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Abstract

We study the problem of characterizing the ex-
pected hitting times for a robust generalization of
continuous-time Markov chains. This generaliza-
tion is based on the theory of imprecise probabil-
ities, and the models with which we work essen-
tially constitute sets of stochastic processes. Their
inferences are tight lower- and upper bounds with
respect to variation within these sets.
We consider three distinct types of these models,
corresponding to different levels of generality and
structural independence assumptions on the con-
stituent processes.
Our main results are twofold; first, we demonstrate
that the hitting times for all three types are equiva-
lent. Moreover, we show that these inferences are
described by a straightforward generalization of a
well-known linear system of equations that charac-
terizes expected hitting times for traditional time-
homogeneous continuous-time Markov chains.

1 INTRODUCTION

We consider the problem of characterizing the ex-
pected hitting times for continuous-time imprecise-Markov
chains [Škulj, 2015, Krak et al., 2017, Krak, 2021, Er-
reygers, 2021]. These are robust, set-valued generalizations
of (traditional) Markov chains [Norris, 1998], based on the
theory of imprecise probabilities [Walley, 1991, Augustin
et al., 2014]. From a sensitivity-analysis perspective, we may
interpret these sets as hedging against model-uncertainties
with respect to a model’s numerical parameters and/or struc-
tural (independence) assumptions.

The inference problem of hitting times essentially deals with
the question of how long it will take the underlying system to
reach some particular subset of its states. This is a common
and important problem in such fields as, e.g., reliability anal-

ysis, where it can capture the expected time-to-failure of a
system; and epidemiology, to model the expected time-until-
extinction of an epidemic. For imprecise-Markov chains,
then, we are interested in evaluating these quantities in a
manner that is robust against, and conservative with respect
to, any variation that is compatible with one’s uncertainty
about the model specification.

Erreygers [2021] has recently obtained some partial results
towards characterizing such inferences, but has not been able
to give a complete characterization and has largely studied
the finite-time horizon case. The problem of hitting times
for discrete-time imprecise-Markov chains was previously
studied by Krak et al. [2019], Krak [2020]. In this present
work, we largely emulate and extend their results to the
continuous-time setting.

We will be concerned with three different types of imprecise-
Markov chains. These are all sets of stochastic processes
that are in a specific sense compatible with a given set of
numerical parameters, but the three types differ in the inde-
pendence properties of their elements. In particular, they cor-
respond to (i) a set of (time-)homogeneous Markov chains,
(ii) a set of (not-necessarily homogeneous) Markov chains,
and (iii) a set of general—not-necessarily homogeneous nor
Markovian—stochastic processes. It is known (and perhaps
not very surprising) that inferences with respect to these
three models do not in general agree; see e.g. [Krak, 2021]
for a detailed analysis of their differences.

However, our first main result in this work is that the ex-
pected hitting time is the same for these three different types
of models. Besides being of theoretical interest, we want
to emphasize the power of this result: it means that even
if a practitioner using Markov chains would be uncertain
whether the system they are studying is truly homogeneous
and/or Markovian, relaxing these assumptions would not
influence inferences about the hitting times in this sense.
Purely pragmatically, it also means that we can use com-
putational methods tailored to any one of these types of
models, to compute these inferences.
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Our second main result is that these hitting times are charac-
terized by a generalization of a well-known system of equa-
tions that holds for continuous-time homogeneous Markov
chains; see Proposition 2 for this linear system.

The remainder of this paper is structured as follows. In
Section 2 we introduce the basic required concepts that we
will use throughout, formalizing the notion of stochastic
processes and defining the inference problem of interest. In
Section 3, we define the various types of imprecise-Markov
chains that we use throughout this work. We spend some
effort in Section 4 to study the transition dynamics of these
models, from a perspective that is particularly relevant for
the inference problem of hitting times. In Section 5 we
explain and sketch the proofs of our main results, and we
give a summary in Section 6.

Because we have quite a lot of conceptual material to cover
before we can explain our main results, we are not able to
fit any real proofs in the main body of this work. Instead,
these—together with a number of technical lemmas—have
largely been relegated to the supplementary material.

2 PRELIMINARIES

Throughout, we consider a fixed, finite state space X with
at least two elements. This set contains all possible values
for some abstract underlying process. An element of X is
called a state, and is usually generically denoted as x ∈ X .

We use R,R≥0, and R>0 to denote the reals, the non-
negative reals, and the positive reals, respectively. N denotes
the natural numbers without zero, and we let N0 := N∪{0}.

For any Y ⊆ X , we use RY to denote the vector space of
real-valued functions on Y; in particular, RX denotes the
space of all real functions on X . We use ∥·∥ to denote the
supremum norm on any such space; for any f ∈ RY we
let ∥f∥ := max{|f(x)| : x ∈ Y}. Throughout, we make
extensive use of indicator functions, which are defined for
all A ⊆ Y as IA(x) := 1 if x ∈ A and IA(x) := 0,
otherwise. We use the shorthand Iy := I{y}. Let 1 denote
the function that is identically equal to 1; its dimensionality
is to be understood from context.

A map M : RY → RY is also called an operator, and
we denote its evaluation in f ∈ RY as Mf . If it holds
for all λ ∈ R≥0 that M(λf) = λMf then M is called
non-negatively homogeneous. For any non-negatively ho-
mogeneous operator on RY , we define the induced operator
norm ∥M∥ := sup{∥Mf∥ : f ∈ RY , ∥f∥ = 1}. We re-
serve the symbol I to denote the identity operator on any
space; the domain is to be understood from context.

Note that any linear operator is also non-negatively ho-
mogeneous. Moreover, if M is linear it can be repre-
sented as an |Y| × |Y| matrix by arbitrarily fixing an or-
dering on Y . However, without fixing such an ordering,

we simply use M(x, y) := MIy(x) to denote the en-
try in the x-row and y-column of such a matrix, for any
x, y ∈ Y . For any f ∈ RY and x ∈ Y we then have
Mf(x) =

∑
y∈Y M(x, y)f(y), so that Mf simply repre-

sents the usual matrix-vector product of M with the (col-
umn) vector f . In the sequel, we interchangeably refer to
linear operators also as matrices. We note the well-known
equality ∥M∥ = maxx∈Y

∑
y∈Y |M(x, y)| for the induced

matrix norm.

2.1 PROCESSES & MARKOV CHAINS

We now turn to stochastic processes, which are funda-
mentally the subject of this work. The typical (measure-
theoretic) way to define a stochastic process is simply as a
family (Xi)i∈I of random variables with index set I. This
index set represents the time domain of the stochastic pro-
cess. The random variables are understood to be taken with
respect to some underlying probability space (ΩI ,FI , P ),
where ΩI is a set of sample paths, which are functions from
I to X representing possible realizations of the evolution
of the underlying process through X . The random variables
Xi, i ∈ I are canonically the maps Xi : ω 7→ ω(i) on ΩI .

However, for our purposes it will be more convenient to
instead refer to the probability measure P as the stochastic
process. Different processes P may then be taken over the
same measurable space (ΩI ,FI), using the same canonical
variables (Xi)i∈I for all these processes.

In this work we will use both discrete- and continuous-
time stochastic processes, which corresponds to choosing
I = N0 or I = R≥0, respectively. In both cases we take
FI to be the σ-algebra generated by the cylinder sets; this
ensures that all functions that we consider are measurable.

In the discrete-time case, we let ΩN0
be the set of all func-

tions from N0 to X . A discrete-time stochastic process P is
then simply a probability measure on (ΩN0 ,FN0). Moreover,
P is said to be a Markov chain if it satisfies the (discrete-
time) Markov property, meaning that

P (Xn+1 = xn+1 |X0 = x0, . . . , Xn = xn)

= P (Xn+1 = xn+1 |Xn = xn) ,

for all x0, . . . , xn+1 ∈ X and n ∈ N0. If, additionally, it
holds for all x, y ∈ X and n ∈ N0 that

P (Xn+1 = y |Xn = x) = P (X1 = y |X0 = x) ,

then P is said to be a (time-)homogeneous Markov chain.
We use PN0

,PM
N0

, and PHM
N0

to denote, respectively, the set of
all discrete-time stochastic processes; the set of all discrete-
time Markov chains; and the set of all discrete-time homo-
geneous Markov chains.

In the continuous-time case, we let ΩR≥0
be the set

of all cadlag functions from R≥0 to X . A continuous-
time stochastic process P is a probability measure on



(ΩR≥0
,FR≥0

). The process P is said to be a Markov chain
if it satisfies the (continuous-time) Markov property,

P (Xtn+1
= xtn+1

|Xt0 = xt0 , . . . , Xtn = xtn)

= P (Xtn+1
= xtn+1

|Xtn = xtn)

for all xt0 , . . . , xtn+1
∈ X , t0 < · · · < tn ≤ tn+1 ∈ R≥0,

and all n ∈ N0. If, additionally, it holds that

P (Xs = y |Xt = x) = P (Xs−t = y |X0 = x)

for all x, y ∈ X and all t, s ∈ R≥0 with t ≤ s, then
P is said to be a (time-)homogeneous Markov chain. We
use PR≥0

,PM
R≥0

, and PHM
R≥0

to denote, respectively, the
set of all continuous-time stochastic processes; the set
of all continuous-time Markov chains; and the set of all
continuous-time homogeneous Markov chains.

We refer to [Norris, 1998] for an excellent further introduc-
tion to discrete-time and continuous-time Markov chains.

2.2 TRANSITION DYNAMICS

Throughout this work, we make extensive use of operator-
theoretic representations of the behavior of stochastic pro-
cesses, and Markov chains in particular. The first reason
for this is that such operators serve as a way to parame-
terize Markov chains. Moreover, they are also useful as a
computational tool, since they can often be used to express
inferences of interest; see, e.g., Propositions 1 and 2 further
on. We introduce the basic concepts below, and refer to
e.g. [Norris, 1998] for details.

A transition matrix T is a linear operator on RX such that,
for all x ∈ X , it holds that T (x, y) ≥ 0 for all y ∈ X , and∑

y∈X T (x, y) = 1. There is an important and well-known
connection between Markov chains and transition matrices;
for any discrete-time homogeneous Markov chain P , we
can define the corresponding transition matrix PT as

PT (x, y) := P (X1 = y |X0 = x) for all x, y ∈ X .

Since P is a probability measure, we clearly have that PT is
a transition matrix. Conversely, a given transition matrix T
uniquely determines a discrete-time homogeneous Markov
chain P with PT = T , up to the specification of the initial
distribution P (X0). For this reason, transition matrices are
often taken as a crucial parameter to specify (discrete-time,
homogeneous) Markov chains.

Analogously, for a (non-homogeneous) discrete-time
Markov chain P , we might define a family (PTn)n∈N0

of
time-dependent corresponding transition matrices, with

PTn(x, y) := P (Xn+1 = y |Xn = x) ,

for all x, y ∈ X and n ∈ N0. Conversely, any fam-
ily (Tn)n∈N0

of transition matrices uniquely determines

a discrete-time Markov chain P with PTn = Tn for all
n ∈ N0, again up to the specification of P (X0).

In the continuous-time setting, transition matrices are also
of great importance. However, it will be instructive to first
introduce rate matrices. A rate matrix Q is a linear operator
on RX such that, for all x ∈ X , it holds that Q(x, y) ≥ 0
for all y ∈ X with x ̸= y, and

∑
y∈X Q(x, y) = 0.

For any rate matrix Q and any t ∈ R≥0, the matrix expo-
nential eQt of Qt can be defined as [Van Loan, 2006]

eQt := lim
n→+∞

(
I + t/nQ

)n
.

An alternative characterization is as the (unique) solution to
the matrix ordinary differential equation [Van Loan, 2006]

d

d s
eQs = QeQs = eQsQ, with eQ0 = I . (1)

For any t, s ∈ R≥0 it holds that eQ(t+s) = eQteQs, and
we immediately have eQ0 = I . The family (eQt)t∈R≥0

is therefore called the semigroup generated by Q, and Q
is called the generator of this semigroup. Moreover, for
any rate matrix Q and any t ∈ R≥0, eQt is a transition
matrix [Norris, 1998, Thm 2.1.2].

Now let us consider a continuous-time homogeneous
Markov chain P , and define the corresponding transition
matrix1 PTt for all t ∈ R≥0 and x, y ∈ X as

PTt(x, y) := P (Xt = y |X0 = x) . (2)

It turns out that there is then a unique rate matrix PQ asso-
ciated with P such that PTt = e

PQt for all t ∈ R≥0. By
combining Equations (1) and (2), we can identify PQ as

PQ =
( d

d t
PTt

)∣∣∣∣
t=0

.

As before, in the other direction we have that any fixed rate
matrix Q uniquely determines a continuous-time homoge-
neous Markov chain P with PQ = Q, up to the specification
of P (X0). For this reason, rate matrices are often used to
specify (continuous-time, homogeneous) Markov chains.

Let us finally consider a (not-necessarily homogeneous)
continuous-time Markov chain P . For any t, s ∈ R≥0 with
t ≤ s, we can then define a transition matrix PT s

t with, for
all x, y ∈ X , PT s

t (x, y) := P (Xs = y |Xt = x). Under
appropriate assumptions of differentiability, this induces a
family (PQt)t∈R≥0

of rate matrices PQt, as

PQt =
( d

d s
PT s

t

)∣∣∣∣
s=t

. (3)

In the converse direction we might try to reconstruct the
transition matrices of P by solving the matrix ordinary

1Note that in continuous-time, we always have to measure the
transition-time interval [0, t] to specify these matrices.



differential equation(s)

d

d s
PT s

t = PT s
t
PQs, with PT t

t = I . (4)

By comparing with Equation (1), we see that in the special
case where PQs does not depend on s—that is, where P
is homogeneous with PQs = PQ, say—we indeed obtain
PT s

t = e
PQ(s−t). However, in general the non-autonomous

system (4) does not have such a closed-form solution, and
we cannot move beyond this implicit characterization.

2.3 HITTING TIMES

We now have all the pieces to introduce the inference prob-
lem that is the subject of this work, viz. the expected hitting
times of some non-empty set of states A ⊂ X with respect
to a particular stochastic process. We take this set A to be
fixed for the remainder of this work.

In the discrete-time case, we consider the (extended real-
valued)2 function τN0

: ΩN0
→ R≥0 ∪ {+∞} given by

τN0
(ω) := inf

{
n ∈ N0 : ω(n) ∈ A

}
for all ω ∈ ΩN0

.

This captures the number of steps before a process P “hits”
any state in A. The expected hitting time for a discrete-time
process P starting in x ∈ X is then defined as

EP

[
τN0

|X0 = x
]
:=

∫
ΩN0

τN0
(ω) dP (ω |X0 = x) .

We use EP

[
τN0

|X0

]
to denote the extended real-valued

function on X given by x 7→ EP

[
τN0

|X0 = x
]
. When

dealing with homogeneous Markov chains, this quantity has
the following simple characterization:

Proposition 1. [Norris, 1998, Thm 1.3.5] Let P be a
discrete-time homogeneous Markov chain with correspond-
ing transition matrix PT . Then h := EP

[
τN0

|X0

]
is the

minimal non-negative solution to the linear system34

h = IAc + IAc
PTh .

In the continuous-time case, the definition is analogous; we
introduce a function τR≥0

: ΩR≥0
→ R≥0 ∪ {+∞} as

τR≥0
(ω) := inf

{
t ∈ R≥0 : ω(t) ∈ A

}
for all ω ∈ ΩR≥0

.

This function measures the time until a process “hits” any
state in A on a given sample path. The expected hitting time

2We agree that 0(+∞) = 0; (+∞)+(+∞) = +∞; and, for
any c ∈ R, (+∞) + c = +∞ and c(+∞) = +∞ if c > 0.

3Throughout, for any f, g ∈ RX , the quantity fg is understood
as the pointwise product between the functions f and g.

4Strictly speaking this requires extending the domain of PT to
extended-real valued functions, but we will shortly introduce some
assumptions that obviate such an exposition.

for a continuous-time process P starting in x ∈ X is

EP

[
τR≥0

|X0 = x
]
:=

∫
ΩR≥0

τR≥0
(ω) dP (ω |X0 = x) .

We again use EP

[
τR≥0

|X0

]
to denote the extended-real

valued function on X given by x 7→ EP

[
τR≥0

|X0 = x
]
.

Also in this case, the characterization for homogeneous
Markov chains is particularly simple:

Proposition 2. [Norris, 1998, Thm 3.3.3] Let P be a
continuous-time homogeneous Markov chain with rate ma-
trix PQ such that PQ(x, x) ̸= 0 for all x ∈ Ac. Then
h := EP

[
τR≥0

|X0

]
is the minimal non-negative solution

to
IAh = IAc + IAc

PQh . (5)

3 IMPRECISE-MARKOV CHAINS

Let us now introduce imprecise-Markov chains [Hermans
and Škulj, 2014, Škulj, 2015, Krak et al., 2017], which are
the stochastic processes that we aim to study in this work.
Their characterization is based on the theory of imprecise
probabilities [Walley, 1991, Augustin et al., 2014].

We here adopt the “sensitivity analysis” interpretation of
imprecise probabilities. This means that we represent an
imprecise-Markov chain simply as a set P of stochastic
processes. Intuitively, the idea is that we collect in P all
(traditional, “precise”) stochastic processes that we deem
to plausibly capture the dynamics of the underlying system
of interest. Inferences with respect to P are defined using
lower- and upper expectations, given respectively as

EP [· | ·] := inf
P∈P

EP [· | ·] and EP [· | ·] := sup
P∈P

EP [· | ·] .

So, their inferences represent robust—i.e. conservative—
and tight lower- and upper bounds on inferences with respect
to all stochastic processes that we deem to be plausible.

3.1 SETS OF PROCESSES & TYPES

We already mentioned that an imprecise-Markov chain is
essentially simply a set P of stochastic processes. Let us
now consider how to define such sets.

We start by considering the discrete-time case; then, clearly,
P will be a set of discrete-time processes. We will parame-
terize such a set with some non-empty set T of transition
matrices. Our aim is then to include in P all processes that
are in some sense “compatible” with T .5 However, at this
point we are faced with a choice about which type of pro-
cesses to include in this set, and these different choices lead
to different types of imprecise-Markov chains.

5We will not constrain the initial models P (X0) of the ele-
ments of P , since in any case such a choice would not influence
the inferences that we study in this work.



Arguably the conceptually most simple model is PHM
T ,

which contains all homogeneous Markov chains P whose
corresponding transition matrix is included in T :

PHM
T :=

{
P ∈ PHM

N0
: PT ∈ T

}
.

However, we could instead consider PM
T , which is the set

of all (not-necessarily homogeneous) Markov chains whose
time-dependent transition matrices are contained in T :

PM
T :=

{
P ∈ PM

N0
: PTn ∈ T for all n ∈ N0

}
.

The last choice that we consider here is the set PI
T , which

essentially contains all discrete-time processes whose single-
step transition dynamics are described by T . Its character-
ization is more cumbersome since we have not expressed
these general processes in terms of transition matrices, but
we can say that it is the set of all P ∈ PN0

such that for all
n ∈ N0 and all x0, . . . , xn ∈ X , there is some T ∈ T such
that for all y ∈ X it holds that

P (Xn+1 = y |X0 = x0, . . . , Xn = xn) = T (xn, y) .

This last type is called an imprecise-Markov chain under
epistemic irrelevance, whence the superscript ‘I’.

Note that the three types PHM
T ,PM

T , and PI
T capture

not only “plausible” variation in terms of parameter
uncertainty—expressed through the set T —but also vari-
ation in terms of the structural independence conditions
that we consider! So, from an applied perspective, if some-
one is not sure whether the underlying system that they are
studying is truly Markovian and/or time-homogeneous, they
might choose to use different such sets in their analysis.

In the continuous-time case, we again proceed analogously.
First, we fix a non-empty set Q of rate matrices, which will
be the parameter for our models. We then first consider the
set PHM

Q of all homogeneous Markov chains whose rate
matrix is included in Q:

PHM
Q :=

{
P ∈ PHM

R≥0
: PQ ∈ Q

}
.

The other two types are constructed in analogy to the
discrete-time case, but unfortunately we don’t have the
space for a complete exposition of their characterization.
Instead we refer the interested reader to [Krak et al., 2017,
Krak, 2021] for an in-depth study of these different types
and comparisons between them; in what follows we limit
ourselves to a largely intuitive specification.

The model PM
Q is the set of all continuous-time (not-

necessarily homogeneous) Markov chains whose transition
dynamics are compatible with Q at every point in time. This
includes in particular all Markov chains P satisfying the
appropriate differentiability assumptions to meaningfully
say that the time-dependent rate matrices PQt—as in Equa-
tion (3)—are included in Q for all t ∈ R≥0. However, PM

Q

also contains other processes that are not (everywhere) dif-
ferentiable; see e.g. [Krak, 2021, Sec 4.6 and 5.2] for the
technical details.

The most involved model to explain is again PI
Q, which

includes all continuous-time processes whose time- and
history-dependent transition dynamics can be described us-
ing elements of Q. It includes, but is not limited to, appro-
priately differentiable processes P such that for all n ∈ N0,
all t0 < · · · < tn ∈ R≥0, and all xt0 , . . . , xtn ∈ X , there is
some Q ∈ Q such that for all y ∈ X it holds that(

d

d s
P (Xs = y |Xt0 = xt0 , . . . ,Xtn = xtn)

)∣∣∣∣
s=tn

= Q(xtn , y)

We again refer to [Krak, 2021, Sec 4.6 and 5.2] for the
technical details involving the additional elements of PI

Q
that are not appropriately differentiable. Importantly, we
note the nested structure [Krak, 2021, Prop 5.9]

PHM
Q ⊆ PM

Q ⊆ PI
Q ,

where the inclusions are strict provided Q isn’t trivial.

For notational convenience, we will use identical sub- and
superscripts to denote the corresponding lower- and upper
expectations for any of these imprecise-Markov chains; e.g.,
we let EHM

T [· | ·] := EPHM
T

[· | ·].

3.2 IMPRECISE TRANSITION DYNAMICS

Let us now introduce some machinery to describe the dy-
namics of imprecise-Markov chains. In particular, we here
move from the set-valued parameters T and Q used in Sec-
tion 3.1, to their dual representations; these are operators
that can serve as computational tools.

In Section 3.1, we described discrete-time imprecise-
Markov chains using non-empty sets T of transition matri-
ces. With any such set, we can associate the corresponding
lower- and upper transition operators T and T on RX , de-
fined respectively as

Tf := inf
T∈T

Tf and Tf := sup
T∈T

Tf for all f ∈ RX .

More generally, any operator T (resp. T ) on RX is a lower
(resp. upper) transition operator if for all f, g ∈ RX , all
λ ∈ R≥0, and all x ∈ X , it holds that [De Bock, 2017]

1. miny∈X f(y) ≤ Tf(x) and Tf(x) ≤ maxy∈X f(y)

2. Tf + Tg ≤ T (f + g) and T (f + g) ≤ Tf + Tg

3. T (λf) = λTf and T (λf) = λTf .

It should be noted that lower- and upper transition operators
are conjugate, in that any T induces a corresponding upper



transition operator T (·) = −T (−·), and vice versa. More-
over, any transition matrix T is also a lower—and, by its
linearity, upper—transition operator.

It is easily verified that the lower- and upper transition oper-
ators corresponding to a given non-empty set T are, indeed,
lower- and upper transition operators. Conversely, with a
given lower transition operator T , we can associate the set
of transition matrices that dominate it, in the sense that

TT :=
{
T : T a trans. mat., T f ≥ Tf for all f ∈ RX}

.

This set satisfies the following important properties:

Proposition 3. [Krak, 2021, Sec 3.4] Let T be a lower tran-
sition operator with conjugate upper transition operator
T (·) = −T (−·) and dominating set of transition matri-
ces TT . Then TT is a non-empty, closed, and convex set
of transition matrices that has separately specified rows,6

and for all f ∈ RX it holds that Tf = infT∈TT
Tf and

Tf = supT∈TT
Tf . Moreover, for all f ∈ RX there is some

T ∈ TT such that Tf = Tf , and there is some—possibly
different—T ∈ TT such that Tf = Tf .

Notably, there is a one-to-one relation between non-empty
sets of transition matrices that are closed and convex and
have separately specified rows, and lower (or upper) transi-
tion operators: if T is the lower transition operator for the set
T , and if T satisfies these properties, then T = TT [Krak,
2021, Cor 3.38]. Hence these objects may serve as dual
representations for each other.

One reason that this is important is the use of T as a com-
putational tool; under the conditions of this duality it holds
that for any function f ∈ RX and any n ∈ N0, we can
write [Hermans and Škulj, 2014]

EI
T [f(Xn)|X0 = x] = EM

T [f(Xn)|X0 = x] = Tnf(x) ,

where T is the lower transition operator for T . This reduces
the problem of computing such inferences for the imprecise-
Markov chains PM

T and PI
T to solving n independent linear

optimization problems over T ; first compute f1 := Tf ,
then compute f2 := T f1 = T 2f , and so forth. Note that
this method in general only yields a conservative bound on
the corresponding inference for PHM

T , as the minimizers Tk

that obtain Tkfk−1 = Tfk−1 may be different at each step.

We next consider the dynamics in the continuous-time set-
ting. We proceed analogously to the above: we first consider
a non-empty and bounded7 set Q of rate matrices. With this
set, we then associate the corresponding lower- and upper
rate operators Q and Q on RX , defined as

Qf := inf
Q∈Q

Qf and Qf := sup
Q∈Q

Qf for all f ∈ RX .

6A set M of matrices is said to have separately specified rows
if, intuitively, it is closed under the row-wise recombination of its
elements; see e.g. [Hermans and Škulj, 2014] for details.

7In the induced operator norm.

More generally, any operator Q (resp. Q) on RX is a lower
(resp. upper) rate operator if for all f, g ∈ RX , all λ ∈
R≥0 and µ ∈ R, and all x, y ∈ X with y ̸= x, it holds
that [De Bock, 2017]

1. Q(µ1)(x) = 0 and Q(µ1)(x) = 0

2. QIy(x) ≥ 0 and QIy(x) ≥ 0

3. Qf +Qg ≤ Q(f + g) and Q(f + g) ≤ Qf +Qg

4. Q(λf) = λQf and Q(λf) = λQf

As before, such objects are conjugate, in that if Q is a lower
rate operator, then Q(·) = −Q(−·) is an upper rate operator.
Moreover, any rate matrix Q is also a lower (and upper) rate
operator. There is again a duality between lower (or upper)
rate operators, and sets of rate matrices. For fixed Q and
with the dominating set of rate matrices QQ defined as

QQ :=
{
Q : Q a rate mat., Qf ≥ Qf for all f ∈ RX}

,

we have the following result:

Proposition 4. [Krak, 2021, Sec 6.2] Let Q be a lower
rate operator with conjugate upper rate operator Q(·) =
−Q(−·) and dominating set of rate matrices QQ. Then QQ

is a non-empty, compact, and convex set of rate matrices
that has separately specified rows, and for all f ∈ RX it
holds that Qf = infQ∈QQ

Qf and Qf = supQ∈QQ
Qf .

Moreover, for all f ∈ RX there is some Q ∈ QQ such that
Qf = Qf , and there is some—possibly different—Q ∈ QQ

such that Qf = Qf .

Now fix any lower rate operator Q and any t ∈ R≥0, and let

eQt := lim
n→+∞

(
I + t/nQ

)n
. (6)

The operator eQt is then a lower transition opera-
tor [De Bock, 2017], and the family (eQt)t∈R≥0

is a semi-
group of lower transition operators; it satisfies eQ(t+s) =
eQteQs for all t, s ∈ R≥0, and eQ0 = I . The analogous con-
struction with an upper rate operator Q instead generates a
semigroup (eQt)t∈R≥0

of upper transition operators. When
Q and Q are taken with respect to the same set Q, these
semigroups satisfy, for all t ∈ R≥0, f ∈ RX , and Q ∈ Q,

eQtf ≤ eQtf ≤ eQtf . (7)

Here the importance again derives from the use as a compu-
tational tool; under the conditions of duality between Q and
Q, we have for any f ∈ RX and any t ∈ R≥0 that [Škulj,
2015, Krak et al., 2017]

EI
Q[f(Xt)|X0 = x] = EM

Q [f(Xt)|X0 = x] = eQtf(x) .

Hence such inferences can be numerically computed by
approximating (6) with a finite choice of n, and then solving
n independent linear optimization problems over Q. Error
bounds for this scheme are available in the literature [Škulj,
2015, Krak et al., 2017, Erreygers, 2021].



3.3 CLASS STRUCTURE

Let us now fix a set Q of rate matrices that we will use
in the remainder of this work. Throughout, let Q and Q
denote the lower- and upper rate operators associated with
Q. We impose several standard regularity conditions on this
set: we assume that Q is non-empty, compact, convex, and
that it has separately specified rows. These are common
assumptions that are imposed to ensure the duality between
Q and Q, which in turn guarantees that inferences with the
induced imprecise-Markov chains remain well-behaved, as
well as analytically (and, often, computationally) tractable.

We now have all the pieces to start studying the inference
problem that is the subject of this work: the lower- and upper
expected hitting times of the set A ⊂ X for continuous-time
imprecise-Markov chains described by Q.

Before we begin, let us impose two additional conditions on
the dynamics of the system.

Assumption 1. We assume that all states in A are absorbing,
which is equivalent to requiring that Q(x, x) = 0 for all
Q ∈ Q and all x ∈ A.

Note that this does not influence the inferences in which
we are interested, since those only deal with behavior at
times before states in A are reached. However, imposing
this explicitly substantially simplifies the analysis.

Next, we assume that the set A is lower reachable from
any state x ∈ Ac [De Bock, 2017]. This means that we
can construct a sequence x1, . . . , xn+1 ∈ X starting in any
x1 ∈ Ac and ending in some xn+1 ∈ A such that, for
all k = 1, . . . , n, it holds that QIxk+1

(xk) > 0. This is
equivalent [De Bock, 2017] to

Assumption 2. We assume eQtIA(x) > 0 for all t ∈ R>0

and all x ∈ Ac.

Essentially, this means that for all elements of our imprecise-
probabilistic models the probability of eventually hitting A
is bounded away from zero. This ensures that the expected
hitting times remain bounded for all P ∈ PI

Q, so that we
can ignore any extended real-valued analysis. It also implies
that for all Q ∈ Q we have that Q(x, x) ̸= 0 for all x ∈ Ac,
which is relevant to meet the precondition of Proposition 2.
As a practical point, De Bock [2017] gives an algorithm to
check whether a given set Q satisfies this condition.

On a technical level, Assumption 2 is the crucial one for
our results, and—unlike with Assumption 1—it cannot re-
ally be ignored in practice. However, based on earlier work
by Krak et al. [2019] in the discrete-time setting, we hope
in the future to strengthen our results to hold without this
assumption.

4 SUBSPACE DYNAMICS

In the context of hitting times, the interesting behavior of a
process actually occurs before it has reached a target state
in A. Hence it will be useful to introduce some machinery
to study the transition dynamics as it relates to the states Ac.

To introduce the notation in a general way, choose any non-
empty Y ⊂ X . Then for any f ∈ RX , let f |Y ∈ RY denote
the restriction of f to Y . Conversely, for any f ∈ RY , let
f ↑X∈ RX denote the unique extension of f to X that
satisfies f(x) = 0 for all x ∈ X \ Y . Moreover, for any
operator M on RX , we define the operator M |Y on RY as

M |Yf :=
(
M(f↑X )

)
|Y for all f ∈ RY .

This somewhat verbose notation is perhaps most easily un-
derstood when M is a linear operator, i.e. a matrix. In that
case, M |Y is simply the |Y| × |Y| sub-matrix of M on the
coordinates in Y . The definition above allows us to extend
this notion also to non-linear operators, and to lower- and
upper transition and rate operators, specifically.

Now for any rate matrix Q ∈ Q, we call G := Q|Ac its
corresponding subgenerator. For any t ∈ R≥0, we then
define eGt := eQt|Ac . We have the following result:

Proposition 5. Fix Q ∈ Q and let G be its subgenera-
tor. Then eGt = limn→+∞

(
I + t/nG

)n
for all t ∈ R≥0.

Moreover, the family (eGt)t∈R≥0
is a semigroup.

Analogously, we define G := Q|Ac and G := Q|Ac to be
the lower- and upper subgenerators corresponding to Q

and Q, respectively. We also let eGt := eQt|Ac and eGt :=

eQt|Ac . Perhaps unsurprisingly, we then have:

Proposition 6. It holds that eGt = limn→+∞
(
I + t/nG

)n
and eGt = limn→+∞

(
I + t/nG

)n
for all t ∈ R≥0. More-

over, the families (eGt)t∈R≥0
, (eGt)t∈R≥0

are semigroups.

Our Assumption 2 implies the norm bound:

Proposition 7. For any t > 0, it holds that ∥eGt∥ < 1.

It is a straightforward consequence of the use of the supre-
mum norm, together with Equation (7) and the fact that eQt

and eQt are (upper) transition operators, that also ∥eGt∥ ≤
∥eGt∥ < 1 for all t ∈ R>0. Hence by the semigroup prop-
erty we immediately have that limt→+∞ ∥eGt∥ = 0. This
also implies the following well-known result.

Proposition 8. [Taylor and Lay, 1958, Thm IV.1.4] For
any Q ∈ Q with subgenerator G, and all t > 0, the inverse
operator (I−eGt)−1 exists, and (I−eGt)−1 =

∑+∞
k=0 e

Gtk.

This allows us to characterize hitting times for discrete-time
homogeneous Markov chains whose transition matrix is
given by eQt, as follows.



Proposition 9. Choose any Q ∈ Q, let G be its subgener-
ator, and fix any ∆ > 0. Let P ∈ PHM

N0
be such that PT =

eQ∆. Then the expected hitting times h := EP [τN0
|X0]

satisfy h|Ac = (I − eG∆)−11 and h(x) = 0 for all x ∈ A.

Proof. By Proposition 1, in x ∈ Ac we have that

h(x) = IAc(x) + IAc(x)eQ∆h(x) = 1 + eQ∆h(x) .

Conversely, it is immediate from the definition that h(x) =
0 for all x ∈ A. This implies that h = (h|Ac)↑X , and hence

h|Ac = 1+
(
eQ∆(h|Ac)↑X

)
|Ac = 1+ eG∆h|Ac .

Re-ordering terms we have (I − eG∆)h|Ac = 1. Now use
Proposition 8 and multiply with (I − eG∆)−1.

We need the following observation:

Lemma 1. Consider any Q ∈ Q with subgenerator G, and
let σ(G) be the set of eigenvalues of G. Then Reλ < 0 for
all λ ∈ σ(G).

This implies that 0 /∈ σ(G), and so we have:

Corollary 1. For any Q ∈ Q with subgenerator G, the
inverse operator G−1 exists.

This allows us to characterize hitting times for continuous-
time homogeneous Markov chains:

Proposition 10. Choose any Q ∈ Q, let G be its subgen-
erator, and let P ∈ PHM

R≥0
with PQ = Q. Then the expected

hitting times h := EP [τR≥0
|X0] satisfy h|Ac = −G−11

and h(x) = 0 for all x ∈ A.

Proof. By Proposition 2, in x ∈ Ac we have that

−1 = −IAc(x) = IAc(x)Qh(x) = Qh(x) .

Conversely, it is immediate from the definition that h(x) =
0 for all x ∈ A. This implies h = (h|Ac)↑X , and hence

Gh|Ac =
(
Q(h|Ac)↑X )

∣∣
Ac = (Qh)|Ac = −1 .

Now use Corollary 1 and multiply with G−1.

4.1 QUASICONTRACTIVITY OF SUBSPACE
DYNAMICS

We already know from Proposition 7 that ∥eGt∥ < 1 for
all t ∈ R>0. Since eG0 = I (because it is a semigroup), it
follows that ∥eGt∥ ≤ 1 for all t ∈ R≥0. A semigroup that
satisfies this property is said to be contractive. Moreover,
Proposition 7 together with the semigroup property implies
that limt→+∞ ∥eGt∥ = 0. A semigroup that satisfies this
property is said to be uniformly exponentially stable, and in
such a case the following result holds:

Proposition 11. There are M ≥ 1 and ξ > 0 such that
∥eGt∥ ≤ Me−ξt for all t ∈ R≥0.

This result means that the norm ∥eGt∥ decays exponentially
as t grows. However, for technical reasons we require an
exponentially decaying norm bound with M = 1; if this
holds the semigroup is said to be quasicontractive.

It is not clear that obtaining such a bound is possible when
∥eGt∥ is induced by the supremum norm ∥·∥ on RAc

. How-
ever, we can get it by defining a different norm ∥·∥∗ on
RAc

. We then obtain the quasicontractivity with respect
to the induced operator norm ∥·∥∗. Because RAc

is finite-
dimensional these norms are equivalent, and such a result
suffices for our purposes. This re-norming trick is origi-
nally due to Feller [1953], and an analogous construction
is commonly used for semigroups of linear operators; see
e.g. [Renardy and Rogers, 2006, Thm 12.21].

So, consider the ξ > 0 from Proposition 11, and let

∥f∥∗ := sup
t∈R≥0

∥∥∥eξteGt |f |
∥∥∥ for all f ∈ RAc

, (8)

where |f | denotes the elementwise-absolute value of f .

Proposition 12. The map f 7→ ∥f∥∗ is a norm on RAc

.

Moreover, we have the desired result:

Proposition 13. We have ∥eGt∥∗ ≤ e−ξt for all t ∈ R≥0.

Finally, the same bound holds for precise models:

Proposition 14. For any Q ∈ Q with subgenerator G it
holds that

∥∥eGt
∥∥
∗ ≤ e−ξt for all t ∈ R≥0.

5 HITTING TIMES AS LIMITS

We now have all the pieces to explain the proof of our main
results. The trick will be to establish a connection between
hitting times for continuous-time imprecise-Markov chains,
and hitting times for discrete-time imprecise-Markov chains,
for which analogous results were previously established
by Krak et al. [2019].

We essentially just look at a discretized continuous-time
Markov chain taking steps of some fixed size ∆ > 0, derive
the expected hitting time for this discrete-time Markov chain,
and then take the limit ∆ → 0+. The main difficulty is in
establishing that this converges uniformly for all elements
in our sets of processes; this is why we went through the
trouble of establishing quasicontractivity in Section 4.1.

To start, for any Q ∈ Q and ∆ > 0, let hQ
∆ be the minimal



non-negative solution to the linear system8

hQ
∆ = ∆IAc + IAceQ∆hQ

∆ , (9)

and let hQ be the minimal non-negative solution to

IAhQ = IAc + IAcQhQ . (10)

Then we know from Propositions 1 and 2 that 1/∆hQ
∆ repre-

sents the expected hitting times of a discrete-time homoge-
neous Markov chain with transition matrix eQ∆, and that hQ

does the same for a continuous-time homogeneous Markov
chain with rate matrix Q. We now have the following result:

Proposition 15. There are δ > 0 and L > 0 such that∥∥∥hQ
∆ − hQ

∥∥∥ < ∆L
∥∥hQ

∥∥ for all ∆ ∈ (0, δ) and all Q ∈ Q.

Since
∥∥hQ

∥∥ is bounded due to Proposition 10:

Corollary 2. We have lim∆→0+ hQ
∆ = hQ for all Q ∈ Q.

We will now set up the analogous results for imprecise-
Markov chains. First, let

h := inf
Q∈Q

hQ and h := sup
Q∈Q

hQ . (11)

Clearly, it follows from Proposition 2 and the definition
of lower- and upper expectations that these quantities rep-
resent the lower- and upper expected hitting times for the
imprecise-Markov chain PHM

Q , i.e. it holds that

h = EHM
Q

[
τR≥0

|X0

]
and h = EHM

Q
[
τR≥0

|X0

]
.

Now for any ∆ > 0, let h∆ and h∆ denote the minimal
non-negative solutions to the non-linear systems

h∆ = ∆IAc + IAceQ∆h∆ (12)

and
h∆ = ∆IAc + IAceQ∆h∆ . (13)

It was previously shown by Krak et al. [2019] that—up to
re-scaling with 1/∆—the quantities h∆ and h∆ represent
the lower (resp. upper) expected hitting times of, identically,
the discrete-time imprecise-Markov chains PHM

T∆
, PM

T∆
, and

PI
T∆

parameterized by the set T∆ of transition matrices that
dominate eQ∆. We now set out of prove an analogous result
for continuous-time imprecise-Markov chains. We start with
the following:

Proposition 16. It holds that lim∆→0+ h∆ = h and
lim∆→0+ h∆ = h.

8Note the re-scaled term ∆IAc on the right-hand side, which
distinguishes this from the system in Proposition 1; this is required
since the hitting times for discrete-time Markov chains are ex-
pressed in the number of steps, and to pass to continuous-time we
need to measure the size of these steps.

This property allows us to leverage recent results by Er-
reygers [2021] and Krak [2021] regarding discrete and fi-
nite approximations of lower- and upper expectations in
continuous-time imprecise-Markov chains, to obtain our
first main result:

Theorem 1. It holds that

h = EHM
Q

[
τR≥0

|X0

]
= EM

Q
[
τR≥0

|X0

]
= EI

Q
[
τR≥0

|X0

]
,

and, moreover, that

h = EHM

Q
[
τR≥0

|X0

]
= EM

Q
[
τR≥0

|X0

]
= EI

Q
[
τR≥0

|X0

]
.

Moreover, it follows relatively straightforwardly from
Proposition 16 that the lower- and upper expected hitting
times for continuous-time imprecise-Markov chains satisfy
an immediate generalization of the system that characterizes
the expected hitting times for (precise) continuous-time ho-
mogeneous Markov chains. This is our second main result:

Theorem 2. Let h and h denote the lower- and upper ex-
pected hitting times for any one of PHM

Q , PM
Q , or PI

Q. Then
h is the minimal non-negative solution to the non-linear sys-
tem IAh = IAc+IAcQh, and h is the minimal non-negative
solution to the non-linear system IAh = IAc + IAcQh.

6 SUMMARY & CONCLUSION

We have investigated the problem of characterizing expected
hitting times for continuous-time imprecise-Markov chains.
We have shown that under two relatively mild assumptions
on the system’s class structure—viz. that the target states are
absorbing, and can be reached by any non-target state—the
corresponding lower (resp. upper) expected hitting time is
the same for all three types of imprecise-Markov chains.

We have also demonstrated that these lower- and upper
expected hitting times h and h satisfy the non-linear systems

IAh = IAc + IAcQh and IAh = IAc + IAcQh ,

in analogy with the precise linear system (5). Indeed, we
conclude that the lower- and upper expected hitting times
for any of these three types of imprecise-Markov chains, can
be fully characterized as the unique minimal non-negative
solutions to these respective systems.

We aim to strengthen these results in future work to hold
with fewer assumptions on the system’s class structure.

Acknowledgements

We would like to sincerely thank Jasper De Bock for many
stimulating discussions on the subject of imprecise-Markov
chains, and for pointing out a technical error in an earlier
draft of this work. We are also grateful for the constructive
feedback of three anonymous reviewers.



References

Thomas Augustin, Frank P. A. Coolen, Gert de Cooman,
and Matthias C. M. Troffaes, editors. Introduction to
Imprecise Probabilities. John Wiley & Sons, 2014.

Jasper De Bock. The limit behaviour of imprecise
continuous-time Markov chains. Journal of Nonlinear
Science, 27(1):159–196, 2017.

Alexander Erreygers. Markovian Imprecise Jump Processes:
Foundations, Algorithms and Applications. PhD thesis,
Ghent University, 2021.

William Feller. On the generation of unbounded semi-
groups of bounded linear operators. Annals of Mathe-
matics, pages 166–174, 1953.

Filip Hermans and Damjan Škulj. Stochastic processes. In
Thomas Augustin, Frank P. A. Coolen, Gert de Cooman,
and Matthias C. M. Troffaes, editors, Introduction to Im-
precise Probabilities, chapter 11. Wiley, 2014.

Thomas Krak. Computing expected hitting times for im-
precise Markov chains. In International Conference on
Uncertainty Quantification & Optimisation, pages 185–
205. Springer, 2020.

Thomas Krak. Continuous-Time Imprecise-Markov Chains:
Theory and Algorithms. PhD thesis, Ghent University,
2021.

Thomas Krak, Jasper De Bock, and Arno Siebes. Imprecise
continuous-time Markov chains. International Journal of
Approximate Reasoning, 88:452–528, 2017.

Thomas Krak, Natan T’Joens, and Jasper De Bock. Hitting
times and probabilities for imprecise Markov chains. In
Proceedings of ISIPTA 2019, volume 103 of Proceedings
of Machine Learning Research, pages 265–275. PMLR,
2019.

James Robert Norris. Markov chains. Cambridge university
press, 1998.

Michael Renardy and Robert C. Rogers. An introduction
to partial differential equations. Springer Science &
Business Media, 2006.

Damjan Škulj. Efficient computation of the bounds of con-
tinuous time imprecise Markov chains. Applied mathe-
matics and computation, 250:165–180, 2015.

Angus E. Taylor and David C. Lay. Introduction to func-
tional analysis, volume 1. Wiley New York, 1958.

Charles F. Van Loan. A study of the matrix exponential.
2006.

Peter Walley. Statistical Reasoning with Imprecise Proba-
bilities. Chapman and Hall, London, 1991.


	Introduction
	Preliminaries
	Processes & Markov Chains
	Transition Dynamics
	Hitting Times

	Imprecise-Markov Chains
	Sets of Processes & Types
	Imprecise Transition Dynamics
	Class Structure

	Subspace Dynamics
	Quasicontractivity of Subspace Dynamics

	Hitting Times as Limits
	Summary & Conclusion

