
Under review as a conference paper at ICLR 2023

GRAMMAR-INDUCED GEOMETRY FOR DATA-
EFFICIENT MOLECULAR PROPERTY PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

The prediction of molecular properties is a crucial task in the field of material and
drug discovery. The potential benefits of using deep learning techniques are re-
flected in the wealth of recent literature. Still, these techniques are faced with a
common challenge in practice: Labeled data are limited by the cost of manual ex-
traction from literature and laborious experimentation. In this work, we propose
a data-efficient property predictor by utilizing a learnable hierarchical molecu-
lar grammar that can generate molecules from grammar production rules. Such
a grammar induces an explicit geometry of the space of molecular graphs, which
provides an informative prior on molecular structural similarity. The property pre-
diction is performed using graph neural diffusion over the grammar-induced ge-
ometry. On both small and large datasets, our evaluation shows that this approach
outperforms a wide spectrum of baselines, including supervised and pre-trained
graph neural networks. We include a detailed ablation study and further analy-
sis of our solution, showing its effectiveness in cases with extremely limited data
(only ∼100 samples), and its extension to application in molecular generation.

1 INTRODUCTION

Molecular property prediction is an essential step in the discovery of novel materials and drugs, as
it applies to both high-throughput screening and molecule optimization. Recent advances in ma-
chine learning, particularly deep learning, have made tremendous progress in predicting complex
property values that are difficult to measure in reality due to the associated cost. Depending on the
representation form of molecules, various methods have been proposed, including recurrent neural
networks (RNN) for SMILES strings (Lusci et al., 2013; Goh et al., 2017), feed-forward networks
(FFN) for molecule fingerprints (Tao et al., 2021b;a), and, more dominantly, graph neural networks
(GNN) for molecule graphs (Yang et al., 2019; Bevilacqua et al., 2022; Aldeghi & Coley, 2022; Yu
& Gao, 2022). They have been employed to predict biological and mechanical properties of both
polymers and drug-like molecules. Typically, these methods learn a deep neural network that maps
the molecular input into an embedding space, where molecules are represented as latent features
and then transformed into property values. Despite their promising performance on common bench-
marks, these deep learning-based approaches require a large amount of training data in order to be
effective (Audus & de Pablo, 2017; Wieder et al., 2020).

In practice, however, scientists often have small datasets at their disposal, in which case deep learn-
ing fails, particularly in the context of polymers (Subramanian et al., 2016; Altae-Tran et al., 2017).
For example, due to the difficulty of generating and acquiring data—which usually entails synthesis,
wet-lab measurement, and mechanical testing— state-of-the-art works on polymer property predic-
tion using real data are limited to only a few hundred samples (Menon et al., 2019; Chen et al., 2021).
To compensate for the scarcity of experimental data, applied works often rely on labeled data gen-
erated by simulations, such as density functional theory and molecular dynamics (Aldeghi & Coley,
2022; Antoniuk et al., 2022). Yet, these techniques suffer from high computational costs, tedious pa-
rameter optimization, and a considerable discrepancy between simulations and experiments (Afzal
et al., 2020; Chen et al., 2021), which limit their applicability in practice.

Recent deep learning research has recognized the scarcity of molecular data in several domains and
has developed methods handling small datasets, including self-supervised learning (Zhang et al.,
2021; Rong et al., 2020; Wang et al., 2022; Ross et al., 2021), transfer learning (Hu et al., 2020),

1

Under review as a conference paper at ICLR 2023

Cl

Cl

ClCl
Cl

Cl

Cl

Cl

Cl
Cl

Hierarchical Molecular Grammar Grammar-induced Geometry

Grammar
Learning

Graph Neural Diffusion

0.40 0.53 0.63
Property
values

Meta Grammar

Molecular Grammar

Cl

ClCl

Cl

Cl

ClCl

Cl

…

Figure 1: Overview. Given a set of molecules, we learn a hierarchical molecular grammar that can
generate molecules from production rules. The hierarchical molecular grammar induces an explicit
geometry for the space of molecules, where structurally similar molecules are closer in distance
along the geometry. Such a grammar-induced geometry provides an informative prior for data-
efficient property prediction. We achieve this by using graph neural diffusion over the geometry.

and few-shot learning (Guo et al., 2021b; Stanley et al., 2021). These methods involve pre-training
networks on large molecular datasets before being applied to domain-specific, small-scale target
datasets. However, when applied to datasets of very small size (e.g., ∼300), most of these methods
are prone to perform poorly and are statistically unstable (Hu et al., 2020). Moreover, as we will
show in our experiments, these methods are less reliable when deployed on target datasets that
contain significant domain gaps from the pre-trained dataset (e.g., inconsistency in molecule sizes).

As an alternative to pure deep learning-based methods, formal grammars over molecular structures
offer an explicit, explainable representation for molecules and have shown their great potential in
addressing molecular tasks in a data-efficient manner (Kajino, 2019; Krenn et al., 2019; Guo et al.,
2021a; 2022). A molecular grammar consists of a set of production rules that can be chained to
generate molecules. The production rules, which can either be manually defined (Krenn et al., 2019;
Guo et al., 2021a) or learned from data (Kajino, 2019; Guo et al., 2022), encode necessary con-
straints for generating valid molecular structures, such as valency restrictions. A molecular gram-
mar has the combinatorial capacity to represent a large amount of molecules using a relatively small
number of production rules. It has thus been adapted as a data-efficient generative model (Kajino,
2019; Guo et al., 2022). While molecular generation based on grammars has been widely studied
and is relatively straightforward, extending the data-efficiency advantage of grammars to property
prediction has not yet been well-explored.

Motivation. In this paper, we propose a framework for highly data-efficient property prediction
based on a learnable molecular grammar. The intuition behind is that the production rule sequences
for molecule generation provide rich information regarding the similarity of molecular structures.
For instance, two molecular structures that share a common substructure would use the same se-
quence of grammar production rules. As it is widely recognized in cheminformatics that molecules
with similar structures have similar properties (Johnson & Maggiora, 1990; Martin et al., 2002),
grammar production sequences can thus be used as a strong structural prior to predict molecular
properties. We aim to develop a model that explicitly represents grammar production sequences and
captures the structure-level similarity between molecules. Even from a few molecules, this model is
expected to reveal a wealth of information regarding the structural relationship between molecules,
providing the key to a data efficient property predictor.

Framework. Figure 1 outlines our approach. At the heart of our method is a grammar-induced
geometry (in the form of a graph) for the space of molecules. In the geometry, every path trac-
ing from the root to a leaf represents a grammar production sequence that generates a particular
molecule. Such a geometry explicitly captures the intrinsic closeness between molecules, where
structurally similar molecules are closer in distance along the geometry. In contrast to the embed-
ding space used in most deep learning methods, our grammar-induced geometry is entirely explicit,
which can be integrated with the property predictor by considering all involved molecules simul-
taneously. To construct the geometry, we propose a hierarchical molecular grammar consisting of
two parts: a pre-defined meta grammar at the top and a learnable molecular grammar at the bottom.
We provide both theoretical and experimental evidence to demonstrate that the hierarchical molecu-
lar grammar is compact yet complete. To predict properties, we exploit the structural prior captured
by the grammar-induced geometry using a graph neural diffusion model over the geometry. A joint
optimization framework is proposed to simultaneously learn both the geometry and the diffusion.

2

Under review as a conference paper at ICLR 2023

Contributions. Our evaluation covers two small datasets of polymers (each containing ∼300 sam-
ples) and two large datasets of drug-like molecules (containing ∼600 and ∼1, 000 samples, re-
spectively). Our approach outperforms both competitive state-of-the-art GNN approaches and pre-
trained methods by large margins. A further analysis shows that when trained on only a subset of
the training data (∼100 samples), our method can achieve performance comparable to pre-trained
GNNs fine-tuned on the whole training set of the downstream prediction task, thus demonstrating
the effectiveness of our method on extremely small datasets. We also show that our method can be
integrated with molecular generation to guide the discovery of molecules with optimal properties.

Related Work. Our method is mainly related to three areas: 1) machine learning, particularly
graph neural networks for molecular property prediction, in which we target the same problem
but propose an entirely new approach; 2) grammars for molecular machine learning, which are
used in existing works for molecular generation, while we use grammars to induce a geometry for
molecular property prediction; and 3) geometric deep learning, where deep networks are applied to
non-Euclidean domains. We briefly discuss the latter two in Section 2 as necessary background for
our approach and refer to Appendix G for an in-depth discussion of related works.

2 PRELIMINARIES

Molecular Hypergraph Grammar (MHG). In MHGs, molecules are represented as hypergraphs
H =(V,E), where nodes represent chemical atoms and hyperedges represent chemical bonds or
ring-like substructures. A MHG G=(N ,Σ,P,X) contains a set N of non-terminal nodes, a set Σ
of terminal nodes representing chemical atoms, and a starting node X . It describes how molecular
hypergraphs are generated using a set of production rules P = {pi|i = 1, ..., k} of form pi : LHS →
RHS , where the left- and right-hand sides (LHS and RHS) are hypergraphs. Starting at X , a
molecule is generated by iteratively selecting a rule whose LHS matches a sub-hypergraph in the
current hypergraph and replacing it with RHS until only terminal nodes remain. For each production
rule, the LHS contains only non-terminal nodes and no terminal nodes, whereas the RHS can
contain both non-terminal and terminal nodes. Both sides of the production rule have the same
number of anchor nodes, which indicate correspondences when LHS is replaced by RHS in a
production step. For a formal definition, see Guo et al. (2022).

Graph Diffusion models the information propagation between nodes on a graph using heat equa-
tions. The node features are updated following a diffusion PDE as follows:

UT = U0 +

∫ T

0

∂Ut

∂t
dt,

∂Ut

∂t
= LαUt, (1)

where matrix Ut represents the features of all nodes in the graph at time t and the matrix Lα, which
has the same sparsity structure as a graph Laplacian, represents the diffusivity defined on all edges
in the graph. Lα is calculated using a(·, ·;α) parameterized by α, i.e. Lij = a(U (i)

t , U (j)
t ;α) for all

connected node pairs (i, j). For more details, see Chamberlain et al. (2021).

Notation. For a graph grammar G = (N ,Σ,P,X), we say a graph H can be derived from the
grammar if there is a sequence of production rules from P that generates this graph, denoted by
X ∗⇒

P
H . H1

p⇒H2 denotes one-step grammar production that transforms graphH1 to graphH2 using
rule p. As a special form of general graph, a tree is denoted as T and the set of all possible trees is
denoted as T . Note that all trees discussed in this paper are unrooted without order, i.e. connected
acyclic undirected graphs (Bender & Williamson, 2010). ∆(T) denotes the maximal degree of T .
TED(T1, T2) denotes the tree edit distance between tree T1 and tree T2 as defined in Zhang (1996)
and Paaßen (2018). |P| denotes the number of rules in a production rule set P and |T | denotes the
size of a tree T .

3 GRAMMAR-INDUCED GEOMETRY FOR PROPERTY PREDICTION

3.1 GRAMMAR-INDUCED GEOMETRY

Problem Formulation. A molecular property predictor can be expressed as a function π(·) : H→R
that maps molecules formulated as hypergraphs H =(V,E) ∈ H into scalar values. The mapping

3

Under review as a conference paper at ICLR 2023

Single Bond

Aromatic Bond

Oxygen Atom Node

Carbon Atom Node

Chlorine Atom Node

Anchor Node

Initial Node

Non-terminal Node

(a) Molecular hypergraph grammar

(b) Grammar-induced geometry

Cl

HO OHClCl

Figure 2: (a) Example of a molecular hypergraph grammar and (b) its induced geometry. All possi-
ble production sequences to generate three molecules are outlined in the geometry, where the nodes
represent intermediate or molecular hypergraphs and the edges represent production steps. Struc-
turally similar molecules have a smaller shortest path between them and are thus closer in distance
along the geometry.

function π = g ◦ f contains two components: an embedding function f(·) : H→Rn that maps
input hypergraphs into an Euclidean latent feature space (also known as the embedding space),
and a transformation function g(·) : Rn→R (usually a simple linear function) which maps latent
features into property values. The embedding function is designed to capture the similarity between
molecules, such that molecules with similar properties are closer in the embedding space in terms of
Euclidean distance (Cayton, 2005). The key reason why most supervised machine learning methods
fail in data-sparse cases is that the embedded function fails to capture molecular similarity since
it only has access to a limited number of samples with property labels. To address this issue, we
propose an additional, explicit prior on molecular similarity that does not depend on data labels, but
provides valuable information for property prediction.

Grammar-induced Geometry. Our efforts are motivated by the fact that structure-level similarity
between molecules is known to be strongly correlated with their properties, e.g., organic molecules
sharing a functional group are proven to have similar chemical properties (Johnson & Maggiora,
1990; Martin et al., 2002). We explicitly model this structure-level similarity as an informative prior
for data-efficient property prediction.

Inspired by the fact that grammars are generative models for molecules based on combinations
of molecular substructures, we exploit the molecular hypergraph grammar to capture the struc-
tural similarity between molecules. Figure 2 outlines how a molecular hypergraph grammar
G=(N ,Σ,P,X) can be used to construct a geometry for the space of molecules in the form of
a graph G=(V, E)1. The geometry enumerates all possible production sequences, where every pos-
sible intermediate or molecular hypergraph is represented as a node in V = {v|v=Hv(Vv, Ev)}, and
each production step is represented as an edge in E = {(s, t)|Hs

p⇒Ht, p ∈ P}. In this geometry,
every leaf node represents a molecule. Every path tracing from the root Hroot=(X ,∅) to a leaf
represents a production sequence that generates the corresponding molecule. Since all the molecules
can be derived from the initial node X , any two leaves representing two molecules are connected
in this geometry, where the path between them represents the sequence of transforming from one
molecular structure to the other. More structurally similar molecules have a smaller shortest path as
their molecular hypergraphs share a common intermediate hypergraph. The distance between two
molecules is defined as the shortest-path distance between them along the geometry with unit weight
at each edge. As a result, structurally similar molecules are closer in distance along the geometry. We
use this geometry as an additional input to the molecular property predictor: π′(·, ·) : H×G→ R,
where G ∈ G is the grammar-induced geometry. The geometry can be optimized in conjunction
with the property predictor in order to minimize the prediction loss. As the geometry is determined
by the grammar, the optimization of the geometry can be converted into the learning of production
rules, where the latter can be achieved using the method described in Guo et al. (2022).

The crucial remaining question is how to construct this geometry G=(V, E) from a given molecular
hypergraph grammar? A key characteristic of the grammar-induced geometry is that each node in

1To distinguish the graph of the geometry from the graph of molecules, we use hypergraphs to formulate
the molecular graphs generated from grammar production.

4

Under review as a conference paper at ICLR 2023

the geometry represents a unique intermediate hypergraph or molecular hypergraph. This ensures
that the geometry includes the minimal path between two molecules. To satisfy this characteristic,
we use breadth-first search (BFS) originating from the root Hroot=(X ,∅) to iteratively expand the
geometry. At each iteration when we visit a node v, we enumerate all the production rules that could
be applied to the intermediate hypergraph Hv represented by the current node. Then we produce
a new hypergraph H(i)

new for each applicable rule pi: {H(i)
new|Hv

pi⇒H(i)
new, pi ∈ P}. For each new

hypergraph H(i)
new, if H(i)

new ̸=Hv′ for all v′ ∈ V , we create a new node v(i)new =H(i)
new, add it to the

node set V , and create a new edge (v, v(i)new) that gets added to the edge set E of the geometry. If
there is an isomorphic hypergraph in the existing node set, i.e. Hv̂ =H(i)

new, v̂ ∈ V , we do not create
any new node; instead, we add an edge (v, v̂) between the matched node v̂ and the currently visited
node v. The algorithm terminates once all the molecules involved in the property prediction task
have been visited in the geometry.

In practice, the construction of grammar-induced geometry is very costly, and often computationally
intractable for more complex grammars. By testing with random grammars learned from Guo et al.
(2022), we find that it is infeasible to construct the geometry when there are more than ten production
rules. The major bottleneck comes from the combinatorial complexity of production rules: The
more rules a grammar has, the more intermediate hypergraphs it can generate. As the depth of the
geometry increases, the number of intermediate hypergraphs increases exponentially. This incurs a
significant computational cost, as each newly expanded hypergraph requires pair-wise isomorphism
tests. This cost also poses a serious obstacle to the optimization of the geometry, since the geometry
must be rebuilt at each optimization iteration.

3.2 HIERARCHICAL MOLECULAR GRAMMARS

We propose a hierarchical molecular grammar to address the computational challenge mentioned
above. Our insight stems from the fact that every hypergraph can be represented as a tree-structure
object, i.e. a junction tree using tree decomposition (Diestel, 2005). The tree representation brings
two benefits: 1) It allows us to measure the underlying structural similarity between molecules by
reflecting the scaffold of the substructure components (Jin et al., 2018); and 2) as a more compact
representation, the possible junction tree structures are considerably fewer than molecular hyper-
graphs, and therefore can be enumerated. By carefully designing the form of grammar rules, we
divide the generation process of a molecular hypergraph into two parts: first generating a tree with
homogeneous tree nodes, then converting the tree into a molecular hypergraph by specifying a sub-
hypergraph per tree node. The grammar-induced geometry can thus be divided into two parts: a top
part where geometry nodes represent only trees and a bottom part where the leaves of the geometry
represent molecular hypergraphs. Due to this hierarchical decomposition, the top part of the geome-
try is data-independent and can be computed offline to apply to any molecular datasets. At run-time,
we only need to construct the bottom part of the geometry, which is formulated as a byproduct
of grammar learning in our approach. As a result of the geometry construction, each molecule is
connected to one junction tree in the top part. Molecular structure similarity is determined by the
distance between their corresponding junction trees along the geometry.

A hierarchical molecular grammar consists of two sub-grammars that generate two parts of the ge-
ometry respectively. We refer to the sub-grammar that only generates trees as a meta grammar
and the top-part geometry it constructs as a meta geometry. We provide formal definitions of meta
grammar and demonstrate that despite the additional hierarchical constraint, our hierarchical molec-
ular grammar is as expressive as the general molecular hypergraph grammar in Guo et al. (2022).
Figure 3 shows an overview of a hierarchical molecular grammar and its induced geometry.

Meta Grammars. The formal definition of a meta grammar is as follows.

Definition 1. A meta grammar G = (N ,∅,PG,X) is a hypergraph grammar, which only contains
non-terminal nodes and only generates trees, i.e. ∀w ∈ {w|X ∗⇒

P
G

w}, w ∈ T .

A meta grammar G is k-degree if, for all trees T of maximal degree ∆(T) ≤ k, we have X ∗⇒
P
G

T .

A meta grammar G is edit-complete if, for any tree pair (T, T ′) with |T | < |T ′|, tree edit distance
TED(T, T ′) = 1, and X ∗⇒

P
G

T, T ′, there is a rule p ∈ PG such that T
p⇒T ′.

A k-degree, edit-complete meta grammar G is minimal if there is no other such meta grammar G
′

with |PG′ | < |PG|.

5

Under review as a conference paper at ICLR 2023

…
OH

OH

N

O

N

O

Molecular Rule Learning

Molecular Rule
Learning

Molecular Rule
Learning

…

HO

HO

M
et
a
G
eo
m
et
ry

Meta tree node Molecular leaf

(a) Geometry induced by hierarchical molecular grammar

(b) Meta grammar

(c) Molecular grammar

…

…

/

//

Figure 3: (a) Overview of the geometry induced by hierarchical molecular grammar. (b) A pre-
defined meta grammar is used to pre-compute the meta geometry offline. (c) At run-time, molecular
grammar is obtained using molecular rule learning. Each molecule is converted into a junction tree
and is connected to a meta tree node of the meta geometry that represents an isomorphic meta tree.

In Appendix H, we provide the formal construction of meta grammars for generating trees with
arbitrary degree and more elaboration on the three additional attributes.
Proposition 1. A meta grammar G with a meta rule set PG constructed in Appendix H is of degree
k, edit-complete, and minimal.

Appendix H also provides the proof that the three attributes are satisfied. Generally speaking, we
construct meta rule sets of arbitrary degrees by induction from 1-degree meta grammar which con-
sists of only one meta rule. In practice, a meta grammar with a reasonable degree should be chosen
to ensure the coverage of most molecules. In our experiments, we find it sufficient to use a meta rule
set of degree 4, which contains 8 rules in total.

Hierarchical Molecular Grammars. We define hierarchical molecular grammar as follows,
Proposition 2. A hierarchical molecular grammar G = (G,Gmol) consisting of two hypergraph
grammars: 1) a k-degree, edit-complete, and minimal meta grammar G defined in Definition 1; and
2) a molecular grammar Gmol = (N ,Σ,Pmol,∅) where the RHS of any molecular rule in Pmol
only contains terminal nodes (i.e. atoms), is a complete grammar.

More discussion on the proposition is in Appendix H. The completeness of our hierarchical molec-
ular grammar also shows that there is no loss of representation capacity as compared to general
molecular hypergraph grammars.

Geometry Construction and Molecular Grammar Learning. The geometry induced by the hier-
archical molecular grammar is constructed in two phases, as shown in Figure 3(a): the top for the
meta grammar and the bottom for the molecular grammar. Since the meta grammar is pre-defined,
the top meta geometry can be pre-computed offline following the BFS procedure described in Sec-
tion 3.1 with a given maximum BFS depth. Each node in the meta geometry represents a tree of
non-terminal nodes. We call the tree generated using the meta grammar a meta tree and the node in
the meta geometry a meta tree node. We find it sufficient to use a maximum depth of 10 in practice.
The bottom part of the geometry determines how each molecule is connected to the meta geometry
as a molecular leaf through its junction tree structure. We obtain the junction trees of molecules
simultaneously with the learning of molecular grammar rules. Figure 3(c) illustrates the process.
Thus, the geometry optimization can be achieved by learning the molecular grammar.

We follow the grammar learning from Guo et al. (2022) but constrain the learned rules to contain
only terminal nodes on the RHS , so as to satisfy the molecular grammar. Each molecule is con-
sidered as a hypergraph, and a set of hyperedges is iteratively sampled from the hypergraph until
all hyperedges are visited. We construct the molecular rules along with the junction tree. At each
iteration, a molecular rule is constructed for each connected component, where the LHS contains

6

Under review as a conference paper at ICLR 2023

a single non-terminal node and the RHS contains the connected component. For the junction tree,
we add a tree node representing the connected component and create a tree edge between two nodes
if their corresponding connected components share a common hypergraph node. The iterative sam-
pling follows an i.i.d. Bernoulli distribution based on a probability function ϕ(e; θ) defined on each
hyperedge e with learnable parameters θ. At the conclusion of the sampling process, we can obtain
a junction tree of the molecular hypergraph along with a set of molecular rules for converting this
junction tree back to the original hypergraph. The molecule is then connected to the meta tree node
in the meta geometry that represents the isomorphic meta tree to the junction tree. We provide a
detailed formulation of the constructed molecular rule and the resulting junction tree in Appendix I,
and more details of the grammar-induced geometry construction in Appendix J.

3.3 GRAPH DIFFUSION OVER GRAMMAR-INDUCED GEOMETRY

Property prediction requires a model that can operate on our grammar-induced geometry and is suit-
able for scarce data. We choose the graph neural diffusion model GRAND (Chamberlain et al.,
2021) for its effectiveness in overcoming the oversmoothing that plagues most GNNs. Three learn-
able components are used in a graph diffusion process: an encoder function φ defined on all the
nodes in the grammar-induced geometry, a decoder function ψ defined on molecular leaves, and a
graph diffusion process given in Equation 1. Specifically, the encoder φ yields the initial state of the
diffusion process U0 = φ(Uin), where Uin is the matrix form of the input features of all the nodes.
The decoder produces predicted property values of all molecular leaves uT = ψ(M ⊙UT), where
UT is the node-feature matrix from the final diffusion state, M is a binary mask that masks out
the rows corresponding to non-molecule nodes, ⊙ is the Hadamard product, and uT is the resulting
vector containing property values of all molecular leaves. Our optimization objective encodes the
learning for both the grammar-induced geometry and the diffusion model:

min
θ,(φ,ψ,α)

l(uT , û) = min
θ

min
(φ,ψ,α)

l(uT , û), (2)

where û represents the vector of ground-truth property values for all leaves and l(·, ·) is a regression
loss. Recall that the geometry is only determined by the molecular rules, so the molecular grammar
learning parameters θ are the only parameters relevant for obtaining the geometry. Since θ and
(φ,ψ, α) are two groups of independent variables, we exploit block coordinate descent (Wright,
2015) to optimize the objective. A detailed derivation is provided in Appendix K.

4 EVALUATION

The experiments demonstrate the generality of our approach and answer the following questions:

• Does our approach outperform existing methods on small datasets?
• How well does our approach perform on large, widely-studied datasets?
• To what extent is our approach effective on extremely small datasets?
• Can our approach guide generative models toward molecules with optimal properties?

4.1 EXPERIMENT SETUP

Data. We evaluate our approach on eight datasets: CROW (a curated dataset from literature), Perme-
ability (Yuan et al., 2021), FreeSolv (Mobley & Guthrie, 2014), Lipophilicity (Wang et al., 2015),
HOPV (Lopez et al., 2016), DILI (Ma et al., 2020), and PTC (Xu et al., 2018). These datasets
cover: 1) commonly used benchmark datasets including MolecuNet (FreeSolv, Lipophilicity, HOPV,
ClinTox) and TUDataset (PTC), 2) both classification (DILI, PTC, ClinTox) and regression tasks
(CROW, Permeability, FreeSolv, Lipophilicity, HOPV), and 3) sizes that are small (CROW, Perme-
ability, HOPV, PTC) and large (FreeSolv, Lipophilicity, ClinTox). We report the mean absolute
error (MAE) and the coefficient of determination (R2) for regression, and Accuracy and ROC-AUC
scores for classification. See Appendix E for more details.

Baselines. We compare our approach with various approaches: Random Forest, FNN, wD-MPNN
(D-MPNN), ESAN, HM-GNN, PN, and Pre-trained GIN. For descriptions, see Appendix F. To
show the generalizability of our pipeline (called Geo-DEG), we implement two versions, each with
a different diffusion encoder, GIN and MPNN. Appendix F provides the implementation details.

7

Under review as a conference paper at ICLR 2023

Table 1: Results on two small datasets of polymers (best result bolded, second-best underlined). Our
approach (Geo-DEG) outperforms state-of-the-art GNNs and pre-trained methods by large margins.

CROW Permeability
MAE ↓ R2 ↑ MAE ↓ R2 ↑

Random Forest 27.9 ± 3.2 0.67 ± 0.08 0.58 ± 0.01 0.72 ± 0.03
FFN 24.0 ± 2.1 0.84 ± 0.02 0.56 ± 0.04 0.73 ± 0.06

wD-MPNN 20.6 ± 1.3 0.89 ± 0.02 0.46 ± 0.03 0.80 ± 0.03
ESAN 26.1 ± 1.3 0.79 ± 0.02 0.40 ± 0.03 0.81 ± 0.03

HM-GNN 30.8 ± 1.8 0.76 ± 0.01 0.49 ± 0.03 0.68 ± 0.01

PN (finetued) 21.1 ± 1.3 0.89 ± 0.01 0.48 ± 0.04 0.70 ± 0.03
Pre-trained GIN (finetued) 19.3 ± 1.4 0.91 ± 0.01 0.46 ± 0.04 0.69 ± 0.02

Geo-DEG (GIN) 17.0 ± 1.4 0.92 ± 0.01 0.34 ± 0.02 0.84 ± 0.02
Geo-DEG (MPNN) 18.5 ± 1.2 0.91 ± 0.01 0.32 ± 0.03 0.83 ± 0.02

4.2 RESULTS ON SMALL DATASETS

To answer the first question posted at the beginning, we conduct experiments on five small datasets:
CROW, Permeability, HOPV, DILI, and PTC. Table 1 shows the results on the first two datasets,
which contain polymers. Regarding MAE, the baselines ESAN and HM-GNN are only compara-
ble with simple, non-deep learning methods (e.g., random forest), while pre-trained GIN and wD-
MPNN perform reasonably well. Both variants of our method outperform all the other methods by
a large margin. Results and discussion on the other datasets are given in Appendix A.

Discussions. In general, CROW is a more challenging dataset than Permeability, as it has fewer
samples and a broader range of property values (with a standard derivation of 86.8 versus 1.24 for
Permeability). On CROW, traditional machine learning methods such as Random Forest and FNN
are quite competitive and even outperform modern GNN architectures such as ESAN and HM-GNN.
wD-MPNN achieves reasonable performance thanks to the special graph representation for polymer
ensembles. PN and Pre-trained GIN perform exceptionally well on CROW due to their pre-training
on large datasets. However, this pre-training does not help on Permeability, which has a much
larger average molecule size (with an average molecular weight of 391.8 versus 153.8 for CROW).
Thus, there is a domain gap between the dataset where PN and Pre-trained GIN are pre-trained and
the Permeability dataset, resulting in poor performance of both methods. ESAN benefits from the
subgraph selection scheme on large molecular graphs and performs well on Permeability. The poor
performance of HM-GNN on both datasets shows that it is not as effective in regression tasks as it is
in classification tasks. The overall results show that: 1) our method is capable of handling polymers
with varying molecular sizes, and 2) the superior performance of our method when coupled with
either GIN or MPNN confirms its generalizability to different feature extractors.

4.3 RESULTS ON LARGE DATASETS

To answer the second question, we conduct experiments on three large datasets: FreeSolv,
Lipophilicity, and ClinTox. Tables 2 and 5 in Appendix A show the results. For FreeSolv and
Lipophilicity, simple machine learning methods including random forest and FFN perform poorly.
Pre-trained GNNs cannot perform as well as they do on small polymer datasets. The performance
of advanced GNN architectures, especially D-MPNN, is reasonably good on both datasets. Our
method equipped with MPNN diffusion encoder performs the best among all approaches. Results
and discussion on the other datasets are given in Appendix A.

Discussions. On large datasets, random forest and simple FFN become less competitive than on
small datasets. This is reasonable since larger datasets require larger model capacities to represent
the relationship between molecules and their properties. Pre-training does not significantly help on
either dataset due to the inherent domain gap between datasets used for pre-training versus those
used for fine-tuning. Among the three GNN-based baselines, D-MPNN performs the best and ex-
hibits better stability than ESAN and HM-GNN. Our approach can further improve the performance
of D-MPNN and outperforms all the baselines. These results demonstrate that our method is scalable
and competitive with state-of-the-art methods for large molecule datasets.

8

Under review as a conference paper at ICLR 2023

O*

SO
O

SO
O

*

O
O

N

O

O

N

O

*

*

**
*

O N

O

O

N
*

O

F F F

FF F

O
O

O

*

0.1

0.3

0.1

0.3

M
A

E
(n

or
m

al
iz

ed
)

CROW Permeability FreeSolv Lipophilicity CROW Permeability FreeSolv Lipophilicity

15

28

M
A

E
(K

)

R
2

0.78

0.94

20% 90%50% 20% 90%50%

Pre-trained GIN

(b) Analysis on extremely small datasets

(c) Ablation study on meta grammar(a) Analysis on combination with generative models

M
A

E
(n

or
m

al
iz

ed
)

Pr
ed

ic
te

d
C

O
2/N

2
Se

le
ct

iv
ity

Predicted CO2 Permeability10-3 104
10-3

103

Ours-GIN Ours-MPNN
our meta grammar

incomplete
meta grammar

Figure 4: (a) Two objectives from the Permeability dataset predicted using our method combined
with the grammar-based generative model. Molecules lying on the Pareto front are highlighted. (b)
Performance of our method trained on subsets of CROW training data with different ratios. Even
when the training set is halved, our approach can still achieve competitive results compared to Pre-
trained GIN fine-tuned on the whole training set. (c) Comparison of performance using different
meta grammars, demonstrating the necessity of a complete meta grammar.

4.4 ANALYSIS

This section examines the effectiveness of our method on extremely small datasets, its combination
with generative models that answer the last two questions posted at the beginning, and an ablation
study on the meta grammar.

Performance on Extremely Small Datasets. We conduct a study on the minimum viable number
of samples for our method. We randomly sample 20% of CROW as a fixed testing set. Using the
remaining data, we construct eight randomly selected training sets, each consisting of a portion
of all remaining data, ranging from 20% to 100%. These eight training sets are used to train our
method using GIN as the feature extractor. Figure 4(b) shows the performance on the testing set.
Even when the training set is halved (with only 94 samples), our approach still achieves results that
are comparable to those of the Pre-trained GIN fine-tuned on the whole training set. Appendix B
includes a more detailed study for the effect of changing dataset training size on model performance.

Combination with Generative Models. In our optimization framework, grammar metrics can be
considered as additional objectives, allowing us to jointly optimize both generative models and
property predictors. Following Guo et al. (2022), we use diversity and Retro∗ score as our grammar
metrics and then perform joint optimization on the Permeability dataset. After training, we generate
400 molecules and predict their property values using our approach, including all six property types
from Permeability. Figure 4(a) shows two out of six predicted property values with the Pareto
front highlighted. Clearly, our approach can be combined with generative models to provide a
comprehensive pipeline for the discovery of optimal molecules. The use of Retro∗ also enables
finding synthesis paths of generated molecules as shown in Appendix L.

Ablation Study on Meta Grammar. In this study, we examine the necessity of the meta rules in
our hierarchical grammar. We remove two rules that have degree 4 on the LHS from the 4-degree
meta grammar, resulting in a meta geometry with same number of nodes but 10% fewer edges than
the one used in our main experiments. With this modified meta grammar, we run the pipeline for
all four datasets and compare the results with the original meta grammar in Figure 4(c). All four
datasets exhibit a performance drop when using the modified meta grammar. The results provide
experimental evidence for the necessity of a complete meta grammar.

5 CONCLUSION

We propose a data-efficient molecular property predictor based on a hierarchical molecular gram-
mar. The grammar induces an explicit geometry describing the space of molecular graphs, such
that a graph neural diffusion on the geometry can be used to effectively predict property values of
molecules on small training datasets. One avenue of future work is to extend our pipeline to model
3D molecular structures and to address general graph design problems.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Mohammad Atif Faiz Afzal, Andrea R Browning, Alexander Goldberg, Mathew D Halls, Jacob L
Gavartin, Tsuguo Morisato, Thomas F Hughes, David J Giesen, and Joseph E Goose. High-
throughput molecular dynamics simulations and validation of thermophysical properties of poly-
mers for various applications. ACS Applied Polymer Materials, 3(2):620–630, 2020.

Matteo Aldeghi and Connor W Coley. A graph representation of molecular ensembles for polymer
property prediction. arXiv preprint arXiv:2205.08619, 2022.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
arXiv preprint arXiv:2006.05205, 2020.

Han Altae-Tran, Bharath Ramsundar, Aneesh S Pappu, and Vijay Pande. Low data drug discovery
with one-shot learning. ACS central science, 3(4):283–293, 2017.

Evan R Antoniuk, Peggy Li, Bhavya Kailkhura, and Anna M Hiszpanski. Representing polymers as
periodic graphs with learned descriptors for accurate polymer property predictions. arXiv preprint
arXiv:2205.13757, 2022.

Debra J Audus and Juan J de Pablo. Polymer informatics: Opportunities and challenges. ACS macro
letters, 6(10):1078–1082, 2017.

Edward A Bender and S Gill Williamson. Lists, decisions and graphs. S. Gill Williamson, 2010.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation net-
works. ICLR, 2022.

Derrick Blakely, Jack Lanchantin, and Yanjun Qi. Time and space complexity of graph convolutional
networks. Accessed on: Dec, 31, 2021.

Cristian Bodnar, Francesco Di Giovanni, Benjamin Paul Chamberlain, Pietro Liò, and Michael M
Bronstein. Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing
in gnns. arXiv preprint arXiv:2202.04579, 2022.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geomet-
ric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Wenming Cao, Zhiyue Yan, Zhiquan He, and Zhihai He. A comprehensive survey on geometric
deep learning. IEEE Access, 8:35929–35949, 2020.

Lawrence Cayton. Algorithms for manifold learning. Univ. of California at San Diego Tech. Rep,
12(1-17):1, 2005.

Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and
Emanuele Rossi. Grand: Graph neural diffusion. In International Conference on Machine Learn-
ing, pp. 1407–1418. PMLR, 2021.

Lihua Chen, Ghanshyam Pilania, Rohit Batra, Tran Doan Huan, Chiho Kim, Christopher Kuenneth,
and Rampi Ramprasad. Polymer informatics: Current status and critical next steps. Materials
Science and Engineering: R: Reports, 144:100595, 2021.

Luigi Pietro Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. An improved algorithm for
matching large graphs. In 3rd IAPR-TC15 workshop on graph-based representations in pattern
recognition, pp. 149–159. Citeseer, 2001.

Luca Cosmo, Anees Kazi, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael Bronstein. Latent-
graph learning for disease prediction. In International Conference on Medical Image Computing
and Computer-Assisted Intervention, pp. 643–653. Springer, 2020.

10

Under review as a conference paper at ICLR 2023

Calin Cruceru, Gary Bécigneul, and Octavian-Eugen Ganea. Computationally tractable riemannian
manifolds for graph embeddings. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2021.

Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-directed variational autoen-
coder for structured data. arXiv preprint arXiv:1802.08786, 2018.

Reinhard Diestel. Graph theory 3rd ed. Graduate texts in mathematics, 173:33, 2005.

Ahmed AA Elhag, Gabriele Corso, Hannes Stärk, and Michael M Bronstein. Graph anisotropic
diffusion for molecules. In ICLR2022 Machine Learning for Drug Discovery, 2022.

Evan N Feinberg, Debnil Sur, Zhenqin Wu, Brooke E Husic, Huanghao Mai, Yang Li, Saisai Sun,
Jianyi Yang, Bharath Ramsundar, and Vijay S Pande. Potentialnet for molecular property predic-
tion. ACS central science, 4(11):1520–1530, 2018.

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. Advances in
neural information processing systems, 31, 2018.

Garrett B Goh, Nathan O Hodas, Charles Siegel, and Abhinav Vishnu. Smiles2vec: An inter-
pretable general-purpose deep neural network for predicting chemical properties. arXiv preprint
arXiv:1712.02034, 2017.

Minghao Guo, Wan Shou, Liane Makatura, Timothy Erps, Michael Foshey, and Wojciech Ma-
tusik. Polygrammar: Grammar for digital polymer representation and generation. arXiv preprint
arXiv:2105.05278, 2021a.

Minghao Guo, Veronika Thost, Beichen Li, Payel Das, Jie Chen, and Wojciech Matusik. Data-
efficient graph grammar learning for molecular generation. arXiv preprint arXiv:2203.08031,
2022.

Zhichun Guo, Chuxu Zhang, Wenhao Yu, John Herr, Olaf Wiest, Meng Jiang, and Nitesh V Chawla.
Few-shot graph learning for molecular property prediction. In Proceedings of the Web Conference
2021, pp. 2559–2567, 2021b.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. ICLR, 2020.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323–2332.
PMLR, 2018.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular graphs
using structural motifs. In International conference on machine learning, pp. 4839–4848. PMLR,
2020.

Mark A Johnson and Gerald M Maggiora. Concepts and applications of molecular similarity. Wiley,
1990.

Chonghyo Joo, Hyundo Park, Jongkoo Lim, Hyungtae Cho, and Junghwan Kim. Development of
physical property prediction models for polypropylene composites with optimizing random forest
hyperparameters. International Journal of Intelligent Systems, 37(6):3625–3653, 2022.

Hiroshi Kajino. Molecular hypergraph grammar with its application to molecular optimization. In
International Conference on Machine Learning, pp. 3183–3191. PMLR, 2019.

Mario Krenn, Florian Häse, A Nigam, Pascal Friederich, and Alán Aspuru-Guzik. Selfies: a robust
representation of semantically constrained graphs with an example application in chemistry. arXiv
preprint arXiv:1905.13741, 2019.

Steven A Lopez, Edward O Pyzer-Knapp, Gregor N Simm, Trevor Lutzow, Kewei Li, Laszlo R
Seress, Johannes Hachmann, and Alán Aspuru-Guzik. The harvard organic photovoltaic dataset.
Scientific data, 3(1):1–7, 2016.

11

Under review as a conference paper at ICLR 2023

Alessandro Lusci, Gianluca Pollastri, and Pierre Baldi. Deep architectures and deep learning in
chemoinformatics: the prediction of aqueous solubility for drug-like molecules. Journal of chem-
ical information and modeling, 53(7):1563–1575, 2013.

Hehuan Ma, Weizhi An, Yuhong Wang, Hongmao Sun, Ruili Huang, and Junzhou Huang. Deep
graph learning with property augmentation for predicting drug-induced liver injury. Chemical
Research in Toxicology, 34(2):495–506, 2020.

Yvonne C Martin, James L Kofron, and Linda M Traphagen. Do structurally similar molecules have
similar biological activity? Journal of medicinal chemistry, 45(19):4350–4358, 2002.

Krzysztof Maziarz, Henry Jackson-Flux, Pashmina Cameron, Finton Sirockin, Nadine Schneider,
Nikolaus Stiefl, Marwin Segler, and Marc Brockschmidt. Learning to extend molecular scaffolds
with structural motifs. arXiv preprint arXiv:2103.03864, 2021.

Aditya Menon, James A Thompson-Colón, and Newell R Washburn. Hierarchical machine learn-
ing model for mechanical property predictions of polyurethane elastomers from small datasets.
Frontiers in Materials, 6:87, 2019.

David L Mobley and J Peter Guthrie. Freesolv: a database of experimental and calculated hydration
free energies, with input files. Journal of computer-aided molecular design, 28(7):711–720, 2014.

AkshatKumar Nigam, Robert Pollice, Mario Krenn, Gabriel dos Passos Gomes, and Alan Aspuru-
Guzik. Beyond generative models: superfast traversal, optimization, novelty, exploration and
discovery (stoned) algorithm for molecules using selfies. Chemical science, 2021.

Benjamin Paaßen. Revisiting the tree edit distance and its backtracing: A tutorial. arXiv preprint
arXiv:1805.06869, 2018.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. Advances in Neural Information
Processing Systems, 33:12559–12571, 2020.

Jerret Ross, Brian Belgodere, Vijil Chenthamarakshan, Inkit Padhi, Youssef Mroueh, and Payel
Das. Do large scale molecular language representations capture important structural information?
arXiv preprint arXiv:2106.09553, 2021.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M Borg-
wardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

Megan Stanley, John F Bronskill, Krzysztof Maziarz, Hubert Misztela, Jessica Lanini, Marwin
Segler, Nadine Schneider, and Marc Brockschmidt. Fs-mol: A few-shot learning dataset of
molecules. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021.

Govindan Subramanian, Bharath Ramsundar, Vijay Pande, and Rajiah Aldrin Denny. Computational
modeling of β-secretase 1 (bace-1) inhibitors using ligand based approaches. Journal of chemical
information and modeling, 56(10):1936–1949, 2016.

Lei Tao, Guang Chen, and Ying Li. Machine learning discovery of high-temperature polymers.
Patterns, 2(4):100225, 2021a.

Lei Tao, Vikas Varshney, and Ying Li. Benchmarking machine learning models for polymer in-
formatics: An example of glass transition temperature. Journal of Chemical Information and
Modeling, 61(11):5395–5413, 2021b.

Jian-Bing Wang, Dong-Sheng Cao, Min-Feng Zhu, Yong-Huan Yun, Nan Xiao, and Yi-Zeng Liang.
In silico evaluation of logd7. 4 and comparison with other prediction methods. Journal of Chemo-
metrics, 29(7):389–398, 2015.

Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. Molecular contrastive
learning of representations via graph neural networks. Nature Machine Intelligence, 4(3):279–
287, 2022.

12

Under review as a conference paper at ICLR 2023

Oliver Wieder, Stefan Kohlbacher, Mélaine Kuenemann, Arthur Garon, Pierre Ducrot, Thomas Sei-
del, and Thierry Langer. A compact review of molecular property prediction with graph neural
networks. Drug Discovery Today: Technologies, 37:1–12, 2020.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Stephen J Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3–34, 2015.

Fang Wu, Qiang Zhang, Dragomir Radev, Jiyu Cui, Wen Zhang, Huabin Xing, Ningyu Zhang, and
Huajun Chen. Molformer: Motif-based transformer on 3d heterogeneous molecular graphs. arXiv
preprint arXiv:2110.01191, 2021.

Chencheng Xu, Qiao Liu, Minlie Huang, and Tao Jiang. Reinforced molecular optimization with
neighborhood-controlled grammars. Advances in Neural Information Processing Systems, 33:
8366–8377, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel Guzman-
Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, et al. Analyzing learned molecular repre-
sentations for property prediction. Journal of chemical information and modeling, 59(8):3370–
3388, 2019.

Zhaoning Yu and Hongyang Gao. Molecular representation learning via heterogeneous motif graph
neural networks. In International Conference on Machine Learning, pp. 25581–25594. PMLR,
2022.

Qi Yuan, Mariagiulia Longo, Aaron W Thornton, Neil B McKeown, Bibiana Comesana-Gandara,
Johannes C Jansen, and Kim E Jelfs. Imputation of missing gas permeability data for polymer
membranes using machine learning. Journal of Membrane Science, 627:119207, 2021.

Kaizhong Zhang. A constrained edit distance between unordered labeled trees. Algorithmica, 15
(3):205–222, 1996.

Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Chee-Kong Lee. Motif-based graph self-
supervised learning for molecular property prediction. Advances in Neural Information Process-
ing Systems, 34:15870–15882, 2021.

Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng
Zhang, and Guolin Ke. Uni-mol: A universal 3d molecular representation learning framework.
2022.

13

Under review as a conference paper at ICLR 2023

A ADDITIONAL RESULTS

Table 2: Results on FreeSolv and Lipophilicity (best bolded, second-best underlined).

FreeSolv Lipophilicity
MAE ↓ R2 ↑ MAE ↓ R2 ↑

Random Forest 4.58 ± 0.34 0.60 ± 0.09 0.64 ± 0.04 0.65 ± 0.03
FFN 3.67 ± 0.40 0.77 ± 0.05 0.51 ± 0.02 0.80 ± 0.03

D-MPNN 0.54 ± 0.08 0.90 ± 0.02 0.44 ± 0.02 0.90 ± 0.02
ESAN 0.67 ± 0.07 0.86 ± 0.03 0.46 ± 0.04 0.90 ± 0.01

HM-GNN 0.63 ± 0.05 0.86 ± 0.02 0.58 ± 0.04 0.84 ± 0.02

PN (finetued) 0.65 ± 0.04 0.85 ± 0.02 0.56 ± 0.04 0.81 ± 0.02
Pre-trained GIN (finetued) 1.01 ± 0.11 0.74 ± 0.03 0.52 ± 0.03 0.89 ± 0.01

Geo-DEG (GIN) 0.62 ± 0.06 0.90 ± 0.02 0.48 ± 0.02 0.88 ± 0.02
Geo-DEG (MPNN) 0.49 ± 0.06 0.94 ± 0.02 0.42 ± 0.02 0.91 ± 0.02

Table 3: Results on HOPV (best bolded, second-best underlined).

Methods MAE
(normalized) ↓ R2 ↑

Random Forest 0.36 ± 0.03 0.69 ± 0.05
FFN 0.35 ± 0.03 0.67 ± 0.06

D-MPNN 0.36 ± 0.03 0.69 ± 0.04
ESAN 0.37 ± 0.02 0.66 ± 0.06

HM-GNN 0.40 ± 0.02 0.65 ± 0.05

PN (finetued) 0.42 ± 0.02 0.65 ± 0.04
Pre-trained GIN (finetued) 0.38 ± 0.02 0.66 ± 0.03

Geo-DEG (GIN) 0.32 ± 0.03 0.70 ± 0.03
Geo-DEG (MPNN) 0.30 ± 0.02 0.74 ± 0.03

Table 4: Results on DILI and PTC (best bolded, second-best underlined).

DILI PTC
Accuracy ↑ ROC-AUC↑ Accuracy ↑ ROC-AUC↑

Random Forest 0.70 ± 0.09 0.80 ± 0.06 0.60 ± 0.06 0.63 ± 0.05
FFN 0.69 ± 0.07 0.78 ± 0.07 0.58 ± 0.06 0.61 ± 0.04

D-MPNN 0.75 ± 0.10 0.83 ± 0.07 0.67 ± 0.06 0.70 ± 0.05
ESAN 0.74 ± 0.10 0.82 ± 0.10 0.64 ± 0.08 0.68 ± 0.06

HM-GNN 0.76 ± 0.08 0.83 ± 0.09 0.66 ± 0.07 0.69 ± 0.06

PN (finetued) 0.75 ± 0.10 0.83 ± 0.06 0.61 ± 0.08 0.65 ± 0.07
Pre-trained GIN (finetued) 0.74 ± 0.09 0.82 ± 0.06 0.62 ± 0.09 0.66 ± 0.07

Geo-DEG (GIN) 0.76 ± 0.09 0.84 ± 0.05 0.64 ± 0.09 0.68 ± 0.06
Geo-DEG (MPNN) 0.78 ± 0.08 0.86 ± 0.06 0.69 ± 0.07 0.71 ± 0.07

Results & Discussion. For HOPV, since it is a small regression dataset, traditional methods (random
forest and FFN) achieve competitive performance and are even better than several graph neural
networks including ESAN and HM-GNN. Both variants of our method outperform other baselines
by a large margin, which aligns with the results in the other two small regression datasets. In the
two small classification datasets, DILI and PTC, there is no significant difference between baseline
models regarding performance. The reason for this is that the test dataset is small, and the accuracy
of the model can be limited by a few hard examples that cannot be classified correctly. It is therefore
more informative to use the ROC-AUC score. Among the baselines, HM-GNN performs the best
due to its motif-based representation. Our method can still outperform all other methods regarding
both accuracy and ROC-AUC score. For ClinTox in Table 5, we compare our approach with a
wide range of highly performant baseline methods from a recent paper Zhou et al. (2022), which

14

Under review as a conference paper at ICLR 2023

Table 5: Results on ClinTox (best bolded, second-best underlined).

Methods ROC-AUC ↑
D-MPNN 90.6 ± 0.6

AttentiveFP 84.7 ± 0.3
N-GramRF 77.5 ± 4.0

N-GramXGB 87.5 ± 2.7
GROVERbase 81.2 ± 3.0
GROVERlarge 76.2 ± 3.7
GraphMVP 79.1 ± 2.8

MolCLR 91.2 ± 3.5
GEM 90.1 ± 1.3

Pre-trained GIN 72.6 ± 1.5
Uni-Mol 91.9 ± 1.8

Geo-DEG (GIN) 74.4 ± 1.8
Geo-DEG (MPNN) 92.2 ± 0.7

by itself proposes one of the SOTA methods on ClinTox. Note that these are very strong baseline
methods, including many methods pre-trained using 3D molecular data. The overall results show
that our method achieves significantly better performance on challenging small regression datasets
and outperforms a wide spectrum of baselines on various common benchmarks.

B ANALYSIS ON TRAINING DATASET SIZE

We further extend our study in Section 4.4 for the effect of changing dataset training size on model
performance by including the analysis of all three small regression datasets with more baselines
compared. Figure 5 illustrates the results of Pre-trained GIN, wD-MPNN/D-MPNN, and two vari-
ants of our model on CROW, Permeability, and HOPV. We report the performance of each model
trained using different numbers of training samples, randomly sampled from the original training
dataset. Across different training dataset sizes, our proposed method consistently outperforms other
baselines. A smaller training dataset leads to a larger performance improvement, demonstrating the
data-efficiency of our model.

35

0.30

0.70

0.30

0.60

15

M
A
E

Training samples
25 50 75 100 125

Training samples
50 100 150 200 250

M
A
E

Training samples
50 100 150 200 250

M
A
E
(n
or
m
al
iz
ed
)

Pre-trained GIN

wD-MPNN

Geo-DEG (GIN)

Geo-DEG (MPNN)

(a) CROW (b) Permeability (c) HOPV

Pre-trained GIN

wD-MPNN

Geo-DEG (GIN)

Geo-DEG (MPNN)

Pre-trained GIN

D-MPNN

Geo-DEG (GIN)

Geo-DEG (MPNN)

Figure 5: Analysis on training dataset size.

C ANALYSIS ON CONSTRUCTION COST REDUCTION OF HIERARCHICAL
MOLECULAR GRAMMAR

In this section, we provide empirical evidence on the construction cost reduction of our hierarchical
molecular grammar compared with non-hierarchical molecular grammar from Guo et al. (2022).
We conduct ten groups of experiments by randomly sampling five molecules from CROW dataset
by ten times. For each group of experiment, we sample ten grammars for both hierarchical and
non-hierarchical versions respectively and construct the geometry to cover the five molecules. The
non-hierarchical grammar is sampled using the algorithm from Guo et al. (2022). The geometry
construction is achieved following the BFS procedure described in Section 3.1 for both kinds of

15

Under review as a conference paper at ICLR 2023

1 2 3 4 5 6 7 8 9 10
Experiment ID

0

60

A
ve

ra
ge

 R
un

ni
ng

Ti

m
e

(s
) 0

35

0

1.8×105

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10
Experiment ID

Experiment ID

A
ve

ra
ge

N

um
be

r o
f R

ul
es

A
ve

ra
ge

 N
um

be
r o

f
In

te
rm

ed
ia

te
 G

ra
ph

s

Non-hierarchical grammar
Hierarchical grammar

Figure 6: Analysis on construction cost reduction of hierarchical molecular grammar. For our hierar-
chical molecular grammar, the number of intermediate graphs is the same as the number of molecule
samples, which is five in the experiments.

grammar. In the experiments, we find that for non-hierarchical grammar, even for five molecules,
it occurs frequently that the size of the geometry grows extremely large but still cannot cover the
five molecules. Therefore, we stop the construction when the size of the geometry reaches 2×105.
Figure 6 illustrates (a) the average running time, (b) the average number of production rules, and (c)
the average number of intermediate graphs of the final constructed geometry. It can be noted that our
hierarchical molecular grammar greatly reduces the running time of the geometry construction. For
non-hierarchical grammars, it is always intractable to construct the geometry since the number of
intermediate graphs is enormous (some approaching 1.5×105). Our hierarchical molecular grammar
provides a practical framework for grammar-induced geometry with theoretical foundations.

D ANALYSIS ON COMPUTATIONAL COMPLEXITY

The computation of our approach consists of three parts: 1) the construction of grammar-induced
geometry, 2) diffusion encoder, and 3) graph diffusion over the geometry. Following Blakely et al.
(2021), suppose we have K samples of molecules, each with N nodes and |E| edges. To construct
the grammar-induced geometry, we need to sample all the edges in order to contract molecules into
junction trees, so the computational complexity is O(K|E|). For diffusion encoder, the complexity
is the same with general graph neural networks, which isO(KLd(Nd+|E|)), whereL is the number
of layeres and d is the feature dimension. As indicated in Chamberlain et al. (2021), the complexity
of graph diffusion is O(|E ′|d)(Eb + Ef), where E ′ is the edge set of grammar-induced geometry,
and Eb, Ef are the numbers of function evaluations for forward and backward pass, respectively.
Therefore, the overall computational cost of our method isO(K|E|+KLd(Nd+ |E|)+ |E ′|d(Eb+
Ef)) = O(KLd(Nd + |E|) + |E ′|d(Eb + Ef)). Compared with general graph neural networks
which have a computational complexity of O(KLd(Nd + |E|)), our approach entails additional
computationsO(|E ′|d(Eb+Ef)), where |E ′| is the sum of the number of edges in the meta geometry
|Emeta| and the number of samples K, since each molecule is connected to the meta geometry by
an edge. In our experiments, we use a 4-degree meta grammar with depth 10, which gives us a
meta geometry of 455 edges, i.e. 455 = |Emeta| ≪ K|E|. We also find in our experiments that
Eb + Ef ≪ LNd. As a result, the overall computational complexity of our method is the same as
that of general graph neural networks in the big O sense. In practice, geometry can be constructed
in parallel, which reduces the running time of our entire method.

E DETAILS ON DATASETS

The Chemical Retrieval on the Web (CROW) polymer database2 curates a database of thermo-
physical data for over 250 different polymers, focusing primarily on the most commonly used plas-
tics and resins in industry. CROW distinguishes from other digital polymer property databases due

2https://polymerdatabase.com/

16

https://polymerdatabase.com/

Under review as a conference paper at ICLR 2023

to its heavy usage of real, experimental data individually sourced via extensive literature search. In
the CROW polymer database, approximately 95% of reported polymers offer some experimental
data from literature, with the remaining 5% derived purely from simulation. We only use those data
with labels from real experiments in our evaluation. The CROW polymer database reports several
properties including the glass transition temperature, Hildebrand solubility parameter, molar heat
capacity, refractive index, and molar cohesive energy. Of these, we choose glass transition temper-
ature as our benchmark performance comparison since it is one of the best documented polymer
properties in the literature (Tao et al., 2021b). For each dataset except ClinTox, we randomly split
the data into 4 : 1 training and testing sets and create five such splits using 5 random seeds. For
ClinTox, we follow the settings in Zhou et al. (2022) to train our model and report the results of
other baselines directly from the paper. Each of five splits is used to train and test a separate instance
of each benchmark model. For the other three datasets, we refer the reader to the original papers:
Permeability (Yuan et al., 2021), FreeSolv (Mobley & Guthrie, 2014), Lipophilicity (Wang et al.,
2015), HOPV (Lopez et al., 2016), DILI (Ma et al., 2020), and PTC (Xu et al., 2018).

F DETAILS ON THE IMPLEMENTATION

Baselines. We compare our approach with various baselines: 1) Random Forest and FFN, two of
the best-performing machine learning models for polymer informatics benchmarking (Tao et al.,
2021b); 2) wD-MPNN, a state-of-the-art method specifically designed for polymer property pre-
diction (Aldeghi & Coley, 2022); 3) ESAN, a general GNN architecture with enhanced expressive
power (Bevilacqua et al., 2022); 4) HM-GNN, a motif-based GNN for molecular feature represen-
tation (Yu & Gao, 2022); 5) PN and Pre-trained GIN, two pre-trained GNNs with state-of-the-art
performance on few-shot learning (Stanley et al., 2021) and transfer learning (Hu et al., 2020). As
HM-GNN and Pre-trained GIN only provide code for graph classification, we modify the final layer
of their networks and use l1 loss for training. For the other methods, we follow the same implemen-
tation as their original papers. Since wD-MPNN cannot be depolyed on general molecules other
than polymers, we report the results of D-MPNN (Yang et al., 2019) instead for two large datasets.

Our System. For our approach, we use 4-degree meta grammar, which contains eight rules. The
meta geometry contains all the meta trees whose size is smaller than 11, resulting in 149 nodes and
455 edges. For the molecular rule learning of θ, we follow all the hyperparamters used in Guo et al.
(2022). For the graph diffusion, the input feature of each meta tree node is the Weisfeiler Lehman
graph hashing feature (Shervashidze et al., 2011). The encoder for meta tree nodes is an embedding
layer that maps hashing features into a 300-dimension continuous vector. For molecular leaves, we
use two different encoders: GIN from Xu et al. (2018) and MPNN from Yang et al. (2019), both of
which output a feature vector of dimension 300. For the decoder, we use a one-layer fully connected
network with size 300. For the graph diffusion process, we follow Chamberlain et al. (2021) and use
Dormand–Prince adaptive step size scheme (DIORI5) with adjoint method. The diffusivity function
a(·, ·;α) is an attention function. We use Adam optimizer for the training of θ and (φ,ψ, α), with
learning rate 0.01 and 0.001, respectively. We train θ for ten epochs. For each training epoch of θ,
we train (φ,ψ, α) for 50 epochs.

G RELATED WORKS

Machine Learning for Molecular Property Prediction. The use of machine learning methods
to predict molecular properties has a long history. Many early methods use SMILES strings or
handcrafted fingerprints as input and rely on traditional machine learning methods, such as random
forest and Gaussian processes, which are still competitive today in many applications (Tao et al.,
2021b; Joo et al., 2022). Recently, graph-based representations of molecules have gained increasing
popularity with the development of GNNs (Feinberg et al., 2018; Xu et al., 2018; Wu et al., 2021;
Bevilacqua et al., 2022; Yu & Gao, 2022; Aldeghi & Coley, 2022; Alon & Yahav, 2020). We
refer the reader to Wieder et al. (2020) for a detailed review of GNN-based property predictors.
Current state-of-the-art GNN-based methods provide more advanced representations of molecules
based on graphs. Bevilacqua et al. (2022) represents each individual graph as a set of subgraphs,
increasing the expressive power of GNNs. Aldeghi & Coley (2022) tailors molecular graphs by
adding stochastic edges and designs GNN specifically for polymers based on Yang et al. (2019).
Yu & Gao (2022) and Zhang et al. (2021) leverage motifs to model molecular relationships. All

17

Under review as a conference paper at ICLR 2023

these methods require large training datasets to achieve reasonable performance. It is common to
use self-supervised learning (Rong et al., 2020; Wang et al., 2022) and transfer learning (Hu et al.,
2020) to deal with sparse data, where neural networks are pre-trained on large datasets and then
fine-tuned on the target small dataset. Most of these methods, however, focus solely on molecular
classification, while our approach can also address regression problems with extremely sparse data,
which are considerably more challenging.

Molecular Grammars. As an interpretable and compact design model, grammar has recently
gained increasing attention in the field of molecule discovery (Dai et al., 2018; Kajino, 2019; Krenn
et al., 2019; Xu et al., 2020; Nigam et al., 2021; Guo et al., 2021a; 2022). A molecular grammar can
be considered as a generative model that uses production rules to generate molecules. The rules of a
grammar can be either manually constructed (Dai et al., 2018; Krenn et al., 2019; Guo et al., 2021a)
or automatically learned from molecular datasets (Kajino, 2019; Xu et al., 2020; Nigam et al., 2021;
Guo et al., 2022). Recent works have demonstrated that a learnable hypergraph grammar can be
effective in capturing hard chemical constraints, such as valency restrictions (Kajino, 2019; Guo
et al., 2022). Guo et al. (2022) further proposes a learning pipeline for constructing a hypergraph
grammar-based generative model that can incorporate domain-specific knowledge from very small
datasets with dozens of samples. Despite the inherent advantages of molecular grammars, such as
explicitness, explanatory power, and data efficiency, existing works mainly use them for molecular
generation. Prediction and optimization of molecular properties can only be accomplished by using
a separate model based on the grammar representation in a latent space, which is learned individu-
ally (Kajino, 2019; Xu et al., 2020). We integrate molecular grammar into property prediction tasks
by constructing a geometry of molecular graphs based on the learnable grammar, which allows us to
optimize both the generative model and the property predictor simultaneously. On extremely small
datasets, our approach benefits especially from the data efficiency of grammar and achieves superior
performance over existing property predictors.

Hierarchical Molecular Generation. The decomposition of molecular structures in our hierarchi-
cal molecular grammar is related to substructure-based methods in molecular generation (Jin et al.,
2018; 2020; Maziarz et al., 2021). Jin et al. (2018) employs encoders and decoders to generate a
junction tree-structured scaffold and then combine chemical substructures into a molecule. Jin et al.
(2020) uses a hierarchical graph encoder-decoder to generate molecules in a coarse-to-fine manner,
from atoms to connected motifs. Maziarz et al. (2021) integrates molecule fragments and atom-
by-atom construction to generate new molecules. Our approach is fundamentally different from all
these existing hierarchical representations in two respects: 1) Without the need for any training, our
proposed meta grammar (the coarse level) can enumerate all possible junction tree structures by
using a compact set of meta production rules, which can be theoretically guaranteed. Our method
only requires learning at the fine level, which are molecular fragments determined by molecular
rules, whereas existing methods require learning two models for both coarse and fine levels. 2) As
opposed to existing methods that use latent spaces, our meta geometry induced by meta grammar
explicitly models the similarity between molecules by using graph distance along the geometry.
Due to the edit-completeness of meta grammar in Definition 1, the graph distance is an explainable
measurement of minimal editing distance between molecular graphs, whereas the distance in latent
spaces used in existing methods lacks explainability.

Geometric Deep Learning applies deep neural networks to non-Euclidean domains such as graphs
and manifolds with a wide range of applications (Bronstein et al., 2017; Cao et al., 2020; Bron-
stein et al., 2021). Related to our method, a series of recent works use graph neural diffusion by
treating GNNs as a discretisation of an underlying heat diffusion PDE (Chamberlain et al., 2021;
Elhag et al., 2022; Bodnar et al., 2022). These methods work on large graph data where the graph
connectivity of individual nodes is provided. Additionally, there are also existing works on infer-
ring the underlying geometry of graph data. Ganea et al. (2018) and Cruceru et al. (2021) embed
graphs into non-Euclidean manifolds such as hyperbolic and elliptical spaces and optimize their em-
beddings within these Riemannian spaces. Cosmo et al. (2020) learns a latent graph to model the
underlying relationship between data samples and applies GNN to it. Different from these methods,
our approach uses explicit and learnable intrinsic geometry based on graph grammar to model the
relationship between molecular data. Since graph grammar is a generative model, our framework is
capable of optimizing both molecular generation and property prediction simultaneously.

18

Under review as a conference paper at ICLR 2023

H MORE DETAILS OF HIERARCHICAL MOLECULAR GRAMMAR

Discussion on Hierarchical Molecular Grammar. The three additional attributes in Definition 1
can be used to deduce several desirable properties of a meta grammar. “Degree k” ensures the meta
grammar is expressive and complete, covering all possible trees under a simple tree degree con-
straint. “Edit completeness” enables the explicit capture of transformations between two trees with
edit distance one and therefore between two arbitrary trees with arbitrary distances. “Minimality”
guarantees that the meta grammar is compact. Based on these three attributes, we can construct a
generic meta grammar generating trees of non-terminal nodes by using only a small but expressive
set of production rules. Figure 3(b) shows a 3-degree meta grammar. Each rule has one non-terminal
node R∗ on the LHS and two R∗s on the RHS . Depending on the number of anchor nodes on the
LHS , these rules can transform tree nodes of different degrees by attaching a new node using dif-
ferent schemes indicated by the RHS . It is evident that we can generate any possible tree with a
degree smaller than 4 by adopting a sequence of rules from this 3-degree meta grammar. In Proposi-
tion 2 “Completeness” states that any molecular graph can be derived from a hierarchical molecular
grammar with a set of appropriate molecular rules. This can be demonstrated by the fact that we can
generate an arbitrary molecule by first using the meta grammar to generate a tree of non-terminal
nodes (which has the same tree structure as a junction tree decomposed from the molecule), and
then using the molecular grammar to transform the tree into a molecular hypergraph by specifying
a molecular fragment for each non-terminal node.

Meta Rules Construction. We refer to the production rule set of k-degree, edit-complete, and
minimal meta grammar as a k-degree meta rule set. We visualize 4-degree meta rules in Figure 7a,
where {p1}, {p1, p2, p3}, and {p1, p2, p3, p4, p5} correspond to meta rule sets of degree 1 to 3,
respectively. 1-degree meta rule set P(1)

G
is constructed as

P(1)

G
= P(1) = {p(1)0 },

p
(1)
0 : LHS

(1)
0 → RHS

(1)
0 ,LHS

(1)
0 := ({X},∅), RHS

(1)
0 := H(V

(1)
R,0, E

(1)
R,0),

V
(1)
R,0 = {R∗

1,R∗
2}, E

(1)
R,0 = {(R∗

1,R∗
2)}.

When using the meta grammar for production, we treat R∗
1,R∗

2 as the same type of non-terminal
node, i.e. R∗ = R∗

i , i = 1, 2, despite the use of indices in the above formulation.

For k-degree meta rule set P(k)

G
(k > 1), the construction is achieved by induction:

P(k)

G
= P(k−1)

G
∪ P(k), P(k) = {p(k)0 } ∪

⌊ k
2 ⌋⋃
i=1

{p(k)i },

p
(k)
0 : LHS

(k)
0 → RHS

(k)
0 , LHS

(k)
0 := H(V

(k)
L,0 , E

(k)
L,0), RHS

(k)
0 := H(V

(k)
R,0 , E

(k)
R,0),

p
(k)
i : LHS

(k)
i → RHS

(k)
i , LHS

(k)
i := H(V

(k)
L,i , E

(k)
L,i), RHS

(k)
i := H(V

(k)
R,i , E

(k)
R,i), i = 1, ..., ⌊k

2
⌋,

V
(k)
L,0 = {R∗} ∪

k−1⋃
j=1

{Vanc,j}, E(k)
L,0 =

k−1⋃
j=1

{(R∗, Vanc,j)},

V
(k)
R,0 = {R∗

1,R∗
2} ∪

k−1⋃
j=1

{Vanc,j}, E(k)
R,0 = {(R∗

1,R∗
2)} ∪

k−1⋃
j=1

{(Vanc,j ,R∗
2)},

V
(k)
L,i = {R∗} ∪

k⋃
j=1

{Vanc,j}, E(k)
L,i =

k⋃
j=1

{(R∗, Vanc,j)},

V
(k)
R,i = {R∗

1,R∗
2} ∪

k⋃
j=1

{Vanc,j}, E(k)
R,i = {(R

∗
1,R∗

2)} ∪
i⋃

j=1

{(Vanc,j ,R∗
1)} ∪

k⋃
j=i+1

{(Vanc,j ,R∗
2)}.

Specifically, the k-degree meta rule set P(k)

G
contains all the rules from (k−1)-degree meta rule set

P(k−1)

G
as well as other newly introduced rules P(k). Each rule contains one non-terminal nodeR∗

19

Under review as a conference paper at ICLR 2023

on the LHS and two non-terminal nodesR∗
1 andR∗

2 on the RHS . The LHS of p(k)0 has a degree of
k−1 as it contains k−1 anchor nodes Vanc. The RHS of p(k)0 attaches one non-terminal node R∗

2
to the other non-terminal node R∗

1 which connects all the anchor nodes. Therefore, the RHS has a
degree of k which is larger than the degree of the LHS by one. In all the other rules, the LHS has k
anchor nodes and is of degree k while the RHS keeps a maximal degree of k. The k anchor nodes
on the RHS are combinatorially distributed to R∗

1 and R∗
2, i.e. if R∗

1 is attached to i anchor nodes,
R∗

2 is attached to the rest of k−i anchor nodes. Since we considerR∗
1 andR∗

2 to be the same during
grammar production, the range of i is {1, ..., ⌊k2 ⌋}. In total, there are 1+⌊k2 ⌋ rules in P(k).

Proof of Edit Completeness. According to the definition in Zhang (1996); Paaßen (2018), tree edit
distance TED(T, T ′) between two trees T and T ′ is the minimum number of operations required to
transform one tree into the other. There are three types of available operations: inserting, deleting,
and relabeling. Consider two arbitrary trees T and T ′ that satisfy the definition of edit completeness
(being derived from the meta grammar, TED(T ,T ′) = 1, and |T | < |T ′|). Since all the trees
generated from the meta grammar have homogeneous tree node labels (i.e. R∗), there is no rela-
beling operation in TED calculation. Furthermore, the tree size relation between T and T ′ admits
only one type of tree edit operation: a one-step inserting. Figure 7b illustrates the one-step inserting
operation. It operates on a certain node v in T whose subtree is Tsub(v). A new node v′, which
takes a subset of Tsub(v) as the children, is added as a new child of node v. The rest of Tsub(v)
stays as the children of node v. Suppose the degree of node v in T is m and the degree related to
subtree Tsub(v) is n. Without loss of generality, we suppose 0 ≤ n ≤ m/2. We can treat v in T
as the R∗ on the LHS , v′ and v in T ′ as R∗

1 and R∗
2 on the RHS , respectively. Then the one-step

inserting operation can be achieved using the rule p(m+1)
n ∈ P(m+1) from (m+1)-degree meta rule

set P(m+1)

G
as constructed above. Since ∆(T ′) ≥ m+1, the meta grammar P(k)

G
that generates T ′

has k ≥ m+1. So p(m+1)
n ∈ P(m+1) ⊆ P(k)

G
; thus finish the proof.

(a) 4-degree meta rules.

𝑇 𝑇′

𝑣

𝑣′

𝑣

(b) One-step inserting operation.

Figure 7: Illustration of inserting opera-
tion and 4-degree meta grammar.

Proof of Degree k. For an arbitrary tree T with maximal
degree k, we prove that meta grammar P(k)

G
can generate

T by finding a reverse path of production rule from the
tree T to the initial node X . We first find all the nodes
{vi}ni=1 in T that have a degree of k. For each node, by
edit completeness, we can use the inverse operation of in-
serting and make the node to have a degree of k−1. It can
be shown from the proof for edit completeness that each
inverse operation of inserting corresponds to an inverse
deployment of a production rule. By using n reverse pro-
duction steps on all the k-degree nodes, we can obtain a
T ′ with ∆(T ′) = k−1. We can continue the process until
the tree is 0-degree, i.e. the X ; thus finish the proof.

Proof of Minimality. From edit completeness, we know
each production rule in the meta grammar corresponds to
at least one case of one-step inserting operation. As con-
strainted by degree k, arbitratry trees that are of degree
smaller than k need to be covered by the meta grammar.
We thus need to handle all the possible cases of one-step
inserting operation when finding the reverse production
path from the tree to X . Note that one-step inserting
opeartion involves the division of a subtree, which has
combinatorial ways. Then every combinatorial distribu-
tion of anchor nodes corresponds to one case of subtree
division. This proves each production rule in the meta rule set is necessary. Since there are no
duplicate rules, it can be concluded that the meta grammar constructed above is minimal.

4-degree Meta Rules. Figure 7a shows the 4-degree meta grammar we use in our approach. Since
the edit completeness is the foundation to prove all the other attributes of the meta grammar, we use
a tree edit distance toolkit3 and verify its correctness for the 4-degree meta grammar.

3https://pythonhosted.org/zss/

20

https://pythonhosted.org/zss/

Under review as a conference paper at ICLR 2023

I MOLECULAR RULES CONSTRUCTION

Algorithm 1: Molecular Rules Construction.
Input : molecular hypergraph H = (V,EH), probability function ϕ(·; θ)
Output: molecular rule set Pmol = {pi}Mi=1, junction tree T = (VT , ET) where each vT ∈ VT

is a subset of V
1 Initialize Pmol = ∅, VT = ∅, ET = ∅;
2 Create a set for unvisited nodes Vunv ← V , a set for unvisited hyperedges Eunv ← EH ;
3 while Eunv ̸= ∅ do
4 e = [e1, ..., eK] , ei ∈ Eunv, i = 1, ...,K=|Eunv|;
5 X ∼ Bernoulli(ϕ(e; θ));

/* Construct a rule for each connected component */
6 for each Hsub = (Vsub, Esub) in ConnectedComponents(X, H) do

/* Separate the connected component */

7 V̂sub ← Vsub, Êsub ← Esub, Vanc ← ∅, Eanc ← ∅;
8 for each v ∈ Vsub do
9 Vn = GetNeighbors(v, H);

10 if Vn ∩ Vsub ̸= ∅ then
11 if v /∈ Vunv or InRing(v, H) then
12 V̂sub ← V̂sub \ {v};
13 Êsub ← Êsub \ {(s, v)|(s, v) ∈ Esub};
14 Vanc ← Vanc ∪ {v(i)anc, i = |Vanc|+ 1};
15 Eanc ← Eanc ∪ {(s, v(i)anc)|(s, v) ∈ Esub, i = |Vanc|+ 1};
16 else
17 Vanc ← Vanc ∪ {v(i)anc, i = |Vanc|+ k}|Vn∩Vsub|

k=1 ;
18 Eanc ← Eanc ∪ {(s, v(i)anc)|(s, v) ∈ Esub, i = |Vanc|+ k}|Vn∩Vsub|

k=1 ;
/* Construct a production rule */

19 p = RuleConstruction(V̂sub, Êsub, Vanc, Eanc);
20 Pmol ← Pmol ∪ {p};

/* Construct junction tree */
21 vT = (Vsub);
22 for each {vt ∈ VT |vt ∩ vT ̸= ∅} do
23 ET ← ET ∪ {(vt, vT)};
24 VT ← VT ∪ {vT };

/* update visited status of nodes and hyperedges */
25 Vunv ← Vunv ∪ Vsub, Eunv ← Eunv ∪ Esub;

26 return Pmol, T = (VT , ET);

To obtain the input for the molecular rule construction, we first convert the molecule into a molecular
hypergraph H = (V,EH). A node v ∈ V represents an atom of the molecule. A hyperedge e ∈ EH
corresponds to either a bond that joins only two nodes or a ring (including aromatic ones) that joins
all nodes in the ring. An illustration is provided in Figure 2 of Guo et al. (2022). The probability
function ϕ(·; θ) is defined on each hyperedge: ϕ(e; θ) = σ(−Fθ(f(e))), where σ(·) is the sigmoid
function, Fθ(·) is a two-layer fully connected network whose final output dimension is 1, and f(·)
is a feature extractor using a pre-trained GNN (Hu et al., 2020).

Algorithm 1 illustrates the detailed process of constructing molecular rules for a single molecule.
Note that in our approach, the molecular rule construction is performed simultaneously for all input
molecules. For each molecule, we first perform an i.i.d. sampling on all the hyperedges following
a Bernoulli distribution which takes the value 1 with probability indicated by ϕ(e; θ). We then
obtain a binary vector X that indicates whether each hyperedge is sampled (line 4-5). Next, all
connected components are extracted with respect to the sampled hyperedges (line 6). A production
rule is constructed for each connected component Hsub = (Vsub, Esub) (line 7-19). Specifically,
a production rule needs two components: a hypergraph Ĥsub = (V̂sub, Êsub) for RHS and anchor

21

Under review as a conference paper at ICLR 2023

nodes Vanc indicating the correspondence between the LHS and the RHS . Ĥsub is obtained by
removing visited nodes and in-ring nodes fromHsub. Vanc contains nodes from V that are connected
to nodes from Hsub but do not appear in Hsub themselves. Eanc are the edges connecting anchor
nodes to Ĥsub following the same connectivity in the original graphH . Following Guo et al. (2022),
the function RuleConstruction(V̂sub, Êsub, Vanc, Eanc) returns a production rule p : LHS →
RHS constructed as

LHS := H(VL, EL), VL = {R∗} ∪ Vanc , EL = {(R∗, v)|v ∈ Vanc} ,
RHS := H(VR, ER), VR = V̂sub ∪ Vanc , ER = Êsub ∪ Eanc.

(3)

In contrast to Guo et al. (2022), our molecular rule construction does not replace the connected
component with the non-terminal node R∗ at every iteration since according to our definition, the
molecular rule does not contain any non-terminal nodes on the RHS .

The junction tree of the molecule is constructed along with the construction of molecular rules
(line 21-24). We simply treat each connected component Vsub sampled at each iteration as a node
vT ∈ VT in the junction tree T = (VT , ET). Two nodes are connected by an edge eT ∈ ET if their
corresponding connected components share hypergraph nodes from H . Since each hyperedge in H
is only visited once, the constructed junction tree then contains all the hyperedges and nodes of H
without redundancy (Kajino, 2019).

J GRAMMAR-INDUCED GEOMETRY CONSTRUCTION

Algorithm 2: Grammar-induced Geometry Construction.

Input : meta production rules PG = {pi}Ni=1, maximum BFS depth D, a set of molecular
hypergraphs {Hi}Mi=1 and their corresponding junction trees J = {Ti}Mi=1

Output: geometry in the form of a graph G = (V, E) where each v = Hv = (Vv, Ev) ∈ V
represents a meta tree or a molecular hypergraph and E is the edge set of the geometry

/* Add root of the geometry */
1 Initialize vroot = Hroot = (X ,∅), V = {vroot}, E = ∅;
2 Create a queue data structure Q;
3 Q.equeue(vroot);
/* Breadth-first search for meta geometry, pre-computed offline */

4 while Q is not empty and |V| ≤ D do
5 v = Q.dequeue();

/* Expand the meta geometry */
6 for each pi ∈ PG do
7 if pi is applicable to Hv then
8 Hv

pi⇒Hnew;
9 vnew = Hnew;

10 if vnew /∈ V then
11 V ← V ∪ {vnew}, E ← E ∪ {(v, vnew)};
12 Q.equeue(vnew);
13 else
14 v̂ = GetIsomorphicGraph(Hnew, V), E ← E ∪ {(v, v̂)};

/* Connect molecular leaves during run-time */
15 for each Ti ∈ J do
16 for each v ∈ V do
17 if IsIsomorphic(Hv , Ti) then
18 vi = Hi;
19 V ← V ∪ {vi}, E ← E ∪ {(v, vi)};

20 return G = (V, E);

Algorithm 2 illustrates the detailed algorithm to construct the grammar-induced geometry. It con-
tains two parts: the construction of the meta geometry (line 4-14) and the construction of the molec-
ular leaves (line 15-19). The meta geometry construction follows the standard breadth-first search

22

Under review as a conference paper at ICLR 2023

(BFS) starting from the root Hroot = (X ,∅) (line 1). Every time when we visit a node v ∈ V in
G, we find all the rules that are applicable to Hv from the meta rule set (line 6-7). Each applicable
rule is applied to Hv in order to create a new meta tree Hnew (line 8). Depending on whether there
is a node in V that represents a isomorphic tree to Hnew in the current geometry, we either create a
new node vnew (line 9) or find the existing matched node v̂ (line 14). We then add an edge between
v and vnew, or between v and v̂ (line 11 and 14). The function GetIsomorphicGraph(Hnew, V)
enumerates every node in V , checks if the tree represented by the node is isomorphic to Hnew, and
returns the matched node. We use the algorithm from Cordella et al. (2001) which is implemented in
networkx4 for graph isomorphism test. To increase the speed of GetIsomorphicGraph(Hnew,
V), we use Weisfeiler Lehman graph hash (Shervashidze et al., 2011) and only perform isomor-
phism test for graph pairs that share the same hashing code.

The molecular leaves are added during run-time (line 15-19). For each input molecular hypergraph,
we check if there is a meta tree node that is isomorphic to its junction tree. If so, we add an edge con-
necting the matched meta tree node to the molecular hypergraph. The function IsIsomorphic(Hv ,
Ti) is implemented using the same package for GetIsomorphicGraph(Hnew, V) and returns true
if Hv and Ti are isomorphic to each other.

K OPTIMIZATION

X

θ

uT

φ

ψ

α

l(·, ·)

û

Figure 8: A graphical model of dependency.

Figure 8 shows a graphical model of depen-
dency in our optimization problem. The two
sets of parameters θ and (φ,ψ, α) are indepen-
dent and thus can be iteratively optimized using
block coordinate descent. Since the objective
in Equation 2 is differentiable with respect to
(φ,ψ, α), we can use gradient descent for the
optimization iterations related to the graph neu-
ral diffusion. The geometry learning, however,
is non-differentiable due to the fact that we
perform sampling to construct molecular rules
and construct the geometry. Hence, we rewrite
the objective for optimizing θ in an expectation
form and apply REINFORCE (Williams, 1992)
to obtain a stochastic gradient, as done in Guo
et al. (2022):

min
θ
l(uT , û) = min

θ
EX

[
l(uT , û)

]
,

∇θEX

[
l(uT , û)

]
=

∫
X

l(uT , û)∇θp(X)

= EX

[
l(uT , û)∇θ log(p(X))

]
≈ 1

N

N∑
n=1

l(u
(n)
T , û)∇θ log(p(X(n))),

where X is a concatenation of binary vectors indicating how hyperedges are sampled in molecular
rule construction in Appendix I.

L EXAMPLES OF RETRO-SYNTHESIS PATHS

Figure 9 shows the retro-synthesis paths of three molecules generated using our pipeline. Since
Retro∗ score is used as one of the grammar metrics, our approach is capable of retro-synthesis plan-
ning for all the generated molecules, providing a complete pipeline for novel molecule discovery.

4https://networkx.org/documentation/stable/reference/algorithms/
isomorphism.html

23

https://networkx.org/documentation/stable/reference/algorithms/isomorphism.html
https://networkx.org/documentation/stable/reference/algorithms/isomorphism.html

Under review as a conference paper at ICLR 2023

O OH

Br

O O

O
S O

O O
S O

O

NPO

N

N
S
O

O
Cl

O

OHO
S O

O

O

HO OH

S
O

O
Cl

O

OH
O

HO

O

OHO

O
O

O

O

OH
O

-O O-

OH

Br

O

O
S O

O O
S O

O

NPO

N

N
S
O

O
Cl

O

OHO
S O

O

O

OHO

OS
O

O
Cl

O

OHO
S O

O

O

O

O OH
O

-O O-

O

O O

O

O

O

OH

O

OH

O

O

OO

O

O

O

OH

F
F
F

Cl

Cl F
F

F

Cl

Cl F
F

F

Figure 9: Examples of retro-synthesis paths.

24

	Introduction
	Preliminaries
	Grammar-induced geometry for property prediction
	Grammar-induced Geometry
	Hierarchical Molecular Grammars
	Graph Diffusion over Grammar-induced Geometry

	Evaluation
	Experiment Setup
	Results on Small Datasets
	Results on Large Datasets
	Analysis

	Conclusion
	Additional Results
	Analysis on Training Dataset Size
	Analysis on construction cost reduction of hierarchical molecular grammar
	Analysis on Computational Complexity
	Details on Datasets
	Details on the Implementation
	Related works
	More Details of Hierarchical Molecular Grammar
	Molecular Rules Construction
	Grammar-induced Geometry Construction
	Optimization
	Examples of Retro-Synthesis Paths

