

BRAINSTRATIFY: COARSE-TO-FINE DISENTANGLEMENT OF INTRACRANIAL RECORDINGS FOR SPEECH DECODING

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Decoding speech directly from neural activity is a central goal in brain-computer
 014 interface (BCI) research. In recent years, exciting advances have been made
 015 through the growing use of intracranial field potential recordings, such as stereo-
 016 ElectroEncephaloGraphy (sEEG) and ElectroCorticoGraphy (ECoG). These neural
 017 signals capture rich population-level activity but present key challenges: (i)
 018 task-relevant neural signals are sparsely distributed across sEEG electrodes, and
 019 (ii) multiple neural components (e.g., tongue & jaw & lips control in vSMC)
 020 are often entangled within the task-relevant functional groups in both sEEG and
 021 ECoG recordings. To address these challenges, we introduce a unified speech
 022 decoding framework enhanced by Coarse-to-Fine disentanglement, BrainStratify,
 023 which includes (i) identifying functional groups through spatial-context-guided
 024 temporal-spatial modeling, and (ii) disentangling neural components within the
 025 target functional group using Decoupled Product Quantization (DPQ). We evaluate
 026 BrainStratify on six datasets (including sEEG, (epidural) ECoG, etc.), spanning
 027 tasks like vocal production, speech perception, etc. Extensive experiments show
 028 that BrainStratify, as a unified framework for decoding speech from intracranial
 029 neural signals, significantly outperforms previous decoding methods. Overall,
 030 by combining data-driven stratification with neuroscience-inspired modularity,
 031 BrainStratify offers a robust and interpretable solution for decoding speech from
 032 intracranial recordings. Code and dataset will be publicly available.

1 INTRODUCTION

035 Intracranial neural signals refer to the biometric information collected from the brain through invasive
 036 recording techniques (e.g., stereo-ElectroEncephaloGraphy (sEEG) and ElectroCorticoGraphy
 037 (ECoG)). Their patterns provide rich and high-resolution insights toward understanding the physio-
 038 logical functions of the brain and the mechanism of related diseases, leading to various applications,
 039 including speech decoding (Moses et al., 2021; Metzger et al., 2023; Zheng et al., 2025; Chau et al.,
 040 2024), motor intention decoding (Natraj et al., 2025; Silversmith et al., 2021), neurological disorders
 041 detection (Zhang et al., 2023; Yuan et al., 2023; Li et al., 2025b), among others. Although many
 042 studies (Moses et al., 2021; Zheng et al., 2025; Chau et al., 2024) have recently shown promising
 043 results in speech decoding (e.g., vocal production and speech perception) based on sEEG and ECoG,
 044 significant challenges in modeling intracranial neural signals remain unresolved.

045 Compared to ECoG, sEEG provides more depth information from specific brain regions, making it
 046 particularly attractive in both brain-computer interface (BCI) applications (Chau et al., 2024; Zheng
 047 et al., 2025; Mentzelopoulos et al., 2024) and fundamental neuroscience studies (Subramaniam
 048 et al., 2024; Norman et al., 2019; Domenech et al., 2020). Despite their potential, sEEG recordings
 049 present a unique challenge. In practice, sEEG electrodes are sparsely distributed across the brain,
 050 requiring researchers to first identify task-relevant channels before decoding (Wang et al., 2023;
 051 Mentzelopoulos et al., 2024; Zheng et al., 2025). For instance, BrainBERT (Wang et al., 2023) adopts
 052 a single-channel (SC) strategy, independently evaluating and ranking channels based on decoding
 053 performance. In contrast, Du-IN (Zheng et al., 2025) utilizes a multi-channel (MC) approach,
 analyzing all channels collectively and ranking them based on the learned weight distribution. Both
 methods require substantial labeled data for supervision, posing significant challenges, as large-scale

054 labeling in medical experiments is often prohibitively costly or unfeasible. When labeled data are
 055 scarce, the selected channels often fail to align with those containing target neural activity (Figure 1).
 056

057 Another challenge arises from the nature of intracranial recordings themselves. These recordings
 058 capture aggregated neural activity from populations of neurons (Chau et al., 2024). While sEEG
 059 can enhance spatial resolution through techniques like bi-polar (or Laplacian) re-reference (Li et al.,
 060 2018), intracranial neural signals inherently represent a mixture of signals from multiple neural
 061 components (e.g., tongue & jaw & lips control in vSMC for vocal production). Without explicit
 062 mechanisms to disentangle neural components within specific brain regions, models struggle to
 063 extract fine-grained states from intracranial neural signals, leading to reduced decoding performance.

064 To tackle these issues, we propose a unified framework
 065 for decoding speech from intracranial recordings, Brain-
 066 Stratify, that comprises two complementary stages: (1)
 067 Coarse Disentanglement Learning and (2) Fine Disentan-
 068 glement Learning. In Coarse-DL, we pre-train a temporal-
 069 spatial model with a spatial context task and cluster chan-
 070 nels into functional groups (Buzsáki, 2006) based on the
 071 sparse inter-channel attention graph, **thus facilitating data-
 072 efficient channel selection for intracranial sEEG record-
 073 ings**. In Fine-DL, we utilize Decoupled Product Quanti-
 074 zation (DPQ) to disentangle neural components (Metzger
 075 et al., 2023; Silva et al., 2024) within target groups to
 076 enhance the identification of fine-grained neural states,
 077 **thus facilitating unified representation learning that boosts
 078 performance across diverse decoding paradigms (e.g., clas-
 079 sification, sequence labeling, regression)**.

080 To validate the effectiveness of our proposed framework,
 081 we evaluate BrainStratify on six datasets (Appendix B),
 082 including sEEG (Zheng et al., 2025; Wang et al., 2024a), (epidural) ECoG, etc. Empirically, Brain-
 083 Stratify outperforms existing channel clustering methods (Chen et al., 2025; Qiu et al., 2024),
 084 identifying channel cluster that faithfully aligns with those containing target neural activity. Be-
 085 sides, BrainStratify achieves SOTA performance in all decoding tasks, particularly excelling in word
 086 decoding (Zheng et al., 2025). This success stems from its ability to effectively integrate modular
 087 neural components within the target functional group – a critical requirement for decoding complex,
 088 interdependent neural patterns.

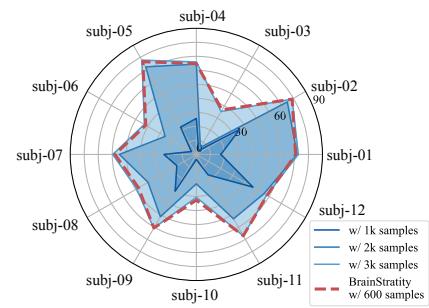
089 To sum up, the main contributions of our work comprise:

- 090 **1. Coarse-to-Fine neural disentanglement:** We propose a unified speech decoding framework
 091 enhanced by neural disentanglement, BrainStratify, that identifies functional channel groups
 092 and disentangles neural components within target groups, via two complementary stages.
- 093 **2. Neuroscience-inspired design:** BrainStratify leverages neuroscience insights (e.g., modular
 094 brain computation) in its design, discovering task-relevant channel groups based on the
 095 sparse inter-channel attention graph learned via self-supervision.
- 096 **3. State-of-the-art (SOTA) performance:** Our framework achieves SOTA performance in
 097 decoding speech from intracranial neural signals (e.g., sEEG, ECoG) across multiple datasets,
 098 demonstrating robust effectiveness across diverse neural recording modalities.

100 2 RELATED WORKS

101 2.1 SELF-SUPERVISED LEARNING IN BCI

102 Recently, the pre-trained temporal-spatial models (i.e., foundation models) have drawn significant
 103 attention across diverse neural modalities, including EEG (Jiang et al., 2024; Wang et al., 2024b;c),
 104 sEEG (Wang et al., 2023; Zhang et al., 2023; Chau et al., 2024), fMRI (Caro et al., 2023; Dong
 105 et al., 2024), etc. Due to their adaptability in spatial modeling, these models robustly handle varying
 106 numbers of channels and excel at channel-level classification tasks (e.g., epilepsy detection). Based on



107 Figure 1: The word classification per-
 108 formance on Du-IN (Zheng et al., 2025)
 109 dataset using top-10 channels selected
 110 via the MC strategy across varying num-
 111 bers of labeled samples.

108 these models, PopT (Chau et al., 2024) further utilizes [CLS] token to aggregate channels, excelling
 109 in decoding modular cognitive states (e.g., sentence onset detection) of speech perception.
 110

111 Other approaches (Zheng et al., 2025; Wu et al., 2024) fuse the manually selected channels into
 112 region-level tokens and then pre-train temporal models based on them. While these methods perform
 113 well in decoding complex cognitive states (e.g., vocal production), their effectiveness depends on
 114 whether the manually selected channels faithfully represent the target functional groups.

115 2.2 CHANNEL CLUSTER IN TIME SERIES

116 Channel clustering methods, which use cluster information instead of individual channel identities,
 117 have gained significant attention in Multivariate Time Series Forecasting (MTSF) research (Chen
 118 et al., 2025; Qiu et al., 2024; Huang et al., 2023; Hu et al., 2025). CCM (Chen et al., 2025) employs
 119 static cluster embeddings and cross-attention to group channels, improving forecasting performance.
 120 Considering its dynamic nature, DUET (Qiu et al., 2024) utilizes correlation-based metric learning to
 121 capture the relationship among channels, which are integrated via masked attention for forecasting.
 122

123 All existing channel cluster methods for time series primarily rely on low-level correlations in raw
 124 time series, which are unsuitable for intracranial neural signals. While these signals reflect aggregated
 125 neural activity from neuronal populations, similar firing patterns hold distinct functional meanings by
 126 location (Buzsáki, 2006), producing inherently multimodal signals across channels. This suggests
 127 that correlation-based clustering may inadequately capture functionally relevant neural clusters.
 128

129 2.3 DISENTANGLEMENT REPRESENTATION LEARNING

130 Disentangling independent latent components from observations is a desirable goal in representational
 131 learning (Higgins et al., 2017; Locatello et al., 2019; Wang et al., 2024d), with broad applications
 132 in computer vision (Hsu et al., 2023; 2024), time series analysis (Oublal et al., 2024; Woo et al.,
 133 2022), and neuroscience (Zhou & Wei, 2020; Wang et al., 2024e; Li et al., 2025a). QLAE (Hsu
 134 et al., 2023) leverages learnable latent codex combined with weight decay regularization to extract
 135 human-interpretable representations from raw images. Tripod (Hsu et al., 2024) further enhances
 136 disentanglement by introducing minimal mixed generator derivatives to guide feature separation.
 137

138 Unlike images, which typically require disentangling features along [width, height] dimensions,
 139 neural signals require disentanglement along the channel dimension – similar to how RGB channels
 140 are treated in images. pi-VAE (Zhou & Wei, 2020) leverages supervision to model the relation between
 141 latents and task variables. PDisVAE (Li et al., 2025a) encourages group-wise independence in learned
 142 representations via partial-correlation constraint to handle non-separable factor entanglement.
 143

144 3 METHOD

145 The overall framework of BrainStratify is illustrated in Figure 2, where the framework contains two
 146 complementary stages: (1) Coarse Disentanglement Learning and (2) Fine Disentanglement Learning
 147 (i.e., Disentanglement Representation Learning (DRL)).
 148

149 3.1 TASK DEFINITION

150 The evaluation spans six datasets (Appendix B), e.g., sEEG, (epidural) ECoG. In Du-IN dataset
 151 (Zheng et al., 2025), we assess the word classification (CLS) task, the speech regression (RGS) task,
 152 and the syllable sequential classification (CTC) task. In our collected (epidural) ECoG datasets
 153 (Appendix A), we evaluate the word & motor CLS task and the syllable CTC task. In Brain Treebank
 154 dataset (Wang et al., 2024a), we evaluate four binary-state CLS tasks. In other datasets (Willett et al.,
 155 2023; Sivakumar et al., 2024), we evaluate the phoneme & character CTC tasks, respectively.
 156

157 Multi-channel sEEG signals are represented as $\mathcal{X} \in \mathbb{R}^{C \times T}$, where C is the number of channels and
 158 T is the total timestamps. For CLS tasks, the paired label is $\mathbf{y} \in \mathcal{Y}$, where \mathcal{Y} represents the label-set.
 159 For RGS tasks, the paired label is $\mathbf{y} \in \mathbb{R}^{F \times L}$, where \mathbf{y} is audio feature (e.g., mel-spectrogram,
 160 Wav2vec2 feature (Baevski et al., 2020)), F is the dimension of feature embeddings, and L is the
 161 feature timestamps. For CTC tasks, the paired label sequence is $\mathbf{y} = \{\mathbf{y}_i \in \mathcal{Y} | i = 1, \dots, L\}$, where \mathcal{Y}
 represents the syllable-set and L is the syllable timestamps.

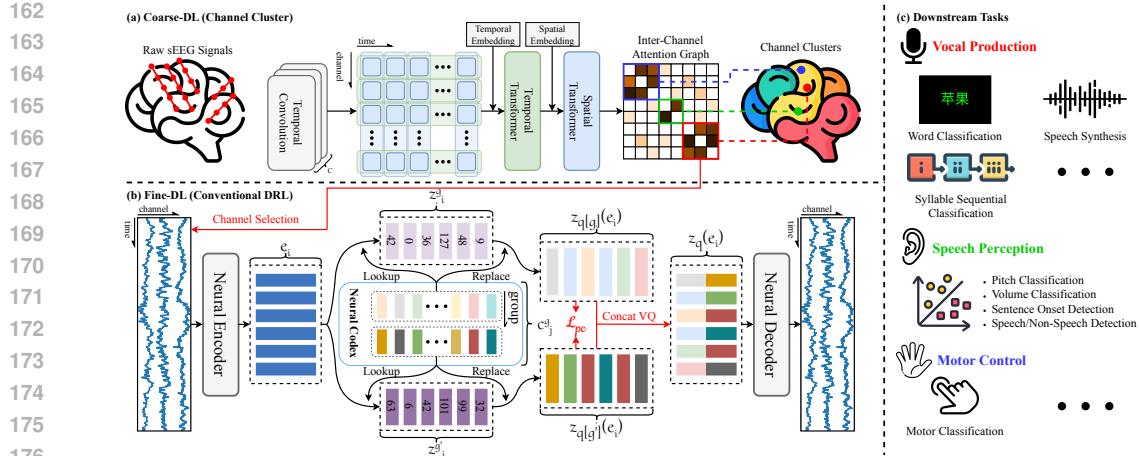


Figure 2: **Overview of BrainStratify framework.** (a). Coarse Disentanglement Learning (BrainStratify-Coarse). (b). Fine Disentanglement Learning (BrainStratify-Fine). (c). Overview of downstream neural decoding tasks.

3.2 COARSE DISENTANGLEMENT LEARNING

We introduce BrainStratify-Coarse (Figure 2 (a)), a general architecture for sEEG-based functional group identification. The model contains three parts: (1) Temporal Convolution, (2) Temporal & Spatial Transformer, and (3) Channel Cluster Module. The sEEG signals \mathcal{X} are segmented into patches using a non-overlap W_c -length window (0.25s), yielding $\mathcal{X}_p^c = \{\mathbf{x}_{i,j}^c \in \mathbb{R}^{W_c} | i = 1, \dots, C; j = 1, \dots, N_c\}$, where $N_c = \lfloor \frac{T}{W_c} \rfloor$ and the number of patches is $|\mathcal{X}_p^c| = C \times N_c$.

Temporal Convolution. Since sEEG signals from different channels are partial observations of whole-brain activity, channel-specific convolution modules are employed to map signals into a unified latent space. Each module encodes patches with stacked 1D convolution layers. The embeddings are $\mathcal{E}_p^c = \{\mathbf{e}_{i,j}^c \in \mathbb{R}^d | i = 1, \dots, C; j = 1, \dots, N_c\}$, where d is the dimension of embeddings.

Temporal & Spatial Transformer. We add the parameter-free temporal embeddings introduced in Vaswani et al. (2017) to inject the temporal information. Then, the embeddings are fed into Temporal Transformer to get the temporal-transformed embeddings \mathcal{E}_t^c . After that, we add either learnable or MNI-based (Chau et al., 2024) spatial embeddings to inject the spatial information. Finally, the embeddings are fed into Spatial Transformer to get the spatial-transformed embeddings \mathcal{E}_s^c .

Spatial Context Pre-training. To avoid shortcuts in mask-based reconstruction tasks (Zhang et al., 2023; Wang et al., 2024c), where models might over-rely on intra-channel temporal patterns, we adapt the spatial context task from Chau et al. (2024), refining it for efficient convergence with limited data. Given an sEEG sample $\mathcal{X} \in \mathbb{R}^{C \times T}$, 10% of channels are randomly selected to have their activity replaced by activity from unrelated time points. The model is trained to detect discrepancies between spatial-transformed embeddings \mathcal{E}_s^c and temporal-transformed embeddings \mathcal{E}_t^c :

$$\mathcal{L}_c = \text{BCE}(\text{Linear}(\|\mathcal{E}_s^c - \mathcal{E}_t^c\|_2^2)). \quad (1)$$

With this adaptation, the model converges rapidly to $\geq 95\%$, even with only 1-hour sEEG data.

Channel Cluster Module. We compute channel connectivity $\mathcal{P} \in \mathbb{R}^{C \times C}$ by aggregating attention matrices from Spatial Transformer across layers, temporal patches, and sEEG samples. Channels are grouped into functional clusters via spectral clustering (Ng et al., 2001) (Figure 3 (b)); other methods (e.g., hierarchical clustering) yield similar results. Channels within each functional group provide complementary information, collectively encoding a complete and complex neural function. We select and combine these groups based on their performance in downstream decoding tasks.

216 3.3 FINE DISENTANGLEMENT LEARNING
217

218 We present BrainStratify-Fine (Figure 2 (b)), a framework for decoding speech from intracranial
219 recordings employing a two-stage pre-training pipeline (VQ-VAE & MAE). To capture fine-grained
220 neural states, we propose Decoupled Product Quantization (DPQ), which disentangles neural compo-
221 nents within target functional groups by integrating product quantization (Jegou et al., 2010) with a
222 partial-correlation constraint (Hazarika et al., 2020; Li et al., 2025a) to enforce codex independence.

223 The model adopts a CNN-Transformer hybrid architecture consisting of (1) Patch Tokenizer and
224 (2) Temporal Transformer. Neural signals are segmented into temporal patches along the temporal
225 dimension. For each sample \mathcal{X} , we use a W_f -length window (0.15s) with S_f -length stride (0.1s),
226 obtaining $\mathcal{X}_p^f = \{\mathbf{x}_i^f \in \mathbb{R}^{C \times W_f} | i = 1, \dots, N_f\}$, where $N_f = \lfloor \frac{T}{S_f} \rfloor$ is the number of patches.
227

228 **Patch Tokenizer.** The patch tokenizer comprises a linear projection and stacked convolution blocks.
229 Each block contains a 1D convolution, group normalization (Wu & He, 2018), and GELU activation
230 (Hendrycks & Gimpel, 2016). The patch embeddings are $\mathcal{E}_p^f = \{\mathbf{e}_i^f \in \mathbb{R}^d | i = 1, \dots, N_f\}$.
231

232 **Temporal Transformer.** We add temporal embeddings to inject temporal information. Then, the
233 embeddings are fed into "Temporal Transformer" to get the temporal-transformed embeddings \mathcal{E}^f .
234 For downstream evaluations, we add a randomly initialized MLP to support different tasks.
235

236 **Decoupled Product Quantization.** To identify fine-grained functional sub-modules (Metzger et al.,
237 2023; Silva et al., 2024) within target functional groups in VQ-VAE stage, we propose Decoupled
238 Product Quantization (DPQ), using multiple codexes to capture distinct neural components.
239

240 The output embeddings $\mathcal{E}^f = \{\mathbf{e}_i^f \in \mathbb{R}^d | i = 1, \dots, N_f\}$ from "Neural Encoder" are fed into a vector
241 quantizer, which consists of G parallel sub-quantizers (i.e., neural codexes). The g -th neural codex is
242 defined as $\mathcal{C}_g = \{\mathbf{c}_j^g | j = 1, \dots, N_{codex}\} \in \mathbb{R}^{N_{codex} \times d_{codex}}$, where N_{codex} is the number of discrete
243 codes and d_{codex} is the dimension of code embeddings. We utilize a linear projection $\mathbf{z}_{c[g]}$ to get the
244 mapped embeddings $\mathbf{z}_{c[g]}(\mathcal{E}^f) = \{\mathbf{z}_{c[g]}(\mathbf{e}_i^f) \in \mathbb{R}^{d_{codex}} | i = 1, \dots, N_f\}$ in the codex space. Then, the
245 codex looks up the nearest neighbor of each embedding $\mathbf{z}_{c[g]}(\mathbf{e}_i^f)$ in the neural codex \mathcal{C}_g .
246

$$\begin{aligned} \mathbf{z}_{q[g]}(\mathcal{E}^f) &= \{\mathbf{z}_{q[g]}(\mathbf{e}_i^f) | i = 1, \dots, N_f\}, \\ \mathbf{z}_{q[g]}(\mathbf{e}_i^f) &= \mathbf{c}_{z_i^g}^g, \quad z_i^g = \arg \min_j \|\ell_2(\mathbf{z}_{c[g]}(\mathbf{e}_i^f)) - \ell_2(\mathbf{c}_j^g)\|_2, \end{aligned} \quad (2)$$

250 where ℓ_2 represents ℓ_2 normalization and $\mathbf{z}_{q[g]}(\mathbf{e}_i^f)$ is the quantized vector from g -th sub-quantizer.
251 As shown in Figure 2 (b), $\mathbf{z}_{q[g]}(\mathbf{e}_i^f)$ from G sub-quantizers are concatenated to the full code $\mathbf{z}_q(\mathbf{e}_i^f) =$
252 $[\mathbf{z}_{q[1]}(\mathbf{e}_i^f), \dots, \mathbf{z}_{q[G]}(\mathbf{e}_i^f)]$. Then, the code $\mathbf{z}_q(\mathbf{e}_i^f)$ is linearly mapped to the quantized embedding
253 $\mathbf{z}_i \in \mathbb{R}^d$, which is equivalent to summing $\mathbf{z}_i^{q[g]} \in \mathbb{R}^d$ from G sub-quantizers, i.e., $\mathbf{z}_i = \sum_{g=1}^G \mathbf{z}_i^{q[g]}$.
254

255 Given the quantized embeddings $\mathcal{Z} = \{\mathbf{z}_i | i = 1, \dots, N_f\}$, the Neural Decoder converts them back
256 into neural signals $\tilde{\mathcal{X}}_p^f = \{\tilde{\mathbf{x}}_i^f | i = 1, \dots, N_f\}$. The mean squared error (MSE) loss is utilized to guide
257 the regression. Besides, we introduce the partial-correlation constraint (Hazarika et al., 2020; Li et al.,
258 2025a) to encourage codex-wise independence. The total loss $\mathcal{L}_f^{\mathcal{VQ}}$ for the VQ-VAE stage is:
259

$$\begin{aligned} \mathcal{L}_f^{\mathcal{VQ}} &= \sum_{i=1}^{N_f} [\mathcal{L}_{rgs} + \mathcal{L}_{vq} + \mathcal{L}_{pc}], \quad \mathcal{L}_{rgs} = \|\tilde{\mathbf{x}}_i^f - \mathbf{x}_i^f\|_2^2, \quad \mathcal{L}_{pc} = \sum_{j=1}^{G-1} \left[\sum_{k=j+1}^G \mathbf{z}_i^{q[j]} \cdot \mathbf{z}_i^{q[k]} \right], \\ \mathcal{L}_{vq} &= \sum_{g=1}^G \left[\|\text{sg}[\mathbf{z}_{c[g]}(\mathbf{e}_i^f)] - \mathbf{z}_{q[g]}(\mathbf{e}_i^f)\|_2^2 + \beta \|\mathbf{z}_{c[g]}(\mathbf{e}_i^f) - \text{sg}[\mathbf{z}_{q[g]}(\mathbf{e}_i^f)]\|_2^2 \right], \end{aligned} \quad (3)$$

260 where sg represents the stop-gradient operation, which is an identity at the forward pass and has
261 zero gradients. To stabilize the codex update, we use the exponential moving average strategy (Van
262 Den Oord et al., 2017).
263

270 **DPQ-guided Mask Modeling.** BrainStratify-Fine uses DPQ-guided mask modeling to learn contextual
 271 representations. Given a sample \mathcal{X} , the patch tokenizer transforms it into patch embeddings
 272 \mathcal{E}_p^f . Around 50% of embeddings are patch-wise chosen and masked. The masked position is termed as
 273 \mathcal{M} . Then, a shared learnable embedding $\mathbf{e}_{[M]} \in \mathbb{R}^d$ is used to replace the original patch embeddings:
 274

$$\mathcal{E}_m^f = \{\mathbf{e}_i^m | i = 1, \dots, N_f\}, \quad \mathbf{e}_i^m = m_i \odot \mathbf{e}_{[M]} + (1 - m_i) \odot \mathbf{e}_i^p, \quad (4)$$

275 where $\delta(\cdot)$ is the indicator function and $m_i = \delta(i \in \mathcal{M})$. After that, the masked embeddings \mathcal{E}_m^f will
 276 be fed into the Temporal Transformer. The output embeddings \mathcal{E}^f will be used to predict the indices
 277 of the corresponding codes from the codex in the DPQ through a linear classifier:
 278

$$p(z_i^g | \mathbf{e}_i^f) = \text{softmax}(\text{Linear}(\mathbf{e}_i^f)), \quad (5)$$

279 The total loss \mathcal{L}_f^M for training the MAE model is:
 280

$$\mathcal{L}_f^M = - \sum_{i \in \mathcal{M}} \left[m_i \odot \sum_{g=1}^G \log p(z_i^g | \mathbf{e}_i^f) \right]. \quad (6)$$

285 4 EXPERIMENTS

286 4.1 DATASET

287 To validate the effectiveness of BrainStratify, we evaluate six datasets (Table 1). In addition to two
 288 public sEEG datasets (Zheng et al., 2025; Wang et al., 2024a), we further collect well-annotated Chi-
 289 nese word-reading & motor-intention (epidural) ECoG datasets (Appendix A). The ECoG electrodes
 290 are positioned epidurally (Liu et al., 2024) – outside the brain’s dura mater rather than directly on
 291 the cortex – minimizing tissue damage compared to traditional intracranial placements (Moses et al.,
 292 2021). Besides, additional modalities (Willett et al., 2023; Sivakumar et al., 2024) are included.
 293

294 Table 1: Overview of datasets used in this work.

Name	Type	Task	# of Subjects	# of Channels	# of Trials	Trial Length	# of Classes	Total Recordings
Ours	ECoG	Read	1	128	~12k	2.4s	62	22 hours
	ECoG	Motor	1	128	~1k6	5s	4	15 hours
Du-IN Brain Treebank	sEEG	Read	12	109.75	~3k	3s	61	15 hours
	sEEG	Listen	10	124.9	~2k	4s	2	5.5 hours
NPTL emg2qwerty	MEA sEMG	Read Type	1 8	128 32	~10k ~4k	~10s 4s	39 98	~20 hours ~3 hours

308 4.2 IMPLEMENTATION DETAILS

309 **Preprocess.** We filter the sEEG/ECoG signals between 0.5Hz and 200Hz to remove low-frequency
 310 noise. Then, a notch filter of 50Hz (or 60Hz) is applied to avoid power-line interference. Next, neural
 311 signals are resampled to 400Hz and re-referenced (Li et al., 2018) according to the original setting.
 312 Finally, z-score normalization is performed on each channel to standardize data scales.
 313

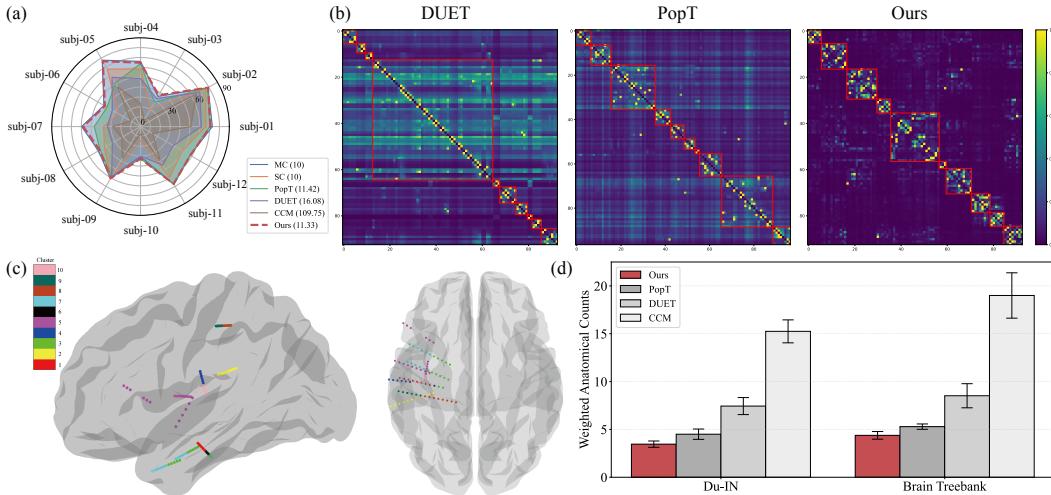
314 **Model Configurations.** In the Coarse-DL stage, the raw patches are first transformed into patch
 315 embeddings with $d = 256$. The following Temporal & Spatial Transformer both contain a 4-layer
 316 Transformer encoder with model dimension $d = 256$, inner dimension (FFN) $d_{ff} = 1024$, and
 317 8 attention heads. In the Fine-DL stage, the raw patches are transformed into patch embeddings
 318 with $d = 256$, followed by an 8-layer Transformer encoder with model dimension $d = 256$, inner
 319 dimension (FFN) $d_{ff} = 1024$, and 8 attention heads. See Appendix D for more details.
 320

321 **Pre-training.** All models in Coarse-DL and Fine-DL stages are trained using all recordings from
 322 each subject, excluding those reserved for validation and testing in downstream tasks. For each
 323 subject, models are trained on 1 GPU (NVIDIA Tesla V100 32GB using Python 3.11.7 and PyTorch
 2.1.2 + CUDA 12.3) with data augmentation (Appendix E) for ~6 hours in total.

324 **Fine-tuning.** We split the task recordings into training, validation, and testing splits with a size
 325 roughly proportional to 80%, 10%, and 10%. All experiments are conducted on the same machine
 326 with the same set of random seeds. The train/validation/test splits are the same across different
 327 models. For each subject, models are trained with data augmentation (Appendix E) for ~ 20 minutes.
 328 The best models are trained on the training set, selected from the validation set according to accuracy,
 329 and finally evaluated on the test set. For model comparison, we report the average and standard error
 330 values (of all subjects) on six random seeds to obtain comparable results. For subject-wise evaluation,
 331 we report the average and standard deviation values (of each subject) in Appendix O.

332 333 4.3 RESULTS ON CHANNEL CLUSTER

334 Given the sparse distribution of sEEG electrodes across the brain, we begin by identifying functional
 335 groups at a coarse level. These groups act as fundamental computational modules (Buzsáki, 2006;
 336 Silva et al., 2024), wherein channels provide complementary information to encode specific functions
 337 (e.g., vocal production) collectively. After pre-training, we compare the channel connectivity from
 338 DUET, PopT, and our method in Figure 3 (b). To standardize comparisons, we normalize connectivity
 339 values to a [0,1] range for each channel, accommodating method-specific scaling differences. The
 340 identified functional groups by our method is visualized in Figure 3 (c). And we demonstrate weighted
 341 anatomical counts (Appendix I) wrt. Desikan-Killiany atlas (Desikan et al., 2006) in Figure 3 (d).
 342



359 **Figure 3: Results for Coarse Disentanglement Learning.** (a). The performance on Du-IN word
 360 classification using channels selected via different strategies, with the average number of channels
 361 selected per strategy indicated in parentheses. (b). The channel connectivity from different methods
 362 on sEEG datasets. (c). The visualization of functional groups identified by our method on sEEG
 363 datasets. (d). The weighted anatomical counts of different methods on sEEG datasets.

364 Since DUET relies heavily on inter-channel correlations, we pre-train it using raw sEEG signals
 365 (without re-referencing), while using re-referenced signals instead even degrades clustering performance.
 366 As shown in Figure 3 (b), DUET struggles to reliably identify functional groups, suggesting
 367 that correlation-based metrics may not adequately capture the underlying inter-channel relationships.
 368 While PopT employs a spatial context task during pre-training, it faces convergence challenges with
 369 limited neural data. Furthermore, when pre-trained across multiple subjects, PopT underperforms our
 370 method in identifying functional groups (Figure 3 (a)), primarily due to inherent variability in neural
 371 computation across individuals. In contrast, our method effectively captures the sparse inter-channel
 372 relationships, aligning with established neuroscientific principles of functional specificity in neural
 373 processing (Buzsáki, 2006; Silva et al., 2024). Based on these findings, we employ hard clustering
 374 ($k = 10$) on the estimated channel connectivity from different methods, as illustrated in Figure 3 (b).

375 After clustering channels, we select and combine these groups based on their performance in down-
 376 stream decoding tasks, while different backbones show similar results. We use BrainStratify-Fine
 377 (w/o pre-training) as evaluation backbone (Figure 3 (a)). Notably, while supervised strategies (i.e., SC

& MC) require 3k samples, channel selection via self-supervised strategies only requires 600 samples, highlighting the label efficiency of our method. CCM relies on static cluster embeddings, which ignore the dynamic nature of sEEG signals, resulting in unreliable functional group identification. The SC method, which fails to capture complementary information among channels, underperforms the MC strategy. In contrast, our method matches the MC baseline, validating its effectiveness.

4.4 RESULTS ON NEURAL DECODING

Table 2 & 3 compare our method against advanced baselines (Appendix C & D). More results on other datasets are provided in Appendix J. Our method **surpasses** all baselines (Table 2), highlighting DPQ’s effectiveness in guiding mask modeling. H2DiLR (Wu et al., 2024) lags behind Du-IN due to the lack of mask modeling. PopT aggregates channels with [CLS] token, performing between recent foundation models (Jiang et al., 2024; Wang et al., 2024c) and EEG-CFMR (Song et al., 2022). Due to relatively stable interaction among neuronal populations, temporal models can better handle the variability of neural patterns along the temporal axis by aggregating channels into tokens before modeling temporal relationships, outperforming temporal-spatial models. Notably, this gap narrows for (epidural) ECoG data, likely stemming from inherent signal property differences. Besides, our method achieves greater improvements over Du-IN on (epidural) ECoG data compared to sEEG data, likely due to ECoG’s lack of spatial resolution enhancement techniques (e.g., bi-polar re-reference).

Table 2: Results on word-reading sEEG datasets (sEEG & (epidural) ECoG). Paired T-tests are evaluated between our method and other decoding baselines. **We report top-1 accuracy (%) and $1 - \text{SER} (\%)$ across 6 random seeds for word classification and syllable sequential classification tasks, respectively; please see Appendix B for more details.**

Methods	Chan. Select.	Du-IN		Ours	
		Word	Syllable	Word	Syllable
LaBraM	MC	11.78±2.70	-	28.33±0.98	-
CBraMod	MC	11.52±2.48	-	26.88±1.63	-
PopT	MC	22.55±3.26	-	29.30±0.63	-
EEG-CFMR	MC	45.82±4.66	62.63±3.77	42.16±2.46	59.59±0.42
Du-IN	MC	62.70±4.69	70.66±3.74	52.63±1.68	66.75±0.72
H2DiLR	MC	25.84±3.12	43.29±1.84	32.21±1.33	46.63±0.48
BrainStra.-Fine	MC	66.35±3.86	75.54±3.19	58.50±1.51	70.66±0.76
BrainStra.-Fine	BrainStra.-Coarse	66.44±3.65	75.36±3.17	-	-

[†] $p < 0.001$ (purple); $p < 0.01$ (pink); $p < 0.05$ (yellow); $p > 0.05$ (gray)

In Table 3, our method identifies functional groups that capture complementary neural information related to speech perception, enhancing downstream decoding. When evaluated on channels selected by our method, most models surpass the PopT baseline with SC selection. Besides, our method surpasses all baselines, further demonstrating the superiority of temporal modeling approaches.

4.5 RESULTS ON DISENTANGLEMENT LEARNING

To evaluate the disentanglement of the learned codexes in BrainStratify-Fine, we adopted the experiment design outlined by Metzger et al. (2023) and collected a well-annotated articulation control dataset (Figure 4 (a)). Specifically, the subject attempted (**non-vocalized**) movements of the jaw, lips, and tongue, resulting in $\sim 2k$ trials across 6 articulation control movements (i.e., jaw open & close, lips forward & backward, and tongue up & down). Leveraging this benchmark dataset, we investigate the disentanglement of the learned codexes in relation to the basic articulation control movements.

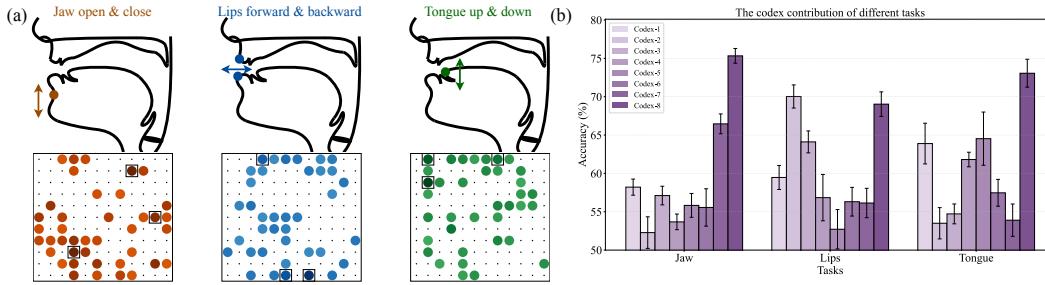
Following the evaluation protocol commonly adopted in the representation learning based neural disentanglement field (Liu et al., 2021; Huang et al., 2024; Wang et al., 2024e), we leverage the reconstructed signals from each codex individually to train binary classification models, and report the top-1 accuracy in Figure 4 (b). Similar to the results via self-supervised disentanglement representation learning methods on neural spike recordings (Liu et al., 2021; Huang et al., 2024), the contribution of different codex to articulator control movements varies. Specifically, codex-8

432 Table 3: Results on Brain Treebank sEEG dataset. Paired T-tests are evaluated between our method
 433 and other decoding baselines. **We report ROC-AUC across 6 random seeds for binary state classifica-**
 434 **tion tasks; please see Appendix B for more details.**

436 437 Methods	438 439 440 441 442 443 444 445 Chan. Select.	446 447 ROC-AUC \pm ste			
		Pitch	Volumn	Sent. Onset	Word Onset
PopT	SC	0.74 \pm 0.03	0.87 \pm 0.03	0.90 \pm 0.01	0.93 \pm 0.02
LaBraM	BrainStra.-Coarse	0.72 \pm 0.02	0.87 \pm 0.02	0.90 \pm 0.02	0.94 \pm 0.01
CBraMod	BrainStra.-Coarse	0.70 \pm 0.02	0.84 \pm 0.03	0.90 \pm 0.02	0.94 \pm 0.01
PopT	BrainStra.-Coarse	0.74 \pm 0.02	0.88 \pm 0.02	0.94 \pm 0.01	0.96 \pm 0.01
EEG-CFMR	BrainStra.-Coarse	0.77 \pm 0.02	0.89 \pm 0.02	0.92 \pm 0.02	0.94 \pm 0.01
Du-IN	BrainStra.-Coarse	0.78 \pm 0.02	0.90 \pm 0.02	0.94 \pm 0.01	0.97 \pm 0.01
H2DiLR	BrainStra.-Coarse	0.77 \pm 0.02	0.88 \pm 0.02	0.88 \pm 0.02	0.90 \pm 0.01
BrainStra.-Fine	BrainStra.-Coarse	0.79\pm0.02	0.91\pm0.02	0.95\pm0.02	0.98\pm0.01

[†] $p < 0.001$ (purple); $p < 0.01$ (pink); $p < 0.05$ (yellow); $p > 0.05$ (gray)

450 consistently encodes articulation control information across articulation control tasks, where codex-7,
 451 codex-2&3, and codex-1&4&5 are primarily involved in jaw, lips, and tongue control, respectively.



463 **Figure 4: Results for Fine Disentanglement Learning.** (a). The channel tuning map across
 464 articulators during attempted movements. (b). The codex contribution analysis across articulator
 465 control tasks (i.e., jaw & lips & tongue). **Since the spatial resolution of ECoG data seems insufficient**
 466 **to discriminate neural encoding between the front and back tongue at explored by Metzger et al.**
 467 **(2023), our analysis focuses primarily on the codex's encoding of the broader articulators: the jaw,**
 468 **tongue, and lips.** The reconstruction loss caused by keeping any codex to reconstruct the original
 469 signal is close to 1, with minor differences.

474 5 LIMITATIONS

477 Given the sparse distribution of sEEG electrodes across the brain, BrainStratify is currently limited
 478 to identifying functional modules rather than full functional networks. Nevertheless, these modules
 479 serve as fundamental building blocks for such networks. Extending our framework to infer dynamic
 480 network topology would enrich its neuroscientific insight if denser sEEG electrode coverages become
 481 available and models are refined to capture time-lagged spatial relationships.

482 Due to the scarcity of public intracranial neural datasets, BrainStratify is currently evaluated on six
 483 datasets (e.g., vocal production, speech perception, etc.). Despite this limitation, the framework's
 484 design affords clear interpretability grounded in brain organization, ensuring a solid neuroscience
 485 foundation (Buzsáki, 2006; Silva et al., 2024; Metzger et al., 2023). We anticipate our method to
 486 generalize to other cognitive states (e.g., image perception) as more data becomes publicly available.

486

6 DISCUSSION

488 In the field of neural encoding, neuroscience researchers design cognitive experiments and collect
 489 intracranial datasets to study the organization of cognitive functions (Bouchard et al., 2013; Mesgarani
 490 et al., 2014). Specifically, they aim to break down cognitive function and identify the stable and
 491 precise information encoded by each brain region (e.g., vSMC for vocal production, STG for speech
 492 perception, etc.). However, large-scale labeling in clinical settings is often prohibitively costly or
 493 unfeasible (Angrick et al., 2021; Singh et al., 2025), which contradicts the large amount of labeled
 494 data required by supervised channel-selection methods (e.g., SC and MC). And this issue may prevent
 495 researchers from fully exploiting their valuable and hard-won datasets, thus delaying the discovery
 496 process in cognitive state decoding. For example, in some early speech decoding studies (Angrick
 497 et al., 2021), researchers were not aware of the importance of channel selection based on functional
 498 similarity, resulting in not fully exploiting the potential of the collected data.

499 In this work, we present BrainStratify, a practical toolbox for intracranial neural decoding in real-
 500 world clinical settings. BrainStratify leverages abundant unlabeled data to address two fundamental
 501 problems in intracranial modeling: (1) data-efficient channel selection in intracranial sEEG record-
 502 ings; (2) representation learning via self-supervision to boost performance across diverse decoding
 503 paradigms (e.g., classification, sequential classification, regression). By enabling neuroscience
 504 researchers to fully exploit their valuable and hard-won datasets, our framework will potentially
 505 accelerate the discovery process in cognitive state decoding.

506 The core design of BrainStratify-Coarse is largely consistent with studies on the neural encoding
 507 of cognitive function organization (Bouchard et al., 2013; Mesgarani et al., 2014), which aims to
 508 break down cognitive function and identify the stable and precise information encoded by each
 509 brain region (e.g., vSMC for vocal production, STG for speech perception, etc.). For such cognitive-
 510 decoding tasks, our method aims to estimate the precise functional boundaries of these modules, as
 511 demonstrated in Figure 3, thus avoiding the involvement of irrelevant channels to reduce performance.
 512 However, decoding tasks are not limited to cognitive functions; there are other types of decoding
 513 tasks, such as epilepsy detection (Zhang et al., 2023; Jiang et al., 2024) and sleep staging (Liu & Jia,
 514 2023; Vallat & Walker, 2021). Therefore, our model is not capable of handling all types of decoding
 515 tasks, but focuses on decoding tasks related to cognitive functions (e.g., speech decoding).

516 BrainStratify-Fine aims to understand the fine-grained neural components within target functional
 517 groups via disentanglement representation learning. Due to the lack of more public datasets suitable
 518 for evaluating disentanglement, we presently confine our claim to the speech decoding field. That
 519 said, we believe that our model can be extended to other similar decoding tasks. We preliminarily
 520 evaluated our framework on an ECoG motor-intention task and an sEMG typing task. The positive
 521 decoding (not disentanglement) results on these non-language tasks suggest promising potential for
 522 broader extrapolation, and non-language tasks are worth systematically exploring if the corresponding
 523 datasets for studying encoding mechanisms are available.

524

7 CONCLUSION

525 This paper proposes BrainStratify, a novel speech decoding framework for intracranial recordings,
 526 enhanced by Coarse-to-Fine neural disentanglement. Comprehensive experiments demonstrate that
 527 BrainStratify-Coarse reliably identifies functional groups from sEEG signals, surpassing existing
 528 channel clustering baselines. In addition, BrainStratify-Fine effectively decouples neural components
 529 within target functional groups, achieving superior performance across intracranial neural modalities
 530 (e.g., sEEG, (epidural) ECoG) compared to advanced neural decoding baselines. Overall, our
 531 approach – inspired by neuroscience findings – is suitable for decoding speech from intracranial
 532 neural signals, advancing toward clinically viable and transparent neuroprosthetic systems.

540
541 THE USAGE OF LLMs542 Our writing process was assisted by DeepSeek-R1 (Guo et al., 2025), which was used to polish
543 textual clarity. Brief paragraphs were provided to the model, and its output was critically evaluated
544 before relevant revisions were adopted for the final version.

545

546 REPRODUCIBILITY STATEMENT
547548 Code to train models and reproduce the results is submitted as part of the supplementary materials
549 and can be accessed here: <https://anonymous.4open.science/r/BrainStratify-07E6>.

550

551 ETHICS STATEMENT
552553 Experiments that contribute to this work were approved by IRB. All subjects consent to participate.
554 All electrode locations are exclusively dictated by clinical considerations.

555 Our informed consent signing process is as follows:

556

557

1. If the experimental participants are adults and have full civil capacity, we will ask them to
558 sign a written informed consent after the participants have fully informed consent;
2. If the experimental participants are minors or do not have full civil capacity, we will ask
559 the participant's legal guardian to sign a written informed consent after the participants and
560 their legal guardians have fully informed consent.

561 Our informed consent form includes the following points:

562

563

1. Contact information of research institutions and researchers;
2. Research direction and purpose;
3. Risks involved in the research;
4. Personal information, data and usage methods to be used in the research;
5. Privacy protection statement (all personal identification information (PII) will not be dis-
564 closed);
6. Data storage statement (retained after deleting all personal identification information (PII));
7. Voluntary statement of participants;
8. Statement that participants can withdraw unconditionally at any time.

565

566 Our data storage and protection procedures include the following processes:

567

568

1. Our data collection, transfer, and analysis tasks are only completed by researchers who have
569 signed relevant confidentiality agreements;
2. The collected raw data will be copied twice as soon as possible, one copy to a storage
570 computer that is not connected to the Internet and encrypted, and the other copy to a mobile
571 hard disk and encrypted and stored offline;
3. The use of the data is only authorized to the research leader and the main researchers (less
572 than 5 people), among which the main researchers can only access data that does not contain
573 personal identification information (PII);
4. After the study is completed, all personal identification information (PII) on both nodes
574 (storage computer, mobile hard disk) will be deleted immediately.

575

576 To prevent unauthorized access or possible data leakage, we use double encryption on the storage
577 computer, that is, a static password and a dynamic password (received by mobile phone or email);
578 physical isolation is used on the mobile hard disk, that is, it is locked in a filing cabinet, and the key
579 is only kept by the research leader and the main researchers.

580

594 REFERENCES
595

596 Miguel Angrick, Maarten C Ottenhoff, Lorenz Diener, Darius Ivucic, Gabriel Ivucic, Sophocles
597 Goulis, Jeremy Saal, Albert J Colon, Louis Wagner, Dean J Krusienski, et al. Real-time synthesis of
598 imagined speech processes from minimally invasive recordings of neural activity. *Communications
599 biology*, 4(1):1055, 2021.

600 Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework
601 for self-supervised learning of speech representations. *Advances in neural information processing
602 systems*, 33:12449–12460, 2020.

603 Kristofer E Bouchard, Nima Mesgarani, Keith Johnson, and Edward F Chang. Functional organization
604 of human sensorimotor cortex for speech articulation. *Nature*, 495(7441):327–332, 2013.

605 Mariana P Branco, Simon H Geukes, Erik J Aarnoutse, Nick F Ramsey, and Mariska J Vansteensel.
606 Nine decades of electrocorticography: A comparison between epidural and subdural recordings.
607 *European Journal of Neuroscience*, 57(8):1260–1288, 2023.

608 György Buzsáki. *Rhythms of the Brain*. Oxford university press, 2006.

609 Josue Ortega Caro, Antonio H de O Fonseca, Christopher Averill, Syed A Rizvi, Matteo Rosati,
610 James L Cross, Prateek Mittal, Emanuele Zappala, Daniel Levine, Rahul M Dhodapkar, et al.
611 Brainlm: A foundation model for brain activity recordings. *bioRxiv*, pp. 2023–09, 2023.

612 Geeling Chau, Christopher Wang, Sabera Talukder, Vighnesh Subramaniam, Saraswati Soedarmadji,
613 Yisong Yue, Boris Katz, and Andrei Barbu. Population transformer: Learning population-level
614 representations of neural activity. *ArXiv*, pp. arXiv–2406, 2024.

615 Jialin Chen, Jan Eric Lenssen, Aosong Feng, Weihua Hu, Matthias Fey, Leandros Tassiulas, Jure
616 Leskovec, and Rex Ying. From similarity to superiority: Channel clustering for time series
617 forecasting. *Advances in Neural Information Processing Systems*, 37:130635–130663, 2025.

618 Xupeng Chen, Ran Wang, Amirhossein Khalilian-Gourtani, Leyao Yu, Patricia Dugan, Daniel
619 Friedman, Werner Doyle, Orrin Devinsky, Yao Wang, and Adeen Flinker. A neural speech
620 decoding framework leveraging deep learning and speech synthesis. *Nature Machine Intelligence*,
621 6(4):467–480, 2024.

622 Rahul S Desikan, Florent Ségonne, Bruce Fischl, Brian T Quinn, Bradford C Dickerson, Deborah
623 Blacker, Randy L Buckner, Anders M Dale, R Paul Maguire, Bradley T Hyman, et al. An automated
624 labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of
625 interest. *Neuroimage*, 31(3):968–980, 2006.

626 Philippe Domenech, Sylvain Rheims, and Etienne Koechlin. Neural mechanisms resolving
627 exploitation-exploration dilemmas in the medial prefrontal cortex. *Science*, 369(6507):eabb0184,
628 2020.

629 Zijian Dong, Ruilin Li, Yilei Wu, Thuan Tinh Nguyen, Joanna Chong, Fang Ji, Nathanael Tong,
630 Christopher Chen, and Juan Helen Zhou. Brain-jepa: Brain dynamics foundation model with
631 gradient positioning and spatiotemporal masking. *Advances in Neural Information Processing
632 Systems*, 37:86048–86073, 2024.

633 Chaofei Fan, Nick Hahn, Foram Kamdar, Donald Avansino, Guy Wilson, Leigh Hochberg, Krishna V
634 Shenoy, Jaimie Henderson, and Francis Willett. Plug-and-play stability for intracortical brain-
635 computer interfaces: a one-year demonstration of seamless brain-to-text communication. *Advances
636 in neural information processing systems*, 36:42258–42270, 2023.

637 Chen Feng, Lu Cao, Di Wu, En Zhang, Ting Wang, Xiaowei Jiang, Jinbo Chen, Hui Wu, Siyu Lin,
638 Qiming Hou, et al. Acoustic inspired brain-to-sentence decoder for logosyllabic language. *Cyborg
639 and Bionic Systems*, 2023.

640 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
641 Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforce-
642 ment learning. *Nature*, 645(8081):633–638, 2025.

648 Devamanyu Hazarika, Roger Zimmermann, and Soujanya Poria. Misa: Modality-invariant and
 649 specific representations for multimodal sentiment analysis. In *Proceedings of the 28th ACM*
 650 *international conference on multimedia*, pp. 1122–1131, 2020.

651

652 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *arXiv preprint*
 653 *arXiv:1606.08415*, 2016.

654

655 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
 656 Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
 657 constrained variational framework. In *International conference on learning representations*, 2017.

658

659 Kyle Hsu, William Dorrell, James Whittington, Jiajun Wu, and Chelsea Finn. Disentanglement via
 660 latent quantization. *Advances in Neural Information Processing Systems*, 36:45463–45488, 2023.

661

662 Kyle Hsu, Jubayer Ibn Hamid, Kaylee Burns, Chelsea Finn, and Jiajun Wu. Tripod: Three complemen-
 663 tary inductive biases for disentangled representation learning. *arXiv preprint arXiv:2404.10282*,
 664 2024.

665

666 Yifan Hu, Guibin Zhang, Peiyuan Liu, Disen Lan, Naiqi Li, Dawei Cheng, Tao Dai, Shu-Tao Xia, and
 667 Shirui Pan. Timefilter: Patch-specific spatial-temporal graph filtration for time series forecasting.
 668 *arXiv preprint arXiv:2501.13041*, 2025.

669

670 Liwei Huang, ZhengYu Ma, Liutao Yu, Huihui Zhou, and Yonghong Tian. Time-dependent vae for
 671 building latent representations from visual neural activity with complex dynamics. *arXiv preprint*
 672 *arXiv:2408.07908*, 2024.

673

674 Qihe Huang, Lei Shen, Ruixin Zhang, Shouhong Ding, Binwu Wang, Zhengyang Zhou, and Yang
 675 Wang. Crossgnn: Confronting noisy multivariate time series via cross interaction refinement.
 676 *Advances in Neural Information Processing Systems*, 36:46885–46902, 2023.

677

678 Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search.
 679 *IEEE transactions on pattern analysis and machine intelligence*, 33(1):117–128, 2010.

680

681 Wei-Bang Jiang, Li-Ming Zhao, and Bao-Liang Lu. Large brain model for learning generic represen-
 682 tations with tremendous eeg data in bci. *arXiv preprint arXiv:2405.18765*, 2024.

683

684 Chengrui Li, Yunmiao Wang, Yule Wang, Weihan Li, Dieter Jaeger, and Anqi Wu. A revisit of total
 685 correlation in disentangled variational auto-encoder with partial disentanglement. *arXiv preprint*
 686 *arXiv:2502.02279*, 2025a.

687

688 Guangye Li, Shize Jiang, Sivylla E Paraskevopoulou, Meng Wang, Yang Xu, Zehan Wu, Liang Chen,
 689 Dingguo Zhang, and Gerwin Schalk. Optimal referencing for stereo-electroencephalographic
 690 (seeg) recordings. *NeuroImage*, 183:327–335, 2018.

691

692 Jiahe Li, Xin Chen, Fanqi Shen, Junru Chen, Yuxin Liu, Daoze Zhang, Zhizhang Yuan, Fang Zhao,
 693 Meng Li, and Yang Yang. Deep learning-powered electrical brain signals analysis: Advancing
 694 neurological diagnostics. *arXiv preprint arXiv:2502.17213*, 2025b.

695

696 Dingkun Liu, Yongzhi Shan, Penghu Wei, Wenzheng Li, Honglai Xu, Fangshuo Liang, Tao Liu,
 697 Guoguang Zhao, and Bo Hong. Reclaiming hand functions after complete spinal cord injury with
 698 epidural brain-computer interface. *medRxiv*, pp. 2024–09, 2024.

699

700 Ran Liu, Mehdi Azabou, Max Dabagia, Chi-Heng Lin, Mohammad Gheshlaghi Azar, Keith Hengen,
 701 Michal Valko, and Eva Dyer. Drop, swap, and generate: A self-supervised approach for generating
 702 neural activity. *Advances in neural information processing systems*, 34:10587–10599, 2021.

703

704 Yuchen Liu and Ziyu Jia. Bstt: A bayesian spatial-temporal transformer for sleep staging. In *The*
 705 *Eleventh International Conference on Learning Representations*, 2023.

706

707 Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Schölkopf,
 708 and Olivier Bachem. Challenging common assumptions in the unsupervised learning of disentan-
 709 gled representations. In *international conference on machine learning*, pp. 4114–4124. PMLR,
 710 2019.

702 Georgios Mentzelopoulos, Evangelos Chatzipantazis, Ashwin Ramayya, Michelle Hedlund, Vivek
 703 Buch, Kostas Daniilidis, Konrad Kording, and Flavia Vitale. Neural decoding from stereotactic eeg:
 704 accounting for electrode variability across subjects. *Advances in Neural Information Processing
 705 Systems*, 37:108600–108624, 2024.

706 Nima Mesgarani, Connie Cheung, Keith Johnson, and Edward F Chang. Phonetic feature encoding
 707 in human superior temporal gyrus. *Science*, 343(6174):1006–1010, 2014.

709 Sean L Metzger, Kaylo T Littlejohn, Alexander B Silva, David A Moses, Margaret P Seaton,
 710 Ran Wang, Maximilian E Dougherty, Jessie R Liu, Peter Wu, Michael A Berger, et al. A
 711 high-performance neuroprosthesis for speech decoding and avatar control. *Nature*, 620(7976):
 712 1037–1046, 2023.

713 David A Moses, Sean L Metzger, Jessie R Liu, Gopala K Anumanchipalli, Joseph G Makin, Pengfei F
 714 Sun, Josh Chartier, Maximilian E Dougherty, Patricia M Liu, Gary M Abrams, et al. Neuroprosthe-
 715 sis for decoding speech in a paralyzed person with anarthria. *New England Journal of Medicine*,
 716 385(3):217–227, 2021.

717 Nikhilesh Natraj, Sarah Seko, Reza Abiri, Runfeng Miao, Hongyi Yan, Yasmin Graham, Adelyn
 718 Tu-Chan, Edward F Chang, and Karunesh Ganguly. Sampling representational plasticity of
 719 simple imagined movements across days enables long-term neuroprosthetic control. *Cell*, 188(5):
 720 1208–1225, 2025.

722 Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
 723 *Advances in neural information processing systems*, 14, 2001.

724 Yitzhak Norman, Erin M Yeagle, Simon Khuvis, Michal Harel, Ashesh D Mehta, and Rafael Malach.
 725 Hippocampal sharp-wave ripples linked to visual episodic recollection in humans. *Science*, 365
 726 (6454):eaax1030, 2019.

728 Khalid Oublal, Said Ladjal, David Benhaim, Emmanuel LE BORGNE, and François Roueff.
 729 Disentangling time series representations via contrastive independence-of-support on l-variational
 730 inference. In *The Twelfth International Conference on Learning Representations*, 2024.

731 Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
 732 Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
 733 Machine learning in python. *the Journal of machine Learning research*, 12:2825–2830, 2011.

734 Xiangfei Qiu, Xingjian Wu, Yan Lin, Chenjuan Guo, Jilin Hu, and Bin Yang. Duet: Dual clustering
 735 enhanced multivariate time series forecasting. *arXiv preprint arXiv:2412.10859*, 2024.

737 Alexander B Silva, Kaylo T Littlejohn, Jessie R Liu, David A Moses, and Edward F Chang. The
 738 speech neuroprosthesis. *Nature Reviews Neuroscience*, 25(7):473–492, 2024.

739 Daniel B Silversmith, Reza Abiri, Nicholas F Hardy, Nikhilesh Natraj, Adelyn Tu-Chan, Edward F
 740 Chang, and Karunesh Ganguly. Plug-and-play control of a brain–computer interface through neural
 741 map stabilization. *Nature biotechnology*, 39(3):326–335, 2021.

743 Aditya Singh, Tessy Thomas, Jinlong Li, Greg Hickok, Xaq Pitkow, and Nitin Tandon. Transfer
 744 learning via distributed brain recordings enables reliable speech decoding. *Nature Communications*,
 745 16(1):8749, 2025.

746 Viswanath Sivakumar, Jeffrey Seely, Alan Du, Sean Bittner, Adam Berenzweig, Anuoluwapo Bolar-
 747 inwa, Alex Gramfort, and Michael Mandel. emg2qwerty: A large dataset with baselines for touch
 748 typing using surface electromyography. *Advances in Neural Information Processing Systems*, 37:
 749 91373–91389, 2024.

750 Yonghao Song, Qingqing Zheng, Bingchuan Liu, and Xiaorong Gao. Eeg conformer: Convolutional
 751 transformer for eeg decoding and visualization. *IEEE Transactions on Neural Systems and
 752 Rehabilitation Engineering*, 31:710–719, 2022.

754 Vighnesh Subramaniam, Colin Conwell, Christopher Wang, Gabriel Kreiman, Boris Katz, Ignacio
 755 Cases, and Andrei Barbu. Revealing vision-language integration in the brain with multimodal
 networks. *ArXiv*, pp. arXiv–2406, 2024.

756 Raphael Vallat and Matthew P Walker. An open-source, high-performance tool for automated sleep
 757 staging. *elife*, 10:e70092, 2021.
 758

759 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in
 760 neural information processing systems*, 30, 2017.
 761

762 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 763 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
 764 systems*, 30, 2017.
 765

766 Christopher Wang, Vighnesh Subramaniam, Adam Uri Yaari, Gabriel Kreiman, Boris Katz, Ignacio
 767 Cases, and Andrei Barbu. Brainbert: Self-supervised representation learning for intracranial
 768 recordings. *arXiv preprint arXiv:2302.14367*, 2023.
 769

770 Christopher Wang, Adam Uri Yaari, Aaditya K Singh, Vighnesh Subramaniam, Dana Rosenfarb,
 771 Jan DeWitt, Pranav Misra, Joseph R Madsen, Scellig Stone, Gabriel Kreiman, et al. Brain
 772 treebank: Large-scale intracranial recordings from naturalistic language stimuli. In *The Thirty-
 773 eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track*,
 774 2024a.
 775

776 Guangyu Wang, Wenchao Liu, Yuhong He, Cong Xu, Lin Ma, and Haifeng Li. Eegpt: Pretrained
 777 transformer for universal and reliable representation of eeg signals. *Advances in Neural Information
 778 Processing Systems*, 37:39249–39280, 2024b.
 779

779 Jiquan Wang, Sha Zhao, Zhiling Luo, Yangxuan Zhou, Haiteng Jiang, Shijian Li, Tao Li, and
 780 Gang Pan. Cbramod: A criss-cross brain foundation model for eeg decoding. *arXiv preprint
 781 arXiv:2412.07236*, 2024c.
 782

782 William SY Wang. The chinese language. *Scientific American*, 228(2):50–63, 1973.
 783

783 Xin Wang, Hong Chen, Si’ao Tang, Zihao Wu, and Wenwu Zhu. Disentangled representation learning.
 784 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024d.
 785

785 Yule Wang, Chengrui Li, Weihan Li, and Anqi Wu. Exploring behavior-relevant and disentangled
 786 neural dynamics with generative diffusion models. *Advances in Neural Information Processing
 787 Systems*, 37:34712–34736, 2024e.
 788

788 Francis R Willett, Erin M Kunz, Chaofei Fan, Donald T Avansino, Guy H Wilson, Eun Young
 789 Choi, Foram Kamdar, Matthew F Glasser, Leigh R Hochberg, Shaul Druckmann, et al. A high-
 790 performance speech neuroprosthesis. *Nature*, 620(7976):1031–1036, 2023.
 791

791 Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Cost: Contrastive
 792 learning of disentangled seasonal-trend representations for time series forecasting. *arXiv preprint
 793 arXiv:2202.01575*, 2022.
 794

794 Di Wu, Siyuan Li, Chen Feng, Lu Cao, Yue Zhang, Jie Yang, and Mohamad Sawan. Towards
 795 homogeneous lexical tone decoding from heterogeneous intracranial recordings. *arXiv preprint
 796 arXiv:2410.12866*, 2024.
 797

797 Yuxin Wu and Kaiming He. Group normalization. In *Proceedings of the European conference on
 798 computer vision (ECCV)*, pp. 3–19, 2018.
 799

800 Zhizhang Yuan, Daoze Zhang, Yang Yang, Junru Chen, and Yafeng Li. Ppi: Pretraining brain signal
 801 model for patient-independent seizure detection. *Advances in Neural Information Processing
 802 Systems*, 36:69586–69604, 2023.
 803

803 Daoze Zhang, Zhizhang Yuan, Yang Yang, Junru Chen, Jingjing Wang, and Yafeng Li. Brant:
 804 Foundation model for intracranial neural signal. *Advances in Neural Information Processing
 805 Systems*, 36:26304–26321, 2023.
 806

807 Hui Zheng, Haiteng Wang, Weibang Jiang, Zhongtao Chen, Li He, Peiyang Lin, Penghu Wei,
 808 Guoguang Zhao, and Yunzhe Liu. Du-in: Discrete units-guided mask modeling for decoding
 809 speech from intracranial neural signals. *Advances in Neural Information Processing Systems*, 37:
 79996–80033, 2025.

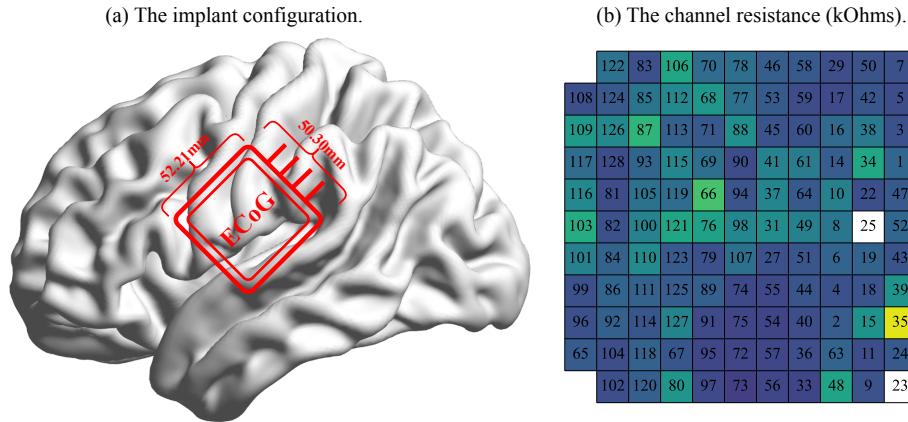
810 Ding Zhou and Xue-Xin Wei. Learning identifiable and interpretable latent models of high-
811 dimensional neural activity using pi-vae. *Advances in neural information processing systems*, 33:
812 7234–7247, 2020.
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 **A EXPERIMENT DESIGN**
865866 **A.1 WORD-READING EPIDURAL ECoG DATASET**
867

868 Due to the lack of open-source intracranial neural datasets related to speech, we follow the experimental
869 design outlined in Du-IN (Zheng et al., 2025) to collect a well-annotated Chinese word-reading
870 (epidural) ECoG dataset, including one subject (female; aged 67) who has lost her ability to communicate
871 or perform daily tasks due to amyotrophic lateral sclerosis (ALS).

872 We developed a minimally invasive BCI (Branco et al., 2023; Liu et al., 2024) with an 11×12
873 (epidural) ECoG grid (50.30mm \times 52.21mm) above the ventral sensorimotor cortex (vSMC) to
874 restore the speech functions of that subject, as shown in Figure 5 (a). With wireless powering and
875 neural data transmission, this system enables real-time speech neuroprostheses in home use. After
876 excluding the four corner electrodes, we analyzed neural recordings from the remaining 128 channels,
877 as shown in Figure 5 (b). All electrodes (except No.23 and No.25) exhibit consistently low impedance
878 levels during neural recordings, ensuring robust signal fidelity.

879



885 **Figure 5: Overview of ECoG configuration.** (a). The implant configuration. Our developed
886 (epidural) ECoG is placed above vSMC, which is involved in vocal production (Silva et al., 2024).
887 (b). The channel resistance. Electrodes at the four corners are excluded for downstream analysis.

888

889 In the word-reading task, the subject attempts to speak individual words from the pre-defined word-set
890 (including 62 words as detailed in Table 4) while we record her brain activity (measured by ECoG).

891 All data are collected as a series of "blocks" (42 blocks in total), with each block lasting about
892 20 minutes and consisting of multiple trials. During each block of this task, all words (from the
893 pre-defined word-set) are presented individually 5 times, leading to a total of 310 trials.

894 Each trial in a block of this task starts with one word shown on the screen in white text. After 0.2
895 seconds, the text will turn green and remain on the screen for 2.2 seconds. This color transition from
896 white to green represents the go cue for each trial, and the subject is instructed to speak the word
897 aloud as soon as the text turns green. Afterward, the text will be replaced with a blank screen with a
898 centered cross. After 0.8 seconds, the task continues to the next trial. The word presentation order is
899 randomized within each task block.

900 Besides, we also collected non-task recordings of subjects in their daily life. There are roughly 8
901 hours of non-task recordings during wakefulness. In summary, for each subject, we collect about 22
902 hours of sEEG recordings, of which 14 hours are task recordings.

903

904 **A.2 MOTOR-INTENTION EPIDURAL ECoG DATASET**
905

906 We collected neural data from one paralyzed subject (male; aged 30) who has lost his motor function
907 in all four limbs due to spinal cord injuries (SCI). The subject underwent a surgical procedure to
908 implant the (epidural) ECoG grid, above the subregion of the left precentral gyrus responsible for

918 motor control (i.e., hand, leg), in his brain. All channels exhibit consistently low impedance levels
 919 during neural recordings, ensuring robust signal fidelity.
 920

921 In the motor-intention task, the subject attempted to move his limbs from the pre-defined action-set
 922 while we recorded his brain activity (measured by ECoG). Specifically, word cues are replaced with
 923 the actions from the pre-defined action-set: (1) left-finger: rotate the left index finger; (2) right-hand:
 924 clench the right fist; (3) right-elbow: bend the right elbow; (4) right-leg: bend the right knee. And the
 925 duration of the green prompt is extended to 4 seconds from 2 seconds. Besides, we also collected
 926 non-task recordings of the subject in his daily life. There are roughly 10 hours of non-task recordings
 927 during wakefulness. In summary, for the subject, we collected about 15 hours of (epidural) ECoG
 928 recordings, of which 5 hours are task recordings.
 929

Table 4: The Chinese words and English translations in the word-reading (epidural) ECoG dataset.

Words	Translations	Words	Translations	Words	Translations
的	of	对	right	在	exist
把	handle	是	be	要	want
和	and	你	you	这	this
去	go	有	have	没	without
他	he	看	look	我	I
给	give	不	no	都	all
就	at once	帮	help	好	good
找	find	陪	accompany	热	hot
冷	cold	人	people	想	think
吗	?	出	out	医生	doctor
可以	can	睡觉	sleep	说话	speak
休息	rest	问题	question	家人	family
谢谢	thanks	朋友	friend	吃饭	eat
手机	cell phone	喝水	drink water	心情	mood
厕所	toilet	快乐	happy	困难	difficulty
紧急	urgent	护士	nurse	感觉	feel
舒服	comfortable	电脑	computer	坐着	sitting
躺下	lie down	洗澡	bath	现在	now
书籍	book	医院	hospital	衣服	clothes
一起	together	散步	walk	呼吸	breathe
非常	very	回家	go home	-	-

962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972 **B TASK DETAILS**
973974 In experiments, we evaluate multiple neural decoding tasks across diverse datasets: two public sEEG
975 datasets (Zheng et al., 2025; Wang et al., 2024a), our collected word-reading & motor-intention
976 (epidural) ECoG datasets, and two public datasets from other modalities (i.e., Micro-Electrode Array
977 (MEA), surface ElectroMyoGraphy (sEMG)).
978979 **B.1 DU-IN sEEG DATASET**
980981 We follow the same task specification in Du-IN (Zheng et al., 2025). Each trial lasts 3 seconds.
982983 **Word Reading.** The subject speaks aloud individual words from the pre-defined word-set (including
984 61 words) while his neural activity and voice are simultaneously recorded. Labels are balanced in the
985 experiment design.986 We follow the evaluation protocol in Du-IN (Zheng et al., 2025). Since this task is a classification
987 (CLS) task, we flatten embeddings and add a linear head after either pre-trained or randomly initialized
988 models. Training employs cross-entropy loss, with results quantified using top-1 accuracy scores.989 Besides, following Willett et al. (2023), we evaluate the 49-syllable sequential classification (CTC)
990 task. Considering the difference between English and Chinese, we utilize syllables from Pinyin
991 (Wang, 1973), a widely adopted phonetic representation system based on the Latin alphabet, as
992 basic units that have the potential to support open-set speech decoding tasks. The set of 49 syllables
993 includes:994

- 995 • 1 CTC blank token (i.e., "-"),
- 996 • 1 silence token (i.e., "|"),
- 997 • 23 initial syllable tokens,
- 998 • 24 final syllable tokens.

9991000 Take the pre-determined word "电脑" (i.e., "computer") for example, the corresponding syllable label
1001 sequence y is ["|", "d", "i", "an", "|", "n", "ao", "|"]. Since this task is a sequential classification
1002 (CTC) task, we add a linear head after either pre-trained or randomly initialized models. Training
1003 employs connectionist temporal classification (CTC) loss, with results quantified using syllable error
1004 rate scores. Specifically, the syllable error rate (SER) is computed based on the syllable edit distances,
1005 which is widely adopted in neural decoding research (Fan et al., 2023; Willett et al., 2023; Metzger
1006 et al., 2023). To align with the trend of top-1 accuracy, we present results as $(1 - \text{SER})$ rather than
1007 raw SER values.
10081009 **B.2 BRAIN TREEBANK sEEG DATASET**
10101011 While adopting the same task specification in PopT (Chau et al., 2024), we narrowed the analysis
1012 window to [-2.0,2.0]s around word onset (vs. PopT's [-2.5,2.5]s), yielding 4-second neural activity
1013 per trial.1014 **Pitch.** The pitch of a given word is extracted using Librosa's `piptrack` function over a Mel-
1015 spectrogram (sampling rate 48,000 Hz, FFT window length of 2048, hop length of 512, and 128 mel
1016 filters). For this task, for a given session, the positive examples consist of words in the top quartile of
1017 pitch, and the negative examples are the words in the bottom quartile.
10181019 **Volume.** The volume of a given word is computed as the average intensity of root-mean-square
1020 (RMS) (`rms` function, frame and hop lengths 2048 and 512 respectively). For this task, for a given
1021 session, the positive examples are the words in the top quartile of volume, and the negative examples
1022 are the words in the bottom quartile.
10231024 **Sent. Onset (Sentence Onset).** The negative examples are intervals of activity from 1s periods
1025 during which no speech occurs in the movie. The positive examples are intervals of brain activity that
correspond with hearing the first word of a sentence.

1026 **Word Onset (Speech vs. Non-speech).** The negative examples are intervals of activity from 1s
 1027 periods during which no speech occurs in the movie. The positive examples are intervals of brain
 1028 activity that correspond with dialogue being spoken in the stimuli movie.

1029 For each task, we follow the evaluation protocol in PopT (Chau et al., 2024), using the specified
 1030 movie for downstream classification. Since these tasks are binary classification (CLS) tasks, we
 1031 flatten embeddings and add a linear head after either pre-trained or randomly initialized models.
 1032 Training employs binary cross-entropy (BCE) loss, with results quantified using ROC-AUC scores.
 1033

1034 **B.3 WORD-READING (EPIDURAL) ECoG DATASET**

1035 The experiment design is discussed in Appendix A. Each trial lasts 2.4 seconds.

1036 **Word Reading.** The subject attempts to speak individual words from the pre-defined word-set
 1037 while her neural activity is recorded. Labels are balanced in the experiment design.

1038 We follow the evaluation protocol in Du-IN (Zheng et al., 2025). Since this task is a classification
 1039 (CLS) task, we flatten embeddings and add a linear head after either pre-trained or randomly initialized
 1040 models. Training employs cross-entropy loss, with results quantified using top-1 accuracy scores.

1041 Besides, following the aforementioned evaluation protocol for the Du-IN sEEG dataset, we evaluate
 1042 the 49-syllable sequential classification (CTC) task. Training employs connectionist temporal
 1043 classification (CTC) loss, with results quantified using syllable error rate scores.

1044 **B.4 MOTOR-INTENTION (EPIDURAL) ECoG DATASET**

1045 The experiment design is discussed in Appendix A. Each trial lasts 5 seconds.

1046 **Motor Intention.** The subject attempts to move his limbs from the pre-defined action-set while is
 1047 neural activity is recorded. Labels are balanced in the experiment design.

1048 Since this task is a classification (CLS) task, we flatten embeddings and add a linear head after
 1049 either pre-trained or randomly initialized models. Training employs cross-entropy loss, with results
 1050 quantified using top-1 accuracy scores.

1051 **B.5 NPTL MEA DATASET**

1052 We follow the same task specification in Willett et al. (2023). Each trial lasts \sim 10 seconds.

1053 **Sentence Reading.** The subject attempts to speak selected sentences from the pre-defined sentence-
 1054 set (covering 125,000 words) without repetition while his neural activity is recorded.

1055 We follow the evaluation protocol in Willett et al. (2023). Since this task is a sequential classification
 1056 (CTC) task, we flatten embeddings according to the specified flatten window and add a linear head
 1057 after either pre-trained or randomly initialized models. Training employs connectionist temporal
 1058 classification (CTC) loss, with results quantified using phoneme error rate scores (PER). To align
 1059 with the trend of top-1 accuracy, we present results as $(1 - \text{PER})$ rather than raw PER values.

1060 **B.6 EMG2QWERTY sEMG DATASET**

1061 We follow the same task specification in Sivakumar et al. (2024). Each trial lasts 4 seconds.

1062 **Character Typing.** The subjects type characters according to the selected sentences from the
 1063 pre-defined sentence-set without repetition while their sEMG signals are recorded.

1064 We follow the evaluation protocol in Sivakumar et al. (2024). Since this task is a sequential clas-
 1065 sification (CTC) task, we flatten embeddings according to the specified flatten window and add a
 1066 linear head after either pre-trained or randomly initialized models. Training employs connectionist
 1067 temporal classification (CTC) loss, with results quantified using character error rate scores (CER). To
 1068 align with the trend of top-1 accuracy, we present results as $(1 - \text{CER})$ rather than raw CER values.

1080 **C BASELINE DETAILS**
10811082 **C.1 CHANNEL CLUSTER BASELINES**
10831084 In experiments, we compare our model to the advanced channel cluster methods (Chen et al., 2025;
1085 Qiu et al., 2024) in time series analysis. The details of these baseline models are given here:
10861087

- **CCM** (Chen et al., 2025): A time-series forecasting model that learns channel clustering
1088 based on intrinsic similarities and creates prototype embeddings for each cluster via a cross-
1089 attention mechanism. Since sEEG is a unique type of time series, this model is suitable to
1090 serve as a baseline for comparison.
- **DUET** (Qiu et al., 2024): A time-series forecasting model that captures the relationships
1091 among channels in the frequency domain through metric learning and applies sparsification
1092 to mitigate the adverse effects of noisy channels. Since sEEG is a unique type of time series,
1093 this model is suitable to serve as a baseline for comparison.

10941095 The detailed implementations of these baseline models are given here:
10961097

- As the CCM method (Chen et al., 2025) relies heavily on the correlation-based similarities
1098 among channels, we use raw sEEG signals of each subject (before bi-polar re-reference
1099 (Li et al., 2018)) as inputs. Bi-polar re-reference disrupts these correlations, causing
1100 CCM to fail convergence reliably. Because CCM does not generate an intermediate inter-
1101 channel similarity matrix (i.e., \mathcal{P} in this work), we directly utilize the assigned clusters for
1102 downstream channel selection.
- Like CCM, the DUET method (Qiu et al., 2024) relies on raw inter-channel correlations. We
1103 use raw sEEG signals of each subject (before bi-polar re-reference) as inputs, ensuring stable
1104 model convergence. In practice, DUET produces an intermediate inter-channel similarity
1105 matrix (i.e., \mathcal{P} in this work) and integrates this matrix via a masked attention mechanism,
1106 enhancing time series forecasting. Therefore, we directly apply spectral cluster (Ng et al.,
1107 2001) on this matrix to derive channel clusters for downstream channel selection.

1109 Although PopT (Chau et al., 2024) was originally proposed as an sEEG foundation model, we also
1110 compare our model with it. PopT introduces channel connectivity based on the pre-trained model,
1111 which provides an alternative to conventional coherence analysis. Similar to our model, we use
1112 bi-polar (or Laplacian) re-referenced sEEG signals as inputs. Since PopT struggles to converge with
1113 limited data, we pre-train PopT with sEEG signals from all available subjects, which is the original
1114 setting (Chau et al., 2024). After computing channel connectivity based on the pre-trained model,
1115 we apply spectral cluster (Ng et al., 2001) on this matrix to derive channel clusters for downstream
1116 channel selection.1117 **C.2 NEURAL DECODING BASELINES**
11181120 In experiments, we compare our model to the existing supervised or self-supervised neural decoding
1121 methods (Jiang et al., 2024; Wang et al., 2024c; Chau et al., 2024; Song et al., 2022; Zheng et al.,
1122 2025; Wu et al., 2024) on brain signals. The details of these baseline models are given here:
11231124

- **LaBraM** (Jiang et al., 2024): A self-supervised model for EEG recordings that learns
1125 generic representations with tremendous EEG data. LaBraM models temporal and spatial
1126 dependencies simultaneously, serving as an EEG foundation model. Since the spatial
1127 embeddings are originally pre-defined according to the EEG caps, we replace the learnable
1128 spatial embeddings with hard-coded spatial embeddings from PopT (Chau et al., 2024) to
1129 enable multi-subject pre-training under the sEEG setting. Since the data modes of EEG and
1130 sEEG are similar, this model is suitable to serve as a baseline for comparison.
- **CBraMod** (Wang et al., 2024c): A self-supervised model for EEG recordings that captures
1131 the heterogeneity between temporal and spatial dependencies. CBraMod combines a criss-
1132 cross attention mechanism with asymmetric conditional positional encoding (ACPE) to
1133 effectively model temporal-spatial dependencies among EEG patches. CBraMod serves as
an EEG foundation model, achieving SOTA performance on various EEG tasks. Since the

1134 data modes of EEG and sEEG are similar, this model is suitable to serve as a baseline for
 1135 comparison.

1136 • **PopT** (Chau et al., 2024): A self-supervised model for sEEG that learns population-level
 1137 codes for arbitrary ensembles of neural recordings at scale. PopT stacks on top of pre-
 1138 trained temporal embeddings and enhances downstream decoding by enabling the learned
 1139 aggregation of multiple spatially sparse channels. PopT serves as an sEEG foundation model,
 1140 achieving SOTA performance on Brain Treebank (Wang et al., 2024a). As a foundation
 1141 model in the sEEG pre-training field, this model is suitable to serve as a baseline for
 1142 comparison.

1143 • **EEG-CFMR** (Song et al., 2022): A supervised model for EEG that consists of both CNN
 1144 module and Transformer module, to encapsulate local and global features in a unified EEG
 1145 classification framework. EEG-CFMR is mainly designed for EEG-based motor imagination
 1146 tasks. Since the data modes of EEG and sEEG are similar, this model is suitable to serve as
 1147 a baseline for comparison.

1148 • **Du-IN** (Zheng et al., 2025): A self-supervised model for sEEG-based speech decoding that
 1149 learns contextual embeddings based on region-level tokens through discrete codex-guided
 1150 mask modeling. Du-IN achieves SOTA performance on sEEG-based speech decoding using
 1151 the Du-IN dataset (Zheng et al., 2025). As a strong baseline in sEEG-based speech decoding,
 1152 this model is suitable to serve as a baseline for comparison.

1153 • **H2DiLR** (Wu et al., 2024): A self-supervised model for sEEG-based tone decoding that
 1154 disentangles and learns both the homogeneity and heterogeneity from intracranial sEEG
 1155 recordings across multiple subjects. H2DiLR achieves SOTA performance on sEEG-based
 1156 tone decoding using the sEEG dataset from Feng et al. (2023). As a strong baseline in
 1157 sEEG-based tone decoding (part of speech decoding), this model is suitable to serve as a
 1158 baseline for comparison.

1159 The detailed implementations of these baseline models are given here:

1160 • For the LaBraM method (Jiang et al., 2024), the hyperparameters are the same as the original
 1161 implementation of the LaBraM-Base model. In practice, foundation models are pre-trained
 1162 on massive neural datasets. Therefore, their architectures remain fixed after the pre-training
 1163 stage, limiting post-hoc modifications. The data samples are resampled to the specified
 1164 sampling rate (i.e., 200 Hz).

1165 • For the CBraMod method (Wang et al., 2024c), the hyperparameters are the same as the
 1166 original implementation of the CBraMod model. The data samples are resampled to the
 1167 specified sampling rate (i.e., 200 Hz).

1168 • For the PopT method (Chau et al., 2024), the hyperparameters are the same as the original
 1169 implementation of the PopT model. The data samples are resampled to the specified
 1170 sampling rate (i.e., 2048 Hz).

1171 • For the EEG-CFMR method (Song et al., 2022), the hyperparameters are the same as the
 1172 original implementation of the EEG-CFMR model. The data samples are resampled to the
 1173 specified sampling rate (i.e., 250 Hz).

1174 • For the Du-IN method (Zheng et al., 2025), the hyperparameters are the same as the original
 1175 implementation of the Du-IN model. The data samples are resampled to the specified
 1176 sampling rate (i.e., 1000 Hz).

1177 • For the H2DiLR method (Wu et al., 2024), the hyperparameters are the same as the original
 1178 implementation of the H2DiLR model. The data samples are resampled to the specified
 1179 sampling rate (i.e., 1000 Hz).

1180 When evaluating the decoding performance of these baseline models, we follow the same experiment
 1181 setup of our model; see Appendix D and Appendix E for more details.

1182 For the self-supervised methods, the pre-training setup follows the original setup of each model:

1183 • For the LaBraM model, we include neural recordings from all available subjects within each
 1184 dataset for pre-training. The data samples are 4 seconds.

1188 • For the CBraMod model, we include neural recordings from all available subjects within
1189 each dataset for pre-training. The data samples are 4 seconds.
1190 • For the PopT model, we include neural recordings from all available subjects within each
1191 dataset for pre-training. The data samples are 4 seconds.
1192 • For the Du-IN model, we include neural recordings from each subject for pre-training. The
1193 data samples are 4 seconds.
1194 • For the H2DiLR model, we include neural recordings from all available subjects within each
1195 dataset for pre-training. The data samples are 4 seconds.
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242 **D MODEL DETAILS**
12431244 **D.1 BRAINSTRATIFY-COARSE**
12451246 The BrainStratify-Coarse model (Table 5) is a general architecture for sEEG-based functional group
1247 identification, as shown in Figure 2 (a). The architecture of BrainStratify-Coarse contains three parts:
1248 (1) Temporal Convolution, (2) Temporal & Spatial Transformer, and (3) Channel Cluster Module.
1249 During the pre-training stage, one additional "Context Classification (CLS) Head" is added after the
1250 "Spatial Transformer" for spatial context classification.1251 **Spatial Context Task.** Since sEEG channels capture local and depth information from different
1252 brain regions, their recordings inherently capture unique neural information with minimal overlap.
1253 This makes the spatial context task better suited for learning inter-channel relationships compared to
1254 mask-based reconstruction approaches (Jiang et al., 2024; Wang et al., 2024c). To ensure balanced
1255 label distribution, we designate only 10% of unplaced channels as positive samples during pre-
1256 training. For all subjects used in this work, the model converges rapidly to $\geq 95\%$.
12571258 **Channel Cluster Module.** After pre-training with the spatial context task, we calculate the chan-
1259 nel connectivity $\mathcal{P} \in \mathbb{R}^{C \times C}$ following Algorithm 1. Then, spectral cluster (Ng et al., 2001) is
1260 applied to group channels into functional clusters, using scikit-learn's (Pedregosa et al., 2011)
1261 `cluster.SpectralClustering` with default function arguments.1262 **Table 5:** The hyperparameters for BrainStratify-Coarse training.
1263

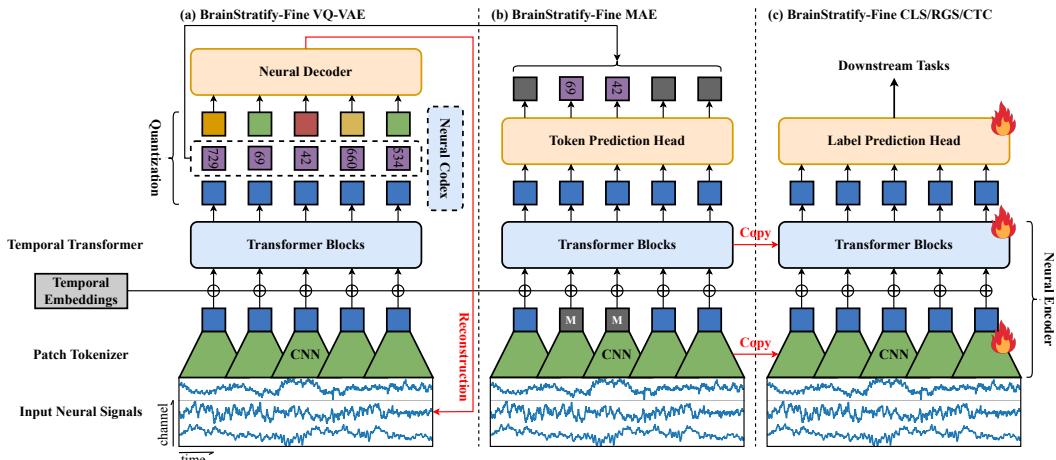
Module	Name	Value
Temporal Convolution	# of Input Channels	{1,128,128}
	# of Output Channels	{128,128,128}
	Kernel Size	{9,9,3}
	Stride	{5,5,2}
	Padding	{4,4,1}
	Flatten Window	2
Temporal Transformer	# of Transformer Layers	4
	Hidden Size	256
	MLP Size	1024
	MLP Dropout Ratio	{0.2,0.}
	# of Attention Heads	8
	Attention Head Size	64
Spatial Transformer	Attention Dropout Ratio	0.2
	# of Transformer Layers	4
	Hidden Size	256
	MLP Size	1024
	MLP Dropout Ratio	{0.2,0.}
	# of Attention Heads	8
Optimizer	Attention Head Size	64
	Attention Dropout Ratio	0.2
	Context CLS Head	Linear Projection
		256 \rightarrow 1
	Batch Size	32
	Maximum Learning Rate	3e-4
Optimizer	Minimum Learning Rate	5e-6
	Learning Rate Scheduler	Cosine
	Optimizer Type	AdamW
	Adam β	(0.9, 0.99)
	Weight Decay	0.05
	Total Epochs	100
	Warm-up Epochs	10

1296 **Algorithm 1** The calculation of channel connectivity $\mathcal{P} \in \mathbb{R}^{C \times C}$.
1297

1298 **Require:** $\{\mathcal{X}_i \in \mathbb{R}^{C \times T} | i = 1, \dots, N_{\text{samples}}\}$ $\triangleright N_{\text{samples}}$ is the number of samples.
1299 $\mathcal{P} \leftarrow \mathbf{0}_{C \times C}$ $\triangleright \mathcal{P} \in \mathbb{R}^{C \times C}$ is initialized as 0s.
1300 **while** $i \leq N_{\text{samples}}$ **do**
1301 $\hat{\mathcal{P}} \leftarrow \text{model}(\mathcal{X}_i)$ $\triangleright \hat{\mathcal{P}} \in \mathbb{R}^{N_{\text{layer}} \times N_{\text{head}} \times C \times C}$ is spatial attention scores.
1302 $\hat{\mathcal{P}} \leftarrow \text{mean}(\hat{\mathcal{P}}, \text{axes} = [0, 1])$ $\triangleright \hat{\mathcal{P}} \in \mathbb{R}^{C \times C}$ is averaged across [layer,head]-dimensions.
1303 $\mathcal{P} \leftarrow \mathcal{P} + \hat{\mathcal{P}} / N_{\text{samples}}$
1304 **end while**

1305
1306 **D.2 BRAINSTRATIFY-FINE**

1307 After identifying coarse-grained functional groups, BrainStratify-Fine aims to further identify fine-
1308 grained neural components through decoupled product quantization (DPQ). The three-stage training
1309 framework of BrainStratify-Fine is illustrated in Figure 6. "Neural Encoder" is shared across
1310 BrainStratify-Fine variants. The hyperparameters of Neural Encoder are shown in Table 6.
1311



1314
1315 **Figure 6: An overview of the three-stage training pipeline of BrainStratify-Fine. (a).** Learning
1316 discrete neural codex in the BrainStratify-Fine VQ-VAE by reconstructing the original neural signals.
1317 **(b).** Mask modeling pre-training of Neural Encoder in the BrainStratify-Fine MAE.
1318 **(c).** Fine-tuning the pre-trained Neural Encoder with an MLP head for various downstream decoding tasks.
1319

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334 Table 6: The hyperparameters of Neural Encoder.
1335

Module	Name	Value
Patch Tokenizer	Linear Projection	$C \rightarrow C$
	# of Input Channels	$\{C, 256, 256, 256\}$
	# of Output Channels	$\{256, 256, 256, 256\}$
	Kernel Size	$\{9, 3, 3, 3\}$
	Stride	$\{5, 2, 2, 2\}$
	Padding	$\{4, 1, 1, 1\}$
Temporal Transformer	# of Transformer Layers	8
	Hidden Size	256
	MLP Size	1024
	MLP Dropout Ratio	$\{0.2, 0.1\}$
	# of Attention Heads	8
	Attention Head Size	64
	Attention Dropout Ratio	0.2

1350 D.2.1 BRAINSTRATIFY-FINE VQ-VAE
13511352 The BrainStratify-Fine VQ-VAE model (Table 7) contains three parts: (1) Neural Encoder, (2) Vector
1353 Quantizer, and (3) Neural Decoder.
13541355 D.2.2 BRAINSTRATIFY-FINE MAE
13561357 The BrainStratify-Fine MAE model (Table 8) contains two parts: (1) Neural Encoder, and (2) Token
1358 Classification (CLS) Head. The architecture of Neural Encoder is shown in Table 6. It's worth noting
1359 that when training BrainStratify-Fine MAE, the weights of "Neural Encoder" are randomly initialized,
1360 instead of being loaded from the pre-trained BrainStratify-Fine VQ-VAE model.
13611362 D.2.3 BRAINSTRATIFY-FINE CLS
13631364 The BrainStratify-Fine CLS model (Table 9) is designed for the classification (CLS) task – decode the
1365 corresponding label y from a sequence of raw neural signals \mathcal{X} . The architecture of BrainStratify-Fine
1366 CLS contains two parts: (1) Neural Encoder, and (2) Label Classification (CLS) Head.
13671368 D.2.4 BRAINSTRATIFY-FINE RGS
13691370 The BrainStratify-Fine RGS model (Table 11) is designed for the regression (RGS) task – decode
1371 the corresponding label sequence y from a sequence of raw neural signals \mathcal{X} . The architecture of
1372 BrainStratify-Fine RGS contains two parts: (1) Neural Encoder, and (2) Label Regression (RGS)
1373 Head.
13741375 D.2.5 BRAINSTRATIFY-FINE CTC
13761377 The BrainStratify-Fine CTC model (Table 11) is designed for the sequential classification (CTC)
1378 task – decode the corresponding label sequence y from a sequence of raw neural signals \mathcal{X} ; see
1379 Appendix B for more details. The architecture of BrainStratify-Fine CTC contains two parts: (1)
1380 Neural Encoder, and (2) Label Classification (CLS) Head.
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404

1405

1406

Table 7: The hyperparameters for BrainStratify-Fine VQ-VAE training.

1407

Module	Sub-Module	Name	Value
Neural Encoder	-	-	-
Vector Quantizer	-	# of Groups Codex Size per Group Embedding-to-Codex Projection Codex-to-Embedding Projection	4 256×64 $256 \rightarrow 256(\text{Tanh}) \rightarrow 64$ $64 \rightarrow 256$
Temporal Transformer	-	# of Transformer Layers Hidden Size MLP Size MLP Dropout Ratio # of Attention Heads Attention Head Size Attention Dropout Ratio	4 256 1024 $\{0.2, 0.\}$ 8 64 0.2
Neural Decoder	-	# of Input Channels # of Output Channels Kernel Size Stride Padding Output Padding Linear Projection	$\{256, 256, 256, 256\}$ $\{256, 256, 256, 256\}$ $\{3, 3, 3, 9\}$ $\{2, 2, 2, 5\}$ - - $256 \rightarrow C$
Optimizer	-	Batch Size Maximum Learning Rate Minimum Learning Rate Learning Rate Scheduler Optimizer Type Adam β Weight Decay Total Epochs Warm-up Epochs	64 3e-4 5e-5 Cosine AdamW $(0.9, 0.99)$ 0.01 100 10

1437

1438

1439

1440

1441

Table 8: The hyperparameters for BrainStratify-Fine MAE training.

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Module	Sub-Module	Name	Value
Neural Encoder	-	-	-
Token CLS Head	-	# of Classification Heads Linear Projection	4 $256 \rightarrow 256$
Optimizer	-	Batch Size Maximum Learning Rate Minimum Learning Rate Learning Rate Scheduler Optimizer Type Adam β Weight Decay Total Epochs Warm-up Epochs	64 3e-4 5e-5 Cosine AdamW $(0.9, 0.99)$ 0.05 100 10

1458
1459

Table 9: The hyperparameters for BrainStratify-Fine CLS training.

Module	Sub-Module	Name	Value
Neural Encoder	-	-	-
Label CLS Head	-	Flatten Linear Projection	$N_f \times 256 \rightarrow 128(\text{ReLU}) \rightarrow \mathcal{Y} $
		Batch Size	32
		Maximum Learning Rate	2e-4
		Minimum Learning Rate	5e-6
		Learning Rate Scheduler	Cosine
Optimizer	-	Optimizer Type Adam β	AdamW (0.9, 0.99)
		Weight Decay	0.05
		Total Epochs	200
		Warm-up Epochs	20

1474

1475
1476

Table 10: The hyperparameters for BrainStratify-Fine RGS training.

Module	Sub-Module	Name	Value
Neural Encoder	-	-	-
		# of Input Channels	{256, 256, 256, 256}
		# of Output Channels	{256, 256, 256, 256}
Label RGS Head	-	Kernel Size	{3, 3, 3, 9}
		Stride	{2, 2, 2, 5}
		Padding	-
		Output Padding	-
		Linear Projection	256 $\rightarrow F$
		Batch Size	32
		Maximum Learning Rate	2e-4
		Minimum Learning Rate	5e-6
		Learning Rate Scheduler	Cosine
Optimizer	-	Optimizer Type Adam β	AdamW (0.9, 0.99)
		Weight Decay	0.05
		Total Epochs	200
		Warm-up Epochs	20

1495
1496
1497

Table 11: The hyperparameters for BrainStratify-Fine CTC training.

Module	Sub-Module	Name	Value
Neural Encoder	-	-	-
Label CLS Head	-	Flatten Window Linear Projection	3 $3 \times 256 \rightarrow 128(\text{ReLU}) \rightarrow \mathcal{Y} $
		Batch Size	32
		Maximum Learning Rate	2e-4
		Minimum Learning Rate	5e-6
		Learning Rate Scheduler	Cosine
Optimizer	-	Optimizer Type Adam β	AdamW (0.9, 0.99)
		Weight Decay	0.05
		Total Epochs	200
		Warm-up Epochs	20

1512 **E DATA AUGMENTATION**
 1513

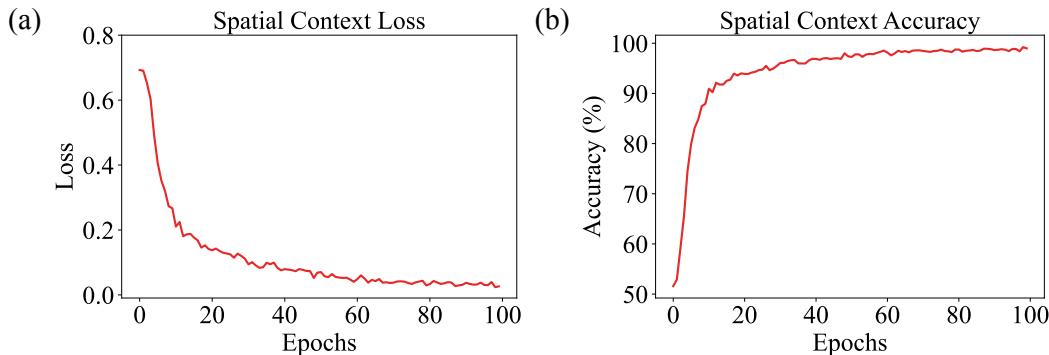
1514 To enhance the robustness of learned representations during both the pre-training and fine-tuning
 1515 stages, we apply data augmentation in both datasets.
 1516

1517 **Pre-training dataset.** In our implementation, we segment neural recordings into 8-second samples
 1518 with a 4-second overlap. When fetching a sample, we randomly select a starting point between 0 and
 1519 4 seconds, then extract a 4-second sample beginning from that point.
 1520

1521 **Downstream dataset.** Since trials occur consecutively without gaps, employing the jittering men-
 1522 tioned above leads to the blending of information from other trials. In our implementation, we
 1523 segment sEEG recordings into samples with the corresponding trial length; see Appendix B for
 1524 details. When fetching a sample, we randomly choose a shift step between 0 and 0.2 seconds, then
 1525 shift the sample either to the left or right, padding it with zeros.
 1526

1527 **F VISUALIZATION OF SPATIAL CONTEXT CLASSIFICATION**
 1528

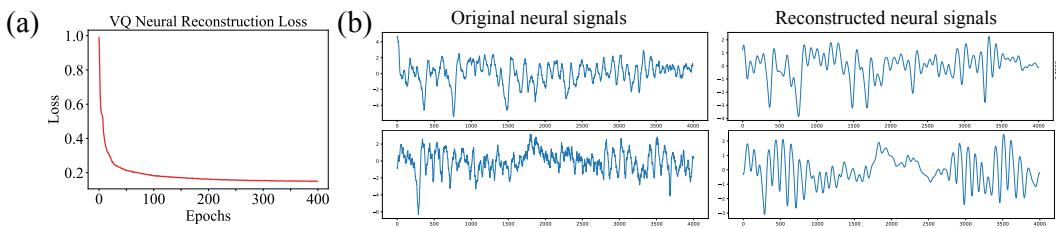
1529 Figure 7 demonstrates the convergence curves of the total pre-training loss and spatial context
 1530 accuracy of BrainStratify-Coarse. We observe that there is a stable decrease in the spatial context
 1531 loss, and the spatial context accuracy achieves $\geq 95\%$.
 1532



1544 Figure 7: The loss curve and accuracy curve during the training process of BrainStratify-Coarse.
 1545
 1546
 1547

1548 **G VISUALIZATION OF VECTOR-QUANTIZED NEURAL RECONSTRUCTION**
 1549

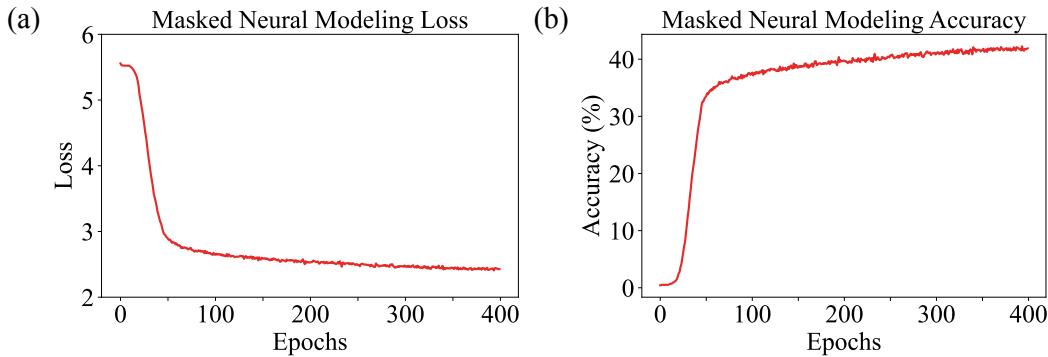
1550 We further visualize how the neural signals are reconstructed. As depicted in Figure 8, although some
 1551 details are missing, the overall trend of the signals is reconstructed well. Meanwhile, there is a stable
 1552 decrease in the reconstruction loss during training, which indicates the discrete codex does learn
 1553 high-level information from neural signals.
 1554



1562 **Figure 8: The visualization of Vector-Quantized Neural Reconstruction.** (a). The reconstruc-
 1563 tion loss curve during the training process of BrainStratify-Fine VQ-VAE. (b). The visualization of
 1564 reconstructed neural signals.
 1565

1566 H VISUALIZATION OF MASK NEURAL MODELING

1568
 1569 Figure 9 demonstrates the convergence curves of the total pre-training loss and masked neural
 1570 modeling accuracy of BrainStratify-Fine MAE. We observe that there is a stable decrease in the mask
 1571 modeling loss, and the mask modeling accuracy achieves about 40%.



1584
 1585 Figure 9: The loss curve and accuracy curve during the training process of BrainStratify-Fine MAE.
 1586
 1587

1588 I WEIGHTED ANATOMICAL COUNTS

1590
 1591 To provide quantitative comparisons for the channel cluster, we calculate the weighted anatomy
 1592 region counts $N_{anatomy}$ wrt. Desikan-Killiany atlas (Desikan et al., 2006) for different channel
 1593 cluster methods. Specifically, $N_{anatomy} = \sum \frac{C_i}{C} N_{anatomy}^i$, where C_i is the number of channels
 1594 within that cluster, C is the total number of channels, $N_{anatomy}^i$ is the anatomy region counts in
 1595 that cluster. A value of $N_{anatomy} = 1$ indicates perfect alignment with anatomical regions, while
 1596 $N_{anatomy}$ approaching the total number of regions suggests limited functional grouping capability.
 1597 Thus, lower $N_{anatomy}$ values reflect stronger anatomical alignment in channel clustering.

1598 J ADDITIONAL EVALUATION

1601
 1602 As demonstrated in Table 12, our method outperforms all advanced neural decoding baselines across
 1603 multiple decoding paradigms on other datasets, which span data modalities like (epidural) ECoG,
 1604 MEA, and sEMG, further demonstrating its generalizability across different data modalities.

1605
 1606 Table 12: Results on other datasets. Paired T-tests are evaluated between our method and other
 1607 decoding baselines.

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 Methods	1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 Du-IN		1611 1612 1613 1614 1615 1616 1617 1618 1619 Ours Motor	1611 1612 1613 1614 1615 1616 1617 1618 1619 NPTL	1611 1612 1613 1614 1615 1616 1617 1618 1619 emg2qwerty
	1611 1612 1613 1614 1615 1616 1617 1618 1619 Spectrogram	1611 1612 1613 1614 1615 1616 1617 1618 1619 Wav2Vec2			
Baseline	-	-	-	80.30 \pm 0.13	84.62 \pm 2.08
LaBraM	0.7460 \pm 0.0121	0.7539 \pm 0.0046	80.39 \pm 1.62	-	-
CBraMod	0.7634 \pm 0.0104	0.7695 \pm 0.0040	82.08 \pm 0.97	-	-
PopT	0.7701 \pm 0.0107	0.7771 \pm 0.0039	85.94 \pm 1.02	-	-
EEG-CFMR	0.7655 \pm 0.0114	0.7585 \pm 0.0038	85.68 \pm 1.29	-	-
Du-IN	0.7807 \pm 0.0116	0.8127 \pm 0.0097	88.38 \pm 0.96	83.11 \pm 0.27	86.56 \pm 1.90
H2DiLR	0.7439 \pm 0.0109	0.6768 \pm 0.0060	77.12 \pm 1.84	72.68 \pm 1.21	80.01 \pm 2.26
BrainStra.-Fine	0.7919\pm0.0121	0.8232\pm0.0100	90.65\pm0.84	86.45\pm0.15	88.01\pm1.75

[†] $p < 0.001$ (purple); $p < 0.01$ (pink); $p < 0.05$ (yellow); $p > 0.05$ (gray)

1620
 1621 Due to the different temporal resolution of MEA & sEMG recordings (Willett et al., 2023; Sivakumar
 1622 et al., 2024), we re-optimize the Patch Tokenizer part of Neural Encoder (Table 13 & 14), and share
 1623 the encoder across all baselines (e.g., Du-IN, H2DiLR). In the NPTL dataset (Willett et al., 2023), we
 1624 apply a log transformation to smooth the neural features, thus better cooperating with the CNN-based
 1625 Patch Tokenizer. In the emg2qwerty dataset (Sivakumar et al., 2024), the raw sEMG signals (2kHz)
 1626 are transformed into spectrogram series (125Hz) before feeding into the baseline model for decoding.
 1627 Similarly, we directly flatten the spectrogram series $\mathcal{S} \in \mathbb{R}^{C \times F \times T}$ into $\mathcal{X} \in \mathbb{R}^{C' \times T}$ with $C' = C \cdot F$,
 1628 where C is the number of channels, F is the dimension of spectrogram features, T is the total
 1629 timestamps.
 1630

Table 13: The hyperparameters of Neural Encoder for NPTL dataset.

Module	Name	Value
Patch Tokenizer	Linear Projection	$C \rightarrow C$
	# of Input Channels	$\{C,\}$
	# of Output Channels	$\{256,\}$
	Kernel Size	$\{9,\}$
	Stride	$\{5,\}$
	Padding	$\{4,\}$

Table 14: The hyperparameters of Neural Encoder for the emg2qwerty dataset.

Module	Name	Value
Patch Tokenizer	Linear Projection	$C' \rightarrow C'$
	# of Input Channels	$\{C', 256, 256\}$
	# of Output Channels	$\{256, 256, 256\}$
	Kernel Size	$\{9, 3, 3\}$
	Stride	$\{5, 1, 1\}$
	Padding	$\{4, 1, 1\}$

K ADDITIONAL ABLATION STUDY

1654 Leveraging the Du-IN dataset (Zheng et al., 2025) and the word-reading (epidural) ECoG dataset, we
 1655 conduct thorough ablation studies on model designs to evaluate their effectiveness.
 1656

K.1 ABLATIONS ON CHANNEL CLUSTER

1659 The ablation results on the number of clusters with the sEEG word classification task are provided
 1660 in Figure 10 (a). Fewer clusters (e.g., 5) reduce the spatial resolution of functional groups and
 1661 may include irrelevant channels. More clusters maintain performance but require more group-level
 1662 evaluation and combination.
 1663

K.2 ABLATIONS ON DECOUPLED PRODUCTION QUANTIZATION

1665 We evaluate the hyperparameters of DPQ through comprehensive ablation studies. Figure 10 (b)
 1666 shows BrainStratify’s performance on the sEEG & (epidural) ECoG word classification tasks. We
 1667 evaluate performance against varying codex groups (from 0 to 16) to ascertain if the number of codex
 1668 groups affects the quality of the learned codex. To maintain the capacity of the codex with $G = 1$,
 1669 we set N_{codex} to 2048, while for the other settings, N_{codex} is set to 256. As illustrated in Figure
 1670 10 (b.1), since the sEEG channels are pre-selected based on target functional groups, even a small
 1671 number of codex groups (i.e., $G = 4$ for sEEG instead of $G = 8$ for (epidural) ECoG) can effectively
 1672 decouple neural components (Silva et al., 2024; Metzger et al., 2023). We also assess performance
 1673 across different codex sizes (from 64 to 2048) to ascertain if codex size affects the quality of the
 learned codex. As illustrated in Figure 10 (b.2), while extremely small codex size lacks representation

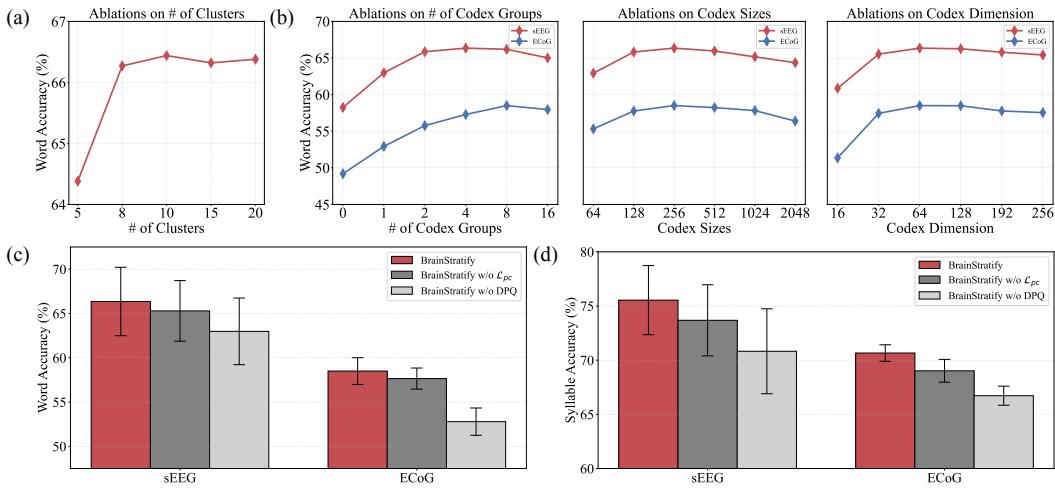


Figure 10: **Ablation studies on model designs.** (a). Ablations on different numbers of clusters with the sEEG word classification task. (b). Ablations on different codex groups, codex sizes, and codex dimensions with the sEEG & (epidural) ECoG word classification tasks. (c) & (d). Ablations on DPQ sub-modules with sEEG and word-reading (epidural) ECoG datasets (i.e., word classification task and syllable sequential task, respectively).

diversity, extremely large codex size often leads to codex collapse. We suspect that our existing training data might not be adequate for larger codex sizes. Furthermore, our experiments suggest that the model performs best when the dimension of module code $\mathbf{z}_{q[g]}(\mathbf{e}_i)$, denoted as $d_{codex} = 64$, is slightly smaller than the model dimension, $d = 256$, resulting in more effective regularization.

To evaluate the contribution of the DPQ components, we perform ablations on the partial-correlation constraint (\mathcal{L}_{pc}) and the entire DPQ module with word-reading sEEG and (epidural) ECoG datasets as illustrated in Figure 10 (c) & (d). In implementation, we initialize each sub-quantizer’s projection and codex separately, which partially replicates the regularization effect of \mathcal{L}_{pc} . Therefore, ablating \mathcal{L}_{pc} alone results in only a modest performance decrease. However, removing DPQ entirely reduces BrainStratify-Fine to Du-IN (Zheng et al., 2025), significantly degrading decoding performance.

L MODEL EFFICIENCY

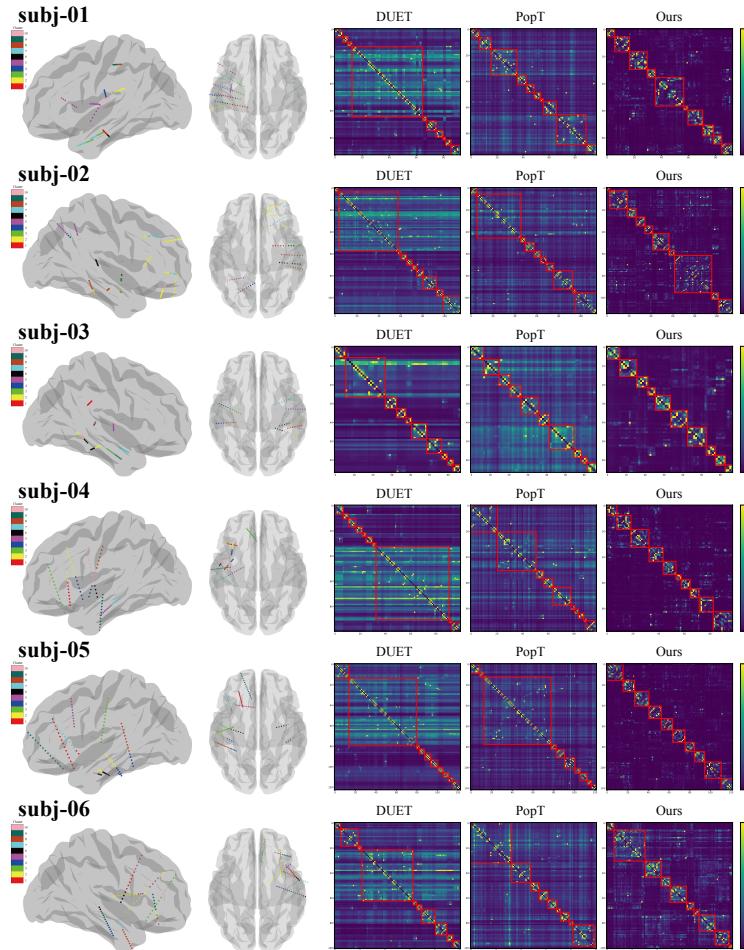
Table 15 shows the FLOPs (with `thop` package) and per-trial inference time across all methods. The total inference time (including data transfer, GPU computation, etc.) is ≤ 20 ms for all methods, supporting real-time speech decoding. All these results were conducted on 1 NVIDIA 3090 GPU.

Table 15: Model Efficiency Analysis on Du-IN dataset.

Methods	LaBraM	CBraMod	PopT	EEG-CFMR	Du-IN	H2DiLR	BrainStratify-Fine
MFLOPs	354.48	647.43	772.69	215.48	159.69	539.07	301.06
Time (ms)	14.07	12.17	12.59	5.79	7.60	10.69	8.94

M BROADER IMPACTS

BrainStratify has the potential to advance speech decoding and invasive BCI systems by providing a robust and interpretable solution for speech decoding from invasive recordings. Its advanced performance across datasets and modalities while keeping data-efficient makes it well-suited for real-world scenarios where large-scale medical data annotation is often prohibitively costly or unfeasible. Furthermore, our (epidural) ECoG results demonstrate the clinical viability of our method in patients with communication and functional impairments caused by amyotrophic lateral sclerosis (ALS).

1728 N SUBJECT-WISE CHANNEL CLUSTER
17291730 We provide detailed information on the clusters of the implanted sEEG electrodes for each subject.
17311732 N.1 RESULTS ON DU-IN DATASET
17331765 Figure 11: Channel clusters from subjects (01-06).
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

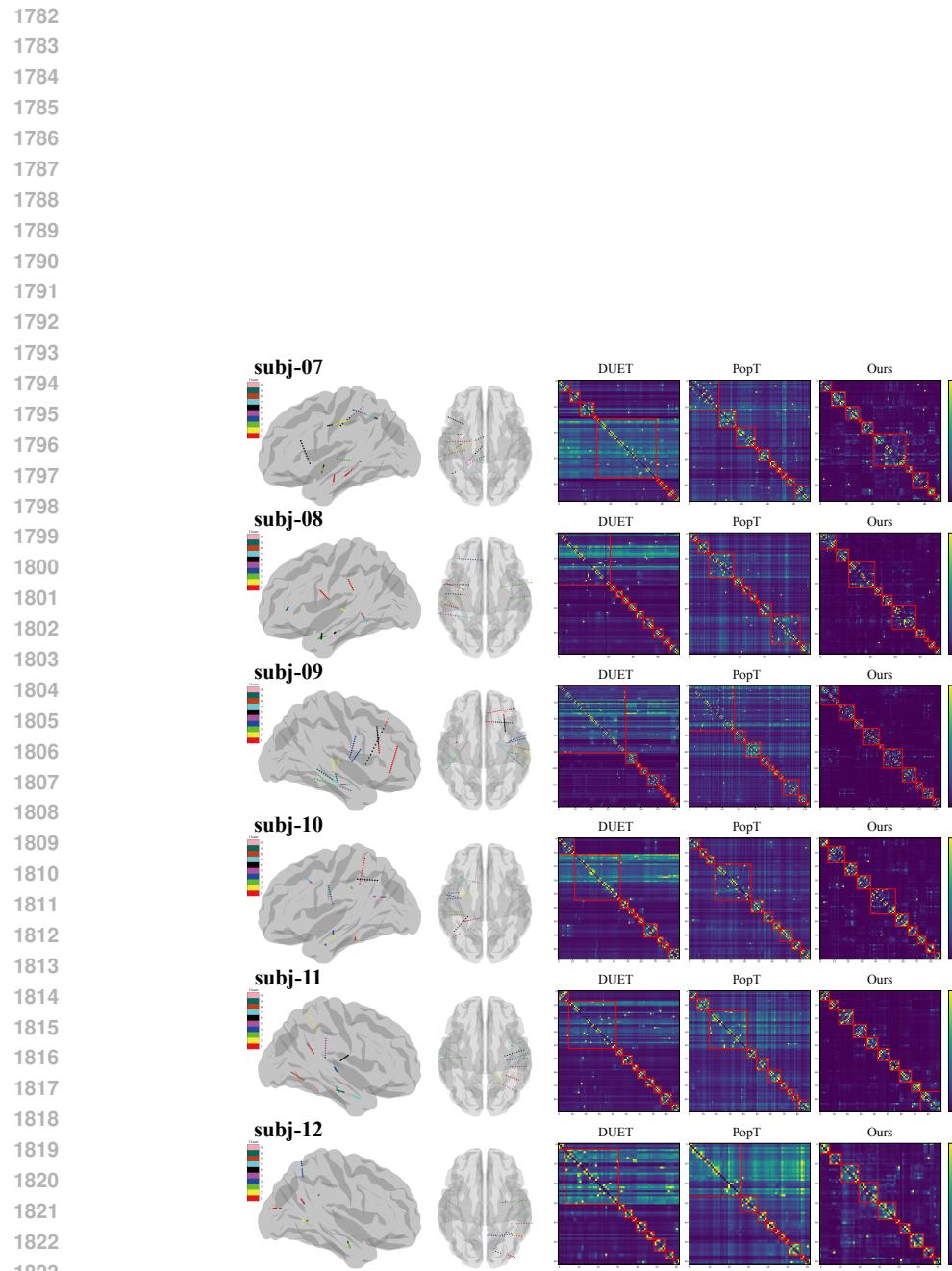
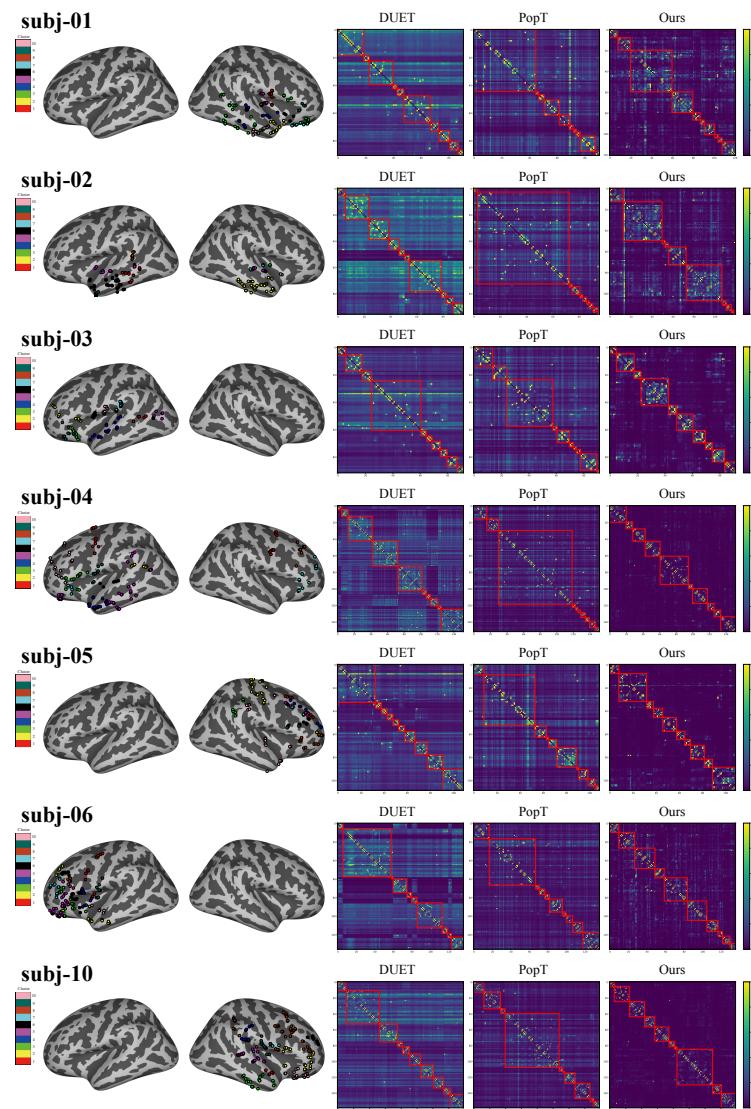


Figure 12: Channel clusters from subjects (07-12).

1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

1836
1837 N.2 RESULTS ON BRAIN TREEBANK DATASET
18381874 Figure 13: Channel clusters from subjects (01-06,10).
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

O SUBJECT-WISE EVALUATION

O.1 RESULTS ON DU-IN DATASET

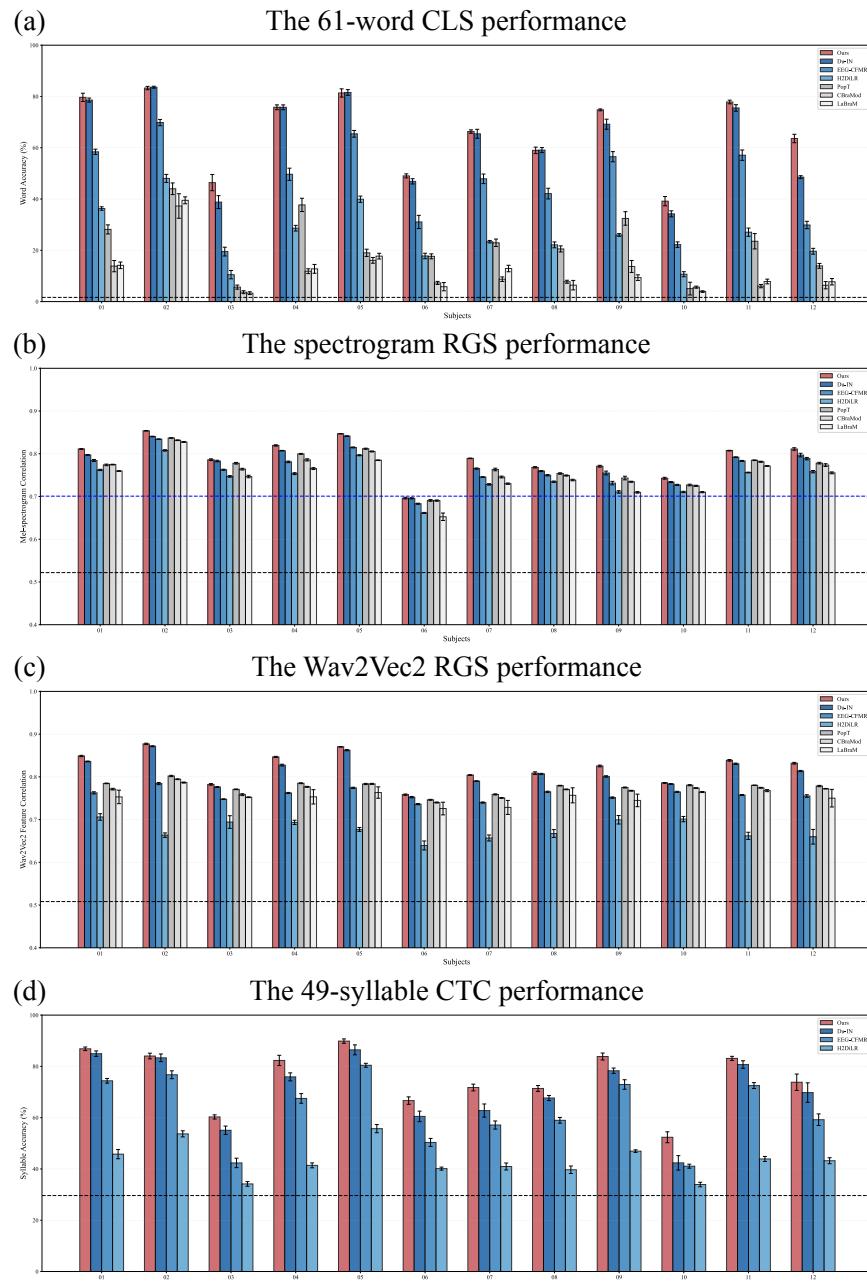


Figure 14: **Model performance on Du-IN dataset.** (a). The 61-word CLS (classification) performance. (b). The speech spectrogram RGS (regression) performance. The blue line demonstrates the baseline performance on subject HB02 from Chen et al. (2024). (c). The wav2vec 2.0 feature RGS (regression) performance. (d). The 49-syllable CTC (connectionist temporal classification) performance. The black line demonstrates the chance-level performance. The error bar demonstrates the standard deviation across 6 random seeds.

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

O.2 RESULTS ON BRAIN TREEBANK DATASET

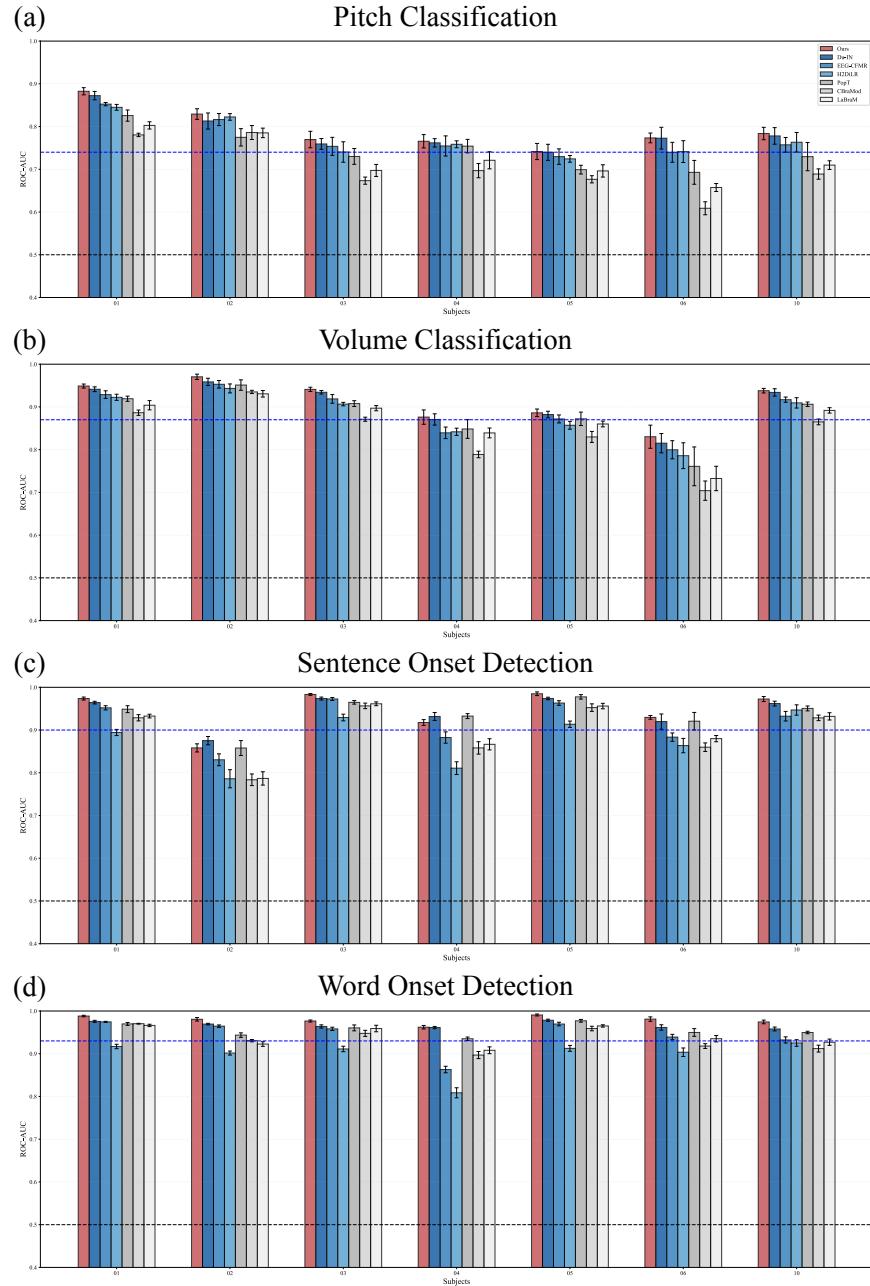


Figure 15: **Model performance on Brain Treebank dataset.** **(a)**. The performance on the pitch classification task. **(b)**. The performance on the volume classification task. **(c)**. The performance on the sentence onset detection task. **(d)**. The performance on the word onset detection task. The black line demonstrates the chance-level performance. The blue line demonstrates the baseline performance from PopT (Chau et al., 2024). The error bar demonstrates the standard deviation across 6 random seeds.

1998
1999

O.3 RESULTS ON EMG2QWERTY DATASET

2000
2001
2002
2003
2004
2005
2006
2007
2008
20092010
2011
2012

Figure 16: **The 98-character CTC (connectionist temporal classification) performance of different models.** The blue line demonstrates the baseline performance from emg2qwerty (Sivakumar et al., 2024). The error bar demonstrates the standard deviation across 6 random seeds.

2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

