
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FINE-TUNING WITH RESERVED MAJORITY FOR NOISE
REDUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameter-efficient fine-tuning (PEFT) has revolutionized supervised fine-tuning,
where LoRA and its variants gain the most popularity due to their low training
costs and zero inference latency. However, LoRA tuning not only injects knowl-
edgeable features but also noisy hallucination during fine-tuning, which hinders
the utilization of tunable parameters with the increasing LoRA rank. In this work,
we first investigate in-depth the redundancies among LoRA parameters with sub-
stantial empirical studies. Aiming to resemble the learning capacity of high ranks
from the findings, we set up a new fine-tuning framework, Parameter-Redundant
Fine-Tuning (PREFT), which follows the vanilla LoRA tuning process but is re-
quired to reduce redundancies before merging LoRA parameters back to pre-trained
models. Based on this framework, we propose Noise reduction with Reserved
Majority (NORM), which decomposes the LoRA parameters into majority parts
and redundant parts with random singular value decomposition. The major compo-
nents are determined by the proposed Sim-Search method, specifically employing
subspace similarity to confirm the parameter groups that share the highest simi-
larity with the base weight. By employing NORM, we enhance both the learning
capacity and benefits from larger ranks, which consistently outperforms both LoRA
and other PREFT-based methods on various downstream tasks, such as general
instruction tuning, math reasoning and code generation.

1 INTRODUCTION

Large language models (LLMs) have revolutionized Natural Language Processing (NLP) by pretrain-
ing on vast textual corpora, enabling them to encode extensive world knowledge (Chang et al., 2024;
AlKhamissi et al., 2022). These models exhibit remarkable zero-shot and few-shot performance across
a wide range of tasks (Brown et al., 2020; Anil et al., 2023; OpenAI, 2023; Touvron et al., 2023a;b).
Instruction tuning, a form of supervised fine-tuning (SFT), has further enhanced LLMs by refining
their instruction-following capabilities, thereby simplifying human-LLM interactions (Ouyang et al.,
2022; Chung et al., 2024). Pretrained models fine-tuned with SFT excel in various downstream
tasks such as medical consultation (Wu et al., 2024; Chen et al., 2023), mathematical reasoning (Luo
et al., 2023a; Yue et al., 2023; Yu et al., 2024b; Toshniwal et al., 2024), and serving as intelligent
assistants (Peng et al., 2023; Ivison et al., 2023). However, adapting these models to downstream tasks
in resource-constrained environments requires parameter-efficient fine-tuning (PEFT) techniques,
which update less than 1% of the total parameters while achieving performance comparable to full
fine-tuning. LoRA and its extensions (Pfeiffer et al., 2021; yang Liu et al., 2024; Hayou et al., 2024;
Wang et al., 2024; Jiang et al., 2024b) have emerged as some of the most effective and efficient
methods in this regard.

Despite its efficiency, vanilla LoRA fine-tuning does not always benefit from increasing the number
of tunable parameters and may even degrade performance. Hu et al. (2022) found that optimal
performance is often achieved with lower ranks, while larger ranks lead to negligible or negative
improvements (see Figure 1a). We hypothesize that this behavior stems from the fine-tuning dynamics
of LLMs. As shown by Gekhman et al. (2024), fine-tuning can introduce both useful downstream
knowledge and undesired hallucinatory features. We speculate that as the number of tunable pa-
rameters in LoRA modules increases, fine-tuning results in a trade-off between valuable knowledge
and noisy features. Consequently, increasing the rank may exacerbate the hallucination problem,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 4 8 16 64
Rank Values

73.7

73.8

73.9

74.0

74.1

W
ik

iS
QL

 P
er

fo
rm

an
ce

 (%
) WikiSQL

MultiNLI

91.2

91.3

91.4

91.5

91.6

91.7

M
ul

tiN
LI

 P
er

fo
rm

an
ce

 (%
)

(a)

W

𝑟𝑟𝑙𝑙 > 𝑟𝑟𝑠𝑠
𝑎𝑎𝑎𝑎𝑐𝑐𝑙𝑙 < 𝑎𝑎𝑎𝑎𝑐𝑐𝑠𝑠

𝐴𝐴

𝐵𝐵

𝐴𝐴𝐴

𝐵𝐵𝐵

W 𝑟𝑟𝑙𝑙′

𝐴𝐴′′

𝐵𝐵𝐵𝐵

𝑟𝑟𝑠𝑠

𝐴𝐴𝐴

𝐵𝐵𝐵

𝑟𝑟𝑠𝑠𝑟𝑟𝑙𝑙

𝑟𝑟𝑙𝑙′ = 𝑟𝑟𝑠𝑠
𝑎𝑎𝑎𝑎𝑐𝑐𝑙𝑙′ > 𝑎𝑎𝑎𝑎𝑐𝑐𝑠𝑠

(b)

Figure 1: Vanilla LoRA tuning usually cannot benefits from larger ranks (a) and Left of (b), where r
represents the rank of LoRA and acc represents the downstream performance. In contrast, PREFT
aims to adopt the same number of tunable parameters as LoRA but cuts part of it to achieve higher
performance (Right of (b)), where r′l < rs and rl > rs.

leading to diminished performance gains. Thus, improving LoRA’s effectiveness requires selectively
retaining useful knowledge while eliminating unwanted redundancies.

In this paper, we systematically investigate the parameter redundancies in LoRA fine-tuning. Our
analysis spans the overall structure of LLMs, focusing on transformer layers and specific modules
within the transformer. Our experiments reveal that LoRA parameters contain significant redundan-
cies, which exhibit distinct patterns across layers and modules. Based on these findings, we propose
a new parameter-efficient tuning framework, Parameter Redundancies Fine-Tuning (PREFT), which
follows the standard LoRA tuning pipeline during training but eliminates certain redundancies before
merging the fine-tuned parameters back into the base LLMs (see Figure 1b). To further optimize this
process, we introduce Noise reduction with Reserved Majority (NORM), which utilizes singular
value decomposition (SVD) to distinguish between essential and noisy components. NORM acceler-
ates the computation by using an approximated SVD and introduces a novel Sim-Search method that
adaptively selects the most valuable components based on subspace similarity between the reduced
and base weights. Figure 3 illustrates the computational flow of NORM and Sim-Search.

We conduct comprehensive experiments to validate the effectiveness of NORM, covering tasks
such as general instruction tuning, mathematical reasoning, and code generation, using three strong
pre-trained models. NORM consistently outperforms LoRA and other PREFT methods, achieving
an average gain of +4.67 over the best PEFT methods and +1.63 over the strong PREFT method
TAIA, when applied to Llama3-8B. Additional analysis confirms the robustness of NORM, and
shows that Sim-Search outperforms alternative similarity-based search methods. Further experiments
demonstrate that NORM significantly improves the utilization of the fine-tuning corpus while
maintaining the retention of pre-trained knowledge.

Overall, we conclude our contributions as such:

1. Revisiting LoRA Fine-Tuning: We revisit LoRA tuning and, through extensive experiments,
reveal that it suffers from low parameter utilization due to the introduction of redundant features.
To address this, we introduce PREFT, a novel fine-tuning framework that significantly improves
upon existing PEFT methods by reducing these redundancies.

2. Adaptive Noise Reduction at Inference: Within the PREFT framework, we propose NORM, an
adaptive method that removes disruptive components for each parameter. This is achieved using
our automated search algorithm, Sim-Search, which identifies the most relevant components by
evaluating their affinity with the base weights.

3. Comprehensive Evaluation: We rigorously evaluate NORM across multiple domains, including
general instruction tuning, mathematical reasoning, and code generation. Our method consistently
surpasses state-of-the-art PEFT methods and alternative PREFT approaches, demonstrating the
effectiveness of removing parameter redundancies.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Remain Ratio 

82.0
82.5
83.0
83.5
84.0
84.5
85.0
85.5

Ac
cu

ra
cy

Base
r=16 Vanilla
r=16 Drop
r=32 Vanilla
r=32 Drop
r=64 Vanilla
r=64 Drop

(a)

1 16 32
Layer Index

1.
0

0.
8

0.
7

0.
5

0.
3

0.
1Re

m
ai

n 
Ra

tio
 

Best Drop Ratio

82.0

82.5

83.0

83.5

Ac
c

(b)

q k v o up downgate
Modules

1.
0

0.
8

0.
7

0.
5

0.
3

0.
1Re

m
ai

n 
Ra

tio
 

82.1

82.8

83.4

84.0

84.7

Ac
c

(c)

Figure 2: Performance change log with random drop ratios (a) and the performance distribution
among layers (b) and modules (c). We annotate the best remaining ratio with darkblue.

2 PARAMETER REDUNDANCIES FINE-TUNING (PREFT)

In this section, we first introduce the basic properties of LoRA fine-tuning. After that, we empirically
unveil the common parameter redundancies within PEFT-based methods. Following the findings,
we formalize the post-processing of these redundancies as a novel fine-tuning framework, PREFT.
Ultimately, we introduce two genres of identifying the redundant components intelligently.

2.1 PRELIMINARIES

Given an input sequence X ∈ Rm×d, LoRA (Hu et al., 2022) proves that the update of original linear
layers ∆W in large language models is of low-rank, and can be decomposed into the multiplication
of two compact matrices AB. The pretrained weight W ∈ Rd′×d is frozen in the training phase,
while A and B are trainable parameters and contribute together to the forward pass:

H = XW⊤ +X∆W⊤ = XW⊤ +
α

r
X(BA)⊤ (1)

where A ∈ Rr×d, B ∈ Rd′×r and r ≪ d, d′. α is the scaling factor. Without loss of generality, we
omit the layer index for the following formula. At the beginning of training, B is initialized to an
all-zero matrix and A uses Gaussian initialization to ensure that BA is zero at initialization.

2.2 PILOT EXPERIMENTS

Yu et al. (2024a) indicates that the delta parameters of full fine-tuned models contain superior
redundancies, where over ninety percent of fine-tuned parameters can be dropped. In contrast to
them, in this study, we further dig out the parameter redundancies among PEFT modules, which are
usually convinced of compact encoding compared to full parameters. We progressively present the
commonly existing redundancies holistically, along with layer-wise and module-wise analysis.

Experiment Settings We mainly utilize Llama3-8B-Instruct (AI@Meta, 2024) as the base
model. We choose MetaMathQA-395K (Yu et al., 2024b) as the fine-tuning corpus and SVAMP (Patel
et al., 2021) as the evaluation set. We adopt vanilla LoRA (Hu et al., 2022) as the fine-tuning method
and choose three configurations of LoRA rank and α values: {(r, α) | (16, 32), (32, 64), (64, 128)}.
The learning rate is set to 2e-4 and the total batch size is set to 128. After fine-tuning, we set up three
parameter drop strategies: (1) drop holistically, (2) drop by layer, and (3) drop by module.

Drop holistically: We denote the remaining ratio of intrinsic rank as η. We randomly re-
main η = 10% ∼ 90% channels of both parameters: A′ = A[H, :] and B′ = B[:, H] where
H = {h1, h2, . . . , hr′ | hi ∈ {0, 1, · · · , r − 1} ∧ ∀i, j (i ̸= j) ⇒ hi ̸= hj} and r′ = ⌊η · r⌋. To
maintain the scale of modified delta parameters, we also change the α value from 2r to r′ after the
above modification. Experiments are averaged by five runs to reduce random bias. In Figure 2a, it is
obvious that even with a low rank (r = 16), randomly dropping brings significant performance gain
compared to complete parameters. Meanwhile, a small remaining ratio (η = 0.1) still brings perfor-
mance gains, which indicates mass redundancies among each parameter. We also notice that lower
ranks bring higher performances, which is attributed to fewer introduced hallucinations (Gekhman
et al., 2024) by the intrinsic properties of fine-tuning.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Drop by layer: We find that the LoRA rank has no effect on deriving conclusions; therefore, in the
following experiments, we only choose r = 32 for simplicity. For each layer l ∈ [0, L) of base LLMs,
we select five remaining ratios: {10%, 30%, 50%, 70%, 80%} as well as the full LoRA parameter as
remaining ratio 100% and follow the first strategy to retain delta LoRA parameters of the specific
layer yet keep the other layers unchanged. For layer redundancies (Figure 2b), we find that in middle
layers, the best performances are achieved with moderate drop ratios. For upper layers and lower
layers, a large remaining ratio generally brings higher results. This indicates that initial encoding
and eventual output layers contain much fewer redundancies compared to middle layers, which also
aligns with previous findings (Men et al., 2024).

Drop by module: For each module of a Llama-style transformer, including {q proj,k proj,
v proj, o proj, gate proj,up proj,down proj}, we choose five remaining rates
{10%, 30%, 50%, 70%, 80%} and follow the second strategy to retain delta LoRA parameters of
the specific module yet keep the other modules unchanged. In Figure 2c, dropping parameters of
{q proj,k proj,v proj} brings minor performance gains while dropping those of {o proj,
gate proj, up proj, down proj} facilitates further performance improvements, which is
also alluded to by Jiang et al. (2024a). Noticeably, for the latter four modules, a small drop ratio like
30% or 50% generally results in the best performance across all drop ratios, which also indicates that
MLP blocks encode nonnegligible hallucinatory information during PEFT.

2.3 PREFT

Built upon these findings, it is essential to adaptively remove these redundancies based on parameter
locations to enhance the effectiveness of LoRA parameters. Therefore, we propose a new fine-tuning
framework: Parameter Redundancies Fine-Tuning (PREFT), which enhances fine-tuned models by
removing redundancies of PEFT parameters obtained via a usual training procedure. The comparison
with PEFT is illustrated in Figure 1b. Formally, given the pretrained weight W and updated ∆W ,
PREFT aims to create new delta weights ∆W ′ 1 by removing parts of ∆W , under the condition that:

argmaxM(x | {Wi}pi=1, {∆W ′
i}

p
i=1) (2)

where p is the total number of parameters, x is the input sequence and M is a specific metric for
downstream tasks. Based on it, previous method TAIA (Jiang et al., 2024a) can be concluded as such:

{∆W ′} = {∆Wattn,0ffn} (3)

where it removes all delta parameters of FFN modules but keeps the self-attention part unchanged.
Another example, MedCare (Liao et al., 2024), also adopts PREFT philosophy:

{∆W ′} = {∆WLoRA,0MoLoRA} (4)

where MoLoRA is the mixture-of-LoRA submodule (Feng et al., 2024; Liu et al., 2023a). However,
these two instances of PREFT identify the shearing part through empirical observations and lack fine-
grained parameter-wise practice for reducing redundancies. Consequently, in the newly introduced
PREFT system, the core of adaptive parameter shearing is to identify redundant parts of original
LoRA parameters more intelligently. Based on this, we categorize the identification process into two
genres: (1) intra-shearing which leverages solely LoRA parameters to perform reduction, and (2)
inter-shearing which leverages the relationship between LoRA parameters and corresponding base
weights to fulfill the task. We exemplify these two categories in the following:

Intra-shearing Assuming that we want to keep 0 < β < 1 components of each parameter (β
can be searched on the dev set), the most common practice is to perform principle component
analysis (PCA (Abdi & Williams, 2010)) or singular value decomposition (SVD (Klema & Laub,
1980)) to dig out the major components:

Ar, Br = κ(A,B) (5)

where κ(·) can be any method that selects the major β percent of total components.

1Without loss of generality, we use (·)′ notation for modified parameter under PREFT framework.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

QR-Dec

Subspace 
Similarity

Δ𝑊𝑊

Ω

𝑌𝑌
⊗

𝑅𝑅

𝑄𝑄

𝑅𝑅𝑑𝑑×𝑐𝑐

�𝑈𝑈′

𝐵𝐵⊗

𝑉𝑉′⊤

Σ′SVD

𝑈𝑈𝑈

⊗

𝐵𝐵𝐵

𝐴𝐴𝐴⊗

(a) NoRM (b) Sim-Search

Δ𝑊𝑊1′

𝑊𝑊0

Δ𝑊𝑊2′ Δ𝑊𝑊3′ Δ𝑊𝑊𝑟𝑟−𝑠𝑠
𝜏𝜏
′·······

Δ𝑊𝑊𝑐𝑐′
Highest

Similarity

𝑅𝑅𝑑𝑑′×𝑑𝑑

Pretrained 
Weight

QR-Dec: Matrix QR Decomposition

⊗ Matrix Multiplication

Ω Random Matrix

Matrix Slicing

Figure 3: Overview of NORM. NORM employs random SVD to extract the major components from
the delta parameter. NORM utilizes (b) Sim-Search to determine c channels with little hallucination
based on the subspace similarity between the sheared delta weight and the pre-trained weight.

Inter-shearing In the above method, we need to search β on the dev set, which inhibits PREFT
from the deployment on real applications. Therefore, inter-shearing methods determine β on the
relationship between LoRA weights and pre-trained weights, which is based on an observation that
fine-tuning introduces hallucination sharing different distributions with pre-trained weights (Gekhman
et al., 2024). Therefore, we choose β such that the remaining components overlap with the pre-trained
weight to a maximum extent. Formally, we can conduct a hyperparameter search to determine β:

β = argmax
β

Sim(BβAβ ,W ) (6)

where β can be searched over a given range with a pre-defined step and Sim is any similarity-based
metric between the delta and base weight, including the reverse of L2-distance or cosine similarity.

Based on the above categorization, in this paper, we build an inter-shearing method called Noise
reduction with Reserved Majority (NORM) by reserving contributing components through random
SVD while determining β by a novel Sim-Search method, which maximizes the subspace similarity
between the reduced LoRA weights and base weights.

3 NORM

3.1 OVERALL PIPELINE

The overall pipeline for NORM is presented in Figure 3. We start by analyzing the approximation
of LoRA parameters B ∈ Rd′×r and A ∈ Rr×d and their product ∆W = BA. By the low-
rank decomposition property of LoRA, we can get Rank(BA) = r. Without taking any low-rank
assumptions on the updated weight ∆W , we decompose it using singular value decomposition (SVD):

∆W = UΣV⊤ (7)

where U ∈ Rd′×r,V ∈ Rd×r are left/right singular matrices and Σ ∈ Rr×r is the diagonal matrix
containing the singular values of ∆W . To approximate the delta parameters by discarding redundant
components, we can retain the first c < r largest singular values and corresponding singular vectors:

Σ′ = diag(σ1, σ2, · · · , σc), U′ = U[:, 1 : c], V′ = V[:, 1 : c] (8)

Such approximation deduces the approximation of BA: ∆W = BA ≈ U′Σ′V′⊤. However, directly
computing the singular value decomposition of delta weight ∆W is computationally heavy for both
pre-processing and storage; therefore, we propose to use randomized SVD (Halko et al., 2011) to
further speed up this process and hence approximate the low-rank parameters B and A for portable
usage. Specifically, randomized SVD creates a random matrix Ω ∈ Rd×c with Gaussian distribution:

Ω ∼ N (0, I) (9)

After that, we obtain the main column subspace of ∆W with Y = ∆WΩ to approximate the feature
space of original delta weight. Followed by that, we compute an approximation of orthonormal bases

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

of ∆W : Q ∈ Rd′×c using QR decomposition on Y: Y = QR. Based on the orthonormal basis, we
obtain the projection of delta weight B ∈ Rc×d on the low-dimensional representation space of Q:

B = Q⊤∆W (10)

Then we compute the standard SVD on the smaller matrix B:

B = Û′Σ′V′⊤ (11)

where Û′ ∈ Rc×c,Σ′ ∈ Rc×d,V′⊤ ∈ Rd×d. We transform back Û′ to approximate singular vectors
U′ ∈ Rd′×c as U′ = QÛ′. Based on above quantities, we reconstruct the approximated B and A as:

B′ = U′ · diag(Σ′) A′ = V′⊤[1 : c, :] (12)

where diag(Σ′) ∈ Rc×c is a diagnomal matrix satisfying diag(Σ′)i,i = Σ′
i,i,∀ 0 < i ≤ c and

diag(Σ′)i,j = 0,∀ i ̸= j. To determine an appropriate approximation factor c, we innovatively
introduce Sim-Search which searches c through the affinity of remaining components.

3.2 SIM-SEARCH

Previous works (Hu et al., 2022; Wang et al., 2024) empirically demonstrate that the subspace
similarity between the delta weight ∆W and the pretrained weight W correlates positively to
downstream performances. Meanwhile, Gekhman et al. (2024) also points out that during fine-
tuning, LLMs memorize new knowledge by hallucinating itself, which degrades the effectiveness of
fine-tuning. Therefore, in NORM, the remaining components should satisfy both two rules:

1. The remaining c factors should contribute most positively compared to others c′ ̸= c. In other
words, these c components contain the least noise.

2. The subspace spanned by the remaining c singular vectors should possess the highest subspace
similarity with that spanned by the pretrained weight.

Based on the two rules, we introduce a search step τ and search the c = r · β values ranging from
a given start value s to r: {τ · s, (τ + 1) · s, · · · , r} and perform Equation 9-12 to obtain B′

c and
A′

c under different c values. Followed by these newly obtained B′
c and A′

c, we reconstruct the delta
weight ∆Wc by ∆Wc = B′

cA
′
c and compute the major r singular vectors again by the random SVD:

Uc,Σc,V
⊤
c = Random− SVD(∆Wc) (13)

We also use Equation 13 to decompose the pretrained weight W to obtain U,Σ and V⊤. We extract
the r left singular vectors of Uc and U and compute the subspace similarity as such:

ϕc =
∥U⊤

cr ·Ur∥2F
r

(14)

where Ucr = Uc[:, : r] ∈ Rd×r,Ur = U[:, : r] ∈ Rd×r. Based on the computed Grassmann dis-
tance ϕc, we select the c value and corresponding reduced delta weights B′

c and A′
c as such:

{c,B′
c, A

′
c} = argmax

c
ϕc (15)

Finally, these parameters can finally merge back into the pretrained weight to introduce no inference
latency: W ′ = W +B′

cA
′
c,∀W ∈ {W}p.

4 EXPERIMENTS

In this section, we comprehensively evaluate the proposed NORM method on various downstream
domains, including general language understanding, mathematical reasoning, and code generation.

4.1 EXPERIMENT SETUPS

Training and Evaluation We choose Llama3-8B-Instruct, Qwen2-7B-Instruct, and Mistral-7B-
v0.3-Instruct2 as the base model. For the decoding strategy, we adopt the zero-shot setting with

2We choose instruction-tuned models instead of base models for higher zero-shot compatibility and more
accurate evaluation

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Model Method BBH MMLU TydiQA CQA TruthfulQA GSM8K Logiqa-EN Average

Qwen2-7B

Base 41.73 66.84 45.36 74.20 57.65 87.19 40.40 59.05
LoRA 44.31 67.95 48.45 75.84 50.80 83.02 43.93 59.19
LoRA+ 42.64 67.81 52.15 78.71 50.18 83.24 43.78 59.79
DoRA 43.11 67.94 44.64 75.43 53.98 82.94 44.85 58.99
MoRA 36.31 62.43 46.70 72.65 53.37 75.44 44.09 55.85
TAIA 44.79 66.36 46.81 75.10 58.51 85.60 45.78 60.42
NORM 45.19 68.89 50.80 78.05 57.77 85.06 46.08 61.69

Llama3-8B

Base 40.68 59.18 40.90 71.83 63.28 77.79 41.17 56.40
LoRA 36.38 63.42 43.56 77.64 48.10 72.02 38.40 54.22
LoRA+ 40.30 63.30 38.01 75.35 37.70 73.62 36.71 52.14
DoRA 36.95 63.89 42.54 77.97 42.59 71.27 37.94 53.31
MoRA – 25.09 – 20.48 20.07 – 26.42 23.01
TAIA 35.83 62.02 47.26 76.66 54.22 77.10 37.94 55.86
NORM 43.11 64.61 46.21 77.72 54.10 77.71 43.47 58.13

Mistral-7B

Base 39.26 54.07 30.04 66.83 56.30 55.27 36.87 48.38
LoRA 34.79 53.68 41.88 73.05 53.37 41.47 33.79 47.43
LoRA+ 32.51 56.67 39.99 70.52 42.23 45.49 38.40 46.54
DoRA 34.66 53.31 32.01 68.88 38.19 42.99 36.25 43.76
MoRA 26.69 27.58 27.40 49.14 33.66 20.24 33.18 31.13
TAIA 38.06 54.97 39.20 71.91 53.24 50.87 38.25 49.50
NORM 39.29 58.05 40.56 73.55 54.47 52.01 37.63 50.79

Table 1: Experiment results on general instruction tuning with Qwen2-7B, Llama3-8B, and Mistral-
7B pre-trained models. “–” means a zero performance on specific datasets. “CQA” indicates the
CommonsenseQA dataset. All experiments are conducted based on open-sourced codebases. Bold
represents the best result. The NORM setting achieves the best results in most datasets.

temperature = 0 for reproducible generation. We choose a 100K subset of TÜLU V2 as the general
instruction tuning dataset and evaluate each fine-tuning method across various tasks, including sym-
bolic reasoning, commonsense reasoning, knowledge understanding and multi-lingual understanding.
Apart from general tuning, we also choose math reasoning and code generation as specific fine-tuning
tasks and utilize LLama3-8B as the pretrained model. Specifically, we employ MetaMathQA (Yu
et al., 2024b) to fine-tune the base model for math reasoning, which consists of 395K training samples
evolved from GSM-8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021b). The evaluation sets
are the corresponding test sets of GSM-8K and MATH to test models’ solving capabilities for math
word problems. For the code generation, we utilize Magicoder-Evol-Instruct-110K (Wei
et al., 2024) as the training data. All fine-tuned models are assessed on HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021) benchmarks, which contain 164 and 378 high-quality Python
text-to-code problems, respectively. For more rigorous evaluation for programming-oriented models,
we also test models on HumanEval+ and MBPP+ of the EvalPlus (Liu et al., 2024) benchmark.

Implementation Details We choose LoRA (Hu et al., 2022), DoRA (yang Liu et al., 2024),
LoRA+ (Hayou et al., 2024), MoRA (Jiang et al., 2024b) as the compared PEFT baselines and
TAIA (Jiang et al., 2024a) as the PREFT baseline. All experiments are conducted on 4 NVIDIA
A100 GPUs. We use BFloat16 precision and fine-tune all training corpus for 1 epoch. The learning
rate is set to 2e-4 and the LoRA rank is set to 64. We use a linear warmup strategy with a 0.03
warmup ratio and a cosine learning rate scheduler. For NORM’s setting, the search step τ is set to 0.1
and the search range starts at 1. More details can be found in Appendix D.

4.2 MAIN RESULTS

Table 1 and 2 present a comprehensive comparison between various PEFT methods (LoRA, LoRA+,
MoRA, and DoRA), and PREFT methods (TAIA and our proposed NORM) across different training
datasets and evaluation benchmarks. In general instruction tuning, NORM generally performs
best across various pre-trained models. Notably, most PEFT-based methods experience parameter
redundancy, leading to either minimal gains or even performance degradation. In contrast, PREFT-
based methods exhibit superior data efficiency, consistently improving upon base models. Specifically,
NORM surpasses LoRA by 4.37 points on MMLU and 3.69 points on LogiQA-EN when applied to
Mistral-7B. In downstream tasks such as math reasoning and code generation, NORM also achieves
the highest performance among all baselines, delivering a +5.31 improvement over LoRA and a +2.73

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Model
Math Code

Avg.GSM8k MATH HumanEval HumanEval+ MBPP MBPP+
Pretrained 77.79 31.06 53.00 48.80 71.70 60.60 57.16

PEFT Method

Full 77.86 27.86 58.50 53.70 65.30 55.00 56.37
LoRA (Hu et al., 2022) 80.21 29.27 48.80 44.50 67.20 57.40 54.56
LoRA+ (Hayou et al., 2024) 78.77 28.22 56.70 52.40 68.50 58.50 57.18
DoRA (yang Liu et al., 2024) 80.82 29.84 51.80 46.30 66.90 57.40 55.51
MoRA (Jiang et al., 2024b) 63.15 19.48 43.30 39.00 47.90 39.20 42.01

PREFT Method

TAIA 79.08 32.60 59.10 53.00 69.30 60.60 58.95
NORM 82.79 33.76 63.40 59.80 71.40 60.80 61.99

Table 2: Experimental results on math reasoning and code generation with the Llama3-8b base model.
For LoRA+, DoRA and MoRA, we implement them using their open-sourced codebases. Bold text
represents the best result. The NORM setting achieves the best results in most datasets.

Model/Method
General Math Code

Avg.BBH MMLU TydiQA GSM8k MATH HumanEval (+) MBPP (+)
Pre-trained 40.68 59.18 40.9 77.79 31.06 53.00 (48.80) 71.70 (60.60) 53.75
NORM 43.11 64.61 46.21 82.56 34.02 63.40 (59.80) 71.40 (60.80) 58.22

w/ min 43.14 64.36 44.54 80.36 32.58 61.60 (54.90) 69.60 (59.50) 56.73
w/ minor 42.44 64.56 44.98 81.96 34.00 61.60 (57.30) 72.00 (61.10) 57.77
w/ L2 43.86 63.86 44.47 79.76 31.58 57.90 (53.00) 69.80 (60.60) 56.09
w/ cos 43.91 64.09 45.93 80.06 32.48 61.60 (56.70) 70.40 (59.30) 57.16
w/ PCA 29.28 63.85 40.11 79.23 29.28 54.90 (51.20) 72.50 (60.10) 53.38

Table 3: Ablation experiments on the selection of major components of NORM. The major compo-
nents selected by NORM can reserve most LoRA representation but discard most noise.

gain compared to TAIA. Additionally, PEFT-based methods, including DoRA, LoRA+, and MoRA,
fail to surpass vanilla LoRA in instruction-tuning tasks and fall significantly behind the PREFT
method, TAIA. In contrast, NORM significantly surpasses TAIA in symbolic reasoning tasks, such as
math reasoning and code generation, highlighting its effectiveness in reasoning-intensive scenarios.

4.3 ABLATION STUDY

In this section, we investigate the impact brought by the choice of shearing methods and highlight
the superiority of the random SVD in NORM and the smart determination of β of Sim-Search. We
choose five comparatives: (1) w/ min: NORM but choose the least similar major components; (2)
w/ minor: NORM but choose the minor c components; (3) w/ L2: NORM with the L2 distance
metric; (4) w/ cos: NORM with the cosine similarity metric; and (5) w/ PCA: NORM with PCA
method for the selection of major components. We use the same settings of §4.1 except subsampling
three general evaluation sets covering diverse tasks (BBH, MMLU, and TydiQA) to conduct the
ablation experiments. Results in Table 3 demonstrate that random SVD selection outperforms PCA
selection. Furthermore, we show that subspace similarity metrics outperform other similarity-based
methods, underscoring their precision in measuring the affinity between the retained components
and the pre-trained weights. By leveraging the Sim-Search method, NORM effectively preserves the
most relevant components for downstream tasks while maintaining alignment with the base models
from a subspace perspective, thereby minimizing the risk of hallucination during fine-tuning.

5 ANALYSIS

In this section, we aim to answer the following research questions (RQ):

RQ1: How is the parameter redundancies change with the number of delta parameters?

RQ2: What do the sheared parameters distribute over the LLM?

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

23 24 25 26 27

Training r

53

54

55

56

57

58

Ac
cu

ra
cy LoRA

NoRM
Base

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer Index

20

25

30

35

40

45

50

55

Av
er

ag
ed

 R
an

ks

Code
Math
General

(b)

q k v o up down gate
Modules

25

30

35

40

45

50

55

Av
er

ag
ed

 R
an

ks

Code
Math
General

(c)

Figure 4: (a) NORM benefits from larger ranks, while vanilla LoRA often obtains lower performance
on larger ranks; parameter rank distribution of NORM among layers (b) and modules (c).

RQ3: What is the secret for NORM’s high performance over PEFT methods?
RQ4: Does NORM scale to other sizes of training data?
RQ5: What has been reduced by NORM?

Response to RQ1: NORM benefits from larger ranks, with a different manner with LoRA.
To validate the hypothesis that NORM can leverage more tunable parameters and hence gain more
improvements, we experiment NORM with an increasing rank sequence: [8, 16, 32, 64, 128] and use
the same hyperparameter settings and evaluation datasets described in §4.3. The results, shown in
Figure 4a, indicate that compared to LoRA, which usually achieves its highest performance with a
middle rank, NORM achieves higher performance with more tunable parameters, which conforms to
the general relationship between parameter amounts and performance upgrades. Such distinction
also instantiates that vanilla LoRA tuning introduces noise and redundancies into parameters, while
NORM can intelligently remove such distraction and largely benefit from the fine-tuning corpus. We
also notice flattening improvements when scaling the LoRA ranks to 128 due to an unstable training
process; therefore we choose r = 64 in our main experiments. Full results are presented in Table 6.

Response to RQ2: Reduced parameters distribute as §2.2 suggests in most cases. To visualize
the distribution of sheared parameters across the transformer architecture, we compute the reduced
rank for each checkpoint in terms of both layers and modules. Results in Figure 4b demonstrate that
in upper layers, NORM tends to remain fewer parameters, which is accordant with the conclusion in
§2.2. In contrast, in the half layers (around 16-18), NORM behaves to maintain large ranks. Such
distinct manner derives from the remaining strategy of §2.2 (random drop) and NORM (random
SVD). Besides, NORM remains as much down proj and o proj ranks as Figure 2c indicates in a
module-wise perspective. NORM maintains ∼ 50% parameters for self-attention modules, which
is the configuration obtaining the highest performance in §2.2. In conclusion, NORM intelligently
erases the redundancy following its distribution in LLMs and achieves superior performance.

Response to RQ3: NORM forgets less and learns more. We unveil the secret of NORM from the
forgetting perspective, where we benchmark the vanilla LoRA method and NORM on memorizing
pre-trained knowledge. We follow Kalajdzievski (2024) to use WikiText-103 test dataset (Merity et al.,
2016) as the evaluation set since it has already served as the pre-training corpus for most LLMs. We
use the cross-entropy loss as the metric to test the base model, LoRA-tuned model and NORM-tuned
counterpart taking the Llama3-8B-Instruct as the backbone. Results in Table 4 demonstrate that
NORM outperforms LoRA and the base model with a large margin, no matter what training data
it leverages. Notably, LoRA-tuned models are generally inferior to the base model, indicating that
LoRA tuning still results in forgetting problems, albeit relatively few tunable parameters. In contrast,
NORM discards the hallucinatory contents accompanied by the learning of new knowledge and hence
strengthens the memorization of internal knowledge.

Response to RQ4: NORM demonstrates superiority across various sizes of fine-tuning datasets.
Considering that in practical conditions, access to extensive fine-tuning datasets is frequently limited,
we compare NORM to LoRA and TAIA for fine-tuning LLaMA3-8B with a range of instruction-
tuning sample sizes, specifically [1K, 10K, 50K, 100K, 330K], with 330K being the full size of TÜLU
V2. We visualize the average performance of each method in Figure 5 and present the full results in

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Method
Training Data

General Coding Math
Base 3.7016

LoRA 3.7102 3.7512 3.7323
NORM 3.5992 3.6450 3.6519

Table 4: Forgetting loss on WikiText-103
test dataset. NORM reduces hallucination
and hence gains superior memorization of
internal knowledge over other baselines.

1K 10K 50K 100K 330K
Data Scale

51
52
53
54
55
56
57
58

Av
er

ag
e 

Pe
rfo

rm
an

ce

Method
LoRA
TAIA
NoRM

Figure 5: Performance of fine-tuned Llama3-8b us-
ing different numbers of TÜLU V2 training samples.

LoRA NORM
∆Wq Wq AF↑ RAF↓ ∆Wq Wq AF↑ RAF↓

∥U⊤WqV ∥ = 1.16 34.26 1.88 0.03 0.33 21.99 1.83 0.008
∥Wq∥ = 74.0 ∥∆Wq∥ = 2.1875 ∥∆Wq∥ = 0.6133

Table 5: The Frobenius norm of U⊤WqV where U and V are the left/right top r singular vector
directions of either ∆Wq and Wq . The weight matrices are taken from the 16th layer of Llama3-8B.
“AF” and “RAF” indicate the amplification factor and reverse amplification factor, respectively.

Table 7. The results show that NORM consistently outperforms LoRA and TAIA across all training
sample sizes. With 10K training samples, NORM surpasses LoRA and TAIA by margins of 3.49
and 2.53, respectively. Even when the training size is reduced to 1K, NORM maintains its lead with
advantages of 1.46 and 2.18 over LoRA and TAIA, respectively. This demonstrates that our methods
persistently enhance performance over LoRA and TAIA, regardless of the training sample volume.

Response to RQ5: NORM reduces the amplification ratio of already-emphasized directions of
pretrained weights. In this research question, we investigate the relationship between W and ∆W .
We answer this question by projecting W onto the r-dimensional subspace of ∆W by computing
U⊤WV with U/V being the left/right singular-vector matrices of ∆W . We compare the Frobenius
norm between ∥∆W∥ and ∥U⊤WV ∥ and compute the amplification factor (AF) as ∥∆W∥

∥U⊤WV ∥ . To
demonstrate that NORM further inhibits the already-amplified directions of W to be activated, we
also compute the reverse amplification factor (RAF) by projecting W onto the last d− r-dimensional
subspace: ∥∆W∥

∥U⊤
d−rWVd−r∥

. We follow the setting of Hu et al. (2022) and draw two main conclusions

from Table 5. First, both methods amplify main features that are already in W with negligible
distinction. Second, NORM reduces substantially the amplification factor of directions already
emphasized in W . These two findings suggest that NORM potentially maintains most contributing
features of LoRA parameters but further suppresses the amplification of already-emphasized features.

6 CONCLUSION

In this paper, we first use sufficient empirical experiments to reveal the general parameter redundancies
among LoRA parameters, especially among model layers and specific modules. Built on these insights,
we set up PREFT, a novel tuning framework that highlights the utilization of LoRA parameters by
removing intrinsic redundancies without sacrificing training and inference efficiency. Under this
framework, we propose NORM to reserve the most contributing components of LoRA parameters
which possess the highest subspace similarity with pre-trained weights, with a novel Sim-Search
method. Experiment results show that NORM achieves superior improvements on various domains,
verifying its application in diverse domains by enhancing the capacity of high LoRA ranks.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary reviews:
computational statistics, 2(4):433–459, 2010.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Badr AlKhamissi, Millicent Li, Asli Celikyilmaz, Mona Diab, and Marjan Ghazvininejad. A review
on language models as knowledge bases. arXiv preprint arXiv:2204.06031, 2022.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova Dassarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, John Kernion,
Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez, Tristan
Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario Amodei,
Tom B. Brown, Jack Clark, Sam McCandlish, Christopher Olah, Benjamin Mann, and Jared Kaplan.
Training a helpful and harmless assistant with reinforcement learning from human feedback.
ArXiv, abs/2204.05862, 2022. URL https://api.semanticscholar.org/CorpusID:
248118878.

Srinadh Bhojanapalli, Ayan Chakrabarti, Andreas Veit, Michal Lukasik, Himanshu Jain, Frederick Liu,
Yin-Wen Chang, and Sanjiv Kumar. Leveraging redundancy in attention with reuse transformers.
arXiv preprint arXiv:2110.06821, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang, Philip S. Yu, Qiang Yang, and
Xing Xie. A survey on evaluation of large language models. ACM Trans. Intell. Syst. Technol., 15
(3), mar 2024. ISSN 2157-6904. doi: 10.1145/3641289. URL https://doi.org/10.1145/
3641289.

Junying Chen, Xidong Wang, Anningzhe Gao, Feng Jiang, Shunian Chen, Hongbo Zhang, Dingjie
Song, Wenya Xie, Chuyi Kong, Jianquan Li, et al. Huatuogpt-ii, one-stage training for medical
adaption of llms. arXiv preprint arXiv:2311.09774, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
models. Journal of Machine Learning Research, 25(70):1–53, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Fahim Dalvi, Hassan Sajjad, Nadir Durrani, and Yonatan Belinkov. Analyzing redundancy in pre-
trained transformer models. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.),
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 4908–4926, Online, November 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.emnlp-main.398. URL https://aclanthology.org/2020.
emnlp-main.398.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://api.semanticscholar.org/CorpusID:248118878
https://api.semanticscholar.org/CorpusID:248118878
https://doi.org/10.1145/3641289
https://doi.org/10.1145/3641289
https://aclanthology.org/2020.emnlp-main.398
https://aclanthology.org/2020.emnlp-main.398


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Yu Han, and Hao Wang. Mixture-of-loras: An efficient
multitask tuning method for large language models. In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING
2024), pp. 11371–11380, 2024.

Zorik Gekhman, Gal Yona, Roee Aharoni, Matan Eyal, Amir Feder, Roi Reichart, and Jonathan
Herzig. Does fine-tuning llms on new knowledge encourage hallucinations? arXiv preprint
arXiv:2405.05904, 2024.

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):
217–288, 2011.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. LoRA+: Efficient low rank adaptation of large models. In
Forty-first International Conference on Machine Learning, 2024. URL https://openreview.
net/forum?id=NEv8YqBROO.

Shwai He, Guoheng Sun, Zheyu Shen, and Ang Li. What matters in transformers? not all attention is
needed. arXiv preprint arXiv:2406.15786, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Confer-
ence on Learning Representations, 2021a. URL https://openreview.net/forum?id=
d7KBjmI3GmQ.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with
the MATH dataset. In Joaquin Vanschoren and Sai-Kit Yeung (eds.), Proceedings
of the Neural Information Processing Systems Track on Datasets and Benchmarks
1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021b. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. Advances
in neural information processing systems, 2021c.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters, Pradeep Dasigi,
Joel Jang, David Wadden, Noah A Smith, Iz Beltagy, et al. Camels in a changing climate:
Enhancing lm adaptation with tulu 2. arXiv preprint arXiv:2311.10702, 2023.

Shuyang Jiang, Yusheng Liao, Ya Zhang, Yu Wang, and Yanfeng Wang. Taia: Large language models
are out-of-distribution data learners. arXiv preprint arXiv:2405.20192, 2024a.

Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei Deng,
Feng Sun, Qi Zhang, Deqing Wang, et al. Mora: High-rank updating for parameter-efficient
fine-tuning. arXiv preprint arXiv:2405.12130, 2024b.

Damjan Kalajdzievski. Scaling laws for forgetting when fine-tuning large language models. arXiv
preprint arXiv:2401.05605, 2024.

Virginia Klema and Alan Laub. The singular value decomposition: Its computation and some
applications. IEEE Transactions on automatic control, 25(2):164–176, 1980.

12

https://openreview.net/forum?id=NEv8YqBROO
https://openreview.net/forum?id=NEv8YqBROO
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Divyanshu Kumar, Anurakt Kumar, Sahil Agarwal, and Prashanth Harshangi. Increased llm vulnera-
bilities from fine-tuning and quantization. arXiv preprint arXiv:2404.04392, 2024.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 3045–3059, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL
https://aclanthology.org/2021.emnlp-main.243.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4582–4597, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353.
URL https://aclanthology.org/2021.acl-long.353.

Yusheng Liao, Shuyang Jiang, Yanfeng Wang, and Yu Wang. Medcare: Advancing medi-
cal llms through decoupling clinical alignment and knowledge aggregation. arXiv preprint
arXiv:2406.17484, 2024.

Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic human
falsehoods. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 3214–3252, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.acl-long.229. URL https://aclanthology.org/2022.acl-long.
229.

Zhaojiang Lin, Andrea Madotto, and Pascale Fung. Exploring versatile generative language model
via parameter-efficient transfer learning. In Trevor Cohn, Yulan He, and Yang Liu (eds.), Findings
of the Association for Computational Linguistics: EMNLP 2020, pp. 441–459, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.41. URL
https://aclanthology.org/2020.findings-emnlp.41.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
challenge dataset for machine reading comprehension with logical reasoning. arXiv preprint
arXiv:2007.08124, 2020.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36, 2024.

Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu, Derong Xu, Feng Tian, and Yefeng Zheng.
Moelora: An moe-based parameter efficient fine-tuning method for multi-task medical applications.
arXiv preprint arXiv:2310.18339, 2023a.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In Smaranda Muresan,
Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 61–68, Dublin, Ireland,
May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.8. URL
https://aclanthology.org/2022.acl-short.8.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. AI Open, 2023b. ISSN 2666-6510. doi: https://doi.org/10.1016/j.aiopen.
2023.08.012. URL https://www.sciencedirect.com/science/article/pii/
S2666651023000141.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023a.

13

https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.acl-long.353
https://aclanthology.org/2022.acl-long.229
https://aclanthology.org/2022.acl-long.229
https://aclanthology.org/2020.findings-emnlp.41
https://aclanthology.org/2022.acl-short.8
https://www.sciencedirect.com/science/article/pii/S2666651023000141
https://www.sciencedirect.com/science/article/pii/S2666651023000141


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of
catastrophic forgetting in large language models during continual fine-tuning. arXiv preprint
arXiv:2308.08747, 2023b.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/arXiv.2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 2080–2094,
Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.
168. URL https://aclanthology.org/2021.naacl-main.168.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277, 2023.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
Fusion: Non-destructive task composition for transfer learning. In Paola Merlo, Jorg Tiede-
mann, and Reut Tsarfaty (eds.), Proceedings of the 16th Conference of the European Chapter
of the Association for Computational Linguistics: Main Volume, pp. 487–503, Online, April
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.39. URL
https://aclanthology.org/2021.eacl-main.39.

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, and Peter Henderson.
Fine-tuning aligned language models compromises safety, even when users do not intend to! arXiv
preprint arXiv:2310.03693, 2023.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
residual adapters. Advances in neural information processing systems, 30, 2017.

Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open multilingual graph of
general knowledge. In Proceedings of the AAAI conference on artificial intelligence, volume 31,
2017.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.org/N19-1421.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Gitman.
Openmathinstruct-1: A 1.8 million math instruction tuning dataset. arXiv preprint arXiv: Arxiv-
2402.10176, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

14

https://aclanthology.org/2021.naacl-main.168
https://aclanthology.org/2021.eacl-main.39
https://aclanthology.org/N19-1421


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Param Config Method
General Math Code

Avg.BBH MMLU TydiQA GSM8k MATH HumanEval (+) MBPP (+)
– Base 40.68 59.18 40.90 77.79 31.06 53.00 (48.80) 71.70 (60.60) 53.75

r=8,α=16
LoRA 34.43 63.89 43.72 80.82 29.06 53.00 (48.20) 66.90 (56.30) 52.93
NORM 41.31 64.43 45.77 81.80 32.12 59.10 (54.90) 70.90 (59.50) 56.65

r=16,α=32
LoRA 34.88 61.45 43.32 81.20 28.66 50.60 (45.70) 68.50 (58.70) 52.56
NORM 39.79 63.70 46.43 81.58 32.74 61.00 (56.70) 69.80 (58.70) 56.72

r=32,α=64
LoRA 36.52 61.03 46.80 79.00 29.90 52.40 (48.80) 68.80 (58.50) 53.53
NORM 41.64 62.44 46.28 82.56 32.84 62.80 (58.50) 72.20 (60.60) 57.76

r=64,α=128
LoRA 36.38 63.42 43.56 80.21 29.27 48.80 (44.50) 67.20 (57.40) 52.30
NORM 43.11 64.61 46.21 82.56 34.02 64.00 (59.80) 70.40 (59.30) 58.22

r=128,α=256
LoRA 36.18 63.77 46.99 80.74 30.48 48.80 (45.10) 68.80 (59.00) 53.32
NORM 42.30 64.86 45.30 83.17 32.92 63.40 (58.50) 72.80 (61.40) 58.29

Table 6: Full results on the analysis on tunable parameters. The tunable parameters are increased
incrementally to validate NORM’s behavior and effectiveness.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Hanqing Wang, Zeguan Xiao, Yixia Li, Shuo Wang, Guanhua Chen, and Yun Chen. Milora:
Harnessing minor singular components for parameter-efficient llm finetuning. arXiv preprint
arXiv:2406.09044, 2024.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and LINGMING ZHANG. Magicoder: Em-
powering code generation with OSS-instruct. In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/forum?id=XUeoOBid3x.

Chaoyi Wu, Weixiong Lin, Xiaoman Zhang, Ya Zhang, Weidi Xie, and Yanfeng Wang. Pmc-llama:
toward building open-source language models for medicine. Journal of the American Medical
Informatics Association, pp. ocae045, 2024.

Shih yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=3d5CIRG1n2.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. In Forty-first International Conference
on Machine Learning, 2024a.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. In The Twelfth International Conference on Learning Representations,
2024b. URL https://openreview.net/forum?id=N8N0hgNDRt.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

A RELATED WORK

Parameter efficient fine-tuning Full fine-tuning effectively adapts large language models to
downstream tasks but requires substantial computational resources as model size and task numbers
increase. To mitigate this, Parameter-Efficient Fine-Tuning (PEFT) methods have been introduced.
These methods freeze the base language models and modify only a minimal number of parameters
during training, achieving comparable or even superior performance with limited fine-tuning data.
Among these methods, Adapter-Tuning (Rebuffi et al., 2017; Houlsby et al., 2019; Lin et al., 2020;

15

https://openreview.net/forum?id=XUeoOBid3x
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=N8N0hgNDRt


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Pfeiffer et al., 2021), Prefix-tuning (Li & Liang, 2021), Prompt-Tuning (Lester et al., 2021), P-
Tuning (Liu et al., 2023b) and P-Tuning-v2 (Liu et al., 2022) were proposed to reduce fine-tuning
costs before the era of LLMs. However, these methods introduce additional priors and significant
inference latency. In contrast, Low-Rank Adaptation (LoRA)(Hu et al., 2022) and its variant, Weight-
Decomposed Low-Rank Adaptation (DoRA)(yang Liu et al., 2024), take a different approach. LoRA
updates original parameters with two low-rank matrices without assuming any specific task or
architecture, eliminating inference latency by merging back these two matrices to the original weight.
DoRA extends this by incorporating weight decomposition into magnitude and direction, achieving
performance comparable to full fine-tuning. LoRA+ (Hayou et al., 2024) proposed to adopt adaptive
update strategies for each low-rank parameter. MoRA (Jiang et al., 2024b) proposed to incorporate
square high-rank tunable parameters to achieve both efficiency and high rank. Nonetheless, most
LoRA-like methods require complex hyperparameter settings, which hinders their generalization.

Parameter redundancies Previous works have verified that in pretrained language models, pa-
rameters contain sufficient redundancies. Dalvi et al. (2020) show that redundancies exist in layers
and neurons and vary among downstream tasks. Bhojanapalli et al. (2021) demonstrate that there
exist substantial redundancies among transformer multi-head attention modules. He et al. (2024)
empirically verify the redundancies of LLMs within self-attention and multi-layer perceptron (MLP)
modules and leverage these redundancies to speed up inference. Men et al. (2024) also leverage such
layer redundancies to boost the inference speed yet sacrificing limited performance. However, these
works only analyze the redundancies among pretrained LLMs, but less focus on fine-tuned delta
parameters, especially in so-called low-rank parameters. Yu et al. (2024a) leverage the delta parame-
ter redundancies to perform model merging without performance degradation. Jiang et al. (2024a)
attempt to remove the delta feed-forward low-rank parameters to adapt LLMs to out-of-domain tasks.
In this work, we intend to unveil the parameter redundancies among delta low-rank parameters and
leverage such redundancies to improve fine-tuned models with more fine-grained practice.

Limitations and drawbacks of fine-tuning Fine-tuning is a common method for adapting large
language models (LLMs) to various downstream tasks. However, it comes with significant drawbacks,
including hallucination, harmful outputs, catastrophic forgetting, and safety concerns. Gekhman
et al. (2024) noted that fine-tuning can lead models to produce factually inaccurate responses, as the
training process encourages the generation of information not grounded in the model’s pre-existing
knowledge. Additionally, supervised fine-tuning for specific tasks often results in catastrophic
forgetting of the initial alignment (Luo et al., 2023b) and creates trade-offs between helpfulness and
harmlessness (Bai et al., 2022). Kumar et al. (2024) also highlighted that fine-tuning significantly
reduces the resistance of LLMs to jailbreaking, thereby increasing their vulnerability. Even when
carefully curated fine-tuning datasets are used, Qi et al. (2023) demonstrated that well-aligned LLMs
often become less safe and more prone to harmful behavior, with issues exacerbated by red-teaming in
the tuning data. In contrast, NORM addresses many of these drawbacks while enhancing helpfulness
through fine-tuning. By focusing on retaining the most similar delta components relative to the base
weights, NORM offers a robust solution to the challenges associated with traditional fine-tuning
approaches.

B LIMITATIONS

We notice that NORM gains smaller performance gains with enlarged LoRA ranks. We hypothesize
that although NORM removes noisy components of updated LoRA parameters, it still cannot
fully separate the redundant parts, which causes the distracting parts to interfere with downstream
performances. Besides, we currently only apply NORM to the inference-preprocessing stage. The
introduction of NORM to the training stage may support a more convenient application of NORM
and further improvements over LoRA and TAIA.

C FUTURE WORK

NORM succeeds in discarding noisy components of LoRA parameters by selecting the most contribut-
ing parts through Sim-Search. To enlarge the application of NORM, the next research direction is to
extend NORM to the full fine-tuning scenario. Just as Yu et al. (2024a) indicates, the full fine-tuned

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

parameters also contain extra but useless parameters that can be smartly reduced by appropriate
PREFT methods. Besides, an adaptive maintaining strategy instead of the coarse separation can
improve the downstream application of NORM, by picking the most appropriate components of
specific prompts automatically. We hope our work can provide inspiration on how to improve the
parameter utilization of LLMs to bootstrap the performance of LLMs on downstream tasks.

D EXPERIMENT DETAILS

D.1 PEFT SETTINGS

We add a LoRA module for each linear layer except the language model head and embed-
ding layer, resulting in the following target modules: [q proj, k proj, v proj, o proj,
gate proj, up proj, down proj]. The LoRA α of each experiment is set to twice of the
LoRA rank suggested by Hu et al. (2022).

D.2 EVALUATION DETAILS

Our evaluations contain different types of metrics, including Exact Match (EM) and Multiple Choice
Accuracy (Acc). For EM metric, we extract the contents followed by The answer is to reduce
evaluation biases. For different datasets, we adopt different evaluation prompts after the original
problem description:

1. MATH (Hendrycks et al., 2021c), GSM-8K (Cobbe et al., 2021), BIG-Bench Hard (Suzgun
et al., 2022) (BBH), SVAMP (Patel et al., 2021): Please format the final answer
at the end of the response as: The answer is {answer}.

2. HumanEval (+) (Chen et al., 2021), MBPP (+) (Austin et al., 2021; Liu et al., 2022), Truth-
fulQA (Lin et al., 2022): None.

3. MMLU (Hendrycks et al., 2021a), LogiQA (Liu et al., 2020): Please answer with
option letter directly, do not output other information.

4. CommonsenseQA (Talmor et al., 2019): Let’s think step by step. Please
format the final answer at the end of the response as: The
answer is {answer}.

We use greedy decoding to maintain that all results are reproducible.

D.3 TEST SETS DESCRIPTION

We here describe the used ten evaluation sets:

1. MATH (Hendrycks et al., 2021c) is a collection of challenging competition mathematics problems
containing 5,000 problems in the test set. Each problem in MATH has a full step-by-step solution
which can be used to teach models to generate answer derivations and explanations.

2. GSM-8K (Cobbe et al., 2021) is a collection of 1,273 math-reasoning problems with varying
difficulty. Each problem requires the model to conduct single or multi-hop reasoning to derive the
correct answer.

3. SVAMP (Patel et al., 2021) are much simpler datasets compared to MATH, which both test
models’ math problem-solving ability. It contains 1,221 problems which are all solvable with one
or two simple equations.

4. BIG-Bench Hard (Suzgun et al., 2022) (BBH) is a collection of 23 challenging tasks from
BIG-Bench. The 6,511 problems are the tasks for which prior language model evaluations did not
outperform the average human-rater.

5. CommonsenseQA (Talmor et al., 2019) is to test models’ ability to answer questions using
only the parameterized knowledge instead of the context knowledge. It contains 1,000 problems
sourced from ConceptNet (Speer et al., 2017).

6. LogiQA (Liu et al., 2020) collects questions about natural language inference (NLI) and requires
models to infer the conclusion based on provided premises. It contains 653 problems for both
English and Chinese subsets.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Data Size METHOD BBH MMLU TydiQA CQA TruthfulQA GSM-8K LogiQA en Average
– Base 40.68 59.18 40.90 71.83 63.28 77.79 41.17 56.40

1K
LoRA 34.88 63.35 49.18 76.41 45.78 74.75 37.79 54.59
TAIA 19.92 62.18 46.12 76.17 53.00 77.33 42.40 53.87
NORM 36.12 62.11 45.77 76.74 52.02 76.12 43.47 56.05

10K
LoRA 36.03 64.72 43.14 75.18 49.69 70.89 36.56 53.75
TAIA 26.62 64.41 46.46 76.66 52.14 77.33 39.32 54.71
NORM 39.69 64.85 48.63 76.25 52.75 75.97 42.55 57.24

50K
LoRA 33.67 57.29 40.42 74.86 45.90 69.83 33.03 50.71
TAIA 36.63 61.69 44.79 76.41 52.75 76.19 39.78 55.47
NORM 40.06 62.97 43.77 76.49 52.14 76.42 42.24 56.30

100K
LoRA 36.38 63.42 43.56 77.64 48.10 72.02 38.40 54.22
TAIA 35.83 62.02 47.26 76.66 54.22 77.10 37.94 55.86
NORM 43.11 64.61 46.21 77.72 54.10 77.71 43.47 58.13

330K
LoRA 37.01 60.70 45.09 74.28 50.80 67.85 39.17 53.56
TAIA 41.68 62.63 45.69 74.53 57.53 76.65 39.78 56.93
NORM 41.42 63.47 45.16 76.17 58.26 78.09 43.16 57.96

Table 7: Full experiment results of data scaling of NORM. NORM consistently maintains the leading
performance across all data sizes of TÜLU V2.

7. TruthfulQA (Lin et al., 2022) is for testing models’ ability to produce truthful answers. The
817 questions that span 38 categories benchmark models’ refusal to generate false answers like
humans.

8. MMLU (Hendrycks et al., 2021a) is to measure LLM’s multitask accuracy, which contains 14,421
problems. The test covers 57 tasks including elementary mathematics, US history, computer
science, law, and more. To attain high accuracy on this test, models must possess extensive world
knowledge and problem-solving ability.

9. HumanEval (Chen et al., 2021) contains 164 human-checked python-oriented programming
problems to evaluate models’ code generation ability. The HumanEval+ (Liu et al., 2024) version
creates more comprehensive test cases to produce a more fair evaluation result.

10. MBPP (Austin et al., 2021) contains 500 python coding problems, where each problem requires
the model to generate correct python functions. The MBPP+ (Liu et al., 2024) version creates
more comprehensive test cases to produce a more fair evaluation result.

E FURTHER EXPERIMENTS

E.1 LARGE SEARCH RANGES AND FINE-GRAINED SEARCH STEPS BRING FURTHER
IMPROVEMENTS.

To rationalize the hyperparameter settings of Sim-Search, including the search
step τ and search start s, we perform a grid search on these two parameters.

1 2 3 4 5 6 7 8
Search Start

0.
05

0.
10

0.
15

0.
20

Se
ar

ch
 S

te
p

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d 
Ac

c

Figure 6: Normalized performance on
HumanEval (+) with varying search
steps and search ranges. Lower search
steps and wider search ranges generally
find more similar components and per-
form outstandingly.

We use normalized accuracy described in §2.2 as the
evaluation metric and take HumanEval (+) as the eval-
uation set for simplicity. The search start s is searched in
{1, 2, . . . , 8} and τ is searched in {0.05, 0.10, 0.15, 0.20}.

Figure 6 presents that with larger search ranges (lower
search starts), NORM gains further improvements. Mean-
while, relatively lower search steps generally bring higher
results for NORM. Although the setting s = 2, τ = 0.15
brings the best performance on the HumanEval (+) dataset,
we still take the setting s = 1, τ = 0.1 for all experiments
as this setting is already acceptable enough and we leave
the intelligent selection of search parameters for future
work.

18


	Introduction
	Parameter Redundancies Fine-Tuning (PReFT)
	Preliminaries
	Pilot Experiments
	PReFT

	NoRM
	Overall Pipeline
	Sim-Search

	Experiments
	Experiment Setups
	Main Results
	Ablation Study

	Analysis
	Conclusion
	Related Work
	Limitations
	Future Work
	Experiment Details
	PEFT Settings
	Evaluation Details
	Test Sets Description

	Further Experiments
	Large search ranges and fine-grained search steps bring further improvements.


