
Oral contribution at Trustworthy Machine Learning for Healthcare Workshop, ICLR 2023

EXPLAINING MULTICLASS CLASSIFIERS WITH CATE-
GORICAL VALUES: A CASE STUDY IN RADIOGRAPHY

Luca Franceschi, Cemre Zor, Muhammad Bilal Zafar, Gianluca Detommaso, Cedric Archambeau,
Tamas Madl, Michele Donini & Matthias Seeger
Amazon Web Services
Berlin, Germany & London, UK
franuluc@amazon.de & cemrezor@amazon.co.uk

ABSTRACT

Explainability of machine learning methods is of fundamental importance in
healthcare to calibrate trust. A large branch of explainable machine learning uses
tools linked to the Shapley value, which have nonetheless been found difficult to
interpret and potentially misleading. Taking multiclass classification as a refer-
ence task, we argue that a critical issue in these methods is that they disregard
the structure of the model outputs. We develop the Categorical Shapley value as
a theoretically-grounded method to explain the output of multiclass classifiers, in
terms of transition (or flipping) probabilities across classes. We demonstrate on
a case study composed of three example scenarios for pneumonia detection and
subtyping using X-ray images.

1 INTRODUCTION

Machine learning (ML) has emerged as a powerful tool in healthcare with the potential to revo-
lutionize the way we diagnose, treat and prevent diseases. ML algorithms have a wide range of
applications including early detection of diseases, risk prediction in patients developing certain con-
ditions, optimisation of treatment plans, improved prognosis, assistance in clinical decision-making,
gene expression analysis, genomic classification, improved personalize patient care and more. How-
ever, the adoption of ML in clinical practice has often been hampered by the opaqueness of the ML
models. This opaqueness may trigger skepticism in clinicians and other end-users such as patients or
care-givers to trust model recommendations without understanding the reasoning behind their pre-
dictions, which delays and / or decreases the adoption of state-of-the art technologies and hinders
further advances.

Various methods have been proposed in the literature to enhance the explainability of ML models
(XAI). Among these, (local) feature attribution methods such as SHAP (Lundberg & Lee, 2017)
or variants (e.g. Frye et al., 2020; Chen et al., 2018; Heskes et al., 2020) have gained considerable
traction. In fact, Shapley value based explanations are the most popular explainability methods ac-
cording to a recent study by Bhatt et al. (2020) These methods, supported by a number of axioms
(properties) such as nullity, linearity and efficiency, provide insight into the contribution of each
feature towards the model decisions. There is, however, a growing scrutiny into the utility of these
techniques, which are judged to be unintuitive and potentially misleading (Kumar et al., 2020; Mit-
telstadt et al., 2019), and do not support contrastive statements (Miller, 2019). While part of these
issues may be rooted in misinterpretations of the technical tools involved1, in this paper we argue
that a critical flaw in current approaches is their failure to capture relevant structure of the object one
wishes to explain (the explicandum). In contrast, we take the position that attributive explanations
should comply with the nature of the explicandum: in particular, if the model output is a random
variable (RV), we should represent marginal contributions as RVs as well. Our contribution, which
we dub the Categorical Shapley value, can fully support statements such as “the probability that the
feature xi causes x to be classified as viral pneumonia rather than bacterial pneumonia is y”, which
we develop, experiment and discuss in this paper within the context of X-ray imaging.

1For instance, the Shapley value is a descriptive rather than prescriptive tool. This means that, in general,
one should not expect that changing the feature with the highest Shapley value should lead to the largest change
in the outcome.
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1.1 THE SHAPLEY VALUE AND ITS APPLICAITON TO EXPLAIN MULTICLASS CLASSIFIERS

For concreteness, we focus here on the multiclass classification (d classes) as one of the most com-
mon tasks in ML. Let f : X ⊆ Rn 7→ Y be a (trained) multiclass classifier and x ∈ X an input
point. One common strategy to explain the behaviour of the model at x is to attribute an importance
score to each input feature through the computation of the Shapley value (SV) (Shapley, 1953a). In
order to do so, one must first construct a cooperative game v where players correspond to features,
and coalitions correspond to features being used: that is v(S) = f(x|S), where S ∈ 2n. 2 Then, for
each i ∈ [n], the Shapley value is given by

ψi(v) =
∑

S∈2[n]\i

p(S)[v(S ∪ i)− v(S)] = ES∼p(S)[v(S ∪ i)− v(S)]; (1)

where p(S) = 1
n

(
n−1
|S|

)−1
if i ̸∈ S and 0 otherwise. The quantity v(S ∪ i) − v(S) is called the

marginal contribution of i to the coalition S. See Roth (1988) for an in-depth discussion of the SV
and related topics.

Historically, the SV has been developed as an answer to the question: How can we assign a worth
(or value) to each player i? The SV does so by distributing “fairly” the grand payoff v([n]) among
players, so that (1) if a player never contributes to the payoff, their worth is null, (2) if any two
players have indistinguishable marginal contributions, they have the same worth, and (3) if v is a
linear combination of two games, say u and w, then the worth of i for v is the corresponding linear
combination of their worth for u and w. The game v could typically represent an economic or
political process (e.g. a vote) and, critically, would be modelled as a real-valued set function; i.e.
v : 2d 7→ R, so that ψi(v) ∈ R.

2 CATEGORICAL GAMES AND VALUES

In our case, the grand payoff is the output f(x) that determines the class the model assigns to x.
Whilst in practice f could be implemented in various ways, several modern ML models (e.g. neural
networks) output distributions over the classes – e.g. through a softmax layer. Equivalently, one may
think of f(x) as an E-valued (categorical) random variable. Using the one-hot-encoding conven-
tion, we identify E = {es}ds=1 as the one-hot vectors of the canonical base of Rd. Now, however, it
becomes unclear which real number should be assigned to a difference of random variables. More-
over, averaging over coalitions S, as done in Eq. (1), may induce a semantic gap in this context.
To recover the standard pipeline to compute the SV, one may settle for explaining the logits or the
class probabilities as if they were independent scalars. However, this may lead to paradoxical expla-
nations that attribute high importance to a certain feature (say x1) for all classes, failing to capture
the fact that an increase in the likelihood of a given class must necessarily result in an aggregated
decrease of the likelihood of the others. Here we show how to avoid such step which causes loss of
structure and rather explain f(x) directly as a random variable.

For a player i and a coalition S not containing i, we need to relate v(S) with v(S ∪ i) in order to
quantify the marginal contribution of i to S. This relationship is not just in terms of the marginal
distributions of these two variables, but also of their dependence. In this paper, we assume a simple
dependency structure between all variables v(S), in that v(S) = ṽ(S, ε) for ε ∼ p(ε) where ṽ is
a deterministic mapping to E, and ε is a random variable distributed according to some p(ε). Let
v(S) be a d-way categorical distribution with natural parameters θS,j , in that

P (v(S) = j) =
eθS,j∑
k e

θS,k
= Softmax(θS).

We call such v a Categorical game. We can implement the aforementioned dependency as-
sumption by the Gumbel-argmax reparameterization (Papandreou & Yuille, 2011): ṽ(S, ε) =
argmaxk{θS,k + εk}, where ε1, . . . , εd are independent standard Gumbel variables.

Given this construction, we redefine the marginal contribution of i to S as the random variable
ṽ(S ∪ i, ε)− ṽ(S, ε) for ε ∼ p(ε). This RV takes values in the set E −E = {e− e′ | e, e′ ∈ E}; we

2In practice, out-of-coalition features must often be given a value; this could be an arbitrary baseline, a
global or a conditional average Sundararajan & Najmi (2020); Aas et al. (2021).
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shall call its distribution

qi,S(z) = P(v(S ∪ i)− v(S) = z |S), z ∈ E − E.

Note that qi,S(x) is a conditional distribution, given S ∈ 2[n]\i andE−E is a set containing 0 ∈ Rd

and all vectors that have exactly two non-zero entries, one with value +1 and the other −1.

We can view this construction as a generalized difference operation v(S∪i)⊖v(S) between random
variables rather then deterministic values, where the ⊖ incorporates the above dependency assump-
tion. We define our Categorical Shapely value as the random variable ξ(v) = {ξi}i∈[n], where

ξi(v) = v(Si ∪ i)⊖ v(Si) = ṽ(S ∪ i, ε)− ṽ(S, ε) for ε ∼ p(ε) and S ∼ p(S). (2)

Note these RVs have multiple sources of randomness, which are independent from each other. We
can marginalise over p(S) to obtain the distribution qi(x) of ξi(v): for every z ∈ E − E:

qi(z) = P(ξi(v) = z) = ESi∼pi [qSi,i(z)] =
∑

Si∈2[n]\i

p(Si)qSi,i(z). (3)

One major advantage of this novel construction is that now the distribution of the Categorical SV is
straightforward to interpret. Indeed, the probability masses at each point z = er − es ∈ E − E are
interpretable as the probability (averaged over coalitions) that player i causes the payoff of v (and
hence the prediction of f to flip from class s to class r. We refer to qi(er − es) as the transition
probability induced by feature i.

Interestingly, we can derive a closed form analytical expression for the qi,S and, hence, for the qi.
We do this in Section A. The following proposition relates the Categorical Shapley value with the
standard SV and gives a number of properties that can be derived for the categorical SV.
Proposition 2.1. Let ξ be the Categorical Shapley value defined in equation 2. Then:

1. E[ξi(v)] = ψi(E[v]) ∈ [−1, 1]d, where E[v] is the n-players game defined as E[v](S) =
E[v(S)] = Softmax(θS);

2. If i is a null player, i.e. v(S ∪ i) = v(S) for all S ̸= ∅, then ξi(v) = δ0, where δ0 is the
Dirac delta centered in 0 ∈ Rd;

3. If v = v′ with probability π ∈ [0, 1] and v = v′′ with probability 1 − π (independent
from S), then qi(z) = P(ξi(v) = z) = πP(ξi(v′) = z) + (1 − π)P(ξi(v′′) = z) =
πq′i(z) + (1− π)q′′i (z).

4. v([n])⊖ v(∅) =
∑

i∈[n] ES∼p(S)[ξi(v)], where the sum on the right hand side is the sum of
(dependent) E − E-valued random variables.

Property 1 essentially shows that the Categorical SV is strictly more expressive than the traditional
Shapley values, whilst putting the traditional SVs for multiclass classification under a new light.
Properties 2, 3, and 4 may be seen as the “adaptations” to the Categorical SV of the null player,
linearity and efficiency axioms, respectively. In particular, the standard linearity axiom would be of
little consequence in this context as taking a linear combination of categorical RVs does not lead to
another categorical RV. Instead, Property 3 addresses the common situation where the classifier one
wishes to explain is a (probabilistic) ensemble, relating the distributions of the respective Categor-
ical SVs. See Section C for a brief discussion of the related work in the cooperative game theory
literature.

3 DETECTING PNEUOMONIA IN CHEST X-RAYS: A CASE STUDY

This section employs the Categorical SV (CSV) to analyse a commonly used deep learning archi-
tecture, ResNet-18 (He et al., 2015) for pneumonia detection and subtyping using X-ray images,
which is casted as a multiclass classification problem based categorising subjects into three classes:
healthy controls (HC - class 0), bacterial pneumonia cases (BP - class 1) and viral pneumonia cases
(VP - class 2). The model has been trained on chest X-ray images collected from pediatric patients,
aged one to five, as part of their routine clinical care in Guangzhou Women and Children’s Medical
Center (Kermany et al., 2018). The aim is to show the importance of using structured explanations
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Figure 1: Three example subject X-ray images and Categorical Shapley values relative to the depicted patches,
plotted as matrices. (Left) Ground-truth: VP Prediction: BP. Patch representing two artifacts which should
not impact the model decision (Center) Ground-truth: VP Prediction: VP. Two patches, the red one on the left
highlighting a section where pneumonia is visible and blue depicting a patch in the middle mediastinum. (Right)
Ground-truth: VP Prediction: BP. The red patch is related to a pneumonia area, the yellow one highlights the
heart region the patient.

even when the model is fine-tuned to the problem of interest, in this case with a mean balanced
accuracy score of 84.7%. We select three example scenarios (as depicted in Figure 1) to analyse
different use-cases where CSV empowers the decision process.

Case One: Artifacts Figure 1 (Left) shows an example scenario of an image with artifacts as de-
picted in red bounding boxes. The probability distribution output by the model for the ground-truth
class BP and the predicted class VP are given as 47.8% and 48.0% respectively. CSV measures the
transition probability from VP to BP, generated by the artifact regions, as 12.7%, which implies the
presence of these artifacts as a root cause behind the confusion between BP and VP.
Case Two: Correct Classification Figure 1 (Center) shows a correctly classified VP. However, even
though the main affected area in this patient is depicted by red by independent experts, the contri-
bution of this area to the decision has been found negligible (around 1%, see the left matrix under
the Center image), making the model’s recommendation untrustworthy. Furthermore, the transition
probability from VP to HC calculated for the middle mediastinum region (depicted in blue), which
is not expected to be a region of interest for pneumonia, can found as high as 13.3%, flagging this
region as incorrectly important for the decision process of the model.
Case Three: Incorrect Classification When the incorrectly classified case shown in Figure 1
(Right) is analysed, the transition probability for the area in red, which is labelled as a main af-
fected area of VP by independent experts, from the prediction class BP to the ground-truth class VP
is calculated as zero. On the other hand, the heart region identified by yellow is shown to exhibit
over 5% transition probability to the VP and BP classes, although this value would be expected to
be close to zero. Both of these findings help highlight inconsistencies in the behaviour of the model.

4 DISCUSSION AND CONCLUSION

By analysing three example scenarios in Section 3, we have underlined the importance of using
model explainability even for fine-tuned, seemingly highly performing models, especially for use in
critically important application areas such as healthcare. Employing categorical games and values
empowers a structural understanding of the multiclass classification problem by providing informa-
tion about transition probabilities across classes informing about “decision flips”, in addition to the
feature contribution information obtained from classical methods. Such knowledge would highly
strengthen the model design process; e.g. by promoting the use of comprehensive pre-processing
steps, ensemble classification designs or intelligent model tuning.

While we implement a case study on pneumonia classification using X-ray images as a proof-of-
concept, the method proposed is extendable to all modalities including genomics, free-text or tabular
data. For out of coalition portions of the image, we employed a simple background constant value.
We plan to consider more sophisticated formulations in the future. Another invaluable path for future
work includes developing better visualization and summarization methods as well as interactive
interfaces to support clinicians and other end-users.
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A ANALYTIC EXPRESSION OF THE PDF OF CATEGORICAL DIFFERENCES

Consider E = {e1, . . . , ed} with d ≥ 3. Suppose that v(S) has a d-way categorical distribution
with natural parameters θS,j , in that

P (v(S) = j) =
eθS,j∑
k e

θS,k
.

Categorical games emerge, e.g., when explaining the output of multiclass classifiers or attention
masks of transformer models (Kim et al., 2017; Vaswani et al., 2017).

A latent variable representation is given by the Gumbel-argmax reparameterization (Papandreou &
Yuille, 2011):

ṽ(S, ε) = argmax
k

{θS,k + εk},

where ε1, . . . , εd are independent standard Gumbel variables with probability distribution function
p(εj) and cumulative distribution function F (εj) given by

F (εj) = exp
(
−e−εj

)
, p(εj) = exp

(
−εj − e−εj

)
.

At this point, assume that ej = [1k=j ]k ∈ {0, 1}d are the standard basis vectors of Rd. Then,
E − E = {er − es | 1 ≤ r, s ≤ d} has size d2 − d + 1, and the distribution of v(S ∪ i) ⊖ v(S) is
given by the off-diagonal entries of the joint distribution Qi,S(r, s) = P(v(S ∪ i) = r, v(S) = s).

We can work out Qi,S(r, s) explicitly. Denote

αj = θS∪i,j , βj = θS,j , ρj = αj − βj .

Without loss of generality, we assume the categories to be ordered so that ρ1 ≥ ρ2 ≥ · · · ≥ ρd.
Then:

Q̃i,S(r, s) = eαr+βs (Cs − Cr)1r<s (r ̸= s),

Q̃i,S(r, r) = eβr−β̄rσ
(
β̄r − ᾱr + ρr

)
1r<d + eαd−ᾱd1r=d,

where

ᾱk = log

k∑
j=1

eαj , β̄k = log

d∑
j=k+1

eβj ,

ck = e−β̄k−ᾱk
(
σ
(
β̄k − ᾱk + ρk

)
− σ

(
β̄k − ᾱk + ρk+1

))
,

Ct =

t−1∑
k=1

ck, σ(x) =
1

1 + e−x
.

6



Oral contribution at Trustworthy Machine Learning for Healthcare Workshop, ICLR 2023

The derivation is provided in Appendix B. We write Q̃i,S instead ofQi,S due to the specific ordering
of categories. The induced distribution of v(S ∪ i)⊖ v(S) is∑

r<s

Q̃i,S(r, s)δer−es +
(∑

r
Q̃i,S(r, r)

)
δ0,

from which the off-diagonal entries of Q̃i,S(r, s) can be reconstructed.

Assume that Qi,S(r, s) are given for all S in a common ordering of the categories, in that
Qi,S(r, s) = Q̃i,S(πS(r), πS(s)), where πS is a permutation of {1, . . . , d} fulfilling the ordering
condition used above. If

Qi(r, s) = ES∼pi [Qi,S(r, s)] ,

the distributions of Categorical values are given by

qi =
∑
r,s

Qi(r, s)δer−es .

The probability masses at each point er − es ∈ E −E are interpretable as the probability (averaged
over coalitions) that player i causes the payoff of v to flip from class s to class r.

We may define the following query functional on top of this distribution is

ℓmc = max
s

∑
r ̸=s

Qi(r, s),

which quantifies the largest probability of any change in the output led by player i. It can be com-
puted more efficiently as maxsQi(s) − Qi(s, s), where the marginal distribution QS,i(s) is given
by

QS,i(s) = P(v(S) = s) = eβs−β̄0 .

B EXTENDED DERIVATION FOR CATEGORICAL GAMES

We provide a derivation of the expressions Q̃i,S(r, s). In this derivation, i and S are fixed, and we
write Prs for Q̃i,S(r, s). Let d ≥ 3 be an integer, [αj ] and [βj ] be sets of d real numbers. Above,
αj = θS∪i,j and βj = θS,j , but the derivation below does not make use of this. Also, let εj be d
independent standard Gumbel variables, each of which has distribution function and density

F (ε) = exp
(
e−ε

)
, p(ε) = F (ε)′ = exp

(
−ε− e−ε

)
= e−εF (ε).

Fix r, s ∈ {1, . . . , d}, r ̸= s. We would like to obtain an expression for the probability Prs of

argmax
j

(αj + εj) = r and argmax
j

(βj + εj) = s.

Define
αjr := αj − αr, βjs := βj − βs.

The argmax equalities above can also be written as a set of 2d inequalities (2 of which are trivial):

εj ≤ εr − αjr, εj ≤ εs − βjs, j = 1, . . . , d.

Then:
Prs = E

[∏
j
Ij

]
, Ij := 1εj≤min(εr−αjr,εs−βjs).

Two of them are simple:

Ir = 1εr≤εs−βrs
, Is = 1εs≤εr−αsr

, IrIs = 1αs−αr≤εr−εs≤βs−βr
.

Denote
γj := αjr − βjs = ρj − (αr − βs), ρj := αj − βj .

Note that γj depends on r, s, but ρj does not. If j ̸= r, s, then

Ij = 1εj≤εr−αjr1εr−εs≤γj + 1εj≤εs−βjs1εr−εs≥γj .
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If we exchange sum and product, we obtain an expression of Prs as sum of 2d−2 terms. Each
of these terms is an expectation over εr, εs, with the argument being the product of d − 2 terms
F (εr+aj) or F (εs+aj) and a box indicator for εr−εs. In the sequel, we make this more concrete
and show that at most d− 1 of these terms are nonzero.

With a bit of hindsight, we assume that ρ1 ≥ ρ2 ≥ · · · ≥ ρd, which is obtained by reordering the
categories. This implies that [γj ] is nonincreasing for all (r, s). Also, define the function π(k) =
k+1r≤k+1s−1≤k from {1, . . . , d− 2} to {1, . . . , d}\{r, s}. We will argue in terms of a recursive
computation over k = 1, . . . , d− 2. Define

Mk(εr, εs) = E
[
IrIs

∏
1≤j≤k

Iπ(j)
∣∣ εr, εs] , k ≥ 0,

so that Prs = E[Md−2(εr, εs)]. Each Mk can be written as sum of 2k terms. Imagine a binary tree
of depth d − 1, with layers indexed by k = 0, 1, . . . , d − 2. Each node in this tree is annotated by
a box indicator for εr − εs and some information detailed below. We are interested in the 2d−2 leaf
nodes of this tree.

B.1 BOX INDICATORS. WHICH TERMS ARE NEEDED?

We begin with a recursive computation of the box indicators, noting that we can eliminate all nodes
where the box is empty. Label the root node (at k = 0) by 1, its children (at k = 1) by 10
(left), 11 (right), and so on, and define the box indicators as 1l1≤εr−εs≤u1 , and (l10, u10), (l11, u11)
respectively. Then, l1 = αs − αr, u1 = βs − βr defines the box for the root. Here,

l1 ≥ u1 ⇔ ρs ≥ ρr.

Since [ρj ] is non-increasing, the root box is empty if s < r, so that Prs = 0 in this case. In the
sequel, we assume that r < s and ρr > ρs, so that l1 < u1.

If n is the label of a node at level k − 1 with box (ln, un), then

ln0 = ln, un0 = min(γπ(k), un), ln1 = max(γπ(k), ln), un1 = un.

Consider node 11 (right child of root). There are two cases. (1) γπ(1) < u1. Then, l11 ≥ γπ(1) ≥
γπ(k) for all k ≥ 1, so all descendants must have the same l = l11. If ever we step to the left from
here, u = min(γπ(k), u1) ≤ γπ(k) ≤ γπ(1) ≤ l11, so the node is eliminated. This means from 11,
we only step to the right: 111, 1111, . . . , with l = max(γπ(1), l1), u = u1, so there is only one leaf
node which is a descendant of 11. (2) γπ(1) ≥ u1. Then, l11 ≥ u11, so that 11 and all its descendants
are eliminated.

At node 10, we have l10 = l1. If γπ(1) ≤ l1, the node is eliminated, so assume γπ(1) > l1, and
u10 = min(γπ(1), u1). Consider its right child 101. We can repeat the argument above. There is at
most one leaf node below 101, with l = max(γπ(2), l1) and u = u10 = min(γπ(1), u1).

All in all, at most d − 1 leaf nodes are not eliminated, namely those with labels
10 . . . 01 . . . 1, and their boxes are [max(γπ(1), l1), u1], [max(γπ(2), l1),min(γπ(1), u1)], . . . ,
[max(γπ(d−2), l1),min(γπ(d−3), u1)], [l1,min(γπ(d−2), u1)].

Recall that each node term is a product of d−2 Gumbel CDFs times a box indicator. What are these
products for our d− 1 non-eliminated leaf nodes? The first is F (εs − βπ(1)s) · · ·F (εs − βπ(d−2)s),
the second is F (εr−απ(1)r)F (εs−βπ(2)s) · · ·F (εs−βπ(d−2)s), the third is F (εr−απ(1)r)F (εr−
απ(2)r)F (εs−βπ(3)s) · · ·F (εs−βπ(d−2)s) and the last one is F (εr−απ(1)r) · · ·F (εr−απ(d−2)r).
Next, we derive expressions for the expectation of these terms.

B.2 ANALYTICAL EXPRESSIONS FOR EXPECTATIONS

Consider d− 2 scalars a1, . . . , ad−2 and 1 ≤ k ≤ d− 1. We would like to compute

A = E
[(∏

j<k
F (εr + aj)

)(∏
j≥k

F (εs + aj)
)
1l≤εr−εs≤u

]
. (4)

Denote
G(a1, . . . , at) := E[F (ε1 + a1) · · ·F (ε1 + at)].
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We start with showing that

G(a1, . . . , at) =
(
1 + e−a1 + · · ·+ e−at

)−1
.

Recall that p(x) = F (x)′ = e−xF (x). If F̃ (x) =
∏t

j=1 F (x+ aj), then

F̃ (x)′ =
(∑t

j=1
e−aj

)
e−xF̃ (x).

Using integration by parts:

G(a1, . . . , at) =

∫
F̃ (x)p(x) dx = 1−

∫
F̃ (x)′F (x) dx = 1−

(∑t

j=1
e−aj

)
G(a1, . . . , at),

where we used that F (x) = exp(x).

Next, define

g1 = log
(
1 + e−a1 + · · ·+ e−ak−1

)
, g2 = log

(
1 + e−ak + · · ·+ e−ad−2

)
.

We show that A in (4) can be written in terms of (g1, g2, l, u) only. Assume that k > 1 for now. Fix
εs and do the expectation over εr. Note that 1l≤εr−εs≤u = 1εs+l≤εr≤εs+u. If F̃ (x) =

∏
j<k F (x+

aj), then

F̃ (x)′ =
(∑

j<k
e−aj

)
e−xF̃ (x).

Using integration by parts:

B(εs) =

∫ εs+u

εs+l

F̃ (x)p(x) dx =
[
F̃ (x)F (x)

]εs+u

εs+l
−B(εs)

∑
j<k

e−aj ,

so that
B(εs) = e−g1

[
F̃ (x)F (x)

]εs+u

εs+l

and
A = E

[
B(εs)

∏
j≥k

F (εs + aj)
]
= A1 −A2,

where

A1 = e−g1E
[(∏

j<k
F (εs + u+ aj)

)(∏
j≥k

F (εs + aj)
)
F (εs + u)

]
= e−g1G(a1 + u, a2 + u, . . . , ak−1 + u, ak, . . . , ad−2, u)

and
A2 = e−g1G(a1 + l, a2 + l, . . . , ak−1 + l, ak, . . . , ad−2, l).

Now,

− logA1 = g1 − logG(a1 + u, a2 + u, . . . , ak−1 + u, ak, . . . , ad−2, u)

= g1 + log
(
1 +

∑
j<k

e−aj−u +
∑

j≥k
e−aj + e−u

)
= g1 + log

(
eg2 + e−u+g1

)
= g1 + g2 + log

(
1 + eg1−g2−u

)
and

− logA2 = g1 + g2 + log
(
1 + eg1−g2−l

)
so that

A = A1 −A2 = e−(g1+g2) (σ(g2 − g1 + u)− σ(g2 − g1 + l)) , σ(x) :=
1

1 + e−x
. (5)

If k = 1, we can flip the roles of εr and εs by g1 ↔ g2, l → −u, u→ −l, k → d− 1, which gives

e−(g1+g2) (σ(−(g2 − g1 + l))− σ(−(g2 − g1 + u))) = e−(g1+g2) (σ(g2 − g1 + u)− σ(g2 − g1 + l)) ,

using σ(−x) = 1− σ(x), so the expression holds in this case as well.
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B.3 EFFICIENT COMPUTATION FOR ALL PAIRS

Our d−1 terms of interest can be indexed by k = 1, . . . , d− 1. We can use the analytical expression
just given with aj = −απ(j)r for 1 ≤ j < k and aj = −βπ(j)s for k ≤ j ≤ d− 2. Define

g1(k) = log
(
1 +

∑
1≤j<k

eαπ(j)−αr

)
, g2(k) = log

(
1 +

∑
k≤j≤d−2

eβπ(j)−βs

)
,

as well as
l(k) = max(γπ(k), l1), u(k) = min(γπ(k−1), u1),

where we define π(0) = 0, π(d− 1) = d+ 1, γ0 = +∞, and γd+1 = −∞. Note that

l(k) = max(ρπ(k) − αr + βs, αs − αr) = βs − αr +max(ρπ(k), ρs),

u(k) = min(ρπ(k−1) − αr + βs, βs − βr) = βs − αr +min(ρπ(k−1), ρr).
(6)

Prs is obtained as sum of A(g1(k), g2(k), l(k), u(k)) for k = 1, . . . , d− 1. In the sequel, we show
how to compute these terms efficiently, for all pairs r < s.

Recall that γj = ρj − (αr − βs), u1 = βs − βr, l1 = αs − αr. Then:

l(k) < u(k) ⇔ ρπ(k) < ρπ(k−1) ∧ ρπ(k) < ρr ∧ ρs < ρπ(k−1).

Recall that π(k) = k + 1r≤k + 1s−1≤k. Define K1 = {1, . . . , r − 1}, K3 = {s, . . . , d− 1}, each
of which can be empty. For k ∈ K1, ρπ(k) = ρk ≥ ρr, so l(k) ≥ u(k). For k ∈ K3, we have
π(k − 1) = k + 1 > s, so that ρs ≥ ρπ(k−1) and l(k) ≥ u(k). This means we only need to iterate
over k ∈ K2 = {r, . . . , s− 2} with π(k) = k+ 1 and k = s− 1 with π(k) = s+ 1 (the latter only
if s < d).

As k runs in K2, π(k) = r + 1, . . . , s− 1, and if s < d then π(s− 1) = s+ 1. Now

g1(k) = log
(
1 +

∑
1≤j<k

eαπ(j)−αr

)
= log

∑
1≤j≤k

eαj−αr ,

using that eαr−αr = 1. For g2(k), if k < s−1, then {π(j) | k ≤ j ≤ d−2} = {k + 1, . . . , d}\{s},
and if k = s− 1, the same holds true (the set is empty if s = d). Using eβs−βs = 1, we have

g2(k) = log
∑

k<j≤d
eβj−βs .

Define

ᾱk := log

k∑
j=1

eαj , β̄k := log

d∑
j=k+1

eβj , k = 1, . . . , d− 1.

Then:
g1(k) = ᾱk − αr, g2(k) = β̄k − βs, k = r, . . . , s− 1.

Finally, using g2(k)− g1(k) = β̄k − ᾱk + αr − βs and (6), we have

g2(k)−g1(k)+l(k) = β̄k−ᾱk+max(ρπ(k), ρs), , g2(k)−g1(k)+u(k) = β̄k−ᾱk+min(ρπ(k−1), ρr).

Some extra derivation, distinguishing between (a) r = s − 1, (b) r < s − 1 ∧ k ∈ K2, (c) r <
s− 1 ∧ k = s− 1 shows that

max(ρπ(k), ρs) = ρk+1, min(ρπ(k−1), ρr) = ρk, k = r, . . . , s− 1.

Plugging this into (5):

A(k) = eαr+βsck, ck = e−β̄k−ᾱk
(
σ
(
β̄k − ᾱk + ρk

)
− σ

(
β̄k − ᾱk + ρk+1

))
.

and Prs =
∑s−1

k=r A(k). Importantly, ck does not depend on r, s. Therefore:

Prs = eαr+βs(Cs − Cr), Ct =

t−1∑
k=1

ck (r < s); Prs = 0 (r > s). (7)

The sequences [ᾱk], [β̄k], [ck] , [Ck] can be computed in O(d).
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Finally, we also determine Prr, which is defined by the inequalities εj ≤ ε1 − max(αjr, βjr). A
derivation like above (but simpler) gives:

Prr =

1 +
∑
j ̸=r

emax(αjr,βjr)

−1

.

Now, αjr ≥ βjr iff ρj ≥ ρr iff j < r, so that

Prr =

1 +
∑
j<r

eαj−αr +
∑
j>r

eβj−βr

−1

=
(
eᾱr−αr + eβ̄r−βr

)−1

= eβr−β̄rσ(β̄r − ᾱr + ρr), (r < d),

Pdd = eαd−ᾱd .

C RELATED WORK IN COOPERATIVE GAME THEORY.

The Shapley value of simple game has a probabilistic interpretation (Peleg & Sudhölter, 2007, pag.
168) however simple games are not Categorical games. An and-or axiom substitute the linear axioms
in simple games (Weber, 1988), here we address probabilisitc combinations. Stochastic games are
typically intended as multi-stage games where the transition between stages is stochastic Shapley
(1953b); Petrosjan (2006) and not the intrinsic payoffs. Static cooperative games with stochastic
output have been considered from the perspective of coalition formation and considering notions of
players’ utility (e.g. Suijs et al., 1999) or studying two stages setups – before and after the realisation
of the payoff (e.g. Granot, 1977), and from an optimization perspective (Sun et al., 2022). To the
best of our knowledge, our settings and constructions have not been studied before.
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