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Abstract—The multimodal language models (MLMs) based
on generative pre-trained Transformer are considered pow-
erful candidates for unifying various domains and tasks.
MLMs developed for remote sensing (RS) have demonstrated
outstanding performance in multiple tasks, such as visual
question answering and visual grounding. In addition to
visual grounding that detects specific objects corresponded to
given instruction, aerial detection, which detects all objects of
multiple categories, is also a valuable and challenging task for
RS foundation models. However, aerial detection has not been
explored by existing RS MLMs because the autoregressive
prediction mechanism of MLMs differs significantly from
the detection outputs. In this paper, we present a simple
baseline for applying MLMs to aerial detection for the first
time, named LMMRotate. Specifically, we first introduce a
normalization method to transform detection outputs into
textual outputs to be compatible with the MLM framework.
Then, we propose a evaluation method, which ensures a
fair comparison between MLMs and conventional object
detection models. We construct the baseline by fine-tuning
open-source general-purpose MLMs and achieve impressive
detection performance comparable to conventional detector.
We hope that this baseline will serve as a reference for future
MLM development, enabling more comprehensive capabilities
for understanding RS images.

Index Terms—multimodal language model, aerial detection

I. INTRODUCTION

Earth observation systems have acquired vast remote
sensing (RS) data, driving demand for automated RS
image interpretation. The advancement of artificial general
intelligence (AGI) has motivated researchers in this field
to develop general agents that are outstanding on multiple
tasks, such as scene classification, visual question answer-
ing, and object detection [1—4].

Multimodal language models (MLMs) are built upon
vision and language foundation models, enabling them to
process data from multiple modalities and interpret textual
instructions effectively. The task results are outputted in
textual form. By leveraging powerful pre-trained foun-
dation models and a flexible text interface, MLMs are
considered a key component in the advancement of AGI.

Recently, MLMs have been introduced into the RS
field. While existing RS MLMs have emphasized visual
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Fig. 1. Visualization of the objects detected by our MLM detector based
on Florence-2-large [5] with single dataset setting. The images are selected
from the test sets of DOTA-v1.0 [6] and RSAR [7].

localization capabilities, their detection performance still
requires significant improvement. Geochat [2] presents the
first open-source RS MLM learned on tasks including scene
classification, image captioning, region description, visual
question answering, and visual grounding. The proposed
model demonstrates the ability to detect partial objects
corresponding to textual instructions but is unable to per-
form more intensive detection. EarthGPT [3] extends visual
inputs with multisensor RS modalities covering optical,
synthetic aperture radar, infrared data. While they achieve
detection results comparable to traditional detectors, their
model is limited to single-class detection performance.
SkySenseGPT [4] introduces scene graph generation to
RS MLMs to enhance ability of understanding relations
between objects. They also provide tolerance detection
accuracies under a lower threshold of intersection over
union (IoU). We consider that RS MLMs still require
further investigation in aerial detection to fully explore their
potential.

There is often skepticism about whether MLMs can
effectively learn to perform aerial detection. First, the de-
tection outputs consist of numerical coordinates for bound-
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Fig. 2. The overall framework of the proposed MLM detector baseline.
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ing boxes and object categories, which significantly differ
from the textual outputs produced by language models.
Second, language generation models are typically autore-
gressive, generating causal sequences, whereas detection
models usually output all results in parallel. Additionally,
aerial detection presents considerable challenges due to the
presence of many small and densely packed objects, which
impose high demands on both the visual input resolution
and the output sequence length of MLMs.

In this paper, we present a simple baseline for aerial
detection, with a focus on enhancing the detection capabil-
ities of MLMs in the RS domain for the first time, named
LMMRotate. Specifically, we propose a straightforward
method to supervised fine-tune MLMs, achieving detection
performance comparable to that of conventional detectors.
The MLM detectors produce parsable text outputs, offering
both flexibility and expandability as multi-dataset joint-
trained detectors. We then observe that the advantage of
conventional detectors in detection metrics largely comes
from object confidence scores. To address this, we pro-
pose an appropriate evaluation scheme that enables fair
comparisons between MLMs and conventional detectors.
Additionally, we conduct exploratory experiments using
open-source MLMs, demonstrating the potential of MLMs
as aerial detectors. We sincerely hope that our work
contributes to advancing more comprehensive abilities of
MLMs in the RS field.

II. METHOD
A. Preliminary of Multimodal Language Models

As depicted in Figure 2, the proposed method adopts
the most popular MLM paradigm for image understanding,
which connects a vision foundation model and a language
foundation model using a bimodal projection operation.
We fine-tune off-the-shelf pre-trained MLMs to inherit the
localization abilities learned from grounding task.

For a language model, the input sentence is pieced and
tokenized into a unique sequence of vocabulary indices.
Each indice i corresponds to a discrete token t; € RP,
which is a learnable vector of dimensionality D. The

harbor <850> <412> <724> <416> <737> <709> <861> <704>
<sep> <561> <432> <512> <447> <567> <644> <610> <627>
<sep> <365> <451> <316> <464> <374> <695> <417> <686>
<sep> <220> <529> <150> <548> <207> <719> <271> <696>
ship <529> <502> <505> <511> <525> <571> <547> <564>
<sep> <413> <516> <385> <525> <397> <584> <425> <578>
<sep>

swimming pool <386> <189> <282> <209> <291> <266> <397> <245>
<sep> <911> <215> <837> <242> <850> <276> <921> <254>
<sep>

<sep> <126> <291> <39> <324> <63> <381> <153> <347>

Fig. 3. An example of a RS image and its response that contains category
names and 8-parameter polygon boxes of objects.

model’s output is also a sequence of indices, which is
subsequently de-tokenized to generate the final response.

An input RS image is firstly transformed into flattened
features F € RN7*P1 by image preprocessing operations
(resizing or dynamic resolution strategies) and a well-
designed vision Transformer, where N; and D; represent
the number and dimensionality of the features, respectively.
Meanwhile, the prompt text of detection instruction is
tokenized into NV; text tokens T; € RN+XP To align the
visual features to input space of the language model, a
bimodal projection operation maps the image features into
N, visual tokens T, € RY*P N, oc N;. The input of
language model is:

T = concat(T,, Ty) € R(NoF+Ne)xD (D

where the concat( , ) operation concatenates two matri-
ces along the token number dimension.
In the training period, we optimize the model parameters
0 using the standard language modeling strategy, i.e., next
token prediction with cross-entropy loss:
Ir|

L=-) _Pi(r,T), P;(r,T)=logP(r;lr<;, T), (2)
j=1

where r = (r1,ra,...,rr) denotes the indices sequence of
model response and P;(r, T) is the conditional probability
distribution of the j-th token. During the inference phase,
the model generates outputs in an auto-regressive manner,
predicting tokens iteratively, . The j-th token is obtained:

r; =argmax P;(r,T) or r; ~ P;(r,T), 3)

where the former corresponds to deterministic methods,
such as greedy search or beam search, while the latter
corresponds to stochastic sampling strategies. The process
continues until a stopping criterion is met, such as gener-
ating the end-of-sequence token.

B. Normalization of Detection Outputs

We investigate multi-class orientated aerial detection
in this paper. Each object is represented with the class
name and a 8-parameters quadrilateral bounding box o =
(no; T10; Y105y T205 Y205 L305 Y305 LT40; y40)’ where the x;0
and y;, are the coordinates of the polygon vertices in clock-
wise order. The vertex with the smallest vertical coordinate
is considered the starting vertex. Besides, n, is one phrase
in the ¢ proposal category names {C1, Cs, ..., C.}.

We follow the approaches in Florence-2 [5] and In-
ternVL [8] to qualitize vertex coordinates by normalizing
each axis from O to 1000 and then round the normalized



coordinate into integer. This designing prevents the co-
ordinates from being excessively continuous and ensures
consistent predictions. The precision loss introduced by
the quantized integer coordinates relative to the floating-
point coordinates has a negligible impact on the location
accuracy.

The template used to standardize detection annotations
should ensure uniqueness and orderliness. For a given
image, the model should output the detected objects in
a logical and sequential manner. Specifically, the overall
response is composed of detection results for each category,
which are sorted alphabetically by category names. Within
each category, the boxes are further sorted based on the
position of the starting vertexes.

Figure 3 exhibits an example RS image and its corre-
sponding response for Florence-2 model, where “(v)” and
“(sep)” mean the v-th bin of the corresponding axis and
separating marker, respectively. Additionally, categories are
directly represented in textual form.

As shown, we enable the MLM to recognize objects of
multiple categories in an aerial image, including categories
and bounding box in the response. During the inference
stage, the detection results can be extracted through simple
regex processing from the response. Moreover, compared
to most conventional detectors that rely on post-processing
techniques like non-maximum suppression (NMS), MLM
does not need to handle issues related to overlapping
redundant objects.

C. Evaluation of MLM detectors

The common practices for aerial detection use mean
average precision (mAP) as evaluation metric, which re-
quires orientated bounding boxes, categories, and confi-
dence scores of the detected objects. As mentioned, the
designed response only includes categories and location.
We found that the quality of the confidence scores has a
significant impact on the mAP score, which is a disadvan-
tage for MLM.

Figure 4 demonstrates the impact of confidence scores.
The gray line represents the original mAP, while the col-
ored line represents the mAP with confidence substituted
with constant or random scores, referred to as mAP with
no confidence, or mAP,.. Although the predictions of
conventional detectors have undergone NMS, the directly
obtained mAP,, is low due to low-confidence false positive
boxes. Hence, we conduct threshold filtering to enhance the
mAP,. and set the best result as the mAP,. of conventional
detectors. It can be observed that the presence of confidence
leads to a significant increase on mAP.

Rather than introducing a complex mechanism to obtain
object confidence for MLM, we claim that the consid-
eration of confidence is not necessary when comparing
MLM and conventional detectors. Since the annotations
and results for detection tasks inherently compose of object
categories and bounding boxes, but not contains confi-
dence. The confidence is merely an additional byproduct of
the detector’s inference process. It can assist in processing
detection results but is not essential for evaluating model

quality. We advocate for the use of metrics that do not rely
on confidence, such as mF; and mAP,..

We also evaluate the robustness of mAP,. as a metric.
We calculate each mAP,. eleven times by replacing the
confidence with ten random values and a consistent value.
As shown in Figure 4, the standard deviations are generally
lower than 0.5%, especially when the threshold is between
0.2 and 0.4.

Especially for benchmarks that lack publicly available
test sets and require online server evaluation based on
mAP, such as DOTA [6] and FAIRIM [9], hence, we
recommend adopting mAP,. as the evaluation metric in
these benchmarks.

III. EXPERIMENT
A. Benchmark Datasets

We conduct experiments on four benchmarks for multi-
class orientated aerial detection, comprising three opti-
cal RS image datasets DOTA-v1.0 [6], DIOR-R [10],
FAIRIM-v1.0 [9], and two synthetic aperture radar (SAR)
image datasets SRSDD [11] and RSAR [7].

B. Evaluation Settings

As claimed in Section II-C, we use mAP,. and mF; as
evaluation metrics.

The mAP,. and mF; of each conventional detector is
calculated by the process exhibited in Figure 4. We calcu-
late the two types of scores under a range of confidence
thresholds and then select the best scores. We obtain the
results with the default inference settings of each model
and do not post-process any model with an additional NMS
operation.

For the MLM detectors, we first extract the detection
outputs with regular expressions. For cases in which the
predicted category text does not exactly match the meta
category names of the dataset (e.g., “pool” and “swimming
pool”), we employ fuzzy matching with the Levenshtein
distance. We assign a 100% confidence score to all the
predictions. Then, we directly send the predictions to
subsequent evaluation.

We emphasize a critical distinction between mAP,
and mF; is that the mF; cannot be utilized for online
evaluation. Consequently, for DOTA-v1.0 and FAIRIM-
v1.0, mF; can not be calculate in the commonly adopted
benchmark settings. Therefore, we adjust the benchmark
settings for mF;. For DOTA-v1.0, we re-train the model
on the training set and compute mF; on the validation set.
For FAIRIM-v1.0, we directly evaluate the model on the
validation set of FAIR1M-v2.0, because the newer version
adds a validation set and expands the test set without
modifying the training set.

C. Implementation Details

We fine-tune Florence-2 [5], an advanced MLM for
general vision tasks. We conduct experiment on the two
available pre-trained model: Florence-2-base with 271 mil-
lion parameters and Florence-2-large with 829 million
parameters. The input size is 1024 x 1024 for all models.



TABLE I
COMPARISON RESULTS OF TWO CONVENTIONAL DETECTORS AND OUR MLM DETECTORS ON FOUR BENCHMARKS

Model DOTA-v1.0 [6] | DIOR-R [10] | FAIRIM-v1.0 [9] SRSDD [11] RSAR [7]

mAP,¢ mF; mAP,. mF; mAP, mF; mAP,. mF; mAP,. mF;
Rotated RetinaNet [12] 52.2 58.2 433 56.3 21.4 36.2 144 18.8 49.1 57.4
Rotated FCOS [13] 58.9 61.1 50.0 63.6 25.6 394 34.5 38.5 59.0 62.9
Florence-2-base [5] 50.2 62.2 53.0 66.3 23.6 40.2 15.3 25.4 58.8 64.0
Joint training (concat) 51.3 - 53.5 65.9 22.0 38.1 17.8 23.7 58.4 63.7
Joint training (balanced) 52.0 - 53.8 66.3 21.9 38.6 25.5 30.9 56.2 61.2
Florence-2-large [5] 56.0 63.1 54.9 67.9 26.8 44.0 10.4 18.2 63.0 66.5
Joint training (concat) 55.3 - 56.9 68.9 25.6 42.5 24.6 32.8 64.1 67.0
Joint training (balanced) 56.1 - 56.3 69.5 252 41.8 314 37.4 60.8 65.8

Rotated FCOS@DOTA: 648 It can also be observed that the joint training have great
60 Rotated FCOS@DIOR: 61.5

Rotated RetinaNet@DOTA: 61.2
Rotated RetinaNet@DIOR: 54.0

positive effect on MLM detectors. The overall performance
is increased because of the larger amount of data, especally
for the small dataset SRSDD, which seems to gain more

e benifits from the other datasets.
otated RetinaNet
20 Rotated FCOS
Dataset IV. CONCLUSION
0 —— DOTA

—-=- DIOR
0.0 0.2 0.4 0.6 0.8

Confidence Threshold

Fig. 4. The impact of confidence scores on mAP / mAP,. with error
bands. The colored lines record the variation trends of mAPy, for the two
popular conventional detector on DOTA-v1.0 [6] (trained on ‘train‘ split
and evaluated on ‘validation® split) and DIOR-R [10] (trained on ‘trainval®
split and evaluated on ‘test‘ split, and the input size is 800 x 800) datasets
under different confidence thresholds.

Since our data annotations are stored in pure text format,
we can flexibly perform joint training across multiple
datasets. We explore two methods for merging multiple
dataset: The ‘“concat” method simply merges the four
datasets. The “balanced” method oversamples the smaller
datasets, thereby achieving a more balanced distribution
among the four datasets.

The models are trained for 100 epochs, with the learning
rate of 2 x 1075 and cosine schedule. We open-source the
code based on MMRotate [|4] and Huggingface Trans-
formers, which employs resource-friendly MLM training
techniques, such as mixed precision computing, gradient
checkpointing, flash attention, and deepspeed.

D. Comparison Results

Table I presents the comparison results of two con-
ventional detectors and our MLM detectors on the four
benchmarks. Figure 1 exhibits the visualization of the
objects detected by our MLM detector based on Florence-
2-large [5] with single dataset setting.

Overall, the fine-tuned MLLM detectors achieve detection
performance on par with conventional detectors. As shown
in Figure 1, even in complex scenarios with numerous
densely packed small objects, the MLM detector can
still perform well. In the quantitative results presented in
Table I, the MLM detectors even surpasses conventional
detectors in terms of mFy, as well as mAP,. on the DIOR-
R, FAIRIM-v1.0, and RSAR datasets.

In this paper, we demonstrate that a multimodal language
model can also handle aerial detection tasks, even achieving
performance comparable to conventional detectors. Our ap-
proach is straightforward: by normalizing detection outputs
into text form, we can fine-tune general-purpose MLMs to
meet our goal. We also present an appropriate evaluation
scheme for MLM detectors. We hope our work will inspire
future research toward enhancing aerial detection capabil-
ities in next-generation RS MLMs, ultimately contributing
to broader AGI developments.
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