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Abstract

Large multimodal models (LMMs) combine unimodal encoders and large language
models (LLMs) to perform multimodal tasks. Despite recent advancements towards
the interpretability of these models, understanding internal representations of
LMMs remains largely a mystery. In this paper, we present a novel framework
for the interpretation of LMMs. We propose a dictionary learning based approach,
applied to the representation of tokens. The elements of the learned dictionary
correspond to our proposed concepts. We show that these concepts are well
semantically grounded in both vision and text. Thus we refer to these as “multi-
modal concepts”. We qualitatively and quantitatively evaluate the results of the
learnt concepts. We show that the extracted multimodal concepts are useful to
interpret representations of test samples. Finally, we evaluate the disentanglement
between different concepts and the quality of grounding concepts visually and
textually. Our implementation is publicly available.1

1 Introduction

Vision transformers [9] and large-language models (LLMs) [6, 27, 37] have recently dominated
machine learning research. Their effectiveness for unimodal processing tasks has spurred their
use for multimodal tasks. In particular, visual encoders and LLMs are combined to address tasks
such as image captioning and VQA [2, 20, 24, 36, 38]. Moreover, LLMs combined with unimodal
encoders for other modalities have also been effective to solve respective multimodal tasks [10,
18, 25]. This recent class of models are referred to as large multimodal models (LMMs). For
interpretability research, LMMs remain largely unexplored. This is because most prior methods focus
on visual/tabular data, classification tasks, and non-transformer based architectures. Thus, despite their
popularity, very few methods attempt to understand representations inside an LMM [28, 29, 34, 35].

This paper aims to bridge some of these differences and study in greater detail the intermediate
representations of LMMs. To this end, motivated by the concept activation vector (CAV) based
approaches for CNNs [12–14, 17], we propose a novel dictionary-learning based concept extraction
method, designed for application to LMMs. Our method is used to learn a concept dictionary to
understand the representations of a pretrained LMM for a given word/token of interest (Eg. ‘Dog’).
For this token, we build a matrix containing the LMM’s internal representation of the token. We
then linearly decompose this matrix using dictionary learning. The dictionary elements represent
our concepts. The most interesting consequence of our method is that the learnt concepts exhibit
a semantic structure that can be meaningfully grounded in both visual and textual domains. They
are visually grounded by extracting the images which maximally activate these concepts. They can
simultaneously be grounded in the textual domain by decoding the concept through the language
model of the LMM and extracting the words/tokens they are most associated to. We refer to such
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Figure 1: Overview of our multimodal concept extraction and grounding. Given a pretrained LMM
for captioning and a target token t (for eg. ‘Dog’), our method extracts internal representations of
f about t, across many images. These representations are collated into a matrix Z. We linearly
decompose Z to learn a concept dictionary U and its coefficients/activations V. Each concept
uk ∈ U, is multimodally grounded in both visual and textual domains.

concept representations as multimodal concepts. Our key contributions can be summarized as:
- We propose a novel concept-based explainability framework that can be used to understand internal
representations of large multimodal models. To the best of our knowledge, this is the first effort
targeting multimodal models at this scale.
- Our dictionary learning based concept extraction approach extracts a multimodal concept dictionary
wherein each concept can be semantically grounded simultaneously in both text and vision. We also
extend the previous concept dictionary-learning strategies using a Semi-NMF based optimization.
- We experimentally validate the notion of multimodal concepts through both, qualitatively and
quantitatively. Our learnt concept dictionary is shown to possess a meaningful multimodal grounding
covering diverse concepts, and is useful to interpret LMM representations of test samples.

2 Related work

Concept activation vector based approaches Concept based interpretability aim to extract the
semantic content relevant for a model [7]. For post-hoc interpretation, concept activation vector
(CAV) based approaches [13, 14, 17, 39] have been most widely used. Recently, Fel et al. [12]
proposed a unified view of CAV-based approaches as variants of a dictionary learning problem.
However, these methods have only been applied for interpretation of CNNs on classification tasks.
LMMs on the contrary exhibit a significantly different architecture. We propose a dictionary learning
based concept extraction method, designed for LMMs. We also propose a Semi-NMF variant of the
dictionary learning problem, which has not been previously considered for concept extraction.

Understanding LMM representations Palit et al. [28] extend the causal tracing used for LLMs
to analyze information across layers in an LMM. Schwettmann et al. [34] proposed the notion of
multimodal neurons existing within the LLM part of an LMM. They term the neurons “multimodal”
as they translate high-level visual information to corresponding information in text modality. The
neurons are discovered by ranking them by a gradient based attribution score. Pan et al. [29] proposed
a more refined algorithm to identify such neurons based on an importance measure leveraging
architecture of transformer MLP blocks. In contrast, we propose to discover a concept structure in the
token representations by learning a small dictionary of multimodally grounded concepts. Limiting the
analysis to a specific target token allows our learnt concepts to discover fine details about the token.

3 Approach
Background for LMMs We consider a general model architecture for a large multimodal model
f [1, 4, 20, 21], that consists of: a visual encoder fV , a light-weight trainable connector module C,
and an LLM fLM consisting of NL layers. We assume f is pretrained for captioning task with an
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underlying dataset S = {(Xi, yi)}Ni=1 consisting of images Xi ∈ X and their associated caption
yi ⊂ Y . X and Y denote the space of images and set of text tokens respectively. Note that caption
yi can be viewed as a subset of all tokens. The input to the language model fLM is denoted by the
sequence of tokens h1, h2, ..., hp and the output as ŷ. The internal representation of any token at
some layer l and position p inside fLM is denoted as hp

(l), with hp
(0) = hp. Note that hp

(l) is same
as the residual stream representation in LLM transformers [11] at position p and layer l. For the
multimodal model, the input token sequence for fLM consists of concatenated: (1) NV visual tokens
provided by the visual encoder fV operating on an image X , followed by the connector C, and (2)
linearly embedded textual tokens previously predicted by fLM . For p > NV , this is expressed as:

ŷp = fLM (h1, h2, . . . , hNV , . . . , hp), (1)

where h1, . . . , hNV = C(fV (X)), and hp = Emb(ŷp−1) for p > NV , where Emb denotes the
token embedding function. To start the prediction, hNV +1 is defined as the beginning of sentence
token. The output token ŷp is obtained by normalizing hp

(NL), followed by an unembedding layer
that applies a matrix WU followed by a softmax. The predicted caption ŷ consists of the predicted
tokens ŷ = {ŷp}p>NV

until the end of sentence token.The model is trained with next token prediction
objective, to generate text conditioned on images in an auto-regressive fashion.

3.1 Method overview

Given a pretrained LMM f and token of interest t ∈ Y , our method consists of three parts (Fig. 1):

1. Selecting a subset of images X from dataset S, relevant for target token t. We extract
representations by processing samples in X through f . The extracted representations of
dimension B are collected in a matrix Z ∈ RB×M , where M is number of samples in X.

2. Linearly decomposing Z ≈ UV into its constituents, that includes a dictionary of learnt
concepts U ∈ RB×K of size K and coefficient/activation matrix V ∈ RK×M .

3. Semantically grounding the learnt “multimodal concepts”, contained in dictionary U in both
visual and textual modalities.

We emphasize here that our main objective in employing dictionary learning based concept extraction
is to understand internal representations of an LMM, and not to interpret the output of the model,
which can be readily accomplished by combining this pipeline with some concept importance
estimation method [12]. The rest of the section elaborates each of the above three steps.

3.2 Representation extraction

To extract relevant representations about t from f , we first determine a set of samples X from
dataset S = {(Xi, yi)}Ni=1 for extraction. The captioning task requires the model to capture relevant
information about the given image and predict it in the output without any additional context. We
consider the set of samples where t is predicted as part of the predicted caption ŷ. This allows us to
further investigate the internal representations of t. To enhance visual interpretability for concepts,
we limit this set to samples containing t in the ground-truth caption. Thus, X is computed as:

X = {Xi | t ∈ f(Xi) and t ∈ yi and (Xi, yi) ∈ S}. (2)

Given any X ∈ X, we extract the internal token representation hp
(L) from a deep layer L, at the first

position in the predicted caption p > NV , such that ŷp = t. The representation zj ∈ RB of each
sample Xj ∈ X is stacked as columns of the matrix Z = [z1, ..., zM ] ∈ RB×M . Note that text token
representations in fLM can possess a meaningful multimodal structure as they combine information
from visual token representations hp

(l), p ≤ NV . We focus on residual stream representation hp
(L)

[11] as it represents the aggregated information computed by all prior layers of the LMM till layer L.

3.3 Decomposing the representations

The representation matrix Z ≈ UV, is decomposed as product of two low-rank matrices U ∈
RB×K ,V ∈ RK×M of rank K << min(B,M), where K denotes the number of dictionary
elements. The columns of U = [u1, ..., uK ] are the basis vectors which we refer to as concept-
vectors/concepts. The rows of V or columns of VT = [v1, ..., vM ], vi ∈ RM denote the activations
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Figure 2: Example of multimodal concept grounding in vision and text. Five most activating samples
(among decomposed in Z) and five most probable decoded words are shown.

of ui for each sample. This decomposition, as previously studied in [12], can be optimized with
various constraints on U,V, each leading to a different dictionary (eg. PCA, K-Means, NMF). NMF
is considered to yield most interpretable results. However, for our use case, NMF is not useful as
representation matrix Z is not non-negative. Instead, we propose to employ a relaxed version of NMF,
Semi-NMF [8], which allows the basis vectors U to contain mixed values, but forces activations V
to be non-negative. Since we expect only a small number of concepts to be present in any sample, we
also encourage sparsity in activations V. The Semi-NMF optimization problem to decompose Z is:

U∗,V∗ = argmin
U,V

||Z−UV||2F + λ||V||1 s.t. V ≥ 0, and ||uk||2 ≤ 1 ∀k ∈ {1, ...,K}. (3)

Given any image X where token t is predicted by f , we can now define the process of computing
activations of concept dictionary U∗ for given X , denoted as v(X) ∈ RK . To do so, we first
extract the token representation for X, zX ∈ RB with the process described in Sec. 3.2. Then,
zX is projected on U∗ to compute v(X). In the case of Semi-NMF, this corresponds to v(X) =
argminv≥0 ||zX −U∗v||22 + λ||v||1. The activation of uk ∈ U∗ is denoted as vk(X) ∈ R.

3.4 Using the concept dictionary for interpretation

Multimodal grounding of concepts. We now elaborate the process to ground the understanding
of any given concept vector uk, k ∈ {1, ...,K} in the visual and textual domains. For visual
grounding, we use prototyping [3, 17] to select input images (among the decomposed samples), that
maximally activate uk. Given the number of samples extracted for visualization NMAS , the set of
maximum activating samples (MAS) for component uk, denoted as Xk,MAS can be specified as
Xk,MAS = argmaxX̂⊂X,|X̂|=NMAS

∑
X∈X̂ |vk(X)|.

For grounding in textual domain, we leverage insights from “Lens” based methods [5, 19, 26, 33]
developed for LLMs. In particular, following [26], we use the unembedding layer to decode uk to the
token vocabulary space Y , and extract the most probable tokens. That is, we extract the tokens with
highest probability in WUuk. They are then filtered for being an english, non-stop-word with at least
3 characters, to eliminate unnecessary tokens. The final set of words is referred to as grounded words
for concept uk and denoted as Tk. Fig. 2 illustrates an example for a concept for token “Dog”.

Most activating concepts for images. To understand the LMM’s representation of a given image
X , we now define the most activating concepts. First, we extract the representations zX of the image
with the same process as described previously. We then project zX on U∗ to obtain v(X) ∈ RK . We
define the most activating concepts, denoted ũ(X), as the set of r concepts whose activations vk(X)
have the largest magnitude. One can then visualize the multimodal grounding of ũ(X).

4 Experiments

Models and dictionary learning. We experiment with DePALM model [38] trained for captioning
task on COCO dataset [22]. The model consists of a frozen ViT-L/14 CLIP [32] visual encoder as fV .
The language model fLM is a frozen OPT-6.7B [40] of 32 layers. For uniformity and fairness, results
are reported with K = 20 and representations from L = 31, the final layer before unembedding
layer. For Semi-NMF, we set λ = 1. Further implementation details are available in Appendix D. We
conduct our analysis separately for various common objects in the dataset: “Dog”, “Bus”, “Train”,
“Cat”, “Bear”, “Baby”, “Car”, “Cake”. The extension to other classes remains straightforward and is
discussed in Appendix E. More experiments on a popular LMM, LLaVA [23] are in Appendix B.1.

Evaluation axes We evaluate the learnt concept dictionary U∗ on three axes: (i) Its use during
inference to interpret representations of LMMs for test samples, (ii) The overlap/entanglement
between grounded words of concepts uk ∈ U∗ and (iii) the quality of visual and text grounding of
concepts. Main paper covers (i) and (ii). Evaluation of multimodal grounding is in Appendix A
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Concept extraction during inference: To evaluate the use of U∗ in understanding any test sample
X , we first estimate the top r most activating concepts activations, ũ(X) (Sec. 3.4). We then
estimate the correspondence between the image X and the grounded words Tk of uk ∈ ũ(X). This
correspondence is estimated via two different metrics. The average CLIPScore [16] between image X
and words Tk, and the average BERTScore (F1) [41] between the ground-truth captions y associated
with X and Tk. These metrics help validate the multimodal nature of the concept dictionaries. Their
use is inspired from [34]. The implementation details for the metrics are in Appendix D.

Overlap/entanglement of learnt concepts: Ideally, we expect each concept in U∗ to encode distinct
information about the token of interest t. Thus two different concepts uk, ul, k ̸= l should be
associated to different sets of words. To quantify the entanglement of a learnt concept uk, we
compute the overlap between the grounded words Tk,Tl, l ̸= k. The overlap metric for a dictionary
U∗ is defined as the average of overlap of each concept.

Overlap(U∗) =
1

K

∑
k

Overlap(uk), Overlap(uk) =
1

(K − 1)

K∑
l=1,l ̸=k

|Tl ∩Tk|
|Tk|

Baselines: One set of methods for evaluation are the variants of our proposed approach where we
employ different dictionary learning strategies: PCA, KMeans and Semi-NMF. For evaluating concept
extraction on test data with CLIPScore/BERTScore we compare against the following baselines:
- Rnd-Words: For each concept uk (from Semi-NMF), this baseline replaces the grounded words Tk

by a set of random words Rk such that |Rk| = |Tk|. Words in Rk satisfy the same conditions as
grounded words i.e. english non-stopwords with atleast three characters. We do this by decoding ran-
domly sampled token representation and adding the top decoded words if they satisfy the conditions.
- Noise-Imgs: This baseline uses random noise as images to extract representations and then proceeds
with exactly same learning procedure as Semi-NMF. Combined with the Rnd-Words baseline, they
ablate two different parts of the concept extraction pipeline.
- Simple: This baseline considers a simple technique to build the dictionary U∗ and projecting test
samples. It builds U∗ by selecting token representations in Z with the largest norm. The projections
are performed by mapping the test sample representation to the closest element in U∗. For deeper
layers, this provides a strong baseline in terms of extracted grounded words Tk which are related to
token of interest t, as they are obtained by directly decoding token representations of t.
We also report score using ground-truth captions (GT captions) instead of grounded words Tk, to get
the best possible correspondence score. The overlap/entanglement in concept dictionary is compared
between the non-random baselines: Simple, PCA, K-Means and Semi-NMF.

4.1 Results and discussion

Token Metric Rnd-Words Noise-Imgs Simple Semi-NMF (Ours) GT-captions

Dog
CS top-1 (↑) 0.519 ± 0.05 0.425 ± 0.06 0.546 ± 0.08 0.610 ± 0.09 0.783 ± 0.06
BS top-1 (↑) 0.201 ± 0.04 0.306 ± 0.05 0.346 ± 0.08 0.405 ± 0.07 0.511 ± 0.11

Bus
CS top-1 (↑) 0.507 ± 0.05 0.425 ± 0.08 0.667 ± 0.06 0.634 ± 0.08 0.736 ± 0.05
BS top-1 (↑) 0.200 ± 0.05 0.303 ± 0.06 0.390 ± 0.05 0.404 ± 0.07 0.466 ± 0.11

Train
CS top-1 (↑) 0.496 ± 0.05 0.410 ± 0.07 0.642 ± 0.06 0.646 ± 0.07 0.727 ± 0.05
BS top-1 (↑) 0.210 ± 0.06 0.253 ± 0.06 0.392 ± 0.07 0.378 ± 0.07 0.436 ± 0.08

Cat
CS top-1 (↑) 0.539 ± 0.04 0.461 ± 0.04 0.589 ± 0.07 0.627 ± 0.06 0.798 ± 0.05
BS top-1 (↑) 0.207 ± 0.07 0.307 ± 0.03 0.425 ± 0.10 0.437 ± 0.08 0.544 ± 0.10

Table 1: Test data mean CLIPScore and BERTScore for top-1 activating concept for all baselines on
five tokens. CLIPScore denoted as CS, and BERTScore as BS. Statistical significance is in Appendix
E. Higher scores are better. Best score in bold, second best is underlined.

Quantitative results Tab. 1 reports the test top-1 CLIPScore/BERTScore for all baselines and
Semi-NMF on different target tokens. Appendix E contains detailed results for other tokens as well
as for the PCA and K-Means variants. We report the results for only the top-1 activating concept, as
KMeans and Simple baselines map a given representation to a single concept. Notably, Semi-NMF
generally outperforms the other baselines although the Simple baseline performs competitively.
More generally, Semi-NMF, K-Means, and Simple tend to clearly outperform other baselines on
these metrics, indicating that these systems project representations of test images to concepts whose
associated grounded words correspond well with the visual content.
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Token Simple PCA KMeans Semi-NMF

Dog 0.371 0.004 0.501 0.086

Bus 0.622 0.002 0.487 0.177

Train 0.619 0.015 0.367 0.107

Cat 0.452 0.000 0.500 0.146

Table 2: Overlap between learnt con-
cepts. Lower is better. Best score in
bold, second best underlined.

Tab. 2 reports the overlap between concepts for Sim-
ple, PCA, KMeans and Semi-NMF systems. Interest-
ingly, KMeans and Simple baseline perform significantly
worse than Semi-NMF/PCA with a high overlap between
grounded words, often exceeding 40%. PCA outperforms
other methods with almost no overlap while Semi-NMF
shows some overlap. Overall, Semi-NMF strikes the best
balance among all the methods, in terms of learning a
concept dictionary useful for understanding test image
representations, but which also learns diverse and disen-
tangled concepts.

Qualitative results Fig. 3 shows visual and textual
grounding of concepts extracted for token ‘dog’. For brevity, we select 8 out of 20 concepts for
illustration. 2. Grounding for all concepts extracted for ‘dog’ and other tokens are in Appendix
F. Extracted concepts capture information about different aspects of a ‘dog’. The LMM separates

Example concepts for ‘Dog’

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Figure 3: Visual/textual grounding for 8 out of 20 concepts for ’Dog’ token (layer 31). For each
concept we illustrate the set of 5 most activating samples and 5 most probable decoded words.

representation of animal ‘Dog’ with a ‘hot dog’ (Concept 1). Specifically for ‘Dog’, Concepts (2),
(3) capture information about color: ’black’, ’brown’. Concept (6) about ‘long haired’ dogs, while
concept (5) activates for ‘small/puppy’ dogs. Beyond concepts activating for specific characteristics,
we also discover concepts describing their state of actions (Concept (4) ‘playing/running’), common
scenes they occur in (Concept (8), ’herd’), and correlated objects they can occur with (Concept
(7), ‘cat and dog’). We observe this diverse nature of extracted concepts for other tokens too. The
information about concepts can be inferred via both the visual images and the associated grounded
words, validating the coherent multimodal grounding. Notably, compared to solely visual grounding
as for CAVs for CNNs, the multimodal grounding eases the process to understand a concept.

Additional experiments. Qualitative local interpretations for test samples are in Appendix F.
Experiment analyzing concept extraction across layers is available in Appendix G. Our method can
be also be applied to understand of visual/perceptual token representations inside the LMM which
also exhibit this multimodal structure (Appendix H).

5 Conclusion

In summary, we presented a novel dictionary learning based concept extraction framework, to
understand internal representations of a LMM. The approach relies on decomposing representations
of a token inside a pretrained LMM. To this end, we also propose a Semi-NMF variant of the
concept dictionary learning problem. The elements of the learnt concept dictionary are grounded in
the both text and visual domains, leading to a novel notion of multimodal concepts in the context
of interpretability. We quantitatively and qualitatively show that (i) the multimodal grounding of
concepts is meaningful, and (ii) the learnt concepts are useful to understand representations of test
samples. We hope that our method inspires future work on concept methods to understand LMMs.
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Figure 4: Evaluating visual/text grounding (CLIPScore/BERTScore). Each point denotes score for
grounded words of a concept (Semi-NMF) vs Rnd-Words w.r.t the same visual grounding.

A Evaluating multimodal grounding of concepts

To evaluate the quality of visual/text grounding of concepts (Xk,MAS ,Tk), we measure the cor-
respondence between visual and text grounding of a given concept uk, i.e. the set of maximum
activating samples Xk,MAS and words Tk, using CLIPScore and BERTScore as described above.
Fig. 4 shows an evaluation of visual/text grounding of concepts learnt by Semi-NMF. Each point on
the figure denotes the CLIPScore (left) or BERTScore (right) for correspondence between samples
Xk,MAS and words Tk for concept uk against random words baseline. We see that for both metrics,
vast majority of concepts lie above the y = x line, indicating that grounded words correspond much
better to content of maximum activating samples than random words.

B Experiments on other LMMs

This section covers our experiments on other types of multimodal models. First, we test our approach
on LLaVA to demonstrate that our approach generalizes to more recent networks that also fine-tune
fLM on multimodal data. We also test our method on other variants of DePALM with non-CLIP
visual encoders to observe their effect on CLIPScore.

B.1 Experiments with LLaVA

We conduct further experiments on LLaVA [23], a popular open-source LMM to demonstrate the
generality of our method. The model uses a CLIP-ViT-L-336px visual encoder (fV ), a 2-layer linear
connector (C) that outputs NV = 576 visual tokens, and a Vicuna-7B language model (fLM , 32
layers). We use identical hyperparameters as for DePALM (K = 20, λ = 1, L = 31). We report the
test CLIPScore for top-1 activating concept, for Rnd-Words, Noise-Imgs, Simple and Semi-NMF,
GT-captions in Tab. 3, and Overlap score for non-random baselines in Tab. 4. Quantitatively, we
obtain consistent results to those observed for DePALM. Semi-NMF extracts most balanced concept
dictionaries with high multimodal correspondence and low overlap. Qualitatively too, the method
functions consistently and is able to extract concepts with meaningful multimodal grounding.

Qualitative results and Saliency maps We also show qualitative examples of concepts extracted
for token ‘Dog’ in Fig. 5. More examples for other ‘Cat’ and ‘Train’ tokens are given in Fig. 7 and 8.
Interestingly, since LLaVA uses a connector C that contains two linear layers, the visual tokens as
processed inside fLM preserve the notion of specific image patch representations, i.e. NV = 576
tokens denoting representations for 576 (24 × 24) input patches. This allows us to further explore a
simple and computationally cheap strategy of generating saliency maps to highlight which regions a
concept vector activates on. To do this one can simply compute the inner product of any given concept
vector uk with all visual token representations from corresponding layer L, i.e. uT

k [h
1
(L), ..., h

NV

(L) ].
This can be upscaled to the input image size to visualize the saliency map. We illustrate some
qualitative outputs on concepts from ‘Dog’ in Fig. 6. .
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Token Metric Rnd-Words Noise-Imgs Simple Semi-NMF (Ours) GT-captions

Dog CS top-1 (↑) 0.537 ± 0.03 0.530 ± 0.05 0.567 ± 0.08 0.595 ± 0.07 0.777 ± 0.06
BS top-1 (↑) 0.205 ± 0.07 0.227 ± 0.06 0.331 ± 0.07 0.305 ± 0.07 0.519 ± 0.11

Bus
CS top-1 (↑) 0.509 ± 0.04 0.487 ± 0.05 0.619 ± 0.06 0.591 ± 0.08 0.742 ± 0.05
BS top-1 (↑) 0.198 ± 0.07 0.253 ± 0.06 0.319 ± 0.04 0.306 ± 0.06 0.460 ± 0.10

Train
CS top-1 (↑) 0.518 ± 0.03 0.505 ± 0.04 0.633 ± 0.05 0.640 ± 0.07 0.725 ± 0.05
BS top-1 (↑) 0.177 ± 0.07 0.221 ± 0.04 0.310 ± 0.05 0.293 ± 0.05 0.432 ± 0.08

Cat
CS top-1 (↑) 0.536 ± 0.03 0.545 ± 0.04 0.625 ± 0.06 0.621 ± 0.07 0.795 ± 0.05
BS top-1 (↑) 0.142 ± 0.06 0.235 ± 0.05 0.306 ± 0.06 0.329 ± 0.07 0.540 ± 0.11

Table 3: Concept extraction on LLaVA-v1.5: Test data mean CLIPScore reported for top-1 activating
concept for same baselines and tokens as in main paper table 1. Higher scores are better. Best score
in bold, second best is underlined.

Token Simple PCA KMeans Semi-NMF

Dog 0.435 0.008 0.429 0.149

Bus 0.464 0.010 0.518 0.124

Train 0.315 0.024 0.382 0.087

Cat 0.479 0.013 0.554 0.166

Table 4: Overlap evaluation (LLaVA). Lower is better. Best score in bold, second best underlined.

Figure 5: Multimodal grounding for example concepts for ’Dog’ token (layer 31) on LLaVA.

Figure 6: Examples of generating visual concept saliency maps for two ‘Dog’ concepts for LLaVA.
Red denotes high activations, blue denotes low activation (bottom row)
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Figure 7: Multimodal grounding for example concepts for ’Cat’ token (layer 31) on LLaVA.

B.2 DePALM with ViT visual encoders

We further test LMMs which do not contain a CLIP visual encoder to confirm that the high CLIPScore
is not due to use of CLIP visual encoders. To test this, we experiment on two different DePALM
models with frozen visual encoders different from CLIP, a frozen ViT-L encoder trained on ImageNet
[9] and another frozen ViT-L trained as a masked autoencoder (MAE) [15]. Both LMMs use the
same pretrained OPT-6.7B language model. Collectively, the three encoders (including CLIP) are
pretrained for three different types of objectives. We use Semi-NMF to extract concept dictionaries,
with all hyperparameters identical. The results are reported in tables below. ’Rnd-Words’ and
’GT-captions’ references are reported for each LMM separately, although they are very close to the
ones in main paper. The "ViT-L (CLIP)" baseline denotes our system from the main paper that uses
CLIP encoder. Importantly, we still obtain similar test CLIPScores as with CLIP visual encoder. The
concept dictionaries still possess meaningful multimodal grounding. Many concepts also tend to be
similar as for CLIP visual encoder, further indicating that processing inside language model plays a
major role in the discovery of multimodally grounded concepts.

C Analyzing polysemanticity in the learnt concepts

We conducted a preliminary qualitative study on some concept vectors in the dictionary learnt
for token "Dog" (DePALM model), to analyze if these concept vectors tend to activate strongly
for a specific semantic concept (monosemantic) or multiple semantic concepts (polysemantic). In
particular, we first manually annotated the 160 test samples for "Dog" for four semantic concepts,
for which we knew we had concept vectors in our dictionary, namely "Hot dog" (Concept 2, row 1,
column 2 in Fig. 7), "Black dog" (Concept 20, row 10, column 2 in Fig. 7), "Brown/orange dog"
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Figure 8: Multimodal grounding for example concepts for ’Train’ token (layer 31) on LLaVA.

Token Rnd-Words ViT-L (ImageNet) ViT-L (CLIP) GT-captions

Dog 0.514 ± 0.05 0.611 ± 0.09 0.610 ± 0.09 0.783 ± 0.06

Bus 0.498 ± 0.05 0.644 ± 0.07 0.634 ± 0.08 0.739 ± 0.05

Train 0.494 ± 0.05 0.617 ± 0.07 0.646 ± 0.07 0.728 ± 0.05

Cat 0.539 ± 0.05 0.628 ± 0.07 0.627 ± 0.06 0.794 ± 0.06

Table 5: Test CLIPScore evaluation for DePALM with ViT-L frozen image encoder trained on
ImageNet: Scores reported for top-1 activating concept of Semi-NMF for Rnd-Words, GT-captions
and ViT-L (CLIP) which denotes the system in main text.

(Concept 6, row 3, column 2 in Fig. 7), and "Bull dog" (Concept 15, row 8, column 1 in Fig. 7). For
a given semantic concept, we call this set Ctrue. Then, for its corresponding concept vector uk we
find the set of test samples for which uk activates greater than a threshold τ . This threshold was set
to half of its maximum activation over test samples. We call this set of samples Ctop. To estimate
specificity of the concept vector we compute how many samples in Ctop lie in the ground-truth set,
i.e. |Ctop| ∩ |Ctrue|/|Ctop|.
We found Concept 2 ("Hot dog") to be most monosemantic with 100% specificity. For Concept 20
("Black dog") too, we found high specificity of 93.3%. For concept 15 ("Bull dog") we observed
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Token Rnd-Words ViT-L (MAE) ViT-L (CLIP) GT-captions

Dog 0.515 ± 0.05 0.602 ± 0.07 0.610 ± 0.09 0.784 ± 0.06

Bus 0.501 ± 0.05 0.627 ± 0.07 0.634 ± 0.08 0.737 ± 0.05

Train 0.483 ± 0.06 0.618 ± 0.08 0.646 ± 0.07 0.726 ± 0.05

Cat 0.541 ± 0.04 0.629 ± 0.09 0.627 ± 0.06 0.795 ± 0.06

Table 6: Test CLIPScore evaluation for DePALM with ViT-L frozen image encoder trained as masked
autoencoder (MAE): Scores reported for top-1 activating concept of Semi-NMF for Rnd-Words,
GT-captions and ViT-L (CLIP) which denotes the system in main text.

the lowest specificity of 50%. This concept also activated for test images with toy/stuffed dogs.
Interestingly, the multimodal grounding of concept 15 already indicates this superposition with
maximum activating samples also containing images of ’toy dogs’. Concept 6 ("Brown/orange dog")
is somewhere in between, with 76% specificity. This concept vector also activated sometimes for
dark colored dogs, which wasn’t apparent from its multimodal grounding.

Prominent or distinct semantic concepts seem to be captured by more specific/monosemantic concept
vectors, while more sparsely present concepts seem at risk to be superposed resulting in a more
polysemantic concept vector capturing them. It is also worth noting that the multimodal grounding
can be a useful tool in some cases to identify polysemanticity in advance.

D Further implementation details

D.1 Dictionary learning details

Split Dog Bus Train Cat Baby Car Cake Bear

Train 3693 2382 3317 3277 837 1329 1733 1529

Test 161 91 147 167 44 79 86 55

Table 7: Number of samples training/testing samples for each token for DePALM

The details about the number of samples used for training the concept dictionary of each token, and
the number of samples for testing is given in Tab. 7. The token representations are of dimension
B = 4096.

The hyperparameters for the dictionary learning methods are already discussed in the main paper.
All the dictionary learning methods (PCA, KMeans, Semi-NMF) are implemented using scikit-
learn [31]. For PCA and KMeans we rely on the default optimization strategies. Semi-NMF is
implemented through the DictionaryLearning() class, by forcing a positive code. It utilizes the
coordinate descent algorithm for optimization during both the learning of U∗,V∗ and the projection
of test representations v(X).

D.2 CLIPScore/BERTScore evaluation

For a given image X and set of words Tk associated to concept uk, CLIPScore is calculated between
CLIP-image embedding of X and CLIP-text embedding of comma-separated words in Tk. We
consider a maximum of 10 most probable words in each Tk, filtering out non-English and stop
words. The computation of the metric from embeddings adheres to the standard procedure described
in [16]. Our adapted implementation is based on the CLIPScore official repository, which utilizes the
ViT-B/32 CLIP model to generate embeddings.
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We found that computing BERTScores from comma-separated words and captions is unreliable.
Instead, we adopted a method using the LLaMA-3-8B instruct model to construct coherent phrases
from a set of grounded words, Tk. Specifically, we provide the LLaMA model with instructions to
describe a scene using a designated set of words, for which we also supply potential answers. This
instruction is similarly applied to another set of words, but without providing answers. The responses
generated by LLaMA are then compared to the captions y using BERTScore. The instruction phrase
and an example of the output are detailed in 8. The highest matching score between the generated
phrases and the captions of a test sample determines the score assigned to the concept uk. This
approach ensures that the evaluation accurately reflects coherent and contextually integrated language
use. The metric calculation from embeddings follows the established guidelines outlined in [41].
Our adapted implementation is based on BERTScore official repository, and we use the default
Roberta-large model to generate embeddings.

Table 8: Generating contextually and grammatically coherent phrases Using the LLaMA Model for
BERTScore Evaluation

Instruction to LLaMA Nature of Response

Generate three distinct phrases, each
incorporating the words dog, white,
people. Ensure each phrase is clear and
contextually meaningful. Number each
phrase as follows: 1. 2. 3.

1.A white dog is standing next to people. 2.
People are standing next to a white dog. 3. The
dog is standing next to people wearing white
clothes.

Generate three distinct phrases, each
incorporating the words List of words .
Ensure each phrase is clear and
contextually meaningful. Number each
phrase as follows: 1. 2. 3.

LLaMA autonomously creates a relevant
description, demonstrating comprehension and
creative integration of the new words.

Generate three distinct phrases, each
incorporating the words brown, black,
large, fluffy, cat . Ensure each phrase is
clear and contextually meaningful.
Number each phrase as follows: 1. 2. 3.

1. A large, fluffy black cat is sleeping on the
brown couch. 2. The brown cat is curled up next
to a large, fluffy black cat. 3. The large, fluffy
cat’s brown fur stands out against the black
background.

D.3 Resources

DePALM experiments compute Each experiment to analyze a token with a selected dictionary
learning method is conduced on a single RTX5000 (24GB)/ RTX6000 (48GB)/ TITAN-RTX (24GB)
GPU. Within dictionary learning, generating visualizations and projecting test data, the majority of
time is spent in loading the data/models and extracting the representations. For analysis of a single
token with ≈ 3000 training samples, it takes around 10-15 mins for this complete process. Evaluation
for CLIPScore/BERTScore are also conducted using the same resources. Evaluating CLIPScore for
500 (image, grounded-words) pairs takes around 5 mins. The BERTScore evaluation is in contrast
more expensive, consuming around 150 mins for 500 pairs.

LLaVA experiments compute Each experiment to extract a concept dictionary for LLaVA was
conducted on a single A100 (80GB) GPU. Representation extraction process for LLaVA is more
expensive compared to DePALM consuming around 90 mins for ≈ 3000 samples. The remaining
aspects of dictionary learning, multimodal grounding, representation projection etc. remains relatively
cheap. The CLIPScore/BERTScore evaluations are completed with same resources as before.

Licenses of assets The part of the code for representation extraction from LMM is implemented
using PyTorch [30]. For our analyses, we also employ the OPT-6.7B model [40] from Meta AI,
released under the MIT license, and the CLIP model [32] from OpenAI, available under a custom
usage license. Additionally, the COCO dataset [22] used for validation is accessible under the
Creative Commons Attribution 4.0 License. We also use CLIPScore [16] and BERTScore [41] for
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evaluating our method, both publicly released under MIT license. All utilized resources comply with
their respective licenses, ensuring ethical usage and reproducibility of our findings.

D.4 Choice for number of concepts K

Our choice of using K = 20 concepts for all tokens was driven by the behaviour of reconstruction
error of Semi-NMF on the training samples with different values of K, i.e. ||Z−UV||22. We validate
this behaviour on the four target tokens from main text in Fig. 9. We generally found K = 20 as the
minimal number of concepts where the reconstruction error drops by at least 50% from K = 0.

We also conducted an ablation study to test how our method behaves with different values of
number of concepts K. Fig. 10 presents the variation of test CLIPScore and Overlap score for
K ∈ {10, 20, 30, 50} for two target tokens, ‘Dog’ and ‘Cat’. Our method can learn meaningful
concepts for different values of K, evident by the consistently high CLIPScore. The Overlap score
on the other hand tends to drop more consistently as the number of concepts increase but behaves
stably for different choices. Nonetheless they indicate that our method can accommodate dictionaries
of larger sizes without compromising the quality of learnt concepts, provided K << M (number of
decomposed samples) and at the expense of greater user overhead.

Figure 9: Variation of reconstruction error with number of concepts K for decompositions on different
target tokens.

E Evaluation and extension to more tokens

We provide test data mean CLIPScore and BERTScore for top-1 activating concept for all baselines
and more tokens: Baby, Car, Cake, and Bear in Tab. 9 (results in the main paper are reported for
tokens Dog, Bus, Train, Cat in Tab. 1). Additionally, we also report the macro average over a set
of 30 additional COCO-nouns apart from the 8 tokens with individually reported results, denoted
as ‘Extra-30’. These nouns are single-token words with at least 40 predicted test samples. We put
the filter of single-token words to keep consistency with the presented framework. Extension to
multi-token words is straightforward but discussed separately in E.1. The lower bound criterion on
test samples is to ensure average test CLIPScore is reliable for each target token. We only report
CLIPScore for ‘Extra-30’ tokens as BERTScore evaluation was more expensive to conduct on large
number of dictionaries.

We observe that we consistently obtain higher scores across for Semi-NMF and K-Means. We also
report the overlap score between grounded words in Tab. 10 to illustrate the superiority of our
method over the simple baseline. As previously noted, we observe a high overlap between grounded
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Figure 10: Test CLIPScore and Overlap score ablation with number of concepts K. CLIPScore
remains consistently high and drops slightly only for very small K. Overlap score generally improves
with higher K.

words with KMeans and Simple baselines compared to Semi-NMF/PCA. A low overlap should
be encouraged, as it indicates the discovery of diverse and disentangled concepts in the dictionary.
Among all the methods, Semi-NMF provides the most balanced concept dictionaries which are both
meaningful (high CLIPScore/BERTScore) and diverse (low overlap).

Statistical significance The statistical significance of Semi-NMF w.r.t all other baselines and
variants, for CLIPScore/BERTScore evaluation to understand representations of test samples is given
in Tab/ 11 (for all tokens separately). We report the p-values for an independent two sided T-test with
null hypothesis that mean performance is the same between Semi-NMF and the respective system.
The results for Semi-NMF are almost always significant compared to Rnd-Words, Noise-Imgs, PCA.
However for these metrics, Simple baseline, K-Means and Semi-NMF all perform competitively and
better than other systems. Within these three systems the significance depends on the target token,
but are often not significant in many cases.

E.1 Extending to multi-token words

The presentation of our approach assumes that our token of interest t is a single token. This poses
no issues for words which are represented as single tokens but can raise some questions when we
wish to extract concept representations for multi-token words. Our approach however, can be easily
adapted to this setting. In particular, we extract representation of last token from first prediction of
the multi-token sequence. Note that when filtering the training data for samples where ground-truth
caption contains the token of interest, we now search for the complete multi-token sequence. The
other aspects of the method remain unchanged. While there can also be other viable strategies, the
rationale behind this adaptation is that the last token of our sequence of interest can also combines
representations from previous tokens in the sequence. We add below results for such examples in Tab.
12 and 13. We observe behaviour consistent with the previous results with Semi-NMF extracting
concept dictionaries with high CLIPScore and low overlap.
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Token Metric Rnd-Words Noise-Imgs Simple PCA (Ours) KMeans (Ours) Semi-NMF (Ours) GT-captions

Dog
CS top-1 (↑) 0.519 ± 0.05 0.425 ± 0.06 0.546 ± 0.08 0.559 ± 0.06 0.599 ± 0.07 0.610 ± 0.09 0.783 ± 0.06

BS top-1 (↑) 0.201 ± 0.04 0.306 ± 0.05 0.346 ± 0.08 0.353 ± 0.10 0.398 ± 0.06 0.405 ± 0.07 0.511 ± 0.11

Bus
CS top-1 (↑) 0.507 ± 0.05 0.425 ± 0.08 0.667 ± 0.06 0.509 ± 0.05 0.645 ± 0.08 0.634 ± 0.08 0.736 ± 0.05

BS top-1 (↑) 0.200 ± 0.05 0.303 ± 0.06 0.390 ± 0.05 0.380 ± 0.13 0.401 ± 0.06 0.404 ± 0.07 0.466 ± 0.11

Train
CS top-1 (↑) 0.496 ± 0.05 0.410 ± 0.07 0.642 ± 0.06 0.554 ± 0.08 0.657 ± 0.06 0.646 ± 0.07 0.727 ± 0.05

BS top-1 (↑) 0.210 ± 0.06 0.253 ± 0.06 0.392 ± 0.07 0.334 ± 0.09 0.375 ± 0.07 0.378 ± 0.07 0.436 ± 0.08

Cat
CS top-1 (↑) 0.539 ± 0.04 0.461 ± 0.04 0.589 ± 0.07 0.541 ± 0.08 0.608 ± 0.08 0.627 ± 0.06 0.798 ± 0.05

BS top-1 (↑) 0.207 ± 0.07 0.307 ± 0.03 0.425 ± 0.10 0.398 ± 0.13 0.398 ± 0.08 0.437 ± 0.08 0.544 ± 0.1

Baby
CS top-1 (↑) 0.532 ± 0.04 0.471 ± 0.05 0.631 ± 0.06 0.575 ± 0.07 0.636 ± 0.05 0.621 ± 0.06 0.811 ± 0.05

BS top-1 (↑) 0.192 ± 0.03 0.379 ± 0.05 0.471 ± 0.06 0.338 ± 0.06 0.405 ± 0.07 0.426 ± 0.07 0.530 ± 0.14

Car
CS top-1 (↑) 0.518 ± 0.05 0.461 ± 0.08 0.605 ± 0.04 0.547 ± 0.08 0.602 ± 0.05 0.614 ± 0.05 0.766 ± 0.06

BS top-1 (↑) 0.192 ± 0.03 0.336 ± 0.05 0.448 ± 0.07 0.370 ± 0.10 0.435 ± 0.08 0.379 ± 0.08 0.485 ± 0.14

Cake
CS top-1 (↑) 0.488 ± 0.05 0.473 ± 0.08 0.631 ± 0.05 0.540 ± 0.07 0.657 ± 0.06 0.628 ± 0.08 0.772 ± 0.05

BS top-1 (↑) 0.186 ± 0.04 0.366 ± 0.07 0.375 ± 0.10 0.243 ± 0.08 0.334 ± 0.07 0.334 ± 0.08 0.414 ± 0.13

Bear
CS top-1 (↑) 0.526 ± 0.04 0.526 ± 0.06 0.651 ± 0.04 0.564 ± 0.06 0.680 ± 0.05 0.660 ± 0.07 0.798 ± 0.06

BS top-1 (↑) 0.255 ± 0.10 0.396 ± 0.08 0.434 ± 0.05 0.420 ± 0.10 0.474 ± 0.08 0.494 ± 0.10 0.541 ± 0.10

Extra-30 CS top-1 (↑) 0.516 ± 0.04 0.521 ± 0.03 0.626 ± 0.06 0.547 ± 0.06 0.637 ± 0.06 0.631 ± 0.06 0.763 ± 0.05

Table 9: Test data mean CLIPScore and BERTScore for top-1 activating concept CLIPScore denoted
as CS, BERTScore denoted as BS for all concept extraction baselines considered. Analysis for layer
L = 31. Best score indicated in bold and second best is underlined. ‘Extra-30’ denotes a set of 30
additional single-token COCO nouns (apart from previous 8) with at least 40 predicted test samples
by fLM . For ‘Extra-30’ tokens we report the macro average and standard deviation of mean test data
CLIPScore, taken over the set of 30 tokens.

Token Simple PCA KMeans Semi-NMF

Baby 0.645 0.006 0.502 0.187

Car 0.246 0.001 0.322 0.097

Cake 0.415 0.005 0.398 0.147

Bear 0.556 0.002 0.360 0.203

Extra-30 0.443 0.050 0.452 0.156

Table 10: Overlap/entanglement between grounded words of learnt concepts for different dictionary
learning methods. Results are for additional tokens. Lower is better. Best score indicated in bold and
second best is underlined. For ‘Extra-30’ tokens (additional 30 single-token COCO nouns) we report
the macro average of Overlap score, taken over the set.

F Additional visualizations

F.1 Concept grounding

The visual/textual grounding for all tokens in Tab. 1 are given in Figs. 11 (‘Dog’), 12 (‘Cat’), 13
(‘Bus’), 14 (‘Train’). All the results extract K = 20 concepts from layer L = 31. Similar to our
analysis for token ‘Dog’ in main paper, for a variety of target tokens our method extracts diverse and
multimodally coherent concepts encoding various aspects related to the token.
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Token Metric Rnd-Words Noise-Imgs Simple PCA KMeans GT-captions

Dog
CS top-1 < 0.001 < 0.001 < 0.001 < 0.001 > 0.1 < 0.001

BS top-1 < 0.001 < 0.001 < 0.001 < 0.001 > 0.1 < 0.001

Bus
CS top-1 < 0.001 < 0.001 0.002 < 0.001 > 0.1 < 0.001

BS top-1 < 0.001 < 0.001 > 0.1 > 0.1 > 0.1 < 0.001

Train
CS top-1 < 0.001 < 0.001 > 0.1 < 0.001 > 0.1 < 0.001

BS top-1 < 0.001 < 0.001 0.08 < 0.001 > 0.1 < 0.001

Cat
CS top-1 < 0.001 < 0.001 < 0.001 < 0.001 0.018 < 0.001

BS top-1 < 0.001 < 0.001 > 0.1 0.001 < 0.001 < 0.001

Baby
CS top-1 < 0.001 < 0.001 > 0.1 0.002 > 0.1 < 0.001

BS top-1 < 0.001 < 0.001 0.001 < 0.001 > 0.1 < 0.001

Car
CS top-1 < 0.001 < 0.001 > 0.1 < 0.001 > 0.1 < 0.001

BS top-1 < 0.001 < 0.001 < 0.001 0.533 < 0.001 < 0.001

Cake
CS top-1 < 0.001 < 0.001 > 0.1 < 0.001 0.008 < 0.001

BS top-1 < 0.001 0.005 0.003 < 0.001 >0.1 < 0.001

Bear
CS top-1 < 0.001 < 0.001 > 0.1 < 0.001 0.072 < 0.001

BS top-1 < 0.001 < 0.001 0.0001 0.0001 >0.1 0.015

Table 11: Statistical significance of Semi-NMF w.r.t other baselines for test data CLIP-
Score/BERTScore. p-values for two sided T-test are reported. Significant values (p-value < 0.05) are
indicated in bold. The values do not indicate which system has better mean score but just that if the
difference is significant.

Multi-token word Rnd-Words Noise-Imgs Simple Semi-NMF GT-captions

Traffic light 0.516 ± 0.03 0.525 ± 0.03 0.664 ± 0.06 0.634 ± 0.05 0.744 ± 0.04

Cell phone 0.542 ± 0.04 0.547 ± 0.03 0.598 ± 0.04 0.598 ± 0.05 0.765 ± 0.06

Stop sign 0.533 ± 0.03 0.549 ± 0.03 0.617 ± 0.08 0.616 ± 0.05 0.775 ± 0.04

Table 12: Test mean CLIPScore (↑) reported for top-1 activating concept for multi-token words.
Higher scores are better. Best score in bold, second best is underlined.

F.2 Local interpretations

Here, we qualitatively analyze the local interpretations of various decomposition methods, including
PCA, k-means, semi-NMF, and the simple baseline strategy. We select these four as they produce
coherent grounding compared to Rnd-Words and Noise-Img baselines. We decompose test sample
representations on our learnt dictionary and visualize the top three activating components. Note that
in the case of KMeans and Simple baseline, the projection maps a given test representation to a single
element of the concept dictionary, the one closest to it. However, for uniformity we show the three

Multi-token word Simple PCA K-Means Semi-NMF

Traffic light 0.704 0.050 0.579 0.174

Cell phone 0.623 0.051 0.746 0.164

Stop sign 0.461 0.058 0.704 0.109

Table 13: Overlap score (↓) reported for top-1 activating concept for multi-token words. Higher
scores are better. Best score in bold, second best is underlined.
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Figure 11: multimodal concept grounding in vision and text for the token ’Dog’. The five most
activating samples and the five most probable decoded words for each component uk, k ∈ {1, ..., 20}
are shown. The token representations are extracted from L=31 of the LLM section of our LMM.

most closest concept vectors for both. Figs. 15, 16, 17, 18, 19 are dedicated to interpretations of a
single sample each, for all four concept extraction methods.

The inferences drawn about the behaviour of the four baselines from quantitative metrics can also be
observed qualitatively. Semi-NMF, K-Means and ‘Simple’ baseline, are all effective at extracting
grounded words can be associated to a given image. However, both K-Means and ‘Simple’ display
similar behaviour in terms of highly overlapping grounded words across concepts. This behaviour
likely arises due to both the baselines mapping a given representation to a single concept/cluster. This
limits their capacity to capture the full complexity of data distributions. In contrast, Semi-NMF and
PCA utilize the full dictionary to decompose a given representation and thus recover significantly
more diverse concepts. PCA in particular demonstrates almost no overlap, likely due to concept
vectors being orthogonal. However, the grounded words for it tend to be less coherent with the
images. As noted previously, Semi-NMF excels as the most effective method, balancing both aspects
by extracting meaningful and diverse concepts.
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Figure 12: multimodal concept grounding in vision and text for the token ’Cat’. The five most
activating samples and the five most probable decoded words for each component uk, k ∈ {1, ..., 20}
are shown. The token representations are extracted from L=31 of the LLM section of our LMM.

G Concept extraction across layers

We analyze the quality of multimodal grounding of concepts across different layers L. The CLIPScore
between (Xk,MAS ,Tk), averaged over all concepts uk is shown in Fig. 20, for ‘Dog’ and ‘Cat’ for all
layers in fLM . For early layers the multimodal grounding is no better than Rnd-Words. Interestingly,
there is a noticeable increase around (L = 20 to L = 25), indicating that the multimodal structure of
internal token representations starts to appear at this point. This also validates our choice that deeper
layers are better suited for multimodal concepts.

We provide a qualitative comparison of multimodal grounding for the token ’dog’ across different
layers in Fig. 21. As observed in Fig. 20, the multimodal nature of token representations for two
tokens ‘Dog’ and ‘Cat’ starts to appear around layers L = 20 to L = 25. It is interesting to note that
the representations of images still tend to be separated well, as evident by the most activating samples
of different concepts. However, until the deeper layers the grounded words often do not correspond
well to the visual grounding. This behaviour only appears strongly in deeper layers.
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Figure 13: multimodal concept grounding in vision and text for the token ’Bus’. The five most
activating samples and the five most probable decoded words for each component uk, k ∈ {1, ..., 20}
are shown. The token representations are extracted from L=31 of the LLM section of our LMM.

H Analysis for visual tokens

Our analysis in main paper was limited to decomposing representations of text tokens in various
layers of an LLM, hp

(l), p > NV . This was particularly because these were the predicted tokens of the
multimodal model. Nevertheless, the same method can also be used to understand the information
stored in the visual/perceptual tokens representations as processed in fLM , hp

(l), p ≤ NV . An
interesting aspect worth highlighting is that while the text token representations in fLM can combine
information from the visual token representations (via attention function), the reverse is not true.
The causal processing structure of fLM prevents the visual token representations to attend to any
information in the text token representations. Given a token of interest t, for any sample X ∈ Xt

we now only search for first position p ∈ {1, ..., NV }, s.t. t = argmaxUnembed(hp
(NL)). Only the

samples for which such a p exists are considered for decomposition. The rest of the method to learn
U∗,V∗ proceeds exactly as before.

We conduct a small experiment to qualitatively analyze concepts extracted for visual token repre-
sentations for ‘Dog’. We extract K = 20 concepts from L = 31. The dictionary is learnt with
representations from M = 1752 samples, less than M = 3693 samples for textual tokens. As a
brief illustration, 12 out of 20 extracted concepts are shown in Fig. 22. Interestingly, even the visual
token representations in deep layers of fLM , without ever attending to any text tokens, demonstrate
a multimodal semantic structure. It is also worth noting that there are multiple similar concepts
that appear for both visual and textual tokens. Concepts 3, 7, 10, 12, 17, 19 are all similar visually
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Figure 14: multimodal concept grounding in vision and text for the token ’Train’. The five most
activating samples and the five most probable decoded words for each component uk, k ∈ {1, ..., 20}
are shown. The token representations are extracted from L=31 of the LLM section of our LMM.

and textually to certain concepts discovered for text tokens. This indicates to a possibility that
these concepts are discovered by fLM in processing of the visual tokens and this information gets
propagated to predicted text token representations.

I Limitations

We list below some limitations of our proposed method:

• The concept dictionaries extracted currently are token-specific. It can be interesting to
explore learning concept dictionaries that can encode shared concepts for different tokens.

• We select the most simple and straightforward concept grounding techniques. Both visual
and textual grounding could potentially be enhanced. The visual grounding can be improved
by enhancing localization of concept activation for any MAS or test sample. Text grounding
could be enhanced by employing more sophisticated approaches such as tuned lens [5].

• While the proposed CLIPScore/BERTScore metrics are useful to validate this aspect, they
are not perfect metrics and affected by imperfections and limitations of the underlying
models extracting the image/text embeddings. The current research for metrics useful
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Figure 15: Local interpretations for test sample 9 of token ‘Dog’ with SemiNMF, KMeans, PCA,
and Simple baselines (layer 31). Visual/text grounding for the three highest concept activations
(normalized) is shown. SemiNMF baseline provides the most visually and textually consistent
results, while other baselines provide components that are not well disentangled (Simple and KMeans
baseline), or the text grounding is not closely related to the test image.

Figure 16: Local interpretations for test sample 37 of token ‘Dog’ with SemiNMF, KMeans, PCA,
and Simple baselines (layer 31). Visual/text grounding for the three highest concept activations
(normalized) is shown.

for interpretability remains an interesting open question, even more so in the context of
LLMs/LMMs.
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Figure 17: Local interpretations for test sample 43 of token ‘Cat’ with SemiNMF, KMeans, PCA,
and Simple baselines (layer 31). Visual/text grounding for the three highest concept activations
(normalized) is shown.

Figure 18: Local interpretations for test sample 6 of token ‘Bus’ with SemiNMF, KMeans, PCA,
and Simple baselines (layer 31). Visual/text grounding for the three highest concept activations
(normalized) is shown.
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Figure 19: Local interpretations for test sample 12 of token ‘Bus’ with SemiNMF, KMeans, PCA,
and Simple baselines (layer 31). Visual/text grounding for the three highest concept activations
(normalized) is shown.

Figure 20: Mean CLIPScore between visual/text grounding Xk,MAS ,Tk for all concepts (Semi-
NMF), across different layers L. Results are for tokens ‘Dog’ and ‘Cat’.
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L 1 L 12

L 20 L 30
Figure 21: Examples of multimodal grounding across different layers for concepts with similar visual
grounding (target token ‘Dog’). The grounded words from early layers do not correspond well to the
most activating samples of a concept.

Example concepts for ‘Dog’ from visual token representations (layer 31)

Figure 22: Example concepts extracted for ‘Dog’ from visual token representations in layer 31.
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