

000 BEYOND FREQUENCY: SCORING-DRIVEN DEBIASING 001 FOR OBJECT DETECTION VIA BLUEPRINT-PROMPTED 002 IMAGE SYNTHESIS 003

004
005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 This paper presents a generation-based debiasing framework for object detection.
014 Prior debiasing methods are often limited by the representation diversity of sam-
015 ples, while naive generative augmentation often preserves the biases it aims to
016 solve. Moreover, our analysis reveals that simply generating more data for rare
017 classes is suboptimal due to two core issues: i) instance frequency is an incom-
018 plete proxy for the true data needs of a model, and ii) current layout-to-image syn-
019 thesis lacks the fidelity and control to generate high-quality, complex scenes. To
020 overcome this, we introduce the representation score (RS) to diagnose represen-
021 tational gaps beyond mere frequency, guiding the creation of new, unbiased lay-
022 outs. To ensure high-quality synthesis, we replace ambiguous text prompts with
023 a precise visual blueprint and employ a generative alignment strategy, which fos-
024ters communication between the detector and generator. Our method significantly
025 narrows the performance gap for underrepresented object groups, *e.g.*, improving
026 large/rare instances by 4.4/3.6 mAP over the baseline, and surpassing prior L2I
027 synthesis models by 15.9 mAP for layout accuracy in generated images.

028 1 INTRODUCTION 029

030 The reliability of object detection models is fundamentally limited by biases in their training data,
031 manifesting as skewed distributions across object categories (Ouyang et al., 2016), sizes (Herranz
032 et al., 2016), and spatial locations (Zheng et al., 2024). Conventional debiasing strategies, such as
033 resampling (Cui et al., 2019) or re-weighting (Tan et al., 2020), attempt to mitigate this by adjusting
034 the influence of training instances based on frequency. While effective to a degree, these methods
035 are **constrained by the visual vocabulary** of the original dataset. They can re-balance the influence
036 of rare samples but cannot generate novel appearances or contexts to fill representational gaps.

037 Generation-based data augmentation (Wu et al., 2023; Trabucco et al., 2024) has emerged as a
038 promising alternative to overcome this limitation. By synthesizing entirely new training samples,
039 these methods hold the potential to create a more balanced dataset. However, current solutions
040 for object detection typically follow a layout-to-image (L2I) synthesis pipeline (Chen et al., 2024a;
041 Wang et al., 2024), where the layouts used as conditions for data generation are directly sampled
042 from the original training set. Thus the generation process inevitably **preserves the very biased**
043 **distributions** they aim to solve, leaving a clear need for a truly bias-aware generation strategy.

044 But what would an effective generation-based debiasing framework entail? Our investigation in §2
045 reveals that: **i**) simply combining the frequency-centric debiasing view with generative approaches,
046 *i.e.*, generating more images for rare data groups, is not the final answer. It can outperform both
047 traditional augmentation techniques (*e.g.*, copy-paste, random flip, crop) and bias-agnostic L2I syn-
048 thesis, yet still falls short of the gains achieved by enriching the training set with more real samples;
049 **ii**) the quality of samples generated by current L2I synthesis methods remains below that of real
050 data, as models trained on synthetic samples consistently underperform those trained on real ones.

051 The problems can be two sets: **i**) *Instance frequency is an incomplete proxy to determine the most*
052 *needed data of a model* (Chawla et al., 2002; He & Garcia, 2009). According to the controlled ex-
053 periments in §2, we find that certain high-performing and data-rich groups (*e.g.*, large objects) can
be more ‘data hungry’ and gain greater benefit from additional data compared to low-performing

groups with limited samples (*e.g.*, small objects). Relying solely on frequency can result in suboptimal interventions. ② *Even with a perfect, bias-targeted layout and a powerful generation model, current L2I approaches struggle to render new samples faithfully.* Prior L2I methods primarily focus on fusing layout conditions into the generation process, with limited attention given to enhancing the fidelity of generated images to real-world data. Moreover, these methods directly translate 2D spatial arrangements into 1D text sequences. This introduces ambiguity and lacks the fine-grained control for complex scenes with specific object relationships and occlusion (Johnson et al., 2018).

In this work, we propose a targeted debiasing framework that automatically diagnoses the underrepresented data groups and executes precise generation to diversify training data. To tackle ①, we introduce a *representation score* (RS) that moves beyond simple frequency counts to quantify how well a concept is represented across both sample density and representation diversity. The RS then guides a bias-aware recalibration module which constructs new, unbiased layouts to fill the identified representational gaps. Furthermore, the entire diagnosis-then-create pipeline is embedded within a *dynamic debiasing engine* that leverages detector errors to continuously refine the RS, ensuring the system remains adaptive and focused on the challenging biases throughout training. To tackle ②, we replace ambiguous text prompts with a *visual blueprint*, *i.e.*, canvases composed of colored rectangles that specify the class, size, and position of each object. This provides the generative model with direct and unambiguous instructions on object relationships, occlusion, and instance identity, ensuring the precise synthesis of debiased samples. Next, we exploit the duality between L2I synthesis and object detection, where the output of one task naturally serves as the input to the other. On this basis, we form a *generative alignment* mechanism that enforces consistency within an “Image-Layout-Image” loop. This facilitates communication between the generator and detector by penalizing the detector when it produces layouts that are insufficient for faithful image synthesis.

Unlike frequency-based methods, our RS-driven debiasing strategy tackles limited sample diversity by completing the truly underrepresented data groups with samples featuring novel appearances; moving beyond conventional generative augmentation, visual-blueprint and generative alignment facilitates precise synthesis of high-quality data targeting specific representation gaps. Consequently, our method demonstrates strong debiasing effectiveness. It establishes a new SOTA and greatly narrows the performance gap for underrepresented groups, *e.g.*, **+3.6** mAP for rare classes, **+3.2** mAP for instances at image borders, **+4.4** and **1.9** mAP for large and small objects on MS COCO. Our approach also demonstrates high generation fidelity, with the accuracy of layouts in synthesized images surpassing prior SOTA by **15.9** mAP, when compared against existing L2I synthesis models.

2 THE FREQUENCY TRAP AND FIDELITY GAP: A MOTIVATING STUDY

In this section, we conduct controlled experiments across three dimensions: spatial location, category frequency, and object size, to assess the influence of different data augmentation and debiasing strategies. All studies utilize Faster R-CNN (Ren et al., 2015) with a ResNet-50 (He et al., 2016) backbone. Hyperparameters are kept identical across models. We first train the detector on a random 1/4 subset of the MS COCO training set. We then measure the mAP by enriching the 1/4 subset by factors of 4/3, 2, and 4 with: **i**) resampling (Gupta et al., 2019) rare data groups via standard data augmentation techniques like copy-paste, random flip, and crop (termed *Data Aug*); **ii**) bias-agnostic L2I synthesis to generate new samples using layouts from training sets (termed *Bias-Agnostic Gen*); **iii**) resampling rare data groups via L2I synthesis (termed *Freq-Aware Gen*); and **iv**) real samples from the remaining 3/4 training set (termed *Real Data*). Results are reported by $mAP_{center, middle, outer}$ for spatial location; $mAP_{frequent, common, rare}$ for object category; and $mAP_{large, normal, small}$ for object size. Detailed definitions for metrics are provided in *Appendix*. Results are summarized in Fig. 1

• **Observation 1: Generative Debiasing Outperforms Traditional Augmentation, Yet Falls Short of a Complete Remedy.** The *Freq-Aware Gen* strategy, which uses L2I synthesis to create new instances for rare data groups, consistently outperforms the *Data Aug* baseline across all dimensions. But when compared to models trained by *Real Data*, its performance still lags behind.

ANALYSIS: These results support our claim that *Data Aug* is “constrained by the visual vocabulary of the original dataset”, leading to limited diversity and improvement. The superiority of *Freq-Aware Gen* confirms that generation-based augmentation is a promising alternative. At the same time, its failure to match *Real Data* proves that current solutions are not the final answer.

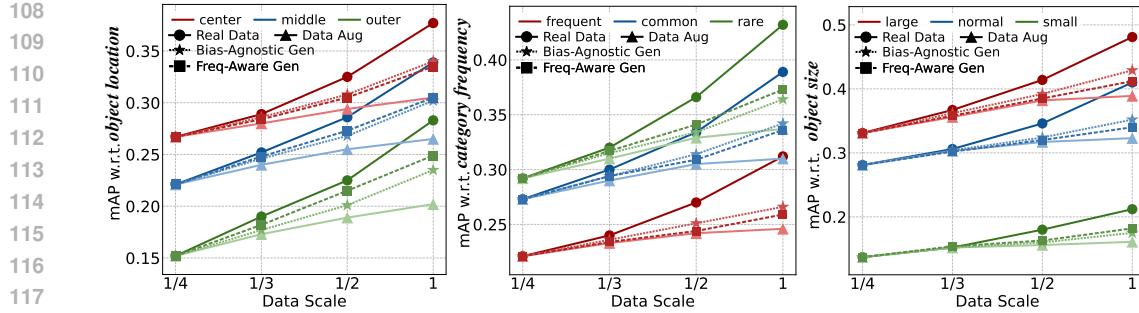


Figure 1: Comparison of four data enrichment strategies with respect to object location, category frequency, and object size as the dataset scale increases from 1/4 by factors of 4/3, 2, and 4.

• **Observation 2: Frequency is an Incomplete and Potentially Misleading Proxy for Data Need.**

We observed that certain data-rich groups, such as large objects, benefited disproportionately more from additional samples in *Bias-Agnostic Gen* (+9.8 mAP) than *Freq-Aware Gen* (+8.1 mAP). This indicates that relying merely on frequency can lead to a suboptimal intervention.

ANALYSIS: This provides direct evidence for our claim that “Instance frequency is an incomplete proxy to determine the most needed data of a model”, and “Relying solely on frequency can result in suboptimal interventions”. The *Freq-Aware Gen* strategy, by design, focuses its efforts on low-frequency groups (e.g., rare classes, small objects). While this yields modest gains in those specific areas, it overlooks a larger opportunity for model improvement.

• **Observation 3: Fidelity Gap Limits Generative Data Augmentation.** While both *Bias-Agnostic Gen* and *Real Data* enrich the training set by adding new data that follows the identical biased distribution of the original 1/4 subset (*i.e.*, not attributable to the layout choices or data distribution), the mAP gain from *Real Data* is consistently higher than that of *Bias-Agnostic Gen*.

ANALYSIS: Since the data distribution is perfectly controlled, the performance gap can be directly attributed to the fidelity gap between synthesized images and real-world data. This finding supports our claim that “current L2I approaches struggle to render new samples faithfully”. In this work, we will solve this problem from both the layout conditioning and generator training strategies.

Remark. Our empirical analyses confirm that while generation-based data augmentation is promising, current approaches fall short in two aspects. **First**, the suboptimal performance of the frequency-driven *Freq-Aware Gen* strategy demonstrates that instance frequency is an incomplete proxy for the representation needs of models. A more sophisticated diagnostic tool is required to identify the true data gaps. **Second**, the performance gap between *Bias-Agnostic Gen* and *Real Data*, which both share bias of the training set, reveals a fundamental limitation in current synthesis control and fidelity. This suggests that even if we know what to generate, current layout-to-image methods lack the precision to generate it effectively.

3 VISUAL-PROMPTED DYNAMIC DEBIASING FOR OBJECT DETECTION

This section presents our generation-based debiasing framework, which includes a dynamic debiasing engine (§3.1) to construct unbiased layouts guided by both frequency and sample diversity, and a visual blueprint-prompted synthesis pipeline (§3.2) powered by generative alignment.

3.1 DYNAMIC DEBIASING VIA SCORING-DRIVEN LAYOUT GENERATION

There are two core challenges in our generation-based debiasing strategy. First, we need to quantitatively measure the dataset biases inherent, which is the foundation for targeted debiasing. Second, the generated layouts for L2I synthesis should be both diverse and physically plausible, as naive randomization often produces unrealistic scenes that are unsuitable for model training.

Representation Score. We define a *representation score* (RS) as the quantitative proxy for how well a specific data group is represented in the dataset. Groups with low RS are under-represented and prioritized for debiasing. For object detection, the data group $\mathcal{G} = (c, s, u)$ is a set of bounding

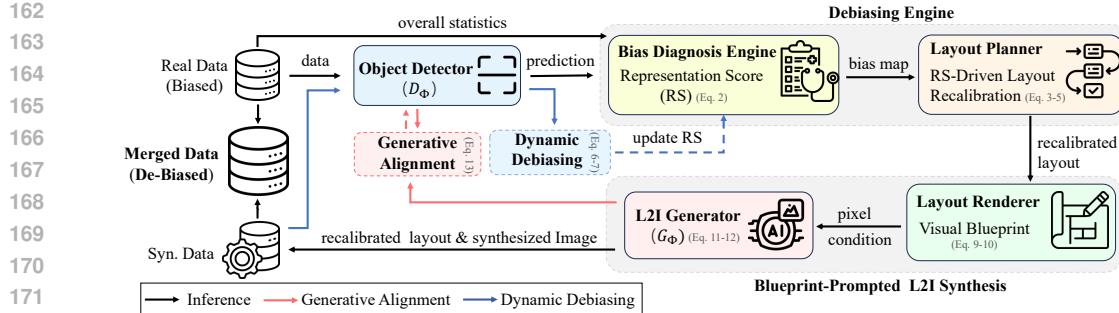


Figure 2: The overall pipeline of our framework, which 1) analyzes real data statistics to compute the representation score (Eq. 2), considering across frequency and diversity (Eq. 1); 2) performs RS-driven layout recalibration (Eq. 3-5) to sample target layouts for under-represented groups; 3) converts recalibrated layouts into visual blueprints (Eq. 9-10), which provide pixel-level conditions for L2I generation (Eq. 11-12); 4) the process is constrained by duality-aware generative alignment (Eq. 13) for feature consistency and error-based dynamic debiasing (Eq. 6-7) for adaptive RS updates.

boxes with attributes including object class c , box size s , and horizontal position u of box center. Considering that s and u are continuous variables, we discretize the image coordinates into an $M \times M$ grid for position u , and categorize object areas into discrete K logarithmic bins for size s .

The sample frequency computes the empirical probability of instances in \mathcal{G} occurring in an image: $\mathcal{D}_{\text{freq}}(\mathcal{G}) = N(\mathcal{G})/N_{\text{all}}$, where $N(\mathcal{G})$ is the instance number of \mathcal{G} and N_{all} is the number of all instances in the dataset. The analysis in §2 reveals that relying solely on instance frequency is insufficient, as even frequent groups can be underrepresented. Thus, RS moves beyond merely counting instances to integrate representation diversity, which comprises both visual and context diversity. The visual diversity $\mathcal{D}_{\text{vis}}(\mathcal{G})$ is defined as the average feature distance between instances in \mathcal{G} which captures intra-group visual variation, and context diversity $\mathcal{D}_{\text{ctx}}(\mathcal{G})$ reveals the co-occurrence between class c and other classes:

$$\mathcal{D}_{\text{vis}}(\mathcal{G}) = \frac{1}{|\mathcal{G}|^2} \sum_{i \in \mathcal{G}} \sum_{j \in \mathcal{G}} \|\mathbf{o}_i - \mathbf{o}_j\|^2, \quad \mathcal{D}_{\text{ctx}}(\mathcal{G}) = \frac{1}{|\mathcal{I}_{c(\mathcal{G})}| \cdot |\mathcal{C}|} \sum_{i \in \mathcal{I}_{c(\mathcal{G})}} |\mathcal{K}_i|, \quad (1)$$

where \mathbf{o} is extracted by the detector backbone after ROI pooling, $\mathcal{I}_{c(\mathcal{G})}$ is the set of images containing class c in group \mathcal{G} , \mathcal{K}_i is the set of classes in image i , and \mathcal{C} is the set of all classes in the dataset. Finally, three components are combined into a representation score:

$$\text{RS}(\mathcal{G}) = \mathcal{D}_{\text{freq}}(\mathcal{G}) \cdot (\mathcal{D}_{\text{vis}}(\mathcal{G}) + \beta \cdot \mathcal{D}_{\text{ctx}}(\mathcal{G})). \quad (2)$$

RS provides a robust measure of representation quality. Groups with low RS can then be targeted for generative debiasing, ensuring focused and effective correction of dataset imbalances.

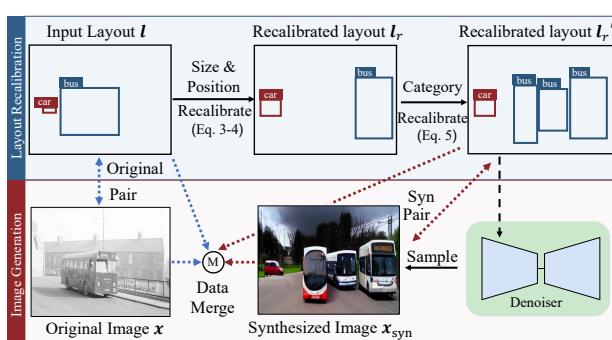


Figure 3: Illustration for layout recalibration. (c, s', u') by sampling a new size s' and position u' . The sampling probability is inversely proportional to the RS of the target group:

$$\pi(s', u' | c) \propto (\text{RS}(c, s', u') + \varepsilon)^{-\tau}, \quad (3)$$

216 where $\text{RS}(c, s', u')$ is the pre-computed RS for the group defined by class c , size bin s' , and position
 217 bin u' . The hyperparameter τ controls the strength of the debiasing. On the other hand, to preserve
 218 the natural vertical layering (e.g., sky above ground, cars on roads), the vertical center v' of bounding
 219 box is only slightly perturbed from its original position v with a small Gaussian jitter:

$$220 \quad v' = v + \epsilon, \quad \text{where } \epsilon \sim \mathcal{N}(\mu = 0, \sigma^2 = (\sigma_y)^2). \quad (4)$$

222 σ_y is intentionally kept small to ensure that the vertical placement of objects remains faithful to their
 223 original context. This integrated layout recalibration approach is more powerful than treating each
 224 attribute in isolation, as it respects the complex dependencies between object properties.

225 To enrich the dataset with underrepresented object categories, the target class c' is chosen according
 226 to a context-aware, RS-guided policy that balances contextual plausibility and representation gaps:

$$228 \quad \pi_c(c' | \mathcal{K}) \propto \underbrace{(\kappa \cdot \mathbf{1}[c' \in \mathcal{K}] + \mathbf{1}[c' \notin \mathcal{K}])}_{\text{Context-Aware Term}} \cdot \underbrace{(\overline{\text{RS}}(c') + \varepsilon)^{-\tau}}_{\text{RS-Guided Term}}. \quad (5)$$

230 where \mathcal{K} is the set of classes already present in the scene. The context-aware term encourages adding
 231 instances of classes already present ($\kappa > 1$). $\overline{\text{RS}}(c')$ is the mean representation score for class c' ,
 232 averaged over all its size and position bins. Once a target class c' is selected, we choose its specific
 233 size (s') and position (u') using the same inverse-RS sampling policy from Eq.3, ensuring the newly
 234 added object fills the most needed representational gap for that class.

235 **Error-Based Dynamic Debiasing.** The representation score (RS) provides a strong foundation
 236 for bias-aware layout recalibration, which further contributes to debiased object detection learning.
 237 However, since RS remains static throughout training, it cannot reflect the evolving bias of datasets
 238 enriched with newly generated data samples. To address this, RS should be dynamically updated to
 239 account for shifts in group-level representation qualities. Specifically, given the training procedure:

$$241 \quad \mathbf{l}_{\text{pred}} = D_{\Phi}(\mathbf{x}_{\text{syn}}), \quad \mathbf{x}_{\text{syn}} = G_{\Phi}(\mathbf{l}_{\text{recalib}}), \quad (6)$$

242 where $\mathbf{l}_{\text{recalib}}$ is the layout after bias-aware recalibration, G_{Φ} and D_{Φ} represent generator and detec-
 243 tor, respectively. The training objective of the object detector is to minimize the layout consistency
 244 loss (i.e., $\mathcal{L}_{\text{layout}}$) between the predicted and the ground-truth recalibrated layouts. Crucially, the RS
 245 for each data group \mathcal{G}_i is refined using an exponential moving average with $\mu = 0.99$ that incorpo-
 246 rates the detection error $\mathcal{L}_{\text{layout}}(i)$ for instance i within that group:

$$247 \quad \text{RS}'(\mathcal{G}_i) = \mu \cdot \text{RS}(\mathcal{G}_i) + (1 - \mu) \cdot \mathcal{L}_{\text{layout}}(i) \quad (7)$$

248 This establishes a dynamic debiasing mechanism, where G_{Φ} is continuously steered to produce
 249 informative data to mitigate emerging biases, ensuring a targeted and adaptive learning process.

252 3.2 HIGH-FIDELITY L2I SYNTHESIS WITH VISUAL BLUEPRINTS

253 Given a geometric layout $\mathbf{l} = \{(\mathbf{b}_n, c_n)\}_{n=1}^N \in \mathbb{R}^{N \times 5}$, composed of N objects with corresponding
 254 bounding boxes $\mathbf{b}_n = [x_{n,1}, y_{n,1}, x_{n,2}, y_{n,2}] \in \mathbb{R}^4$ and class labels $c_n \in \mathcal{C}$, layout-to-image (L2I)
 255 synthesis (Zhao et al., 2019; Zheng et al., 2023) aims to generate visually coherent images that
 256 respect the specified structure. A common solution in existing work (Chen et al., 2024a; Wang et al.,
 257 2024) is to serialize the layout \mathbf{l} into a token sequence $\mathbf{s}(\mathbf{l})$, which is then appended with a text
 258 prompt y to form a unified conditional input $\tilde{\mathbf{y}} = \text{concat}(y, \mathbf{s}(\mathbf{l}))$. The training objective is to
 259 minimize the difference between true and predicted noise following Rombach et al. (2022):

$$260 \quad \mathcal{L}_{\text{L2I}} = \mathbb{E} \left\| \epsilon - \epsilon_{\theta}(\mathbf{x}_t, t, f_{\psi}(\tilde{\mathbf{y}})) \right\|_2^2, \quad (8)$$

263 where f_{ψ} is the text encoder. Despite being straightforward, it suffers from a textual bottleneck
 264 caused by serializing 2D spatial arrangements into a 1D text sequence. This leads to ambiguity
 265 and imprecise spatial relationships. To overcome this, we introduce **visual blueprint**, a geometry-
 266 faithful alternative using pixel-space conditioning signals for unambiguous geometric guidance.

267 **Blueprint Construction.** Given layout \mathbf{l} , we construct a visual blueprint $\mathbf{I}_{\text{cond}} \in \mathbb{R}^{H \times W \times 3}$, where
 268 bounding boxes are mapped into colored rectangles indicating different instances using a rendering
 269 operator \mathcal{R} (i.e., Fig. 4):

$$269 \quad \mathbf{I}_{\text{cond}} = \mathcal{R}(\mathbf{l}; \mathcal{P}). \quad (9)$$

270 Here, $\mathcal{P} = \{\mathbf{p}_i\}_{i=1}^N$ is a color palette used to differentiate object categories. To maximize the visual
 271 distinction of object classes, the colors in \mathcal{P} are assigned as evenly spaced hues on the unit circle in
 272 HSV space, which are subsequently converted to RGB values via:
 273

$$\mathbf{p}_i = \text{RGB}((i-1)\varphi, S_0, V_0), \quad (10)$$

275 where $\text{RGB}(H, S, V)$ is the standard HSV-to-
 276 RGB mapping, and φ is a fixed hue step. Satu-
 277 ration S and value V are set to 1 for maximum
 278 vibrancy. However, rendering only colored
 279 rectangles can result in information loss, par-
 280 ticularly in complex scenes containing over-
 281 lapping or multiple instances of the same class. To
 282 address this, the rendering operator \mathcal{R} follows
 283 three principles: **i**) to *distinguish instances* of
 284 the same class, the HSV value is decremented
 285 by a small step α for each subsequent instance;
 286 **ii**) objects are rendered in descending order of
 287 bounding-box size to prevent smaller objects
 288 from being fully *occluded* by larger ones; and
 289 **iii**) background objects are rendered with slight
 290 transparency, so as to provide the model with
 291 visual cues about *overlapping relationships*. It
 292 is worth noting that the binary maps used in
 293 ControlNet typically represent classes with adjacent
 294 integers. This leads to low numerical variance for
 295 different classes and introduces potential ambi-
 296 guity for the encoder (e.g., the Person class cor-
 297 responds to $(0, 0, 0)$ and Sheep to $(0, 0, 19)$). In
 298 contrast, we assign instance masks to equidistant
 299 hues on the HSV unit circle. This ensures distinct
 300 pixel values in RGB space, and provides a high-variance
 301 signal that is far easier for the encoder to
 302 distinguish. A visualization of this comparison is provided in Fig. S1 of the Appendix.

303 **Blueprint-Prompted Layout Conditioning.** To integrate our blueprint \mathbf{I}_{cond} into the generation
 304 process, we require an architecture that can inject its rich spatial information into a pre-trained U-
 305 Net without sacrificing its powerful generative priors. The adapter-based strategy proposed by Zhang
 306 et al. (2023) is ideally suited for this setup. The blueprint is first projected into multi-resolution
 307 feature maps, $\mathbf{u} = g_\phi(\mathbf{I}_{\text{cond}})$, via a lightweight, trainable encoder g_ϕ . This provides an unambiguous,
 308 multi-scale structural prior that complements the global semantic guidance from the standard text
 309 prompt y . The model then learns to generate the image by minimizing our visual L2I objective:

$$\mathcal{L}_{\text{visual_L2I}} = \mathbb{E} \left\| \epsilon - \epsilon_\theta(\mathbf{x}_t, t, f_\psi(y), \mathbf{u}) \right\|_2^2. \quad (11)$$

310 These structural features \mathbf{u} are then fused into the frozen U-Net $\mathcal{F}(\cdot; \Theta)$ using a trainable copy
 311 $\mathcal{F}(\cdot; \Theta_c)$, and two zero-initialized adapter blocks \mathcal{Z}_1 and \mathcal{Z}_2 :

$$\mathbf{y}_c = \mathcal{F}(\mathbf{x}; \Theta) + \mathcal{Z}_2(\mathcal{F}(\mathbf{x} + \mathcal{Z}_1(\mathbf{u}); \Theta_c)). \quad (12)$$

312 As such, we treat the pre-trained diffusion model as a powerful generative backbone and specialize it
 313 for our debiasing task, guided by the unambiguous geometric information from our visual blueprint.

314 **Duality-Aware Generative Alignment.** Current generative frameworks treat the L2I generator and
 315 object detector as isolated components, leading to a misalignment where the synthesized image,
 316 though visually plausible, is not optimally aligned with the feature space of the detector. To bridge
 317 this gap, we propose an alignment strategy based on the duality of the two tasks.

318 Specifically, while the detector learns a mapping from images to layouts ($D_\Phi : \mathbf{x} \rightarrow \mathbf{l}$), the generator
 319 learns the inverse ($G_\Phi : \mathbf{l} \rightarrow \mathbf{x}$). We leverage this loop and propose an image-alignment loss $\mathcal{L}_{\text{image}}^{\text{IA}}$:

$$\mathcal{L}_{\text{image}}^{\text{IA}} = \left\| \epsilon_\theta(\mathbf{x}_t, t, f_\psi(y), \mathbf{u}) - \epsilon_\theta(\mathbf{x}_t, t, f_\psi(y), \mathbf{u}^{\text{pred}}) \right\|_2^2, \quad (13)$$

320 where \mathbf{u}^{pred} is the multi-resolution feature maps constructed from the layout \mathbf{l}^{pred} output by the
 321 detector D_Φ . The final training objective for optimizing the detector is given as:

$$\mathcal{L}_{\text{OD}} = \mathcal{L}_{\text{det}} + \lambda \mathcal{L}_{\text{image}}^{\text{IA}}, \quad (14)$$

324 where \mathcal{L}_{det} is the conventional object detection loss, λ is a balance factor. As such, $\mathcal{L}_{\text{image}}^{\text{IA}}$ penalizes
 325 the detector for producing layouts that are insufficient for faithful image synthesis, **and forces the**
 326 **detector to be robust to the features produced by the generator to deliver consistent predictions.**
 327

328 4 RELATED WORK

331 **Dataset Biases and Debiasing.** Dataset bias occurs when training data is not representative sam-
 332 ples of the real-world scenarios. This misalignment causes models to learn dataset-specific shortcuts
 333 instead of generalizable features (Torralba & Efros, 2011; Geirhos et al., 2020). Efforts to mitigate
 334 dataset bias largely fall into two categories. Data-based strategies resample or re-weight the training
 335 distribution to give more importance to rare instances (Cui et al., 2019; Cao et al., 2019). In contrast,
 336 learning-based strategies dynamically adjust gradients to prevent common classes from dominating
 337 the learning process (Tan et al., 2020; Wang et al., 2021). In object detection, these biases manifest
 338 across axes like long-tailed category distributions where a few classes dominate the dataset (Ouyang
 339 et al., 2016), object size skew that favors normal and large instances over small ones (Herranz et al.,
 340 2016; Gilg et al., 2023), and spatial bias where objects concentrate in center image zones (Zheng
 341 et al., 2024). Accordingly, solutions commonly use resampling and re-balancing to enhance rare cat-
 342 egories (Gupta et al., 2019; Tan et al., 2021), scale-aware architectures to boost small objects (Lin
 343 et al., 2017; Singh & Davis, 2018; Singh et al., 2018), or copy-paste to increase the sample quan-
 344 tities (Ghiasi et al., 2021). Despite the success, these approaches are primarily frequency-centric,
 345 treating instance counts as the main proxy for biases. In this work, we propose a generation-based
 346 debiasing strategy, which contains a new image synthesis architecture, a bias-aware layout sampling
 347 strategy, and a dynamic engine that adapts to evolving biases during training.

348 **Controllable Diffusion Models.** Diffusion probabilistic models (Sohl-Dickstein et al., 2015) have
 349 developed rapidly in recent years (Dhariwal & Nichol, 2021; Ho & Salimans, 2022; Kingma et al.,
 350 2021; Rombach et al., 2022). Owing to their exceptional generation quality and controllability,
 351 diffusion models now become the dominant paradigm across a range of applications, including
 352 image editing (Brooks et al., 2023; Kawar et al., 2023; Meng et al., 2021; Hertz et al., 2022), image-
 353 to-image translation (Saharia et al., 2022a; Tumanyan et al., 2023; Li et al., 2023a), and text-to-
 354 image (T2I) generation (Nichol et al., 2021; Podell et al., 2023; Rombach et al., 2022; Saharia et al.,
 355 2022b; Gal et al., 2022; Peebles & Xie, 2023), *etc.* Recent layout-to-image (L2I) synthesis (Zhao
 356 et al., 2019; Li et al., 2021; Yang et al., 2022; Sun & Wu, 2019) aims at precise, instance-level
 357 placement by augmenting pre-trained T2I models with layout information (*i.e.*, bounding boxes and
 358 category labels). Specifically, the layout is converted into a text token sequence and then injected
 359 into a pre-trained T2I diffusion model (Cheng et al., 2023; Yang et al., 2023; Couairon et al., 2023;
 360 Xie et al., 2023; Chen et al., 2024b; Wang et al., 2025; Li et al., 2025; Xiang et al., 2024). While
 361 this approach offers scalability, it introduces a textual bottleneck in which 2D spatial arrangements
 362 are converted into 1D text sequences. Departing from this paradigm, our method encodes layouts in
 363 pixel-space as visual blueprint images. This provides the model with direct and unambiguous spatial
 364 and relational instructions to guide the generation process with high fidelity and controllability.

365 **Generation-Based Data Augmentation.** Advanced strategies seek to enhance model generalization
 366 beyond simple resampling. Mixing-based techniques regularize model training by virtual samples
 367 created from interpolated images and labels (Zhang et al., 2017) or substituted regional patches (Yun
 368 et al., 2019). Erasure-based methods improve robustness by randomly masking image regions (De-
 369 Vries & Taylor, 2017; Zhong et al., 2020). While label-preserving and simple to deploy, these meth-
 370 ods only recombine visual patterns already present in the training data, thereby constraining the
 371 diversity of generated samples. In contrast, recent work (Zhao et al., 2023; Suri et al., 2023; Chen
 372 et al., 2024a; Wang et al., 2024; Li et al., 2024) explores using synthetic data from generative mod-
 373 els to improve model performance. For example, X-Paste (Zhao et al., 2023) scales copy-paste by
 374 synthesizing instances with diffusion models. Gen2Det (Suri et al., 2023) leverages conditioned dif-
 375 fusion to directly synthesize scene-specific images. Layout-to-image synthesis (Chen et al., 2024a;
 376 Wang et al., 2024) reuses layouts in the training set and applies flip augmentation to synthesize ad-
 377 dditional samples for the detector. In contrast to these bias-agnostic approaches, this work introduces
 378 a bias-aware data augmentation framework. We begin by systematically diagnosing dataset biases
 379 across key axes including spatial location, category frequency, and object size. Inspired by this anal-
 380 ysis, we design a bias-aware layout sampling strategy, ensuring that the generated data is not only
 381 diverse but also precisely aligned with the goal of mitigating specific, pre-identified dataset biases.

378 Table 1: Quantitative results for fidelity on MS COCO (Lin et al., 2014) and NuImages (Caesar et al., 2020).
379

380 Model	381 Res.	382 MS COCO				383 NuImages					
		384 FID ↓	385 mAP ↑	386 AP ₅₀ ↑	387 AP ₇₅ ↑	388 FID ↓	389 mAP ↑	390 AP ₅₀ ↑	391 AP ₇₅ ↑	392 AP ^m ↑	393 AP ^l ↑
394 Real Image	395 -	396 48.9	397 68.3	398 55.6	399 -	400 48.2	401 75.0	402 52.0	403 46.7	404 60.5	405
396 LAMA (Li et al., 2021)	397 256 ²	398 31.12	399 13.4	400 19.7	401 14.9	402 63.85	403 3.2	404 8.3	405 1.9	406 2.0	407 9.4
396 Taming (Jahn et al., 2021)	397 512 ²	398 33.68	399 -	400 -	401 -	402 32.84	403 7.4	404 19.0	405 4.8	406 2.8	407 18.8
396 TwFA (Yang et al., 2022)	397 512 ²	398 22.15	399 -	400 28.2	401 20.1	402 -	403 -	404 -	405 -	406 -	407 -
396 GeoDiffusion (Chen et al., 2024a)	397 512 ²	398 20.16	399 29.1	400 38.9	401 33.6	402 14.58	403 15.6	404 31.7	405 13.4	406 6.3	407 38.3
396 DetDiffusion (Wang et al., 2024)	397 512 ²	398 19.28	399 29.8	400 38.6	401 34.1	402 -	403 -	404 -	405 -	406 -	407 -
396 Ours	397 512 ²	398 16.35	399 33.6	400 46.6	401 36.8	402 12.43	403 19.8	404 38.9	405 16.9	406 10.8	407 43.2
396 ReCo (Yang et al., 2023)	397 512 ²	398 29.69	399 18.8	400 33.5	401 19.7	402 27.10	403 17.1	404 41.1	405 11.8	406 10.9	407 36.2
396 GLIGEN (Li et al., 2023b)	397 512 ²	398 21.04	399 22.4	400 36.5	401 24.1	402 16.68	403 21.3	404 42.1	405 19.1	406 15.9	407 40.8
396 ControlNet (Zhang et al., 2023)	397 512 ²	398 28.14	399 25.2	400 46.7	401 22.7	402 23.26	403 22.6	404 43.9	405 20.7	406 17.3	407 41.9
396 GeoDiffusion (Chen et al., 2024a)	397 512 ²	398 18.89	399 30.6	400 41.7	401 35.6	402 9.58	403 31.8	404 62.9	405 28.7	406 27.0	407 53.8
396 Ours	397 512 ²	398 15.24	399 46.5	400 61.4	401 51.6	402 8.35	403 40.2	404 70.1	405 38.2	406 38.4	407 58.0

392 Table 2: Quantitative results for debiasing on MS COCO (Lin et al., 2014) w.r.t. different attributes.
393

394 Model	395 mAP ↑	396 center ↑	397 middle ↑	398 outer ↑	399 freq ↑	400 comm ↑	401 rare ↑	402 large ↑	403 normal ↑	404 small ↑
394 Faster R-CNN (Baseline)	395 37.4	396 37.7	397 33.9	398 28.3	399 31.2	400 38.9	401 43.2	402 48.1	403 41.0	404 21.2
<i>Bias Agnostic</i>										
394 Copy Paste (Ghiasi et al., 2021)	395 37.9	396 38.2	397 35.5	398 28.8	399 31.4	400 39.4	401 43.6	402 48.8	403 41.5	404 21.5
394 ControlNet (Zhang et al., 2023)	395 36.9	396 37.3	397 33.4	398 27.6	399 30.8	400 38.3	401 42.9	402 49.0	403 40.4	404 19.8
394 GeoDiffusion (Chen et al., 2024a)	395 38.4	396 38.6	397 35.0	398 29.5	399 32.0	400 39.9	401 44.3	402 50.3	403 42.1	404 19.7
<i>Frequency Aware</i>										
394 ControlNet + Resampling	395 36.9 <small>±0.5</small>	396 37.2 <small>±0.5</small>	397 33.4 <small>±0.5</small>	398 27.9 <small>±0.4</small>	399 30.2 <small>±1.0</small>	400 37.7 <small>±0.8</small>	401 43.2 <small>±0.0</small>	402 48.6 <small>±0.5</small>	403 40.5 <small>±0.5</small>	404 20.1 <small>±1.1</small>
394 GeoDiffusion + Resampling	395 38.5 <small>±1.1</small>	396 38.5 <small>±0.8</small>	397 35.3 <small>±1.4</small>	398 30.0 <small>±1.7</small>	399 31.6 <small>±0.4</small>	400 39.4 <small>±0.5</small>	401 44.5 <small>±1.3</small>	402 49.9 <small>±1.8</small>	403 42.2 <small>±1.2</small>	404 20.0 <small>±1.2</small>
394 Ours	395 40.3 <small>±2.9</small>	396 40.5 <small>±2.8</small>	397 36.9 <small>±3.0</small>	398 31.5 <small>±3.2</small>	399 33.3 <small>±2.1</small>	400 41.8 <small>±2.9</small>	401 46.8 <small>±3.6</small>	402 52.5 <small>±4.4</small>	403 43.8 <small>±2.8</small>	404 23.1 <small>±1.9</small>

402

5 EXPERIMENT

403

404 **Experimental Setup.** Following existing work (Chen et al., 2024a; Wang et al., 2024), the validation
405 contains two setups: **Fidelity**: which assesses the quality of generated images by applying pretrained
406 detection models to images synthesized from ground-truth layouts in the validation set, using the
407 proposed L2I model. We report the Fréchet Inception Distance (FID) to assess generation quality
408 and mean Average Precision (mAP) to measure detection performance. **Debiasing**: which evaluates
409 the ability of generated data to mitigate biased distributions across data groups. The baselines are
410 SOTA L2I models, which synthesize new training sets using annotations from real training samples,
411 with layout augmentations limited to random flip and slight perturbation (*i.e.*, *bias-agnostic*). On
412 this basis, we construct frequency-aware variants by relaxing the layout augmentations to include the
413 resampling strategy Gupta et al. (2019) (*i.e.*, *frequency-aware*). Finally, we compare them against
414 our proposed dynamic-debiasing and visual prompted L2I synthesis approach. To evaluate debiasing
415 effectiveness, we measure not only the overall mAP but also the performance across spatial positions
416 (*i.e.*, mAP_{center, middle, outer}), category frequency (*i.e.*, mAP_{frequent, common, rare}), and object size (*i.e.*,
417 mAP_{large, normal, small}). For all experiments, unless otherwise specified, we employ the Faster R-
418 CNN (Ren et al., 2015) with a ResNet-50 backbone (He et al., 2016). More implementation details
419 regarding network architecture, training, testing, and training objectives are provided in *Appendix*.
420

421 **Dataset.** Our proposed L2I synthesis model and corresponding debiasing strategy are evaluated on
422 **MS COCO** (Lin et al., 2014) which provides 118K training and 5K validation images for over 80 ob-
423 ject categories, and **NuImages** (Caesar et al., 2020) which is derived from the nuScenes autonomous
424 driving benchmark, containing 60K training and 15K validation samples from 10 semantic classes.
425

426

5.1 EXPERIMENTAL RESULTS

427

428 **Fidelity.** Our approach achieves significantly higher performance in fidelity (Table 1), surpassing
429 prior SOTA (*i.e.*, GeoDiffusion (Chen et al., 2024a)) by **15.9** mAP, **19.7** AP₅₀, **16.0** AP₇₅ on MS
430 COCO, and **8.4** mAP, **11.4** AP^m, **4.2** AP^l on NuImages, under the 512² resolution. It also yields
431 much lower FID scores (*i.e.*, **15.24** vs. 18.89 of GeoDiffusion on MS COCO), verifying the effec-
432 tiveness of our blueprint-prompted synthesis and generative alignment strategies.
433

Table 3: Quantitative results for debiasing on NuImages (Caesar et al., 2020) w.r.t. low-performing categories.

Model	mAP \uparrow	outer \uparrow	rare \uparrow	large \uparrow	small \uparrow	trailer \uparrow	const. \uparrow	ped. \uparrow	cone \uparrow
Faster R-CNN (Baseline)	36.9	27.9	38.5	50.7	25.1	15.5	24.0	31.3	32.5
<i>Bias Agnostic</i>									
Copy Paste (Ghiasi et al., 2021)	37.5	28.6	38.8	51.5	25.3	16.0	24.7	31.5	32.7
ControlNet (Zhang et al., 2023)	36.4	27.6	38.3	51.2	24.4	13.6	24.1	30.3	31.8
GeoDiffusion (Chen et al., 2024a)	38.3	28.4	39.6	52.4	25.3	18.3	27.6	30.5	32.1
<i>Frequency Aware</i>									
ControlNet + Resampling	36.5 \downarrow 0.4	27.9 \downarrow 0.4	38.5 \downarrow 0.4	51.0 \uparrow 0.3	24.5 \downarrow 0.4	13.6 \downarrow 0.4	24.2 \downarrow 0.4	30.4 \downarrow 0.4	31.9 \downarrow 0.4
GeoDiffusion + Resampling	38.3 \uparrow 1.4	28.8 \uparrow 0.9	40.0 \uparrow 0.5	52.0 \uparrow 1.3	25.4 \uparrow 0.3	18.0 \uparrow 2.5	27.5 \uparrow 3.5	30.8 \downarrow 0.5	32.3 \downarrow 0.8
Ours	40.0 \uparrow3.1	31.5 \uparrow3.6	42.5 \uparrow4.0	54.8 \uparrow4.1	27.4 \uparrow2.3	19.5 \uparrow4.0	29.7 \uparrow5.7	32.1 \uparrow0.8	33.0 \uparrow0.5

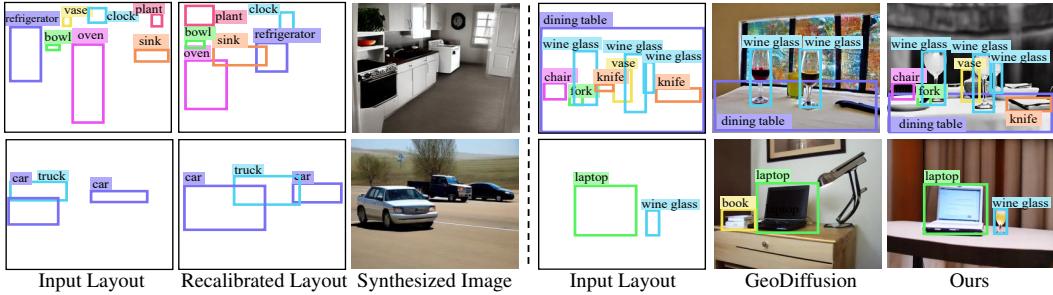


Figure 5: Visualization of recalibrated layouts, showing objects with updated sizes and positions, and new instances (left). Our method can generate geometry-faithful images compared to prior SOTA (right).

Debiasing. As seen in Tables 2-3, bias-agnostic methods including copy-paste (Ghiasi et al., 2021), ControlNet (Zhang et al., 2023), and GeoDiffusion (Chen et al., 2024a), boost performance broadly but are ineffective for underrepresented groups, leading to a modest enhancement in the final mAP. Meanwhile, integrating generative methods with the resampling strategy (Gupta et al., 2019) offers certain improvement for underrepresented groups. Our approach, by targeting biases through both frequency and representation diversity, delivers substantial improvements across the board. It not only achieves significant performance gains for underrepresented groups (e.g., $28.3 \rightarrow 31.5$ for mAP_{outer}, $43.2 \rightarrow 46.8$ for mAP_{rare} on MS COCO), but also sets new SOTAs for overall scores, achieving 40.3 and 40.0 mAP on MS COCO and NuImages, respectively. The comprehensive results validate the overall design and confirm the powerful debiasing effectiveness of our method.

Qualitative Results. As shown in Fig. 5, our method can adjust object sizes and locations, and even add new instances according to model needs. Moreover, it can generate geometry-faithful images with complicated layouts containing over ten instances, outperforming prior SOTA.

5.2 DIAGNOSTIC EXPERIMENTS

We conduct a series of ablation studies on MS COCO, all under the **Debiasing** setup.

Essential Components. We examine the efficacy of essential components in Table 4. After replacing textual layout conditions with visual blueprints, the mAP enjoys large improvement ($37.0 \rightarrow 38.9$), indicating the effective preservation of spatial cues. Generative alignment enjoys moderate improvements, as its primary role is to enhance the fidelity of generated images, rather than directly boosting detection performance. Meanwhile, RS-driven layout recalibration and dynamic debiasing also deliver satisfactory improvements, particularly benefiting underrepresented data groups.

Dynamic Debiasing. We ablate the momentum parameter μ for dynamic debiasing in Table 5. A value of 0, which updates RS using only errors from the current batch, leads to unstable training and poor performance. Conversely, $\mu = 1$ disables the dynamic update and reverts to a static RS. We found that $\mu = 0.99$ achieves the best performance. This demonstrates a stable yet responsive update for RS to dynamically reflect the evolving representation quality and mitigate emerging biases.

Conditional Input. We evaluate the impact of layout conditions on both synthesis fidelity (Table 6) and debiasing performance (Table 7). As shown in Table 6, replacing textual inputs with Visual Blueprints significantly improves generation quality (FID decreases from 28.14 to 20.15). Adding instance discrimination and occlusion awareness further enhances fidelity. Crucially, Table 7 shows

486
487 Table 4: Ablative studies of essential components in our
488 proposed method on MS COCO 2017 (Lin et al., 2014).

Method	mAP↑	outer ↑	rare ↑	large ↑	small↑
Baseline	37.0	27.8	43.0	47.9	20.5
+ Visual Blueprint	38.9	29.6	45.0	51.1	21.9
+ Generative Align.	39.1	29.9	45.2	51.3	22.1
+ RS-Driven Recalib.	39.9	31.0	46.4	52.3	22.8
+ Dynamic Debias.	40.3	31.5	46.8	52.5	23.1

493
494 Table 6: Ablative studies of Blueprint design for L2I
495 synthesis on MS COCO 2017 (Lin et al., 2014).

Method	FID↓	mAP↑	AP ₅₀ ↑	AP ₇₅ ↑
ControlNet	28.14	25.2	46.7	22.7
+ Pixel Canvas	20.15	40.8	56.2	40.5
+ Instance Discrim.	17.05	44.5	59.5	48.8
+ Overlap Aware.	15.24	46.5	61.4	51.6

500
501 Table 8: Ablative studies of representation score for
502 layout generation on MS COCO 2017 (Lin et al., 2014).

Score	mAP↑	outer ↑	rare ↑	large ↑	small↑
Bias-Agnostic	39.1	29.9	45.2	51.3	22.1
$\mathcal{D}_{\text{freq}}$	39.3	30.4	45.8	50.9	22.5
$\mathcal{D}_{\text{freq}} + \mathcal{D}_{\text{vis}}$	39.7	30.7	46.3	52.0	22.6
$\mathcal{D}_{\text{freq}} + \mathcal{D}_{\text{ctx}}$	39.5	30.9	46.1	51.2	22.7
$\mathcal{D}_{\text{vis}} + \mathcal{D}_{\text{ctx}}$	39.5	30.6	45.9	51.7	22.4
$\mathcal{D}_{\text{freq}} + \mathcal{D}_{\text{vis}} + \mathcal{D}_{\text{ctx}}$	39.9	31.0	46.4	52.3	22.8

509
510 that this improved generation quality directly translates to better detection performance (mAP increases
511 from 37.0 to 38.9), validating our blueprint design.

512 **Representation Score.** We probe the design of representation score (RS) in Table 8. Relying solely
513 on sample frequency ($\mathcal{D}_{\text{freq}}$) yields limited gains. Incorporating visual (\mathcal{D}_{vis}) or contextual diversity
514 (\mathcal{D}_{ctx}) alongside frequency notably improves performance (e.g., $\mathcal{D}_{\text{freq}} + \mathcal{D}_{\text{vis}}$ improves mAP from
515 39.3 to 39.7). The best performance is achieved with the full RS ($\mathcal{D}_{\text{freq}} + \mathcal{D}_{\text{vis}} + \mathcal{D}_{\text{ctx}}$), demonstrating
516 that a comprehensive scoring of both frequency and diversity is essential for effective debiasing.

517 **Generalizability.** To verify the general effectiveness of our framework beyond Faster R-CNN, We
518 extend the evaluation to diverse modern detection paradigms, including YOLOX (Ge et al., 2021),
519 DINO (Zhang et al., 2022), and CO-DETR (Zong et al., 2023). As seen in Table 9, our method
520 consistently yields performance gains of approximately 2.6 ~ 2.8 mAP across all architectures.

521 **Component Dependence.** We investigate the interde-
522 pendence between RS-driven debiasing (**what to gen-**
523 **erate**) and visual blueprint (**how to generate** faith-
524 fully) in Table 10. As seen, pairing our debiasing en-
525 gine with visual blueprint unlocks higher performance
526 boosts (+1.4 mAP) than pairing it with prior text-
527 prompted L2I generators (e.g., GeoDiffusion). This
528 confirms that high-fidelity synthesis is the prerequi-
529 site for unlocking the benefits of targeted debiasing.

531 6 CONCLUSION

534 In this work, we demonstrate that instance frequency is an incomplete proxy for representation
535 needs and existing L2I synthesis methods suffer from a fidelity gap. To overcome these challenges,
536 we proposed a scoring-driven debiasing engine, which captures both sample density and diversity
537 to recalibrate layouts for sample generation. Furthermore, we replace ambiguous text prompts with
538 visual blueprints and integrate a duality-aware, generative alignment strategy. This contributes to
539 high-fidelity and geometry-faithful synthesis of targeted samples. Empirical results reveal a signifi-
cant improvement in object detection performance and a reduction in bias across data groups.

486
487 Table 5: Ablative studies of dynamic debiasing on MS
488 COCO 2017 (Lin et al., 2014).

μ	mAP↑	outer ↑	rare ↑	large ↑	small↑
0	38.6	29.4	44.2	49.7	21.5
0.9	40.0	31.1	46.2	51.9	23.0
0.999	40.3	31.5	46.8	52.5	23.1
1	40.1	31.3	46.4	52.0	22.8
	39.8	31.0	46.4	51.6	22.5

493
494 Table 7: Ablative studies of Blueprint design for debi-
495 asing on MS COCO 2017 (Lin et al., 2014).

Method	mAP↑	outer ↑	rare ↑	large ↑	small↑
Textual Layout	37.0	27.8	43.0	47.9	20.5
Pixel Canvas	38.5	29.1	44.6	50.5	21.4
+ Instance Discrim.	38.7	29.4	44.8	50.7	21.7
+ Overlap Aware.	38.9	29.6	45.0	51.1	21.9

500
501 Table 9: Experiments of more detectors on MS COCO
502 2017 (Lin et al., 2014).

Detector	mAP↑	outer ↑	rare ↑	large ↑	small↑
YOLOX-s	40.5	31.2	44.5	53.1	23.5
+ Ours	43.3 ^{+2.8}	34.5	48.1	56.2	25.1
DINO	49.0	40.5	50.5	64.0	31.4
+ Ours	51.8 ^{+2.8}	44.1	54.2	67.2	33.0
CO-DETR	52.0	43.5	53.5	67.1	34.8
+ Ours	54.6 ^{+2.6}	46.8	57.2	70.0	36.3

521
522 Table 10: Analysis on the interdependence be-
523 tween debiasing and generation strategies.

Method	Generator	mAP↑
Baseline	-	37.4
GeoDiffusion	Text	38.4
+ Scoring-Driven Debiasing	Text	38.7
Visual Blueprint (Ours)	Visual	38.9
+ Scoring-Driven Debiasing	Visual	40.3

540
Ethics statement. Our research utilizes publicly available datasets (MS COCO and NuImages) and
541 does not involve human subject studies or sensitive data. While image generative models can be
542 misused, our framework is designed for data augmentation. It aims to mitigate biases in widely used
543 technologies such as object detection, rather than to enable unrestricted image generation.

544
Reproducibility. The implementation details, including the network architecture, training objective,
545 training and testing strategies, are provided in *Appendix*. Moreover, to ensure the reproducibility
546 of our proposed approach, we will make the implementation publicly available upon acceptance,
547 including code, model weights, and detailed experimental configurations.

549
REFERENCES

551 Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and
552 accuracy of object detection. *arXiv preprint arXiv:2004.10934*, 2020.

553 Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
554 editing instructions. In *CVPR*, pp. 18392–18402, 2023.

556 Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
557 Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
558 autonomous driving. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
559 recognition*, pp. 11621–11631, 2020.

560 Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
561 datasets with label-distribution-aware margin loss. *NeurIPS*, 32, 2019.

563 Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
564 minority over-sampling technique. *Journal of artificial intelligence research*, 16:321–357, 2002.

566 Kai Chen, Enze Xie, Zhe Chen, Yibo Wang, Lanqing Hong, Zhengu Li, and Dit-Yan Yeung. Geod-
567 iffusion: Text-prompted geometric control for object detection data generation. In *ICLR*, 2024a.

568 Minghao Chen, Iro Laina, and Andrea Vedaldi. Training-free layout control with cross-attention
569 guidance. In *WACV*, pp. 5343–5353, 2024b.

571 Jiaxin Cheng, Xiao Liang, Xingjian Shi, Tong He, Tianjun Xiao, and Mu Li. Layoutdiffuse:
572 Adapting foundational diffusion models for layout-to-image generation. *arXiv preprint
573 arXiv:2302.08908*, 2023.

575 Guillaume Couairon, Marlène Careil, Matthieu Cord, Stéphane Lathuiliere, and Jakob Verbeek.
576 Zero-shot spatial layout conditioning for text-to-image diffusion models. In *ICCV*, pp. 2174–
577 2183, 2023.

578 Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on
579 effective number of samples. In *CVPR*, 2019.

581 Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
582 with cutout. *arXiv preprint arXiv:1708.04552*, 2017.

583 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *NeurIPS*,
584 pp. 8780–8794, 2021.

586 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
587 Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
588 inversion. *arXiv preprint arXiv:2208.01618*, 2022.

589 Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. Yolox: Exceeding yolo series in
590 2021. *arXiv preprint arXiv:2107.08430*, 2021.

592 Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
593 Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. *Nature
Machine Intelligence*, 2(11):665–673, 2020.

594 Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-Yi Lin, Ekin D Cubuk, Quoc V Le, and
 595 Barret Zoph. Simple copy-paste is a strong data augmentation method for instance segmentation.
 596 In *CVPR*, 2021.

597 Johannes Gilg, Torben Teepe, Fabian Herzog, and Gerhard Rigoll. The box size confidence bias
 598 harms your object detector. In *WACV*, pp. 1471–1480, 2023.

600 Agrim Gupta, Piotr Dollár, and Ross Girshick. Lvis: A dataset for large vocabulary instance seg-
 601 mentation. In *CVPR*, 2019.

603 Haibo He and Edwardo A Garcia. Learning from imbalanced data. *IEEE Transactions on knowledge
 604 and data engineering*, 21(9):1263–1284, 2009.

606 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 607 nition. In *CVPR*, 2016.

608 Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In *ICCV*, 2017.

610 Luis Herranz, Shuqiang Jiang, and Xiangyang Li. Scene recognition with cnns: objects, scales and
 611 dataset bias. In *CVPR*, 2016.

612 Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
 613 Prompt-to-prompt image editing with cross attention control. *arXiv preprint arXiv:2208.01626*,
 614 2022.

616 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint
 617 arXiv:2207.12598*, 2022.

619 Manuel Jahn, Robin Rombach, and Björn Ommer. High-resolution complex scene synthesis with
 620 transformers. *arXiv preprint arXiv:2105.06458*, 2021.

621 Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image generation from scene graphs. In *CVPR*, 2018.

623 Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and
 624 Michal Irani. Imagic: Text-based real image editing with diffusion models. In *CVPR*, pp. 6007–
 625 6017, 2023.

626 Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models.
 627 *NeurIPS*, 34, 2021.

629 Bo Li, Kaitao Xue, Bin Liu, and Yu-Kun Lai. Bbdm: Image-to-image translation with brownian
 630 bridge diffusion models. In *CVPR*, pp. 1952–1961, 2023a.

632 Bonan Li, Yinhuan Hu, Songhua Liu, and Xinchao Wang. Control and realism: Best of both worlds
 633 in layout-to-image without training. *arXiv preprint arXiv:2506.15563*, 2025.

634 Ming Li, Taojinnan Yang, Huafeng Kuang, Jie Wu, Zhaoning Wang, Xuefeng Xiao, and Chen
 635 Chen. Controlnet++: Improving conditional controls with efficient consistency feedback. *arXiv
 636 preprint arXiv:2404.07987*, 2024.

638 Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li,
 639 and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. In *Proceedings of the
 640 IEEE/CVF conference on computer vision and pattern recognition*, pp. 22511–22521, 2023b.

641 Zejian Li, Jingyu Wu, Immanuel Koh, Yongchuan Tang, and Lingyun Sun. Image synthesis from
 642 layout with locality-aware mask adaption. In *ICCV*, pp. 13819–13828, 2021.

644 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 645 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *ECCV*, 2014.

647 Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
 648 Feature pyramid networks for object detection. In *CVPR*, 2017.

648 Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
 649 Sdedit: Guided image synthesis and editing with stochastic differential equations. *arXiv preprint*
 650 *arXiv:2108.01073*, 2021.

651

652 Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
 653 Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
 654 text-guided diffusion models. *arXiv preprint arXiv:2112.10741*, 2021.

655 Wanli Ouyang, Xiaogang Wang, Cong Zhang, and Xiaokang Yang. Factors in finetuning deep model
 656 for object detection with long-tail distribution. In *CVPR*, 2016.

657

658 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *ICCV*, pp. 4195–
 659 4205, 2023.

660 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 661 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 662 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

663

664 Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
 665 detection with region proposal networks. In *NeurIPS*, 2015.

666 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 667 resolution image synthesis with latent diffusion models. In *CVPR*, 2022.

668

669 Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David
 670 Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion models. In *SIGGRAPH*, pp.
 671 1–10, 2022a.

672 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 673 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 674 text-to-image diffusion models with deep language understanding. *NeurIPS*, pp. 36479–36494,
 675 2022b.

676

677 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 678 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 679 open large-scale dataset for training next generation image-text models. In *NeurIPS*, 2022.

680 Bharat Singh and Larry S. Davis. An analysis of scale invariance in object detection: Snip. In *CVPR*,
 681 2018.

682 Bharat Singh, Mahyar Najibi, and Larry S. Davis. Sniper: Efficient multi-scale training. In *NeurIPS*,
 683 2018.

684

685 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 686 learning using nonequilibrium thermodynamics. In *ICML*, pp. 2256–2265, 2015.

687 Wei Sun and Tianfu Wu. Image synthesis from reconfigurable layout and style. In *ICCV*, pp.
 688 10531–10540, 2019.

689

690 Saksham Suri, Fanyi Xiao, Animesh Sinha, Sean Chang Culatana, Raghuraman Krishnamoorti,
 691 Chenchen Zhu, and Abhinav Shrivastava. Gen2det: Generate to detect. *arXiv preprint*
 692 *arXiv:2312.04566*, 2023.

693 Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, and Junjie
 694 Yan. Equalization loss for long-tailed object recognition. In *CVPR*, 2020.

695

696 Jingru Tan, Xin Lu, Gang Zhang, Changqing Yin, and Quanquan Li. Equalization loss v2: A new
 697 gradient balance approach for long-tailed object detection. In *CVPR*, 2021.

698 Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In *CVPR*, pp. 1521–1528,
 699 2011.

700

701 Brandon Trabucco, Kyle Doherty, Max A Gurinas, and Ruslan Salakhutdinov. Effective data aug-
 702 mentation with diffusion models. In *ICLR*, 2024.

702 Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-play diffusion features for
 703 text-driven image-to-image translation. In *CVPR*, pp. 1921–1930, 2023.

704 Jiaqi Wang, Wenwei Zhang, Yuhang Zang, Yuhang Cao, Jiangmiao Pang, Tao Gong, Kai Chen,
 705 Ziwei Liu, Chen Change Loy, and Dahua Lin. Seesaw loss for long-tailed instance segmentation.
 706 In *CVPR*, pp. 9695–9704, 2021.

707 Ruyu Wang, Xuefeng Hou, Sabrina Schmedding, and Marco F Huber. Stay diffusion: Styled layout
 708 diffusion model for diverse layout-to-image generation. In *WACV*, pp. 3855–3865, 2025.

709 Yibo Wang, Ruiyuan Gao, Kai Chen, Kaiqiang Zhou, Yingjie Cai, Lanqing Hong, Zhenguo Li,
 710 Lihui Jiang, Dit-Yan Yeung, Qiang Xu, et al. Detdiffusion: Synergizing generative and perceptive
 711 models for enhanced data generation and perception. In *CVPR*, pp. 7246–7255, 2024.

712 Weijia Wu, Yuzhong Zhao, Hao Chen, Yuchao Gu, Rui Zhao, Yefei He, Hong Zhou, Mike Zheng
 713 Shou, and Chunhua Shen. Datasetdm: synthesizing data with perception annotations using diffu-
 714 sion models. In *NeurIPS*, 2023.

715 Shuai Xiang, Pieter M Blok, James Burridge, Haozhou Wang, and Wei Guo. Doda: Adapting
 716 object detectors to dynamic agricultural environments in real-time with diffusion. *arXiv preprint*
 717 *arXiv:2403.18334*, 2024.

718 Jinheng Xie, Yuexiang Li, Yawen Huang, Haozhe Liu, Wentian Zhang, Yefeng Zheng, and
 719 Mike Zheng Shou. Boxdiff: Text-to-image synthesis with training-free box-constrained diffu-
 720 sion. In *ICCV*, pp. 7452–7461, 2023.

721 Zhengyuan Yang, Jianfeng Wang, Zhe Gan, Linjie Li, Kevin Lin, Chenfei Wu, Nan Duan, Zicheng
 722 Liu, Ce Liu, Michael Zeng, et al. Reco: Region-controlled text-to-image generation. In *CVPR*,
 723 pp. 14246–14255, 2023.

724 Zuopeng Yang, Daqing Liu, Chaoyue Wang, Jie Yang, and Dacheng Tao. Modeling image compo-
 725 sition for complex scene generation. In *CVPR*, pp. 7764–7773, 2022.

726 Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
 727 Cutmix: Regularization strategy to train strong classifiers with localizable features. In *ICCV*, pp.
 728 6023–6032, 2019.

729 Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M Ni, and Heung-Yeung
 730 Shum. Dino: Detr with improved denoising anchor boxes for end-to-end object detection. *arXiv*
 731 *preprint arXiv:2203.03605*, 2022.

732 Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
 733 risk minimization. *arXiv preprint arXiv:1710.09412*, 2017.

734 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 735 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 736 pp. 3836–3847, 2023.

737 Bo Zhao, Lili Meng, Weidong Yin, and Leonid Sigal. Image generation from layout. In *CVPR*, pp.
 738 8584–8593, 2019.

739 Hanqing Zhao, Dianmo Sheng, Jianmin Bao, Dongdong Chen, Dong Chen, Fang Wen, Lu Yuan,
 740 Ce Liu, Wenbo Zhou, Qi Chu, et al. X-paste: Revisiting scalable copy-paste for instance segmen-
 741 tation using clip and stablediffusion. In *ICML*, pp. 42098–42109, 2023.

742 Guangcong Zheng, Xianpan Zhou, Xuewei Li, Zhongang Qi, Ying Shan, and Xi Li. Layoutdiffusion:
 743 Controllable diffusion model for layout-to-image generation. In *CVPR*, pp. 22490–22499, 2023.

744 Zhaohui Zheng, Yuming Chen, Qibin Hou, Xiang Li, Ping Wang, and Ming-Ming Cheng. Zone
 745 evaluation: Revealing spatial bias in object detection. *IEEE TPAMI*, 46(12):8636–8651, 2024.

746 Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmen-
 747 tation. In *AAAI*, pp. 13001–13008, 2020.

748 Zhuofan Zong, Guanglu Song, and Yu Liu. Detrs with collaborative hybrid assignments training. In
 749 *CVPR*, 2023.

756 **A APPENDIX**
757758 **A.1 USE OF LARGE LANGUAGE MODELS (LLMs)**
759760 We confirm that LLMs were used solely for minor grammatical corrections and phrasing suggestions.
761 They were not involved in providing research ideas, including motivation, algorithm design,
762 or the development of the core method. Furthermore, they were not used in generating any scientific
763 content, such as the introduction, methodology, or experimental results presented in this paper.
764765 **A.2 METRIC DEFINITION**
766767 For spatial location, we partition images into center, middle, and outer regions, each covering 33%
768 of the image area, and then compute mAP for bounding boxes whose centers fall within corresponding
769 regions, yielding mAP_{center} , mAP_{middle} , and mAP_{outer} . For object category, we group the 30%
770 most occurring categories as *frequent*, 30% least occurring categories as *rare*, and the remaining
771 as *common*, yielding $mAP_{frequent}$, mAP_{rare} , and mAP_{common} . For object size, we group the objects
772 with the size of bounding box larger than 96×96 as *large*, smaller than 32×32 as *small*, and the
773 remaining as *normal*, yielding mAP_{large} , mAP_{small} , and mAP_{normal} .
774775 **A.3 EXPERIMENTAL SETUP**
776777 **Training.** For all experiments, unless otherwise specified, we employ the Faster R-CNN (Ren et al.,
778 2015) with a ResNet-50 backbone (He et al., 2016). The models are trained following the standard
779 $1 \times$ schedule using a batch size of 16 and an initial learning rate of 0.02. For debiasing experiments,
780 we merge the debiasing datasets with the original training sets into a unified training set. The
781 L2I synthesis model is built upon Stable Diffusion (Rombach et al., 2022), pre-trained on LAION-
782 5B (Schuhmann et al., 2022). The model is first trained for 100,000 iterations on 256×256 resolution
783 images. The resulting checkpoint is then used to initialize the 512×512 model, which is subsequently
784 fine-tuned. Both resolutions use a batch size of 16 and a constant learning rate of 1e-5.
785786 **Testing.** To assess generation fidelity, we adhere to the protocol established in prior work (Li et al.,
787 2021; Chen et al., 2024a). For MS COCO, we filter the validation set to include only images containing
788 3 to 8 objects, resulting in a split of 3,097 images, which are then evaluated using a pre-trained
789 YOLOv4 detector (Bochkovskiy et al., 2020). For NuImages, the validation set is filtered to images
790 with no more than 22 objects, yielding a total of 14,772 images, which are evaluated using a Mask
791 R-CNN (He et al., 2017). Test-time augmentation is disabled for all evaluations.
792793 **Training Objective.** For L2I synthesis models, we optimize it with the \mathcal{L}_{visual_L2I} defined in Eq. 11,
794 while for object detection, we optimize the detector with \mathcal{L}_{OD} defined in Eq. 14.
795796 **Quantization of Representation Score.** For box size s , we discretize object sizes into small,
797 medium, and large three categories following the standard MS COCO definitions (Small: area
798 $< 32^2$; Medium: $32^2 \leq \text{area} \leq 96^2$; Large: $\text{area} > 96^2$). For horizontal position u , we normalize
799 the horizontal center coordinate to $[0, 1]$, and discretize it into $K = 10$ uniform bins, to
800 ensure each group \mathcal{G} contains statistically significant samples for RS calculation.
801802 **Synthesized Debiasing Dataset.** To facilitate a fair comparison with prior L2I synthesis methods,
803 the scale of generated debiasing samples is aligned with the original MS COCO and NuImages
804 training sets, comprising 120K/60K images and 840K/540K instances, respectively.
805806 **A.4 ADDITIONAL ANALYSIS**
807808 **Ablation on Recalibration Strategy.** We examine the effectiveness of bias-aware layout recalibration
809 in Table S1. A bias-agnostic strategy, which randomly recalibrates layouts, yields modest
810 improvements across metrics. In contrast, targeting biases along a single attribute leads to a large
811 improvement for its corresponding metric but only modest gains for others. Our full strategy, which
812 jointly considers all attributes for layout recalibration, achieves the best overall performance.
813

810 Table S1: Ablative studies of recalibration strategy for layout generation on MS COCO 2017 (Lin et al., 2014).
811

Attribute	mAP↑	outer ↑	rare ↑	large ↑	small↑
Bias-Agnostic	39.1	29.9	45.2	50.4	22.3
Position	39.4	30.9	45.6	50.6	22.7
Size	39.6	30.0	45.6	51.8	21.9
Category	39.5	30.1	46.3	50.6	22.6
All	39.9	31.0	46.4	52.3	22.8

812 **Ablation on Hyperparameter β .** We further investigate the impact of the hyperparameter β in
813 Eq. 2, which balances the weight between visual diversity and context diversity. As shown in Ta-
814 ble S3, when $\beta = 0$, the context diversity term \mathcal{D}_{ctx} is disabled. The performance remains stable as
815 β varies, achieving optimal results at $\beta = 1.0$, which is adopted as our default setting.
816

817 Table S3: Ablative study of hyperparameter β in Eq. 2.

β Value	0.0	0.5	1.0 [†]	1.5	2.0
AP _{outer}	30.4	30.7	30.9	30.8	30.5
mAP	39.7	39.8	39.9	39.9	39.7

817 Table S4: Stability analysis over 3 independent runs.

Method	Mean mAP↑	Std Dev↓
w/o Alignment	40.1	0.32
w/ Alignment	40.3	0.06

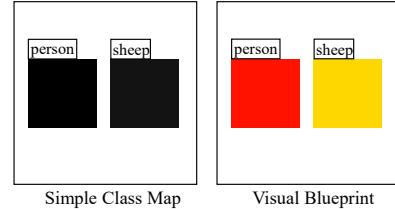
818 **Analysis of Generative Alignment.** We further analyze the impact of duality-aware generative
819 alignment on training stability. Synthetic data often introduces stochastic artifacts that vary with
820 random seeds. Without alignment constraints, the detector risks overfitting to these artifacts, leading
821 to high variance across runs. The alignment loss ($\mathcal{L}_{\text{image}}^{\text{IA}}$) acts as a structural anchor to enforce
822 feature consistency. To verify this, we conducted three independent training runs with different
823 random seeds. As shown in Table S4, the inclusion of generative alignment reduces the standard
824 deviation (from 0.32 to 0.06), which demonstrates improved robustness against generative noise.
825

826 **Debiasing.** In Table S5, we present a comparison of our proposed method against more bias-agnostic
827 generative data augmentation approaches. As shown, our method outperforms prior work across all
828 metrics, further demonstrating the effectiveness of our design.
829

830

A.5 VISUAL BLUEPRINT

831 Standard class maps typically represent categories using
832 adjacent integer IDs, leading to low numerical variance.
833 For example, the *Person* class corresponds to RGB val-
834 ues (0, 0, 0) and *Sheep* to (0, 0, 19). As shown in the left
835 panel, these numerically proximate values appear vis-
836 ually indistinguishable (near-black), providing a weak sig-
837 nal that may cause ambiguity for the encoder. In contrast,
838 our visual blueprint projects class labels onto the HSV
839 unit circle to maximize signal separation. This results in
840 significantly distinct pixel values: *Person* is rendered as
841 (255, 19, 0) and *Sheep* as (255, 215, 0). As shown in the
842 Fig. S1, this approach creates a high-variance, unambigu-
843 ous signal that is easier for the encoder to discriminate.
844

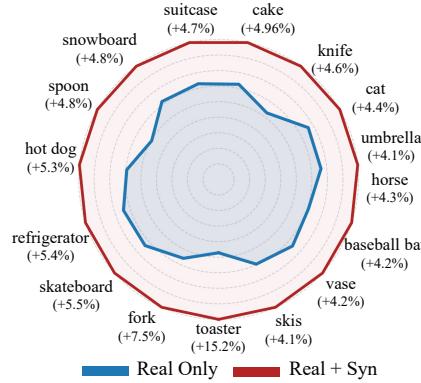
845 Figure S1: Comparison of layout representations. Left: Simple class map with
846 low numerical variance. Right: Our Visual Blueprint with high-variance RGB
847 signals for better discrimination.
848849

A.6 COMPUTATIONAL COST ANALYSIS

850 The computational cost of our framework consists of three components: **i) debiasing engine** which
851 computes representation scores involves only basic statistical operations on low-dimensional lay-
852 out data, introducing negligible overhead to the pipeline; **ii) blueprint-prompted L2I synthesis**
853 which involves the Layout Renderer and the L2I Generator. The Layout Renderer is computa-
854 tionally lightweight, while the L2I Generator (fine-tuned via adapters) requires training time compara-
855 ble to ControlNet (Zhang et al., 2023). In our implementation, training the generator on MS COCO
856 (512 × 512) takes approximately 74 GPU hours. In contrast, prior generation-based augmentation
857 SOTA like GeoDiffusion needs 640 GPU hours for training.
858

864
865 Table S5: Quantitative results for debiasing on MS COCO (Lin et al., 2014) and NuImages (Caesar et al., 2020)
with more bias-agnostic L2I synthesis methods.

866 867 Model	MS COCO					NuImages					
	mAP \uparrow	AP ₅₀ \uparrow	AP ₇₅ \uparrow	AP ^m \uparrow	AP ^t \uparrow	mAP \uparrow	car \uparrow	truck \uparrow	bus \uparrow	ped. \uparrow	cone \uparrow
Faster R-CNN (Baseline)	37.4	58.1	40.4	41.0	48.1	36.9	52.9	40.9	42.1	31.3	32.5
Bias Agnostic											
LostGAN (Sun & Wu, 2019)	-	-	-	-	-	35.6	51.7	39.6	41.3	30.0	31.6
LAMA (Li et al., 2021)	-	-	-	-	-	35.6	51.7	39.2	40.5	30.0	31.3
Taming (Jahn et al., 2021)	-	-	-	-	-	35.8	51.9	39.3	41.1	30.4	31.6
ReCo (Yang et al., 2023)	-	-	-	-	-	36.1	52.2	40.9	41.8	29.5	31.2
L.Diffusion (Zheng et al., 2023)	36.5	57.0	39.5	39.7	47.5	-	-	-	-	-	-
L.Diffuse (Cheng et al., 2023)	36.6	57.4	39.5	40.0	47.4	-	-	-	-	-	-
GLIGEN (Li et al., 2023b)	36.8	57.6	39.9	40.3	47.9	36.3	52.8	40.7	42.0	30.2	31.7
ControlNet (Zhang et al., 2023)	36.9	57.8	39.6	40.4	49.0	36.4	52.8	40.5	42.1	30.3	31.8
GeoDiffusion (Chen et al., 2024a)	38.4	58.5	42.4	42.1	50.3	38.3	53.2	43.8	45.0	30.5	32.1
Frequency Aware											
ControlNet + Resampling	36.9	57.8	39.7	40.5	47.6	36.5	53.1	40.3	41.6	30.4	31.9
GeoDiffusion + Resampling	38.5	58.6	42.4	42.2	49.9	38.3	53.3	39.8	44.6	30.8	32.3
Ours	40.3	61.0	44.0	43.8	52.5	40.0	55.1	46.5	47.1	32.1	33.2

881
882 **A.7 QUALITATIVE RESULTS**883
884 **Category Performance.** We present a spider chart in Fig. S2 to illustrate the improvements achieved
885 for various categories. As seen, our method yields substantial performance gains in these categories.886
887 **Class Distribution.** Fig. S3 visualizes the instance distributions with respect to different class cat-
888 egories. While the original dataset (blue) exhibits a severe long-tail bias, our generated data (red)
889 effectively supplements the tail region. This targeted enrichment flattens the overall distribution,
890 confirming that our strategy successfully mitigates class imbalance.891
892 **Visualization.** We provide three sets of visualizations to demonstrate the effectiveness of our ap-
893 proach in layout recalibration, geometry-faithful generation, and debiased object detection. First,
894 Figures S4-S6 illustrate the recalibrated layouts based on representation scores (§3.1), which effec-
895 tively adjust object positions and sizes as needed, and generate new objects of desired categories.
896 Next, Figures S7-S8 show that our method can generate geometry-faithful images from conditional
897 layouts. In contrast, GeoDiffusion (Chen et al., 2024a) fails to render complex scenes with multiple
898 objects. Finally, these advancements lead to superior detection performance (*i.e.*, Fig. S9), where
899 our method delivers significantly more precise detection results.

911 Figure S2: Spider chart illustrating improvements in mAP across various categories.

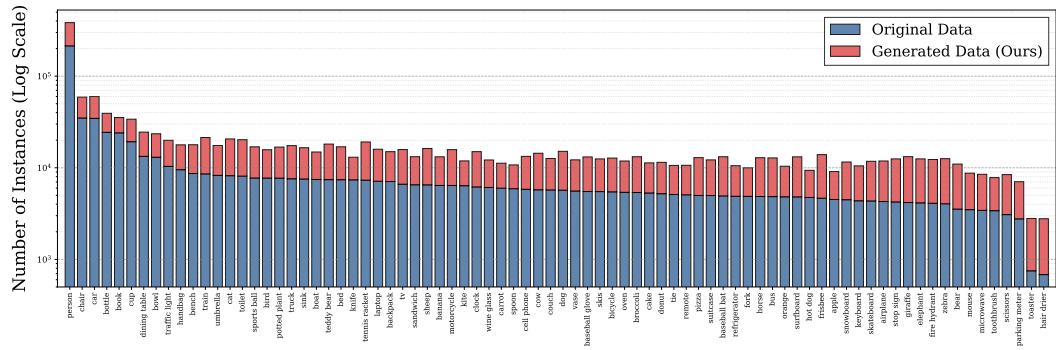


Figure S3: Visualization of class distribution.

Algorithm 1 Visual Blueprint Construction

Require: Layout set $L = \{(b_i, c_i)\}_{i=1}^N$, total classes N_{cls} , transparency factor α , decrement step δ
Ensure: Visual Blueprint I_{cond}

- 1: $I_{cond} \leftarrow$ zero-initialized image of size $H \times W \times 3$
- 2: $counts \leftarrow$ hash map initialized to 0
- 3: Sort L based on area of b_i in descending order // Handle occlusion: larger objects first
- 4: **for** $i = 1$ to N **do**
- 5: $(b, c) \leftarrow L[i]$
- 6: $h \leftarrow (c + 1)/N_{cls}$ // Inter-class discrimination via Hue
- 7: $r \leftarrow counts[c]$
- 8: $v \leftarrow \max(0.2, 1.0 - r \times \delta)$ // Intra-class distinction via Value decrement
- 9: $counts[c] \leftarrow counts[c] + 1$
- 10: $color \leftarrow \text{HSV2RGB}(h, 1.0, v)$
- 11: $ROI \leftarrow I_{cond}[b]$
- 12: $I_{cond}[b] \leftarrow \alpha \cdot color + (1 - \alpha) \cdot ROI$ // Occlusion-aware transparency blending
- 13: **end for**
- 14: **return** I_{cond}

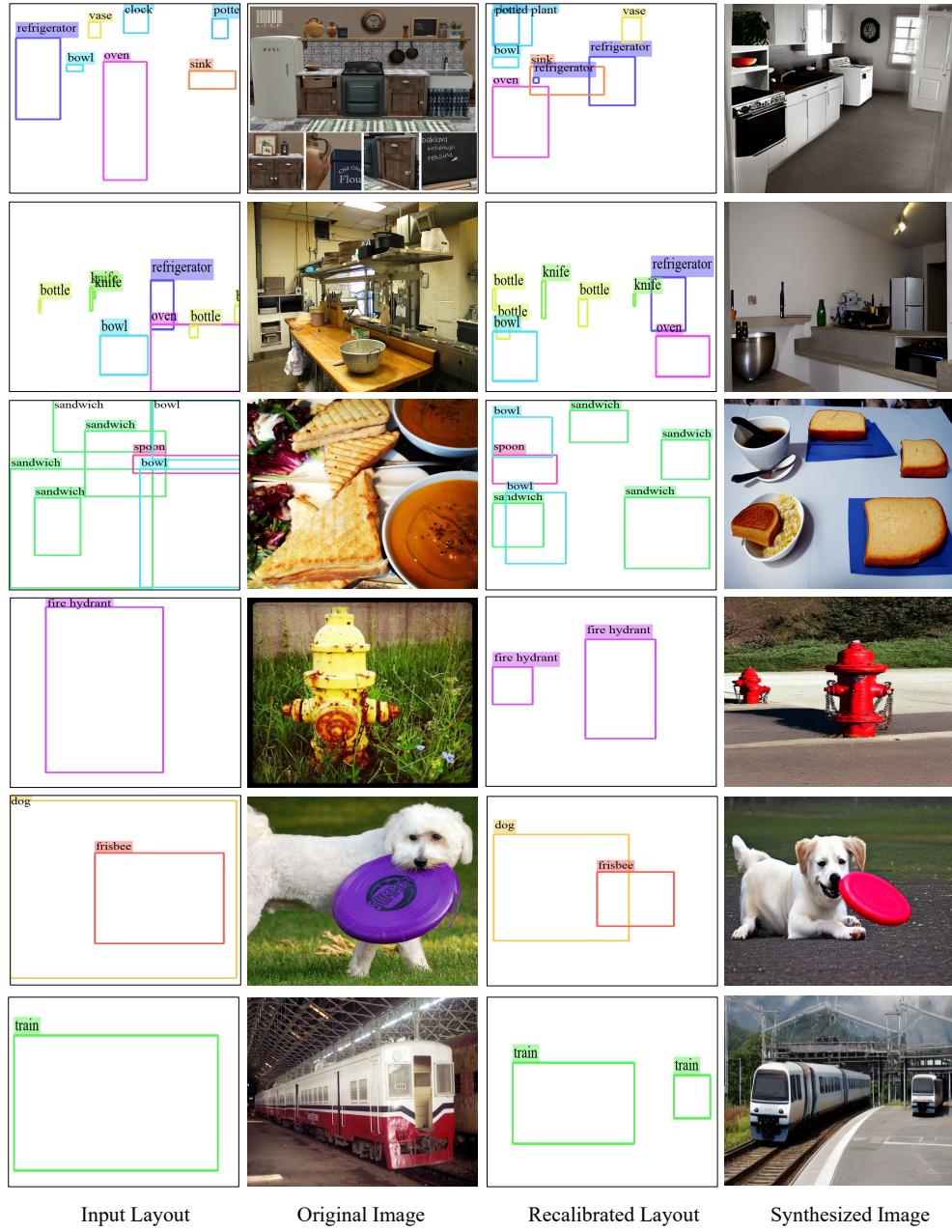
972
973
974
975
976
977

Figure S4: Visualization results for layout recalibration based on representation scores (§3.1) and L2I synthesis using our proposed visual blueprint-prompted method (§3.2).

1026
1027
1028
1029
1030
1031

Figure S5: Visualization results for layout recalibration based on representation scores (§3.1) and L2I synthesis using our proposed visual blueprint-prompted method (§3.2).

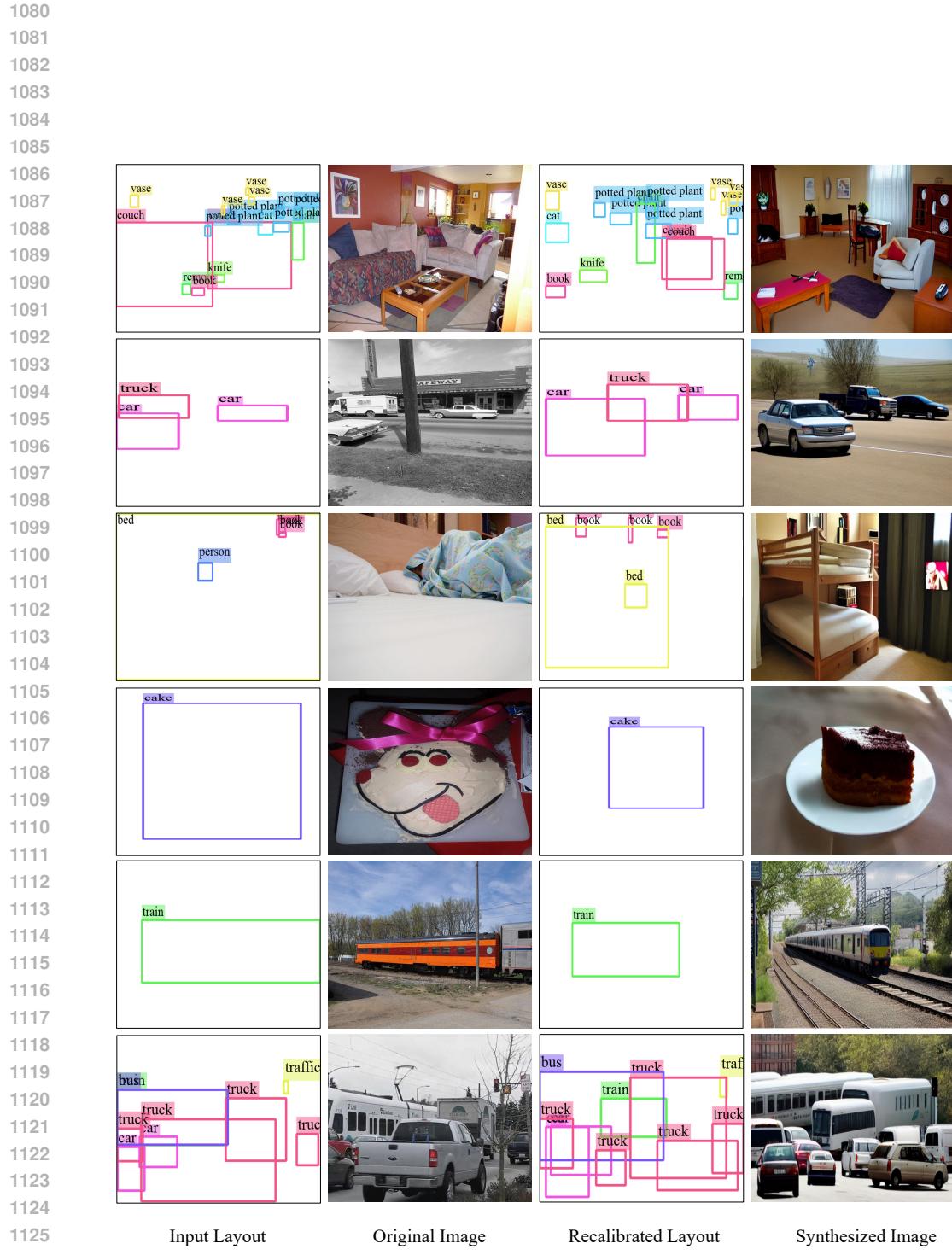
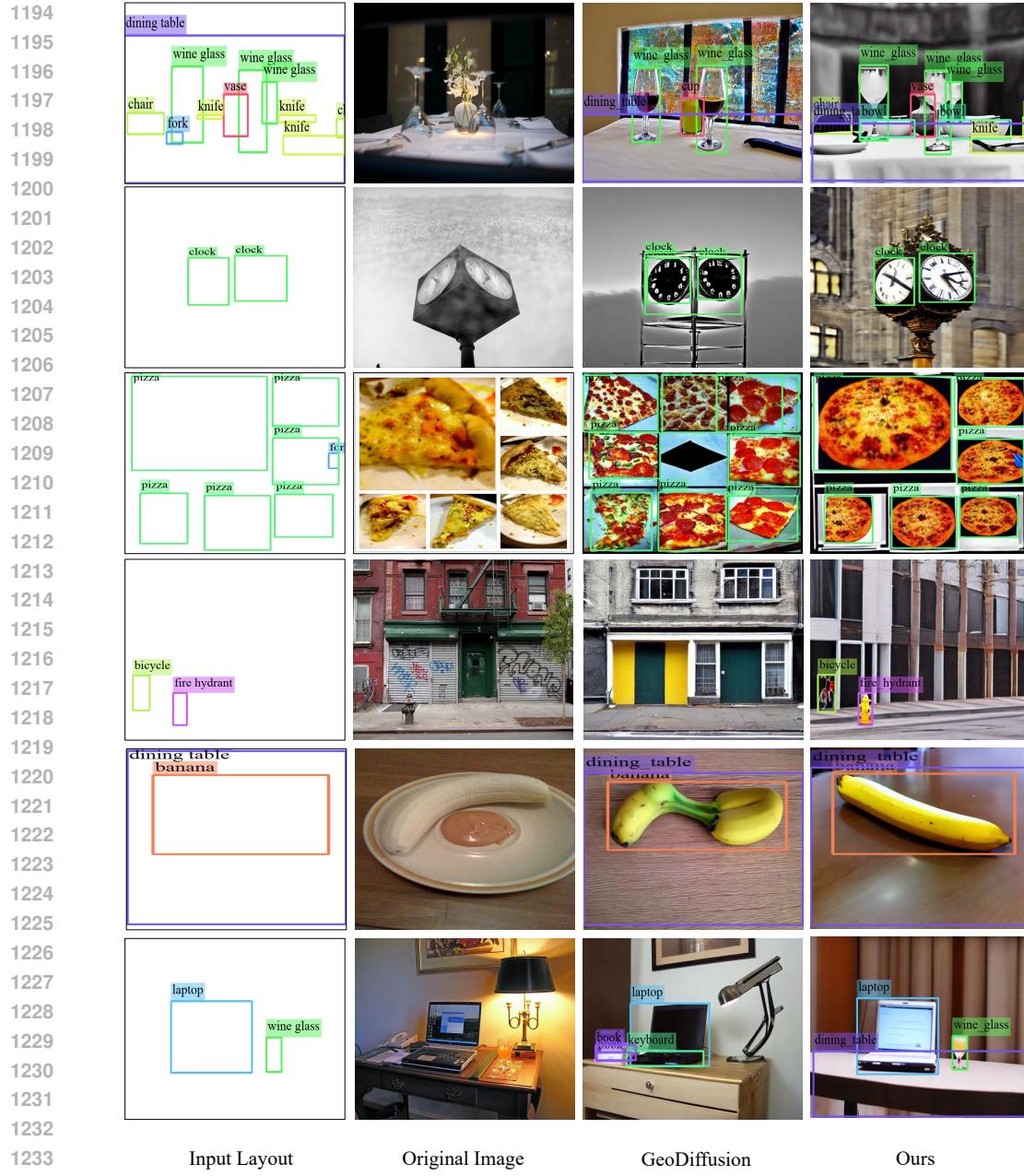


Figure S6: Visualization results for layout recalibration based on representation scores (§3.1) and L2I synthesis using our proposed visual blueprint-prompted method (§3.2).

1134
1135
1136
1137
1138
1139

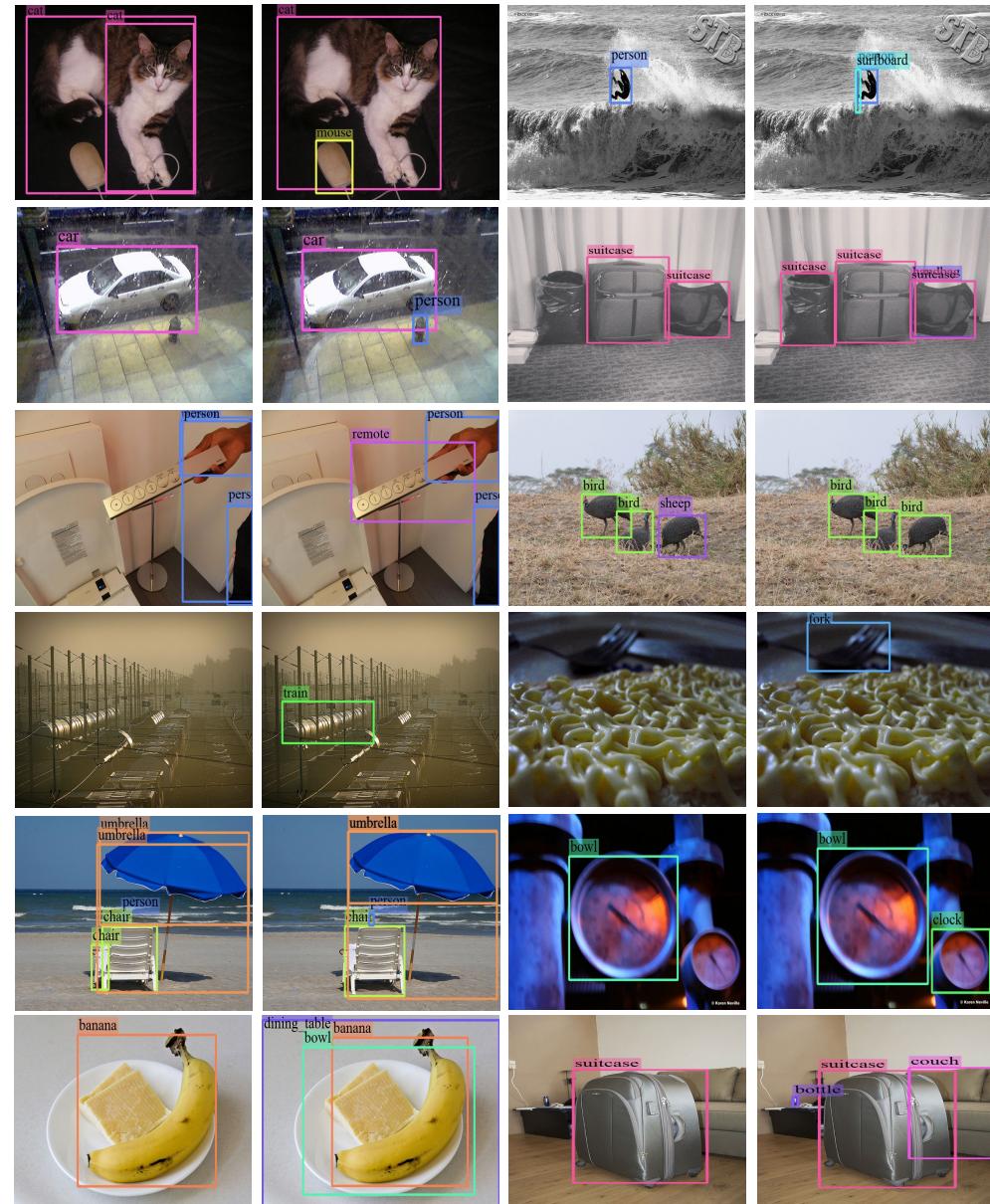
Figure S7: Comparison against GeoDiffusion under the **Fidelity** setup on MS COCO, where the L2 synthesis model should generate geometry-faithful images conditioned on given layouts.

1188
1189
1190
1191
1192
1193



1236
1237
1238
1239
1240
1241
Figure S8: Comparison against GeoDiffusion under the **Fidelity** setup on MS COCO, where the L2I
synthesis model should generate geometry-faithful images conditioned on given layouts.

1242
1243
1244
1245
1246
1247



Faster R-CNN

Enhanced Faster R-CNN

Faster R-CNN

Enhanced Faster R-CNN

1290
1291
1292
1293
1294
1295

Figure S9: Visualization results for object detection on MS COCO under the **Debiasing** setup.