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Abstract

Despite remarkable performance in producing realistic samples, Generative Ad-
versarial Networks (GANs) often produce low-quality samples near low-density
regions of the data manifold, e.g., samples of minor groups. Many techniques
have been developed to improve the quality of generated samples, either by post-
processing generated samples or by pre-processing the empirical data distribution,
but at the cost of reduced diversity. To promote diversity in sample generation
without degrading the overall quality, we propose a simple yet effective method to
diagnose and emphasize underrepresented samples during training of a GAN. The
main idea is to use the statistics of the discrepancy between the data distribution
and the model distribution at each data instance. Based on the observation that the
underrepresented samples have a high average discrepancy or high variability in
discrepancy, we propose a method to emphasize those samples during training of a
GAN. Our experimental results demonstrate that the proposed method improves
GAN performance on various datasets, and it is especially effective in improving
the quality and diversity of sample generation for minor groups.

1 Introduction

Generative Adversarial Networks (GANs) have achieved remarkable performance in producing
realistic samples for complex generation tasks, including image/video synthesis [5, 22], style trans-
fer [45, 14], and data augmentation [29]. However, GANs often fail to cover sparse regions of data
manifold [16, 9], leading to the underrepresentation of minor groups in the dataset [43]. In particular,
GANs generate samples of minor groups with low fidelity or even fail to generate such samples,
exhibiting the mode collapse [43].

Many of previous techniques have focused on improving the overall sample quality of GANs, either
by pre-processing the training dataset or by post-processing generated samples. The pre-processing
aims to remove instances that cannot be well-represented by GANs even before the training starts and
gains fidelity on the focused samples [9]. A similar idea has been used to truncate the latent space
by resampling or moving samples that fall outside of some acceptable range during training [16, 6].
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Post-processing, on the other hand, is a technique that can be applied after the training to remove
low-quality generated samples by rejection sampling [3, 37]. All these approaches are effective in
increasing the overall fidelity of samples from GANs, but reducing the diversity as a trade-off, and
may exacerbate biases against the minor groups in sample generation.

In this work, we aim to improve diversity in sample generation without degrading the overall quality,
with a special focus on coverage and quality improvement for minor groups. Toward this, we design
methods to detect and emphasize underrepresented samples in training of GANs. Due to the lack of
explicit labels available, detecting minor-subgroup samples is especially challenging for unsupervised
learning. Therefore, we first develop two new metrics, which can be easily calculated from a
discriminator output of GANs, to detect underrepresented samples. The main idea is to measure the
statistics (mean and variance) of the estimated discrepancy between the data distribution and model
distribution at each data instance over multiple epochs of the training. The mean discrepancy indicates
how close the data distribution is to the model distribution at each data over the training, while the
variance in discrepancy measures how such discrepancy fluctuates across the training. We provide
theoretical and empirical evidence that the mean discrepancy can effectively detect underrepresented
samples, especially near collapsed modes, while the variance in discrepancy can detect minor data
instances, which GANs suffer from modeling.

Based on these observations, we propose a novel method to emphasize underrepresented samples
during the training of GANs by score-based weighted sampling, where the score is defined as a
weighted sum of the two metrics we devised. We validate our method with thorough experiments
over controlled and real datasets and demonstrate the efficacy of the proposed sampling method in
improving not only the overall quality (both fidelity and diversity combined) of sample generation
but also the coverage and quality for semantic features of minor subgroups. Our contributions can be
summarized as follows.

• We propose two new metrics, which can be simply computed from the discriminator, to
diagnose GAN training and to detect underrepresented samples. By theoretical analysis and
controlled experiments, we demonstrate that the proposed metrics are effective in detecting
underrepresented minor samples.

• We propose an algorithm that can effectively emphasize underrepresented data by score-
based weighted sampling during the training of GANs. Our experiments on controlled and
real datasets show that our method improves diverse performance metrics on several GAN
variants and enhances the coverage and quality of minor group generation.

Our code is publicly available at https://github.com/grayhong/self-diagnosing-gan.

2 Related Work

Promoting data coverage in GANs Due to the unstable nature of the min-max game between a
generator and a discriminator, GANs often suffer from mode collapse and produce samples with
poor diversity. Several approaches have been proposed to promote better data coverage by modifying
architectures [20, 23], loss functions [2, 1] or adding regularizations [8, 4, 35]. While effective in
promoting overall data coverage, these approaches do not provide special care on minor modes and
often fail to recover them when the minority ratio for certain feature is extremely low. We provide a
method to promote data coverage for minor features even when the minority ratio is significantly low.

There exists another line of works to improve data coverage by designing hybrid generative models [32,
27, 43], which combines the idea of reconstructive models (e.g. variational autoencoder) to GANs,
to take advantages of the reconstructive models in recovering diverse modes. This hybrid method,
however, requires relatively high computational overhead to guarantee data coverage for all (or
partial) real modes by optimizing reconstruction error in feature domain. Our method directly detects
and emphasizes underrepresented samples so that the computational overhead is much lower.

Improving GAN performance by diagnosing samples There have been promising attempts to
improve GAN training by using the discriminator outputs to estimate the discrepancy between the
data distribution and implicit model distribution. DRS [3] proposes the density ratio estimate based
on the discriminator output to apply rejection sampling to filter generated samples. GOLD [26] uses
the similar estimate to re-weight fake samples to emphasize underrepresented fake samples. In [10]
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and [12], on the other hand, an external classifier is used to improve the density ratio estimates. There
also exist some approaches to use discriminator outputs to select or weight “useful” fake samples
during training. Top-k training [30] updates the generator by using only top-k fake samples with the
largest discriminator outputs. In [31] and [40], discriminator-based importance re-weighting schemes
for fake samples are developed, and in [39], latent samples are optimized to improve the fidelity.

Our method uses the discrepancy estimate proposed in [3], but its empirical mean and variance over
multiple epochs, to extract more reliable and useful information to detect underrepresented minor
group samples. We provide theoretical evidence of why not only the mean but also the variance of
discrepancy estimate is effective in detecting underrepresented samples. Our method detects and
emphasizes underrepresented real samples, not the fake samples. This difference is significant in
promoting the data coverage of minor groups, since when fake samples already fail to cover minor
modes, emphasizing a subset of fake samples cannot improve the data coverage for missed modes.

3 Two Metrics to Detect Underrepresented Samples During GAN Training

3.1 Measuring the discrepancy of GANs

GAN training aims to train a generator with an implicit model distribution pg(x) that closely matches
the data distribution pdata(x). The discrepancy between pdata(x) and pg(x) can be measured by the
log density ratio log(pdata(x)/pg(x)), but it cannot be directly calculated in GANs, since pdata(x) is
unknown and pg(x) is implicit. Instead, the analysis in the original GAN paper [11] can be used to
define an estimate on the density ratio by using the discriminator output as explained in [3].

The original GAN solves the min-max optimization minGmaxD V (D,G) for the loss V (D,G) =
Ex∼pdata [logD(x)]+Ez∼pz [log(1−D(G(z)))]. For any fixed generatorG, the optimal discriminator
yields D∗(x) = pdata(x)

pdata(x)+pg(x)
and this allows us to define the Log-Density-Ratio estimate (LDR) by

LDR(x) := log(D(x)/(1−D(x))). (1)

When D(x) = D∗(x), the LDR(x) is equal to the log density ratio log(pdata(x)/pg(x)). When
LDR(x) > 0, the data point x is underrepresented in the model, i.e., pdata(x) > pg(x), while when
LDR(x) < 0, the data is overrepresented, i.e., pdata(x) < pg(x). Thus, we can leverage the value of
LDR(x) of each instance x to give feedback to improve the generator if the estimation is valid.

Some prior works have used the LDR estimate to improve GAN training. As an example, GOLD
[26] uses LDR(x) to evaluate the quality of the fake samples and re-weights the underrepresented
fake samples when training the generator for conditional GANs. However, we later show that re-
weighting fake samples is less effective than re-weighting real samples in improving diversity in
sample generation. We also empirically show that LDR(x) is an unstable metric to use. More detailed
arguments are available in the Appendix §A.

As a remedy, we propose to use statistics of LDR(x), which are much more stable and informative
metrics, to detect underrepresented data regions during the training. The main intuition is to use
training dynamics–the behavior of a model as training progresses–to diagnose the learning behavior
of each sample. In supervised learning, training dynamics have been widely studied to detect “hard-to-
learn” samples [7, 33, 38]. However, in learning generative models, the metrics to diagnose training
dynamics are not clear since there is no explicit reference to measure the accuracy of the model. Here
we define metrics that estimate the mean and variance of the discrepancy of GANs, LDRM (LDR
Mean) and LDRV (LDR Variance), at each sample x across the training steps T = {ts, ..., te}:

LDRM(x;T ) =
1

|T |
∑
k∈T

LDR(x)k, LDRV(x;T ) =
1

|T | − 1

∑
k∈T

[LDR(x)k − LDRM(x;T )]
2
,

(2)
where LDR(x)k is the recorded LDR estimate (1) in the k-th training step. LDRM(x) measures how
close pdata(x) is to pg(x) over the training at sample point x, while LDRV(x) measures how such
discrepancy fluctuates across training.

Intuitively, samples that have been well-learned and generalized will have consistently small LDR(x)
since D(x) ≈ 1/2 (i.e., pdata(x) ≈ pg(x)), thus will exhibit low LDRM and LDRV, while underrep-
resented “hard-to-learn” samples will show high LDRM or LDRV values. In the rest of this section,
we thoroughly study the characteristics of data instances with high LDRM or high LDRV.
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(a) Major (b) Minor

(c) Major (d) Minor
(e) Partial Recall of major/minor groups vs. minority level

Figure 1: Analysis on generated samples of GAN trained with (1) Single-mode Gaussian, (2) A
mixture of MNIST (major) and FMNIST (minor), and (3) Colored MNIST with Red (major) and
Green (minor) samples. (a) ∼ (d) show the examples of generated samples with major/minor features,
and (e) shows the Partial Recall of major (dotted)/minor (solid) samples in each dataset on various
minority levels. Both the sample quality and partial recall rate are higher for major groups.

3.2 LDRV is effective in detecting samples from minor groups

GANs have poor modeling for minor samples GANs are known to struggle with modeling minor
samples [16]. To scrutinize this phenomenon, we use following toy datasets each of which includes
major and minor group: (1) Single-mode Gaussian with distance from the origin as a factor dividing
two groups, (2) A mixture of MNIST (major) and FMNIST (minor), and (3) Colored MNIST with
Red (major) and Green (minor) digits. We vary the size of the minor group and define a minority
level to represent the scarcity of the minor group, i.e., a higher level indicates the scarcer minor group.
Details of each dataset are available in the Appendix §F. Figure 1 shows the poor quality of generated
samples with minor features, relative to major features. To quantify the level of underrepresentedness,
we examine the coverage of modes for major vs. minor groups with the Partial Recall [18], which is
the portion of the subset of real samples that reside in the manifold of the fake samples. As shown in
Figure 1e, major and minor groups have large recall gap and the gap gets worsen as the minority level
gets severe. This observation indicates that the minor group suffers not only the poor quality problem
but also the low coverage problem, and it gives a strong motivation to detect the minor samples and
emphasize them.

LDRV and minor samples We next provide heuristic arguments that LDRV can be used to detect
samples with minor features, i.e., features of minor groups. In particular, we show that minor samples
tend to have higher LDRV values. First, we view the discriminator as the logistic regression model:
for each input xi the discriminator takes the inner product between the feature vector φi = F (xi)
and the weight vector θ of the last layer to produce the reality score (the probability that the sample
xi is real (yi = 1)), i.e.,

D(xi; θ) = 1/(1 + e−θ
Tφi) = p(yi = 1|φi, θ). (3)

From a Bayesian perspective, assuming that prior distribution of θ is p(θ) = N (θ|0, s0I), the
posterior distribution over θ is given by p(θ|(φi, yi)ni=1) ∝ p(θ)p(yn1 |φn1 , θ). To obtain a Gaussian
approximation to the posterior distribution, we first find the maximum a posteriori estimate θMAP that
maximizes log p(θ|(φi, yi)ni=1), which defines the mean of Gaussian. The covariance is then given by
the inverse of the matrix of second derivatives of the negative log likelihood, which takes the form

Sn =

(
n∑
i=1

D(xi; θ)(1−D(xi; θ))φiφ
T
i +

1

s0
I

)−1
. (4)

Lastly, approximating D(xi; θ) in (3) by the Taylor expansion at θ = θMAP, LDRV can be expressed
as

LDRV(xi) ≈ var (log(D(xi; θ)/(1−D(xi; θ)))) ≈ φTi Snφi. (5)
Details of the analysis is available in the Appendix §B.

This analysis shows an important aspect regarding LDRV and minor features. First, (5) shows that as
the feature vector φi becomes more correlated with the principal components of Sn (eigenvectors
with largest eigenvalues), its LDRV gets larger. Since each eigenvalue of Sn is the reciprocal of that
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(a) LDRM and generated samples (b) LDRM distribution and the number
of high-quality samples over modes

Figure 2: (a) Training dynamics of 25 Gaussians. The index of each mode is equal to 5x+ y where
the coordinates (x, y) ∈ {0, 1, 2, 3, 4}2. LDRM of training samples is recorded for each mode with
window |T | = 50. Modes with high LDRM do not appear in the generated samples. (b) The empirical
distribution of LDRM (box plot) for each mode from training samples, compared with the number of
high-quality generated samples from each mode (blue). LDRM can effectively detect dropped modes.

of S−1n , we consider the characteristics of the eigenvector v of S−1n with the least eigenvalue, which
is the minimizer of 〈

y, S−1n y
〉
=

n∑
i=1

D(xi; θ)(1−D(xi; θ))〈y, φi〉2 + const. (6)

Eq. (6) shows if y does not align with (or orthogonal to) majority of feature vectors {φi} having
D(1−D) > 0, then it tends to have a smaller eigenvalue. Since a minor feature vector φj may have
a small component on the eigenspace formed by the majority of {φi} having D(1−D) > 0, when
we plug in y = φj into (6), the summation becomes small. This shows that the minor feature vector
φj is correlated with the least eigenvector v of S−1n and thus it will have higher LDRV.

In Table 1, we show that minor group indeed has higher LDRV. Thus, both theoretical and empirical
evidence shows that we can detect minor samples by investigating LDRV of training samples.

3.3 LDRM is effective in detecting missing modes

Mixture of 25 Gaussians From the definition of LDRM (2), high LDRM samples x tend to have
smaller pg(x) than pdata(x) over the training, thus are underrepresented. We next investigate the
ability of LDRM to detect the regions of data manifold not yet covered by the model distribution
pg(x). We consider a mixture of 25 2D isotropic Gaussian distributions [20, 42, 37, 3]. During
training, we record LDR(x) of the training samples and calculate LDRM values with window size
|T | = 50. We inspect LDRM values averaged over samples of each mode during the training. As
shown in Fig. 2a, we observe that samples from underrepresented modes have higher mean LDRM
values. This implies that we can detect the mode recovery by inspecting the mean of LDRM values.

To further examine the mode recovery in generated samples, we assign each generated sample to its
closest mode and consider it as a “high-quality” sample if it is within four standard deviations from
its assigned mode [42, 3]. We then count the number of high-quality samples of each mode among
10,000 generated samples and analyze the correlation between the high-quality sample counts and
the distribution of LDRM. As shown in Fig. 2b, modes with only a few high-quality samples tend to
have higher LDRM. This indicates that LDRM of the data instances can be used to detect the regions
of data manifold not yet covered by the model, even without looking at the generated samples.

Table 1: Averaged LDRV of major/minor groups on various datasets with majority rate 90%.

Group Gaussian (σ=3.0) Colored MNIST MNIST-FMNIST

Major 0.001 0.077 0.082
Minor 0.098 0.186 0.115
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(a) Images with lowest disc. score

(b) Images with highest disc. score

(c) Generated samples (d) Histogram of pixel count over intensity level

Figure 3: Training images with (a) lowest, (b) highest discrepancy scores, and (c) generated samples.
Generated samples resemble training images with lowest score. (d) A smoothed histogram of the
intensities for 100 samples per group. The intensity levels of RGB channels are concatenated,
resulting in total 768 = 256× 3 levels. Images with the lowest scores (blue) and generated samples
(green) have a similar distribution, while images with the highest scores (red) show a high discrepancy.

4 Algorithm to Emphasize Underrepresented Samples

4.1 Proposed method: Stochastic Gradient Descent (SGD) sampled by discrepancy

We propose a simple modification to the GAN training procedures by using score-based weighted
sampling for mini-batch SGD to emphasize underrepresented samples. Let D = {xi} be the training
dataset. The mini-batch of size B for the training dataset is formed by DB = {x(j) : x(j) =
xi where i ∼ Ps(i) for j = 1, . . . , B}, i.e., each sample xi ∈ D is sampled with certain probability
Ps(i). Our objective is to design the sampling frequency Ps(i) that can emphasize underrepresented
samples. Based on the observations in Section 3, we first devise the discrepancy score s(xi;T ) that
reflects the underrepresentedness of each sample as follows:

s(xi;T ) = LDRM(xi;T ) + k
√

LDRV(xi;T ), (7)

where T is the set of steps used to calculate the discrepancy scores and k is the hyperparameter
to modulate the contribution of each statistic. The score (7) can be interpreted as an upper limit
of the confidence interval of LDR estimate, or weighted sum of LDRM and the square root of
LDRV with weight controlled by k. To ensure every data is sampled with at least some chance, we
clip the minimum value of s(xi) to be ε = 0.01 (min_clip) and clip the maximum value to have
max-min ratio of 50, i.e., max s(x)/min s(x) = 50 (max_clip). For the clipped score s′(xi;T ) =
max_clip(min_clip(s(xi;T ))), our final weighted sampling frequency is Ps(i) =

s′(xi;T )∑|D|
j=1 s

′(xj ;T )
.

4.2 Sample analysis of the discrepancy score

To check whether our discrepancy score indeed captures the underrepresented samples, we analyze
the samples with lowest/highest discrepancy scores. We train SNGAN [25] on CIFAR-10 [17] for
40k steps and measure the discrepancy score of each sample. We first present the images with
lowest (Fig. 3a)/highest (Fig. 3b) discrepancy scores among training images, and compare them with
generated samples (Fig. 3c). High-scoring images have properties that are distinct from the generated
samples (e.g., unusual background or shape), while low-scoring images contain features that are
also available in generated samples. Comparing the pixel intensity histogram (Fig. 3d) reveals the
difference more clearly in sample properties. Images with lowest discrepancy scores exhibit similar
intensity distribution with generated samples, while images with highest scores appear to show an
extremely different tendency. We also analyze the Partial FID (FID [13] measured with a subset of
training samples) of lowest/highest-score groups. The highest-score group has a Partial FID of 94.64
while the lowest-score group has 22.43. The large gap between the two groups states that the generator
fails to generate samples similar to high-score group. These results imply that our discrepancy score
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successfully identifies underrepresented data that may need emphasis in further training. For more
examples of images with scores both for CIFAR-10 and CelebA, see the Appendix §C.

4.3 Post-processing by discriminator rejection sampling with auxiliary discriminator

Our weighted sampling gives bias toward underrepresented samples during training. Though effective
in improving diversity, this results in modified data distribution p′data(x) = f(x)pdata(x) where f(·)
is the normalized sampling frequency. Thus, the trained model distribution pg may be different from
the original data distribution pdata. To solve this, we utilize the Discriminator Rejection Sampling
(DRS) [3] to correct the bias after training. The rejection sampling accepts a generated sample with
probability pdata(x)

Mpg(x)
for some constant M > 0. To conduct rejection sampling, DRS method needs an

estimate for pdata(x)/pg(x) calculated based on the discriminator outputs. Since our discriminator is
trained with biased p′data(x), we add an auxiliary discriminator and train it with uniform sampling
(i.e., without applying our sampling technique) during the weighted sampling procedure to obtain the
LDR estimate (1) for DRS, and use this measure for the rejection sampling of generated samples.

4.4 Self-Diagnosing GAN (Dia-GAN)

The overall algorithm (with details in the Appendix §D) can be summarized as below:
Phase 1 - Train and Diagnose: Train GAN and evaluate the discrepancy score for each data instance.
Phase 2 - Score-Based Weighted Sampling: Encourage GAN to learn underrepresented regions of
data manifold through score-based weighted sampling (Section 4.1).
Phase 3 - DRS: After GAN training, correct the model distribution pg(x) by rejection sampling.

5 Experiments

5.1 Evaluation metrics and baselines

Evaluation metrics To evaluate the effect of our method on learned model distribution, we use
various performance metrics including (1) Fréchet Inception Distance (FID) [13], (2) Inception Score
(IS) [28], and (3) Precision and Recall (P&R) [18]. In addition to these global evaluation metrics,
we consider (4) Reconstruction Error (RE). RE score is calculated by first training a convolutional
autoencoder (CAE) with generated samples, and then calculating Euclidean distance between each
training data and its reconstruction. RE can assess whether pg(x) covers pdata(x) since CAE is known
to have high RE for out-of-distribution samples [41, 44]. For more details, see the Appendix §E.

Baselines We compare the effect of our method with other methods that use the discriminator
output for improving GAN training; 1) DRS [3], 2) Gap of log-densities (GOLD) [26], and 3) Top-k
training [30]. GOLD4 uses the LDR estimate on generated samples to re-weight underrepresented
samples (having high LDR) during training of GANs. Top-k training uses only top-k fake samples
with the largest discriminator outputs, i.e., the samples believed to be the “most realistic”, during
the training of the generator. As our algorithm uses DRS after the training, we also analyze each
method’s performance with post-processing by DRS to measure the exact gain from our sampling
method.

5.2 GAN performance enhancement on real datasets

Experiments on CIFAR-10 and CelebA We first assess our method on two widely-studied GAN
benchmark datasets, CIFAR-10 [17] and CelebA [21]. We evaluate our method on state-of-the-art
GANs; SNGAN [25] and SSGAN [36] with non-saturating variant of the original loss. We train our
model for 50k (75k) steps for CIFAR-10 (CelebA), where for our method and GOLD, the phase 1
takes 40k (60k) steps, and the phase 2 takes the remaining. We record LDR every 100 steps and
use the last 50 records for calculating the discrepancy score. For the discrepancy score (7), we use
k = 0.3 (5.0) for CIFAR-10 (CelebA). Detailed configurations and hyperparameter search procedure
are available in the Appendix §F.

4 As the original GOLD estimator is designed for conditional GANs [24], we consider the unconditional version
by removing the conditional discrepancy term.
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Table 2: Comparison of diverse sampling/weighting methods for CIFAR-10/CelebA image generation.

Dataset CIFAR-10 CelebA

Methods
SNGAN SSGAN SNGAN SSGAN

FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑
Vanilla 26.90 7.36 22.01 7.65 7.12 0.68 0.44 7.19 0.68 0.44

DRS [3] 24.54 7.57 20.51 7.77 7.04 0.68 0.44 7.08 0.68 0.45
GOLD [26] 28.86 7.21 21.90 7.57 7.31 0.69 0.44 7.46 0.68 0.43

GOLD + DRS 24.65 7.53 19.36 7.79 6.97 0.68 0.44 7.15 0.67 0.45
Top-k [30] 24.45 7.60 20.01 7.78 7.35 0.67 0.44 7.23 0.67 0.45

Top-k + DRS 23.92 7.70 20.09 7.88 7.35 0.68 0.44 7.16 0.68 0.45
Dia-GAN 19.66 7.95 16.31 8.14 6.70 0.64 0.48 6.88 0.66 0.46

Table 3: StyleGAN2 on FFHQ 256x256.

FID ↓ P ↑ R ↑
StyleGAN2 14.07 0.72 0.27

GOLD 15.53 0.69 0.29
Dia-StyleGAN2 11.89 0.69 0.30

Table 4: HingeGAN on CIFAR-10 and CelebA.

CIFAR-10 CelebA

FID ↓ IS ↑ FID ↓
HingeGAN 21.99 7.67 6.66

Dia-HingeGAN 18.74 8.02 5.98

In Table 2, we first compare FID and IS over various methods on the CIFAR-10 dataset. Our proposed
Dia-GAN achieves the best FID and IS with a great margin among all baseline methods in every
GAN variant. This result demonstrates the wide applicability and effectiveness of our method in
improving the overall quality (fidelity and diversity combined) of generated samples. Moreover,
the comparison between DRS and our method assures that most of the gain indeed comes from our
resampling method. Also, we compare FID and P&R over the methods on CelebA. Our method
consistently improves FID over baseline GANs. Precision & Recall analysis shows more detailed
reasons for the improvement of FID. Our method consistently improves recall (diversity) but with a
slight drop in precision (fidelity). As the increase in diversity is dominant, FID, which measures the
combined effect of fidelity and diversity, is consistently improved with our method compared to the
baselines. Examples of generated samples from our Dia-GAN are also available in the Appendix §G.

Experiments on StyleGAN2 We further evaluate the scalability of our method with Style-
GAN2 [16] on FFHQ 256x256 [15] dataset. We train the model for 250k steps in total where
phase 1 takes 200k steps and the phase 2 takes the remaining steps. We set the hyperparameter
k = 3.0. Our method improves the FID of StyleGAN2 from 14.07 to 11.89 and recall of StyleGAN2
from 0.27 to 0.30 as shown in Table 3. This indicates that our method successfully scales to large
state-of-the-art GANs and high-resolution images.

Extension to hinge loss We further conduct experiments to show the applicability of our method to
other GAN losses. Here, we focus on a commonly used loss, the hinge loss (HingeGAN) [19, 34]. Our
method is not directly applicable to the hinge loss since the output of the optimal discriminator Dh(x)

is not pdata(x)
pdata(x)+pg(x)

anymore. Instead, Dh(x) is 1 if pdata(x) > pg(x) and −1 if pdata(x) < pg(x).
One possible workaround is attaching an auxiliary layer to the discriminator and training it with the
original GAN loss. However, we instead present empirical evidence showing that Dh(x) itself still
contains useful information about the degree of learning for the input x. We consider the variant of our
method, Dia-HingeGAN, by calculating the mean and variance of Dh(x) and using the same scoring
rule of (7). In Table 4, we compare the performance of HingeGAN and Dia-HingeGAN with the same
configuration of the previous experiment. Interestingly, our method shows significant improvement
in both CIFAR-10 and CelebA. This implies that despite the optimal form of the discriminator is
different, the statistics of its output still provide meaningful information about the underrepresented
features. We leave the theoretical analysis of this variant method as a future work.
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Table 5: Reconstruction Error (RE) score of green (minor) training samples in Colored MNIST and
FMNIST (minor) samples in a mixture of MNIST and FMNIST on different majority rate ρ.

Dataset Colored MNIST MNIST-FMNIST

Majority rate ρ 99% 95% 90% 99% 95% 90%

Vanilla 0.838 0.236 0.218 0.290 0.227 0.215
GOLD [26] 0.813 0.297 0.200 0.296 0.241 0.218
Top-k [30] 0.831 0.210 0.223 0.281 0.232 0.221

PacGAN [20] 0.810 0.244 0.233 0.313 0.251 0.225
Inclusive GAN [43] 0.812 0.274 0.216 0.283 0.230 0.220

Dia-GAN 0.224 0.204 0.197 0.264 0.219 0.206

Table 6: CelebA minor attribute analysis. Averaged LDRV and averaged discrepancy score of CelebA
samples with (W/) or without (W/O) minor attributes. O stands for the occurrence of minor attributes
among the generated samples in percentage (%) and R stands for the Partial Recall.

Score Method

LDRV Discrepancy Vanilla Dia-GAN
W/ W/O W/ W/O O ↑ R ↑ O ↑ R ↑

Bald (2.244%) 0.271 0.184 2.938 2.221 0.678 0.353 0.836 0.393
Double Chin (4.669%) 0.219 0.184 2.525 2.224 0.440 0.411 0.522 0.461
Eyeglasses (6.512%) 0.254 0.181 2.783 2.200 3.300 0.400 4.053 0.449
Gray Hair (4.195%) 0.211 0.185 2.450 2.228 2.273 0.402 2.369 0.436
Mustache (4.155%) 0.242 0.183 2.699 2.218 0.157 0.391 0.228 0.433
Pale Skin (4.295%) 0.190 0.186 2.240 2.238 0.346 0.380 0.453 0.427

Wearing Hat (4.846%) 0.357 0.177 3.651 2.164 2.307 0.380 3.595 0.408

5.3 Minor feature generation

Controlled experiments As our method emphasizes underrepresented samples in GAN training,
we evaluate how much our method helps the generation of minor samples. To control the level of
minority, we design a Colored MNIST dataset with red (major) and green (minor) samples, and
MNIST-FNIST dataset with MNIST (major) FMNIST (minor) samples, with the majority rates
ρ ∈ {90, 95, 99}%. We compare our method with the same set of baseline methods as in Section 5.1.
Additionally, we compare our method with PacGAN [20], the approach to handle the mode collapse
problem, and with Inclusive GAN [43], which also improves the data coverage over the minor groups
by using a hybrid generative model.

Table 5 shows the results of each method in various majority rates. Here, we focus on the reconstruc-
tion error (RE) score of minor training samples (green samples for Colored MNIST, and FMINST
samples for MNIST-FMNIST dataset). For the training dataset with the majority rate of 99%, our
method shows a significant improvement in RE score as only our method succeeds in generating
minor samples while others fail. When the majority rate ρ decreases to 95% and 90%, vanilla
model starts to generate minor samples but in low quality. For these rates, our method also shows
improvement on the quality of generated samples with minor features, resulting in better RE scores.
This result implies the efficacy of our method in improving the quality of generated samples with
underrepresented features. Examples of samples with minor features for each method are available in
the Appendix §I, and detailed configuration of the experiment is available in the Appendix §F.

CelebA minor attribute analysis For the real-world example, we analyze how our method changes
the generation of minor attributes of the CelebA [21] dataset, using the meta-information available in
the dataset. Specifically, we focus on how much our method improves the occurrence rate of minor
attributes, as they usually appear in a much lower rate than its actual ratio. We train a binary classifier
for each attribute to have train and test accuracy above 95%. We also evaluate the Partial Recall of
the minor attributes, since minor samples suffer low-recall problem as explained in Section 3.2.
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Figure 4: Generated samples of vanilla SNGAN and Dia-SNGAN trained on CelebA.

As shown in Table 6, our method improves both the occurrence (O) and Partial Recall (R) rates of var-
ious minor attributes. Moreover, as explained in Section 3.2, minor samples do have higher LDRV (2)
and the discrepancy score (7). This indicates that our method indeed captures the underrepresented
minor features and successfully promotes the generation of such features during training of GANs.
Figure 4 shows examples of generated samples with minor feature appeared by our Dia-GAN. Note
that as we use the majority of the training time for Phase 1 (80% of total steps), the generator partially
converges after Phase 1 and thus the same latent vector z turns out to give a similar image with details
changed after Phase 2 (e.g., wearing sunglasses, or a hat).

The ability of our method in capturing semantic features and improving the generation of minor
samples also applies to high-resolution datasets. To demonstrate this, we conduct similar experiments
for the high-resolution FFHQ dataset and present the results in the Appendix §H.

6 Discussion

We proposed two new metrics, LDRV and LDRM, that can detect underrepresented samples and
devised a simple approach to emphasize detected underrepresented samples. Our method successfully
improves overall quality of the generated samples in terms of FID and IS, and promotes generation of
minor samples. However, we still find the trade-off relationship between the precision and recall of
generated samples (Table 2). We leave the investigation of other approaches to use the knowledge of
detected underrepresented samples for further improvement of GAN training as a future work.

Societal impact We propose a discrepancy score that can detect underrepresented minor samples
in training of GANs. On the good side, this results in enhanced generation of minor samples in
GANs. The ability of our score could be further expanded and used for utilizing skewed datasets to
train models representing more balanced datasets, by adding a hyperparameter that can tune the level
of emphasis for underrepresented samples. On the other hand, an abuser might instead be able to
remove such minor subgroup samples and deteriorate the bias in sample generation.
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