10" =0") = 1(a = a")T|lr < I(O7 =07 |F + |1n(d =) T|r
< 2|(07 — 0™)||lr = Op(VMbynnp)-

I A - 1 23)% 7xT
Let 01,09, ,0ky+ks and 61,02, - ,0k,+k, De the singular values of WU( »*7*T and
an(Q?’)ZT respectively. Further let e1, e, ,eg, 1k, and é1,€2,- -+, €k, 1k, be the corre-

sponding left singular vectors. Under the identification constraints, the k-th column of U(23)* is
V/maoyey, and the k-th column of U3 is \/mé.éy.

According to Theorem 3 of (Yu et al., 2015), we have

] v
mln{ak_ak+1’ak 1 Uk}

23)ZT U(23)*Z*T)

llex — ékllz < ;
F
and by Assumption 2, there is ||ex, — é;||2 = Op(iném,mp) forany 1 < k < ko + k3.
Also by Weyl's inequality, |0y — 63| < || 4= (U ZT = UED*Z*T) o), = Op(=0mnp)- Let

U 01%3) denote the k-th column of U(23)*, 723 respectively, we have

) ko+ks 93 (93 ko+ks3
||U(23)* _ U(23)||F < Z HU,i )x U}E )”2 =vm Z |oker — Grérll2
k=1 k=1
ka+ks

<vm Y (Wor = Véul + Vorller — éxll2)
k=1

ko+ks ~
ok — G| é = vm/n
< \/> Z <\/7+ f + \/ﬁ\lek - ek|2) = Op( / 5m,n,p)~

Similarly, we can prove that |Z — Z*||p = Op(6m.np) by considering about the right singular
space.

On the other hand, we have
|UUBT — U2 BT = (6% = 0%*) = 1,(§ = 7") T |Ir
<O —=0X)|p + 11m(F =) Tr = Op(VMbpinp)-

To consider about the error between B = [B1 BQ] and B* = [Bf DB5], we construct the error
rate for By, B, respectively. According to the orthogonality between U1, 72 and UM* U(2)*,
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we have

| By — Bi||p = [[(OUPTU)1gATOD BT — (T y@x)-1g@=Tya2spT)
< (OOTT@)GOT || T BT — g2 BT | 4 U0 BT
[(UDTO@)1gAT _ (U@ Ty@x)=1y@=T,
< 1 [T BT — g2 peT |,
minkzlﬁ'“:szrks moy

+ Ca|(UPTUE)TOOT — (U Ty Tty @ T

= Op(Omn,p),
T)Trr)N\-177(2)T 12T el ... 1
because the rows of (AT @)~ are —=—=¢é; , \/W €g mek , and the rows of
(U@Ty@)=1y2)=T are \/anyelT’ \/%e;, e \/%622. Denote U]i ),U,iZ)* as the k-th
1 ‘mo MGk,

row of 0(2), U+ | = 1,2, -, ko. Therefore, with Theorem 3 of (Yu et al., 2015), we have

” (U(2)*TU(2)*)—1U(2)*T o (U(2)T0(2))—IU(2)T ||F

ko ko
< Z 102 vl = =
k2
1 1 1
< — er — €k )
%2( - Fku s
k2
1 |0’k—0'k| 1 R )
< — e —¢€
T i (e v+ v
1
= Op( 7y Omn):

Therefore, with || By — Bj ||, we have

IO By U B ||p < U = U™ ||| Ba|lr + |UP* |2 By = B3|
< Pk Co|UP — U5 + e Vmay|Bs = B3|k
€lr2

= Op(Vmdmnp),
and finally we arrive at

I0WB U B |p < (O BT —U*B*T) — (UPB] — U B])|r
<NOWBT —U* B T)|p + (U B; —UP*By))|r
= O0p(Vmbpm np)-

Similarly, we denote 01,09, ,0k, and 61,02, -, 0k, be the singular values of ﬁU(l)B;—

and ﬁ(] (M BT respectively, and further let f1, fo, - - , fx, and f1, fo, - - , fx, be the correspond-

ing left singular vectors. Then under the identification conditions, the k — th column of U(M* is

V/md} fr, and the k — th column of U™ is v/ mgkfk By applying Theorem 3 in (Yu et al., 2015),
we have

V2

A 1
T = frll2 < — H
” ” mln{é,f k+1751% 17 k} VI

= Op(%ém,mp)

(UWB —uW*B

F
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forany k = 1,2,--- , k1. And by Weyl’s inequality, |0, — 65| < \| (U<1>BT UDBlop =
Op(%‘sm,n,p)- Let Uél)* U,gl) denote the k-th colunm of U(1)*, U(l) respectively, we have

”U(l)* ||F < Z ”U(l)* U(l)H2 \/72 H(Skfk — 5kfk||2

k=1

< mzuﬁ— Vil + Vol fe — ill)

= i 5k| k= Jkl2 | = m/po. .
\/72 (\/> \/>+\/>||f f | > Op( /p m,n’p)

Similarly, we can prove that ||31 — Bf|lr = Op(0m,n,p) by considering about the right singular
space. By combining the results together, we have

2 * m(n+p) > *
HU -U HF = Op ( W(Sm,mp) ’ ”B - B HF = Op(6m7n,p>-

O

;n . u§2)/u§z)/T H

Proof of Theorem 5. According to Assumption 2, we first prove that [|-- >°

O(0?, ,, ) forboth i = 1,3. By directly calculating
L~ @ (0 @ @y, 0 Lo, 0
2)1 (i) . 2 2 i N T
I 2™ IIF—IIE;{% —%@uj B = Y e

m

—||—Zu u Zu(z /m)( Zu(z)/m s

1 & (2
<= +||Zu“/m||FHZu fmllp = 007 0,):
j=1

there is also || -1 U@ = 0(a?, n,p) forany i =1,3.

Denote (U*, Z*, B*, a*,v*) as the transformed version of (U, Z, B, «, ) accordng to Remark 5.
Then we can analyse the errors as follows.

. 1 1~ (23
lo” = ally = | = ZUS T Llla < 1 Z]l2ll >~ 0 2 = O(Vnom.ny).

j=1
. 1 I & (12
Iy =2 = I BUSD Ll < B2l = >~ ™ 2 = O(Vbom.np).
j=1

[T — U || < UE = UZD | o+ JUE — U<23>*||
< = GpUC |+ U — US| g,
IO —UD e < [UD* —UD || + U - U(””IIF
<= K||p|UY" g+ [UD —UD"|
IBf = Billr < |BiK™ T = Billp < |Billplll = K~ |,
12* = Zle < 112" = Z' e + 112" = Z)e = 2|6l T = G|l + 12/ = 2]l
Note that G, K can be decomposed into
IGlle = (Z2"TZ' [n)! 2DV
<22 ) 2T = 1 e VYA e + 112772 /)2 | VA
1K e = (B Bi/p) > DW=
< I(BY Bi/p)Ile|D = e W™l r + (B Bi/p) 2l
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We first analyze the error bounds of GG, K related terms.
With Assumption 2, we have
1

(Z/TZ/)1/2(U(QS)//TU(%)//)(Z/TZ/)1/2 _ (Z/TZ//n)Z
mn

F

l(Z/Tzl)I/Q(U(23)//TU(23)///m _ ZTZ/TL + ZTZ/n _ Z/TZ//n)(Z/Tz/)1/2
n

F
< (272 )2 |0 T i~ 2T 2l g+ |1 27 20~ 277 Z' ]

_ ”Z/"I'Z//n“2 [||U(23)NTU(23)N/’ITL o ZTZ/TL”F + ||ZTZ/TL _ Z/TZ//n||F:| )

By Weyl’s inequality, we know that the 2-norm of Z’'T Z’ /n can be bounded by both || Z T Z/n||,
and a permutation term, i.e.,

1272 [nll2 < |27 2" fn = Z7 Z/nll2 + | 27 Z/nll,
where | ZT Z/n||2 = O(1). Note that

Zh Zhy — Zy Zy (Z4" — Zy )Z3
74 (2 — Zs) 0

—~

lZ/TZ/—lZTZ:
n n

Sl 3=

ZF Z3T93T 00 + TosTLu 73 Zy + TooTdu 74 Z3T9sTay ToaT 23 Zs
74 73725729 0 ’

where we denote 'y = (U(z)’TU(Q)’)*l, o3 = UG TUR) hence

1 1 4 1
H;Z’TZ/ - EZTZHF < EHZQTZ:SF%FMHF + E||F22F2T;323TZSF23F22HF

4 1
< E||Z;Z3||F||F23||FHF22||2 + 5||Z3TZsHF||F23H%||F22||§
= 0(07,.np)
according to Assumption 2. Also, here we bound ||T"22||2 by Weyl’s inequality, i.e.,
1 1 1
_ ) Trr(2)y—=1y — .
[T22]l2 = omax (U U)70) e (T 7@ =< o (U UD) _ g2 O(—)-
min\{YUm m m,n,p

Therefore, || Z'" Z' /n||s = O(1). Next, we consider about the error bound of ||U23)" T {7 (23)"" [y, —
Z " Z/n||r by decomposing it into

U TYE 1 77T Z || < U TUE jry g @ITy@ /)
+ | UBTUE fy — ZT Z /|| p,
where the latter is of O(U'?n,n,p)' For the former, we have
Uy g @T @)

1 0 U TG —yer
~m (U(S)// _ U(S)/)TU(Q)/ UIT@r _ @) r3)

1 0 _y@TG)y
= m \ BTy _pgGyT [U(Q)I(U(Z)/TU(Z)/)flU(Z)/T]U(S)/ )
whose F-norm can be bounded by considering

||U(23)IITU(23)///m _ U(23)/TU(23)//m||F
1
< — (QHU(2)/TU(3)/”F + ||U(2)'TU(3)'||%||F22||F> =0 (o'fn’n,p) .

To sum up, we have
’ 1

(Z/TZ/)1/2(U(23)//TU(23)//)(Z/TZ/)l/Q _ (Z/TZ//n)Q
mn

=0(2, ,,.)-

m,n,p
F
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Therefore, by Weyl’s inequality, we have

07 —0i((Z"7Z" [n)*)| < Olo7 ),
and accordingly,
0 —0i((Z2'7 2" /n)*)| _
it ol 2T )
P — O ZITZ/

02 027 2 )| = 2 E oz ),
pi’” +0i((Z77Z [n)/?)

;2 =027 2 )TV = 1o Pl = 0i(27T 2 )P |oi (27T 2 )T = O(02, )

7 7 m,n,p

\pi —oi(Z'TZ In)| =

Regarding the singular vectors I', we further denote T as the singular vector of (Z'T Z’/n)? and
apply Theorem 3 from (Yu et al., 2015), then there is

IT = Ilp <0 =T'|lp + I = I||r

1
=0 - Z/T Z/ 1/2 U(23)//T U(23)// Z/TZ/ 1/2 Z/TZ/ 2
(|22 W22 (2 2 )

F

(27 2y (ZTZ/n>||F)

= 0(07,,0,)-
Regarding the singular value matrix V, we have
V=4lr
<V (2T Z )T P+ (27T 2 )T (2T 2 )T R e+ (27 2/0) T |
< Vo + kzmax |p; ' ? — 0:(Z27 2 Jn) V) + (27 Z' n) V2 — (27 Z/n) "1/
2 3 INe& |Pz i F
+ 127 2/n) | r
=0(1).
To sum up, we have
IGIF <1272 /n) 2|2 (I = L]lp + 1) V4
= (272 )|l (IT = I[p + 1) [V = O(1),

On the other hand, we should estimate the error bound of || — G~T||r and |G — I||F in order to
bound || Z* — Z||r and ||U* — U||p. Note that

I =G llr =11 =G r < IGTHFIT - Gllr,
where
G~ p = VA2 T2 )= 2 e < VYA — e + D127 Z' /0) 712 p = O(D),
I = Glle=I1— (2722 e+ (27 2) 2| pl ] =Tl r Ve
< @2V PIeZ T2 =V e+ (27T 2 P eI = T E VT e
< 007 np)-
Therefore, we reach at the result that
17 =G~ llr < IGTHIFIT = Gllr = Oo7, )
Similarly, we estimate the error bounds of ||/ — K|| and ||I — K~ || by considering about
1
Hm*p(BlT&)1/2(U(l)"TU(l)”)(BIBl)l/Q — (BI B1/p)’llr
< ||mip(BIBl)l/Z(U(l)HTU(l)N _ U(l)/TU(l)/)(BlTBl)l/QHF
1
+ ||5(3331)1/2(U(1)'TU(1)’/W — B B1/p)(B{ B1)"*|I

1
— E||B;FBl/pH2||U(1)//TU(1)// _ U(l)/TU(l)/HF
+ 1B B /pl U TUY Jm — B, [UDUDT]|
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where
||U(1)//TU(1)// _ U(l)/TU(l)/HF — HU(l)/T(U(2)/(U(Q)/TU(Q)/)—lU(Q)/T)U(l)/”F
< NUDTU | Toal| e = O(mary, ).

Therefore, we have

1
s (BY BOY 2O U B BYY? — (B Bi/p)*lr = O(07,,)
By Weyl’s inequality, and note that W = diag(of,---,07 ) is the eigenvalue matrix of

(B{ B)Y2(UMW"TyMmy (B By)'/2, we have

|62 — ((B{ B1/p)%)u| < O )

37 — ((B{ B1/p)*)iil
6; — (B B ii:|z - = =000, ’
| (By B1/p)iil 8 + (B B1/p)ii ()
. (pT g
16172 — (B B1/p)"/?)ui] = 1/|2(Sz i Bu/plal 007, n.p)-
6,/ + ((B] B1/p)Y/2)s

Similarly to our analysis on GG, we use Theorem 3 in (Yu et al., 2015) and obtain the error bound of
singular vectors as

1
P

I = Dllr = O(o7, 1. p)-

m,n,p
Regarding the error bound of ||/ — K ||z and ||[I — K~ ||, we consider
W4 |e < WY = (B{ Bi/p) 2| + (1B) Bi/pllr = O(1),
1K |[e < 1B Bi/p) 2l W 4plD = Illr + (B Bi/p) 2|V~ = O(1),
and then
1= Klr
= |lI = (B{ Bi/p)"2DW~*||p
<= (B By/p) PW= 4 p +II(B] B1/p)' 2| pllD — I ¢ [W |
< I(BY Bi/p) (B Bi/p) ™ =WV |p + [(B] Bi /) ?|lp| D = I eV~
< O(a,%%mp).
Similarly, there is
1K= |m = [WYADT(B] B1/p)~"?||r
< [WYHIRIDT = 1| ll(B{ Bi/p) ™ 2llr + W12l (B Bi/p) |1k
= 0(1),
and then

1=K~ p < |E el = Kllp = O(07,0,)-

Now, we go back to the analysis of error bounds for embeddings and parameters. According to the
process of transformation, there is

[UCD* —UCD | p < U — US| p + U — UCH*||p
< |11 = Gp|UP||p + U — U2 p
<= Glr(IUZP e + 1T — UG || p) + U — US|,
where
[T — U5
= U — U@ %+ U —UP|%
< |U® —U@|% + (U U | p + U —UP || p)?
<|UP —UR|F + U U5 + U — U5 + 21U —UD | p| U - UD | p
< U —UD|5 + [USTU | Z Do ZNUP |7 + (U —UD (7 + 21U — U pl|UP — U ||
= O(ma2 ),

m,n,p
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thus
[UE*—UE | p < =Gl (UG AU US| 2) U US| = O(Vmomnp)-
Similarly, we have
o = o <UD = U |[p+ UG = U
<M = K[r|UD"|lp + UL = U || p = O(V/momnp)-

therefore, the overall error bound of hyperlink embedding U* is

0% = Unlle = 00"~ UL+ |0 — UG 3 = O i),
For the node embeddings, we have the following:
1z = Z|p <12* = Z'|p + 12" = Zllr =1 Z'|lp | = G Tl + 112"~ Z| F,

where
12" = Z|p = |25 — Za|lp < |(UDTUR)LUOTUO| 1| Z4

< |Ta2ll2[Tasll e[| Z3]| » = O(Vma?, ,, ),
therefore
”Z* - Z”F = O(\/Eogq,n,p)'
Regarding the parameters B, note that

IB; = Billr < |BiK™" = Billp < |Bi]lplll = K~ ||lr = Olo7,.,),

m,n,p

and similarly || By — Bs|| = O(y/mo?, ,, ,,) during transformation, we have

1B* ~ Bllr = \/IBf — Bill3 + 1B — Ball3 = O(v/imo?,,.,)-

*

To sum up, we have proved that for the transformed version (U*, Z*, B*, «
are as follows:

IU* = Unllp = O(Vmomnp), 12° = Zllr = O(Vmoy, ), |1B* = Bl = O(Vmor, . ,);
la™ = allz = O(Vnomnp): 17" = 2 = O(/Pom.np)-

Combine the above result with Corollary 1, then the desired result follows that ||& — a*|2 =

OpGmnp)s U = U*le = O (Vmn 4 D)/ D)omns) s 12 = 271 = Oplbmny)
19 =7 ll2 = Op(Om,np)s |1B = B*||lF = Op(dm,n.p)- O

,7*), the error bounds

Proof of Lemma 2. Note that pyre (1) > 0 according to the definition, then we only need to consider
about the integral, i.e.,

/ pure (w)dp(u)

supp(Prr)

/ O / | | por () dp(ud ) )
supp(E) ()= g () +

+27m,n,p)

2Ym,n,p’
_ —k k / d /
- Z er,mp{er,n,p u . . . pU(u ) :u(u )}
u‘“*éA ’Y_l [’ll, ls(u)_ 2‘Ym,n,p U ‘S(u)_i,_m)
Ymin,p
- / » » pu(u)dp(u)
Ay ) ) )

Ym,n,p
- / pu(u)dp(u') =1,
supp(Pu)

then the result follows.
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Proof of Theorem 6. According to the mean value theorem and the condition of Lipschitz continu-
ous, we have

por ) =y [ | pu (u)dia(u)
[wh (0) = g ™ (Wt g7
k —k
= Yonp Ymon,pPU (€) = pU(C)
for some ¢ € [u%(u) — 2~/mln -, udis (u) + 2%1 — ), Note that ||u — c|| < \/E%;L}n,p since they lie in

the same hypercube, then we have

[pus (1) —pu ()| = [pu(e) = pu ()] < Lllu — el < LVky, L,

according to Lipschitz continuity. O

Proof of Lemma 3. Denote Cy, (u) := # of u € Uy, then Cy, (1) ~ Binomial(m, pyas (u)) for any
ue A -1 . Therefore, pa (u) — pyas(u) = Cp,(u) /m — pyas (u) is a zero-mean, sub-Gaussian

with ¥p-norm bounded by % /pyas(u)(1 — pyas(u))/m for some universal constant £ > 0. The
Hoeffding’s inequality implies that for any ,,, , , > 0,

082

P(|pyas (v) — pyas(u)| = emmnp) < 2exp | — Ui < 2exp —cmsfnn
(| Mm( ) U ( )| p) pUdis(u)(l—pUdis(u))/m ( ) JJ)

for some constant ¢ > 0. Applying a union bound over z € A, e and noticing that
|AC,%TL.1",,J| < (QC’Ym,m;v)k? we have
P(Ju € Acﬁ;n}n’p st |pyas (w) — pyas (W)| 2 emn,p) < 2eXp(—cmEfmn)p)(Qnymm,p)k

< Qexp(—cmsiﬁhn)p + k1og(2CYm,n p))-

Therefore, the failure probability goes to 0 as m, n, p — oo, according to our assumptions on €, n p
when m, n,p — oo. O
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