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Abstract
Model-free reinforcement learning algorithms
have seen remarkable progress, but key chal-
lenges remain. Trust Region Policy Optimization
(TRPO) is known for ensuring monotonic policy
improvement through conservative updates within
a trust region, backed by strong theoretical guar-
antees. However, its reliance on complex second-
order optimization limits its practical efficiency.
Proximal Policy Optimization (PPO) addresses
this by simplifying TRPO’s approach using ra-
tio clipping, improving efficiency but sacrificing
some theoretical robustness. This raises a natu-
ral question: Can we combine the strengths of
both methods? In this paper, we introduce Simple
Policy Optimization (SPO), a novel unconstrained
first-order algorithm. By slightly modifying the
policy loss used in PPO, SPO can achieve the
best of both worlds. Our new objective improves
upon ratio clipping, offering stronger theoretical
properties and better constraining the probability
ratio within the trust region. Empirical results
demonstrate that SPO outperforms PPO with a
simple implementation, particularly for training
large, complex network architectures end-to-end.

Code is available at Simple-Policy-Optimization.

1. Introduction
Deep Reinforcement Learning (DRL) has achieved great
success in recent years, notably in games (Mnih et al., 2015;
Silver et al., 2016; 2017; 2018; Vinyals et al., 2019), foun-
dation model fine-tuning (Ouyang et al., 2022; Black et al.,
2023), and robotic control (Makoviychuk et al., 2021; Rudin
et al., 2022). Policy gradient (PG) methods (Sutton & Barto,
2018; Lehmann, 2024), as a major paradigm in RL, have
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Figure 1. Training performance in the Breakout environment. SPO
is a novel model-free algorithm capable of end-to-end training for
extremely deep neural network architectures, positioning itself as
a promising alternative to the well-known PPO algorithm.

been widely adopted by the academic community. One
main practical challenge of PG methods is to reduce the
variance of the gradients while keeping the bias low (Sut-
ton et al., 2000; Schulman et al., 2015b). In this context, a
widely used technique is to add a baseline when sampling
an estimate of the action-value function (Greensmith et al.,
2004). Another challenge of PG methods is to estimate the
proper step size for the policy update (Kakade & Langford,
2002; Schulman et al., 2015a). Given that the training data
strongly depends on the current policy, a large step size may
result in a collapse of policy performance, whereas a small
one may impair the sample efficiency of the algorithm.

To address these challenges, Schulman et al. (2015a) proved
that optimizing a certain surrogate objective guarantees pol-
icy improvement with non-trivial step sizes. Subsequently,
the TRPO algorithm was derived through a series of approx-
imations, which impose a trust region constraint during the
policy iterations, leading to monotonic policy improvement
in theory. However, given the complexity of second-order
optimization, TRPO is highly inefficient and can be hard
to extend to large-scale RL environments. Proximal Policy
Optimization (PPO) (Schulman et al., 2017) is designed to
enforce comparable constraints on the difference between
successive policies during the training process, while only
using first-order optimization. By clipping the current data
that exceeds the probability ratio limit to a constant, PPO
attempts to remove the high incentive for pushing the cur-
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Figure 2. (Left) The only difference between SPO and PPO is the policy loss, where rt(θ) = πθ(at|st)/πθold(at|st) and ϵ is the
probability ratio hyperparameter, making it simple and straightforward to implement SPO based on high-quality PPO implementations.
(Right) The optimization behavior of PPO and SPO is visualized, where each scatter point represents the probability ratio of a single data
point for a specific training epoch, with its color corresponding to its advantage, and the red line representing the probability ratio bound.

rent policy away from the old one. It has been demonstrated
that PPO can be effectively extended to large-scale complex
control tasks (Ye et al., 2020; Makoviychuk et al., 2021).

Despite its success, the optimization behavior of PPO re-
mains insufficiently understood. Although PPO aims to con-
strain the probability ratio deviations between successive
policies, it often fails to keep these ratios within bounds
(Ilyas et al., 2018; Engstrom et al., 2020; Wang et al.,
2020). In some tasks, the ratios can even escalate to values
as high as 40 (Wang et al., 2020). Furthermore, studies
have revealed that PPO’s performance is highly dependent
on “code-level optimizations” (Andrychowicz et al., 2021;
Huang et al., 2022a). The implementation of PPO includes
numerous code-level details that critically influence its ef-
fectiveness (Engstrom et al., 2020; Huang et al., 2022b).

In this paper, we propose a new model-free RL algorithm
named Simple Policy Optimization (SPO) designed to more
effectively bound probability ratios through a novel objec-
tive function. The key differences in optimization behavior
between PPO and SPO are illustrated in Figure 2. Our main
contributions are summarized as follows:

• We theoretically prove that optimizing a tighter per-
formance lower bound using Total Variation (TV) di-
vergence constrained space results in more consistent
policy improvement.

• To overcome PPO’s limitation in constraining probabil-
ity ratios, we propose a new objective function, leading
to the development of the proposed SPO algorithm.

• Experiments benchmark various policy gradient al-
gorithms across different environments, showing that
SPO can achieve competitive performance with a sim-
ple implementation, improved sample efficiency, and
easier training of deeper policy networks.

2. Related Work
Since TRPO (Schulman et al., 2015a) theoretically demon-
strated monotonic policy improvement, numerous studies

have explored how to enforce trust region constraints ef-
ficiently, which are essential for ensuring robust policy
improvement. For instance, the widely-used PPO algo-
rithm (Schulman et al., 2017) was the first to introduce
the heuristic clipping technique, effectively avoiding the
computationally expensive second-order optimization. This
heuristic clipping technique has been widely used in various
reinforcement learning algorithms (Queeney et al., 2021;
Zhuang et al., 2023; Gan et al., 2024).

However, empirical evidence from a wide range of studies
demonstrates that ratio clipping fails to enforce trust region
constraints effectively (Wang et al., 2020). To prevent ag-
gressive policy updates, previous works have focused on
designing adaptive learning rates based on TV divergence
or KL divergence (Heess et al., 2017; Queeney et al., 2021;
Rudin et al., 2022), which have been shown to effectively
enhance the stability of PPO. On the other hand, code-level
optimizations are crucial for the robust performance of PPO
(Engstrom et al., 2020). High-quality implementations of
PPO involve numerous code details (Huang et al., 2022a;b),
making it challenging to accurately assess the core factors
that truly affect the algorithm’s performance.

In this work, we argue that heuristic clipping technique can-
not enforce trust region constraints (see Figure 2). During
PPO’s iterations, ratio clipping zeros the gradients of certain
data points, which can lead to a lack of corrective gradients
to prevent the policy from escaping the trust region, thus
undermining the monotonic improvement guarantee. As a
result, PPO requires additional code-level tuning, such as
adaptive learning rates or early stopping strategies, to artifi-
cially prevent performance collapse. We reveal this inherent
flaw of ratio clipping and propose promising alternatives.

3. Background
3.1. Reinforcement Learning

Online reinforcement learning is a mathematical frame-
work for sequential decision-making, which is generally
defined by the Markov Decision Process (MDP) M =
(S,A, r,P, ρ0, γ), where S and A represent the state space
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and action space, r : S × A 7→ R is the reward function,
P : S × A × S 7→ [0, 1] is the probability distribution of
the state transition function, ρ0 : S 7→ [0, 1] is the initial
state distribution, while γ ∈ (0, 1) is the discount factor.

Suppose that an agent interacts with the environment fol-
lowing policy π, i.e., at ∼ π(·|st) and obtains a trajectory
τ = (s0, a0, r0, . . . , st, at, rt, . . . ), where rt = r(st, at).
The goal of RL is to learn a policy that maximizes the objec-
tive η(π) = Eτ∼π [

∑∞
t=0 γ

trt], where the notation Eτ∼π

represents the expected return of the trajectory τ generated
by the agent following policy π, i.e., s0 ∼ ρ0(·), at ∼
π(·|st), rt = r(st, at), st+1 ∼ P(·|st, at). The action-
value function and value function are defined as

Qπ(st, at) = Est+1,at+1,...

[ ∞∑
k=0

γkr(st+k, at+k)

]
,

Vπ(st) = Eat∼π(·|st) [Qπ(st, at)] .

(1)

Given Qπ and Vπ , the advantage function can be expressed
as Aπ(st, at) = Qπ(st, at)− Vπ(st).

3.2. Trust Region Policy Optimization

Classic policy gradient methods cannot reuse data and are
highly sensitive to the hyperparameters. To address these
issues, in Trust Region Policy Optimization (TRPO), Schul-
man et al. (2015a) derived a lower bound for policy improve-
ment. Before that, Kakade & Langford (2002) first proved
the following policy performance difference theorem.
Theorem 3.1. (Kakade & Langford, 2002) Let P(st =
s|π) represents the probability of the t-th state equals to s
in trajectories generated by the agent following policy π,
and ρπ(s) = (1 − γ)

∑∞
t=0 γ

tP(st = s|π) represents the
normalized discounted visitation distribution. Given any
two policies, π and π̃, their performance difference can be
measured by

η(π̃)− η(π) =
1

1− γ
Es∼ρπ̃(·),a∼π̃(·|s) [Aπ(s, a)]

=
1

1− γ

∑
s

ρπ̃(s)
∑
a

π̃(a|s) ·Aπ(s, a),

(2)

where η(π) = Eτ∼π [
∑∞

t=0 γ
trt].

The key insight is that the new policy π̃ will improve (or
at least remain constant) as long as it has a nonnegative
expected advantage at every state s. Then, the following
performance improvement lower bound is given:
Theorem 3.2. (Achiam et al., 2017) Given any two policies,
π and π̃, the following bound holds:

η(π̃)− η(π) ≥ 1

1− γ
Es∼ρπ(·),a∼π̃(·|s) [Aπ(s, a)]

− 2ξγ

(1− γ)2
Es∼ρπ(·) [DTV(π∥π̃)[s]] ,

(3)

where ξ = maxs
∣∣Ea∼π̃(·|s) [Aπ(s, a)]

∣∣, DTV is the Total
Variation (TV) divergence.

Using importance sampling on action a ∼ π̃(·|s) and ac-
cording to the Pinsker’s inequality, we have

η(π̃)− η(π) ≥ 1

1− γ
Es∼ρπ(·),a∼π(·|s)

[
π̃(a|s)
π(a|s)

·Aπ(s, a)

]
− 2ξγ

(1− γ)2
Es∼ρπ(·)

[√
1

2
DKL(π∥π̃)[s]

]
.

(4)

At this point, the subscripts of the expectation in (2) are
replaced from s ∼ ρπ̃(·) and a ∼ π̃(·|s) to s ∼ ρπ(·)
and a ∼ π(·|s), which means that we can now reuse the
current data. In TRPO, the lower bound in (4) is indirectly
optimized by solving the following optimization problem:

max
θ

E(st,at)∼πθold

[
πθ(at|st)
πθold(at|st)

· Â(st, at)

]
,

s.t. E [DKL(πθold∥πθ)] ≤ δ.

(5)

This problem includes a constraint where δ is a hyperpa-
rameter that limits the KL divergence between successive
policies, with Â(st, at) being the estimate of the advantage
function, and the objective is called “surrogate objective”.

3.3. Proximal Policy Optimization

Due to the necessity of solving a constrained optimization
problem (5) in each update, TRPO is highly inefficient and
can be challenging to apply to large-scale reinforcement
learning tasks.

Schulman et al. (2017) proposed a new objective called
“clipped surrogate objective”, in which the algorithm is
named Proximal Policy Optimization (PPO). PPO retains
similar constraints of TRPO but is much easier to implement
and involves only first-order optimization.

The “clipped surrogate objective”, also called PPO-Clip,
adopts a ratio clipping function. Denote Ât = Â(st, at),
the objective of PPO-Clip can be expressed as

Jclip(θ) = E(st,at)∼πθold

{
min

[
rt(θ) · Ât, r̃t(θ) · Ât

]}
,

(6)
where

rt(θ) =
πθ(at|st)
πθold(at|st)

, r̃t(θ) = clip (rt(θ), 1− ϵ, 1 + ϵ) ,

(7)
with πθold and πθ being the old policy and the current policy.
The gradient of PPO-Clip, given the training data (st, at),
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can be expressed as

∇θJclip(θ) =


∇θrt(θ) · Ât, Ât > 0, rt(θ) ≤ 1 + ϵ;

∇θrt(θ) · Ât, Ât < 0, rt(θ) ≥ 1− ϵ;

0, otherwise.
(8)

In other words, PPO-Clip aims to remove the high incentive
for pushing the current policy away from the old one. PPO-
Clip has gained wide adoption in the academic community
due to its simplicity and performance.

4. Methodology
PPO attempts to limit the differences between successive
policies through ratio clipping. However, Wang et al. (2020)
proved the following theorem:
Theorem 4.1. (Wang et al., 2020) For discrete action space
tasks where |A| ≥ 3 or continuous action space tasks where
the output of the policy πθ follows a multivariate Gaussian
distribution. Let Θ = {θ|1− ϵ ≤ rt(θ) ≤ 1 + ϵ}, we have
supθ∈Θ DKL(πθold∥πθ)[st] = +∞ for both discrete and
continuous action space tasks.

Theorem 4.1 demonstrates that DKL(πθold∥πθ)[st] is not
necessarily bounded even if the probability ratio rt(θ) is
bounded. However, this theorem considers only an extreme
case involving a single data point, which is less typical than
the batch processing used in training data. On a broader
scale, the heuristic clipping technique employed by PPO
aims to bound the TV divergence for sufficient batch sizes
(Queeney et al., 2021). This relationship is formalized as

Es∼ρπ(·) [DTV(π∥π̃)[s]] =
1

2
E

s∼ρπ(·)
a∼π(·|s)

[∣∣∣∣ π̃(a|s)π(a|s)
− 1

∣∣∣∣] .
(9)

Then, the performance improvement lower bound (3) can
be rewritten as

η(π̃)− η(π) ≥ 1

1− γ
Es∼ρπ(·),a∼π(·|s)

[
π̃(a|s)
π(a|s)

·Aπ(s, a)

]
− ξγ

(1− γ)2
Es∼ρπ(·),a∼π(·|s)

[∣∣∣∣ π̃(a|s)π(a|s)
− 1

∣∣∣∣] .
(10)

This explains why PPO attempts to limit the probability ratio
|π̃(a|s)/π(a|s)− 1| ≤ ϵ, as this enforces a TV divergence
trust region in expectation.

Finally, we also found that PPO, which aims to bound the
TV divergence, can offer a larger solution space compared
to methods that incorporate a looser KL divergence as a
constraint (e.g., in TRPO). To illustrate this, we present the
following proposition:
Proposition 4.2. Given the old policy π, define the solu-
tion spaces under the TV and KL divergence constraints as

follows:

ΩTV = {π̃ | DTV(π∥π̃)[s] ≤ δTV,∀s ∈ S},
ΩKL = {π̃ | DKL(π∥π̃)[s] ≤ δKL,∀s ∈ S},

(11)

where δKL > 0 is a predefined threshold. Let δTV =√
1
2δKL, we establish that ΩKL ⊂ ΩTV.

Proof. For any given δKL and π̃ ∈ ΩKL, using Pinsker’s

inequality, we have DTV(π∥π̃)[s] ≤
√

1
2DKL(π∥π̃)[s] ≤√

1
2δKL = δTV, therefore π̃ ∈ ΩKL =⇒ π̃ ∈ ΩTV, which

means ΩKL ⊂ ΩTV, concluding the proof.

Additionally, the optimal solution to the lower bound in
the TV divergence solution space, ΩTV, is expected to be
superior. We now present the following theorem:

Theorem 4.3. Given the old policy π, and ΩTV,ΩKL pre-
sented in Proposition 4.2, let

LTV
π (π̃) =

1

1− γ
Es∼ρπ(·),a∼π(·|s)

[
π̃(a|s)
π(a|s)

·Aπ(s, a)

]
− 2ξγ

(1− γ)2
Es∼ρπ(·) [DTV(π∥π̃)[s]] ,

LKL
π (π̃) =

1

1− γ
Es∼ρπ(·),a∼π(·|s)

[
π̃(a|s)
π(a|s)

·Aπ(s, a)

]
− 2ξγ

(1− γ)2
Es∼ρπ(·)

[√
1

2
DKL(π∥π̃)[s]

]
.

(12)

be the lower bounds of performance improvement with TV

divergence and KL divergence. Let δTV =
√

1
2δKL, denote

π̃∗
TV = argmax

π̃∈ΩTV

LTV
π (π̃), π̃∗

KL = argmax
π̃∈ΩKL

LKL
π (π̃),

(13)
then LTV

π (π̃∗
TV) ≥ LKL

π (π̃∗
KL).

Proof. Since ΩKL ⊂ ΩTV, we have

LTV
π (π̃∗

TV) ≥ LTV
π (π̃∗

KL) =

1

1− γ
Es∼ρπ(·),a∼π(·|s)

[
π̃∗
KL(a|s)
π(a|s)

·Aπ(s, a)

]
− 2ξγ

(1− γ)2
Es∼ρπ(·) [DTV(π∥π̃∗

KL)[s]] ≥

1

1− γ
Es∼ρπ(·),a∼π(·|s)

[
π̃∗
KL(a|s)
π(a|s)

·Aπ(s, a)

]
− 2ξγ

(1− γ)2
Es∼ρπ(·)

[√
1

2
DKL(π∥π̃∗

KL)[s]

]
=LKL

π (π̃∗
KL),

(14)

thus LTV
π (π̃∗

TV) ≥ LKL
π (π̃∗

KL), concluding the proof.
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Algorithm 1 Simple Policy Optimization (SPO)
1: Initialize: Policy and value networks πθ, Vϕ, hyperparameter ϵ, value loss and policy entropy coefficients c1, c2
2: Output: Optimal policy network πθ∗

3: while not converged do
4: # Data collection
5: Collect data D = {(st, at, rt)}Nt=1 using the current policy network πθ

6: # The networks before updating
7: πθold ← πθ, Vϕold

← Vϕ

8: # Estimate the advantage Â(st, at) based on Vϕold

9: Use GAE (Schulman et al., 2015b) technique to estimate the advantage Â(st, at)
10: # Estimate the return R̂t

11: R̂t ← Vϕold
(st) + Â(st, at)

12: for each training epoch do
13: # Compute policy loss Lp (This is the only difference between SPO and PPO)

14: Lp ← − 1
N

∑N
t=1

{
πθ(at|st)

πθold
(at|st) · Â(st, at)− |Â(st,at)|

2ϵ ·
[

πθ(at|st)
πθold

(at|st) − 1
]2}

15: # Compute policy entropy Le and value loss Lv

16: Le ← 1
N

∑N
t=1H(πθ(·|st)), Lv ← 1

2N

∑N
t=1[Vϕ(st)− R̂t]

2

17: # Compute total loss L
18: L ← Lp + c1Lv − c2Le

19: # Update parameters θ and ϕ through backpropagation, λθ and λϕ is the step sizes
20: θ ← θ − λθ∇θL, ϕ← ϕ− λϕ∇ϕL
21: end for
22: end while

Based on the Proposition 4.2 and Theorem 4.3, we have the
following conclusion:

Conclusion

Optimizing the lower bound with TV divergence
constrains offers a more effective solution space
than using KL divergence constrains, leading to
better policy improvement.

As a result, to optimize the lower bound (10), we aim to
solve the following constrained optimization problem:

max
θ

E(st,at)∼πθold

[
rt(θ) · Ât

]
,

s.t. E(st,at)∼πθold
[|rt(θ)− 1|] ≤ ϵ,

(15)

where rt(θ) = πθ(at|st)/πθold(at|st) and Ât = Â(st, at).

PPO attempts to satisfy the constraints of (15) through ratio
clipping, but this does not prevent excessive ratio deviations
(demonstrated in Figure 2). The underlying reason is that
ratio clipping causes certain data points to stop contributing
to the gradients. Over multiple iterations, this can lead to un-
controllable updates, as the absence of corrective gradients
prevents the policy from recovering. To overcome this issue

with ratio clipping, we propose the following objective:

J(θ) = E(st,at)∼πθold

{
rt(θ) · Ât −

|Ât|
2ϵ
· [rt(θ)− 1]

2

}
.

(16)
The details of the objective will be discussed in the following
section, and the pseudo-code is shown in Algorithm 1.

5. Theoretical Results
In this section, we provide some theoretical insights of the
differences between PPO and SPO, demonstrating that SPO
can be more effective in constraining probability ratios.

5.1. Objective Class

Simplify the notation by using r and A to represent the
probability ratio and the advantage value. Based on the
previous analysis, our goal is to find an objective function
f(r,A, ϵ) such that while optimizing the surrogate objective
rA, the probability ratio is constrained by |r − 1| ≤ ϵ.

According to (15), for any given A ̸= 0 and ϵ > 0, we can
write down the following desired optimization problem:

max
r

rA, s.t. |r − 1| ≤ ϵ. (17)

The objective is linear, so the optimal solution is r∗ =
1+sign(A) ·ϵ, where sign(·) is the sign function. Motivated
by this, we present the following definition:
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Definition 5.1 (ϵ-aligned). For any given A ̸= 0 and ϵ >
0, we say that the function f(r,A, ϵ) is ϵ-aligned, if it is
differentiable and convex with respect to r, and attains its
maximum value at r = 1 + sign(A) · ϵ.

The objective of PPO in (6) and SPO in (16) can be ex-
pressed as

fppo = min [rA, clip(r, 1− ϵ, 1 + ϵ)A] ,

fspo = rA− |A|
2ϵ
· (r − 1)

2
.

(18)

It can be obtained that fppo is not ϵ-aligned, as fppo zeros
the gradients under some special cases according to (8). For
fspo, we have the following theorem:

Theorem 5.2. fspo is ϵ-aligned.

Proof. Obviously, fspo is differentiable and convex with
respect to r since fspo is a quadratic polynomial of r. For
any given A ̸= 0 and ϵ > 0, let ∂fspo(r,A, ϵ)/∂r = 0, then

∂fspo(r,A, ϵ)

∂r
= A− |A|

ϵ
· (r − 1) = 0, (19)

thus r = 1+sign(A) ·ϵ is the optimal solution for fspo.

Note that fspo is not the only objective function that satis-
fies the definition. It can be proved that there is a simple
objective function fsimple = −(r−1− sign(A) · ϵ)2, which
is also ϵ-aligned. We will discuss the differences between
these two in Section 6.3.

5.2. Analysis of New Objective

We show that the optimization process of SPO can more
effectively bound the probability ratio, as can be seen from
Figure 3. The largest circular area in the figure represents
the boundary on the probability ratio. The green circles
represent data points with non-zero gradients during the
training process, while the gray circles represent data points
with zero gradients.

PPO SPO

gradient directionwithout gradient

with gradient

Figure 3. In PPO, certain data points exhibit zero gradients, while
in SPO, all data points generate non-zero gradients that guide
towards the constraint boundary.

During the training process of PPO, certain data points
that exceed the probability ratio bound cease to provide
gradients. In contrast, all data points in SPO contribute
gradients that guide the optimization towards the constraint
boundary. As training progresses, PPO will accumulate
more gray circles that no longer provide gradients and may
be influenced by the harmful gradients from green circles.
This phenomenon could potentially push the gray circles
further away from the constraint boundary. In contrast, the
gradient directions of all data points in SPO point towards
the constraint boundary. This indicates that SPO imposes
stronger constraints on the probability ratio.

6. Experiments
We report results on the Atari 2600 (Bellemare et al., 2013;
Machado et al., 2018) and MuJoCo (Todorov et al., 2012)
benchmarks. In all our experiments, we utilize the RL li-
brary Gymnasium (Towers et al., 2024), which serves as a
central abstraction to ensure broad interoperability between
benchmark environments and training algorithms.

6.1. Comparing Algorithms

Our implementation of SPO is compared against PPO-Clip
(Schulman et al., 2017), PPO-Penalty (Schulman et al.,
2017), SPU (Vuong et al., 2018), PPO-RB (Wang et al.,
2020), TR-PPO (Wang et al., 2020), TR-PPO-RB (Wang
et al., 2020), and RPO (Gan et al., 2024) in MuJoCo bench-
mark. We compute the algorithm’s performance across ten
separate runs with different random seeds. In addition, we
emphasize that in all comparative experiments involving
the same settings for SPO and PPO, the only modification
in SPO is replacing the PPO’s objective with (16), no fur-
ther code-level tuning is applied to SPO, highlighting its
simplicity and efficiency.

Due to the absence of human score baselines in MuJoCo
(Todorov et al., 2012), we normalize the algorithms’ per-
formance across all environments using the training data of
PPO-Clip, specifically,

normalized(score) =
score−min

max−min
, (20)

where max and min represent the maximum and minimum
validation returns of PPO-Clip during training, respectively.

As suggested in Agarwal et al. (2021), we employ stratified
bootstrap confidence intervals to assess the confidence inter-
vals of the algorithm and evaluate the composite metrics of
SPO against other baselines, as illustrated in Figure 4. It can
be observed that SPO achieved the best performance across
nearly all statistical metrics, which fully demonstrates the
strong potential of SPO. For the Atari 2600 benchmark
(Bellemare et al., 2013), the main results are presented in
Appendix A and C.
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Figure 4. Aggregate metrics on MuJoCo-v4 with 95% CIs based on 6 environments. We collected the returns of each algorithm over the
last 1% training steps across ten random seeds. In this context, higher median, IQM and mean scores and lower optimality gap are better.
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Figure 5. Training performance of PPO and SPO with different policy network layers in MuJoCo benchmark. The mean and standard
deviation are shown across 5 random seeds.

Table 1. Average return of PPO and SPO in the last 10% training steps across 5 separate runs with different random seeds, with their
maximum ratio deviation during the entire training process.

Environment Index 3 layers 7 layers
PPO SPO PPO SPO

Ant-v4 Average return (↑) 5323.2 4911.3 1002.8 4672.5
Ratio deviation (↓) 0.229 0.101 548.060 0.190

HalfCheetah-v4 Average return (↑) 4550.2 3602.4 2242.3 5307.3
Ratio deviation (↓) 0.225 0.086 1675.340 0.188

Hopper-v4 Average return (↑) 1119.4 1480.3 975.9 1507.6
Ratio deviation (↓) 0.164 0.067 113.178 0.194

Humanoid-v4 Average return (↑) 795.1 2870.0 614.1 4769.9
Ratio deviation (↓) 3689.957 0.179 2411.845 0.191

HumanoidStandup-v4 Average return (↑) 143908.8 152378.7 92849.7 176928.9
Ratio deviation (↓) 2547.499 0.182 4018.718 0.187

Walker2d-v4 Average return (↑) 3352.3 2870.2 1110.9 3008.1
Ratio deviation (↓) 0.170 0.070 998.101 0.157

6.2. Scaling Policy Network

To investigate how scaling policy network size impacts the
sample efficiency of both PPO and SPO in MuJoCo, the
number of policy network layers was increased without
altering the hyperparameters or other settings. The standard
deviation of the algorithm’s performance was computed and
visualized across five separate runs with different random
seeds. The results, shown in Figure 5, 9 and Table 1, where
the ratio deviation indicates the largest value of average

ratio deviation in a batch during the entire training process,
i.e., 1

|D|
∑

(st,at)∼D |rt(θ)− 1|.

It can be observed that as the network deepens, the per-
formance of PPO collapses in most environments, with
uncontrollable probability ratio deviations. In contrast, the
performance of SPO outperforms that of shallow networks
in almost all environments and constrains the probability
ratio deviation effectively. Furthermore, the statistical met-
rics of SPO generally outperform PPO’s and demonstrate
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Figure 7. The optimization behavior of fppo, fspo, and fsimple.

relative robustness to variations in network depth and mini-
batch size.

We also trained the ResNet-181 (He et al., 2016) as the en-
coder on the Atari 2600 benchmark, the results are shown
in Figure 6. As the network’s capacity increases, the perfor-
mance of SPO is significantly improved. Moreover, SPO
can still maintain a good probability ratio constraint, thereby
benefiting from the theoretical lower bound (10). In contrast,
it is challenging to train large neural networks with PPO
because the probability ratio cannot be controlled during
training, even employing a smaller ϵ = 0.1.

6.3. Constraining Ratio Deviation

To further investigate the optimization behavior of different
objective functions that satisfy the ϵ-aligned definition, we
visualize the optimization process of fppo, fspo, and fsimple

presented in Section 5.1, on the same batch of advantage
values initialized from a standard Gaussian distribution, as
shown in Figure 7.

We can observe that while PPO achieves the best perfor-

1Since Bhatt et al. (2019) demonstrated that batch normal-
ization is harmful to RL, we removed batch normalization and
adjusted ResNet-18 for input and output from our implementation.

mance in optimizing the surrogate objective, it also leads to
uncontrollable ratio deviations. In contrast, the two objec-
tives that satisfy the ϵ-aligned definition effectively constrain
the ratio deviations during the optimization process.

Furthermore, we also observe that fspo achieves better op-
timization of the surrogate objective compared to fsimple,
while fsimple converges more quickly to the probability ratio
boundary. This aligns with our expectations, as the opti-
mization objective of fsimple only depends on the sign of
the advantage values. As a result, fsimple pushes each data
point equally toward the constraint boundary, which results
in the magnitude of the advantage values being less effec-
tively utilized compared to fspo, which makes it difficult to
efficiently optimize the surrogate objective.

7. Conclusion
In this paper, we introduce Simple Policy Optimization
(SPO), a novel unconstrained first-order algorithm that effec-
tively combines the strengths of Trust Region Policy Opti-
mization (TRPO) and Proximal Policy Optimization (PPO).
SPO maintains optimization within the trust region, bene-
fiting from TRPO’s theoretical guarantees while preserving
the efficiency of PPO. Our experimental results demonstrate
that SPO achieves competitive performance across various
benchmarks with a simple implementation. Moreover, SPO
simplifies the training of deep policy networks, addressing a
key challenge faced by existing algorithms. These findings
indicate that SPO is a promising approach for advancing
model-free reinforcement learning. In future work, SPO
holds potential for impactful applications in areas such as
language models, robotic control, and financial modeling.
With further research and refinement, we believe SPO will
drive innovation and breakthroughs across these fields.
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Figure 8. The performance of SPO compared to PPO across 35 games in Atari 2600 environment.

B. Hyperparameter Settings

Table 2. Detailed hyperparameters used in SPO.
Hyperparameters Atari 2600 (Bellemare et al., 2013) MuJoCo (Todorov et al., 2012)

Number of workers 8 8
Horizon 128 256

Learning rate 0.00025 0.0003
Learning rate decay Linear Linear

Optimizer Adam Adam
Total steps 10M 10M
Batch size 1024 2048

Update epochs 4 10
Mini-batches 4 4

Mini-batch size 256 512
GAE parameter λ 0.95 0.95
Discount factor γ 0.99 0.99

Value loss coefficient c1 0.5 0.5
Entropy loss coefficient c2 0.01 0.0

Probability ratio hyperparameter ϵ 0.2 0.2

C. More Results
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Figure 9. Aggregate metrics on MuJoCo-v4 with 95% CIs based on 6 environments, comparing PPO and SPO with different policy
network layers and mini-batch sizes using PPO-normalized score.
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Figure 10. Training performance of PPO and SPO in Atari 2600. The mean and standard deviation are shown across 3 random seeds.
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