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Abstract

Several pre-training objectives, such as masked
language modeling (MLM), have been pro-
posed to pre-train language models (e.g. BERT)
with the aim of learning better language repre-
sentations. However, to the best of our knowl-
edge, no previous work so far has investigated
how different pre-training objectives affect
what BERT learns about linguistics properties.
We hypothesize that linguistically motivated
objectives (e.g. MLM) should help BERT to
acquire better linguistic knowledge compared
to using non-linguistically motivated objectives,
i.e. hard for humans to guess the association
between the input and the label to be predicted.
To this end, we pre-train BERT with two lin-
guistically motivated objectives and three non-
linguistically motivated ones. We then probe
for linguistic characteristics encoded in the rep-
resentation of the resulting models. We find
strong evidence that there is no actual differ-
ences in probing performance between the rep-
resentations learned by the two different types
of objectives. These surprising results ques-
tion the dominant narrative of linguistically in-
formed pre-training.’

1 Introduction

The most popular way to pre-train a transformer-
based (Vaswani et al., 2017) language model (LM),
e.g. BERT (Devlin et al., 2019), is by optimizing a
masked language modeling (MLM) objective. The
MLM task was inspired by the Cloze Task (Taylor,
1953), where humans were asked to guess omitted
words in a sentence using its context, knowledge
of syntax and other skills. The premise is that such
an objective will guide a LM to encode linguistic
information.

Apart from MLM, different types of objectives
have been recently proposed. Yang et al. (2019)
introduced a pre-training objective based on token
order permutations. Clark et al. (2020) proposed
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a Replaced Token Detection pre-training task, that
uses the output of a small MLLM to corrupt the in-
put by replacing some of the tokens. It then trains
a discriminative model to predict if a token has
been replaced or not. Aroca-Ouellette and Rudzicz
(2020) explored various sentence and token-level
auxiliary pre-training tasks (e.g. sentence ordering,
term-frequency prediction), as better alternatives to
the next sentence prediction (NSP) auxiliary task
originally used to train BERT. Lan et al. (2020)
introduced the sentence-order prediction task that
focuses on the inter-sentence coherence, by predict-
ing if two contiguous sentences have been swapped
or not. Iter et al. (2020) proposed another inter-
sentence pre-training task, that helps LMs to en-
code discourse relationships between sentences us-
ing contrastive learning. Yamaguchi et al. (2021)
showed that a non-linguistically intuitive task (i.e.
masked first character prediction) can effectively
be used for pre-training.

Meanwhile, several studies have explored how
well and to what extent LMs learn linguistic in-
formation. This is usually examined using prob-
ing tasks, i.e. simple classification tasks that test
the LM’s encodings for a single linguistic fea-
ture such as grammatical information. It has been
found through probing that BERT encodes syn-
tactic (Tenney et al., 2019; Liu et al., 2019; Mi-
aschi and Dell’Orletta, 2020; Hewitt and Manning,
2019; Jawahar et al., 2019) and semantic informa-
tion (Ettinger, 2020; Jawahar et al., 2019; Tenney
et al., 2019). However, Hall Maudslay and Cot-
terell (2021) argue that BERT’s syntactic abilities
may have been overestimated.

In this paper, we hypothesize that linguistically
motivated objectives (e.g. MLM) should help
BERT to acquire better linguistic knowledge com-
pared to using dummy or non-linguistically moti-
vated objectives, i.e. tasks that are hard for humans
to guess the association between the input and the
label to be predicted. To this end, we seek to an-



swer the following research question: How does
the pre-training objective affect what LMs learn
about the English language?

Our findings challenge the MLM status quo,
showing that pre-training with dummy, non-
linguistically informative objectives (§2) results
in models with similar linguistic capabilities, as
measured by standard probing benchmarks (§3).
These surprising results (§4) suggest that careful
analysis of how LMs learn is critical to further im-
prove language modeling (§5).

2 Pre-training Objectives

We experiment with five different pre-training ob-
jectives. Two of them are considered linguistically
motivated while the rest are not.

2.1 Linguistically Motivated Objectives

Masked Language Modeling (MLM): We use
MLM as our first linguistically motivated pre-
training objective. First introduced by Devlin et al.
(2019), MLLM randomly chooses 15% of the tokens
from the input sentence and replaces 80% of them
with a [MASK] token, 10% with a random token,
and 10% remain unchanged.

Manipulated Word Detection (S+R): We also
experiment with a simpler linguistically motivated
objective, where the model selects and replaces
10% of input tokens with shuffled tokens from
the same input sequence. Concurrently, it selects
and replaces another 10% of input tokens with ran-
dom tokens from the vocabulary (Yamaguchi et al.,
2021).

2.2 Non-Linguistically Motivated Objectives

We assume that tasks that are hard for humans (such
as a completely random prediction task) will make
less likely the deeper layers of BERT (i.e. closer to
the output layer) to acquire meaningful information
about language. We also hypothesize that layers
closer to the input might learn word co-occurrence
information (Sinha et al., 2021).

Masked First Character Prediction (First Char):
For our first non-linguistically motivated pre-
training objective, we use the masked first char-
acter prediction introduced by Yamaguchi et al.
(2021). In this task, the model predicts only the
first character of the masked token (e.g. ‘[c]at’ and
‘[clomputer’ belong to the same class). The model

predicts the first character as one of 29 classes, in-
cluding the English alphabet and digit, punctuation
mark, and other character indicators.

Masked ASCII Codes Summation Predic-
tion (ASCII): We also propose a new non-
linguistically motivated pre-training objective,
where the model has to predict the summation of
the ASCII code values of the characters in a masked
token. To make this harder and keep the number of
classes relatively small, we define a 5-way classi-
fication task by taking the modulo 5 of the ASCII
summation: V = [}, ascii(char;)] %5. Guess-
ing the association between the input and such la-
bel, is an almost impossible task for a human.

Masked Random Token Classification (Ran-
dom): Finally, we propose a completely random
objective where we mask 15% of the input tokens
and we assign each masked token a class from O to
4 randomly for a 5-way classification similar to the
ASCII task. We assume that a model pre-trained
with a random objective should not be able to learn
anything meaningful about linguistic information.

3 Probing Tasks

Probing tasks (Adi et al., 2016; Conneau et al.,
2018; Hupkes et al., 2018) are used to explore in
what extent linguistic properties are captured by
LMs. A model is normally trained, using the repre-
sentations of a language model, to predict a specific
linguistic property. If it achieves high accuracy, it
implies that the LM encodes that linguistic prop-
erty. In this work, we use six standard probing tasks
introduced by Conneau et al. (2018) to examine the
representation output for each layer of the different
LMs we pre-train. These tasks probe for surface,
syntactic and semantic information (i.e. two tasks
per linguistic category). The dataset for each prob-
ing task contains 100k sentences for training, 10k
sentences for validation and another 10k sentences
for testing.” We train a logistic regression (LR)
classifier for each probing task by only tuning the
L2 regularization strength (Conneau et al., 2018).

Surface information tasks: SentLen aims for
correctly predicting the number of words in a sen-
tence. WC tests if the representations preserve
information about the original words in a sentence
by predicting which word the sentence contains out
of 1000 words.

’The datasets are all publicly available by Conneau and
Kiela (2018).



SentLen wC
1 3 6 9 12 \ 1 3 6 9 12
Major. 20.0 0.5
BASE - Devlin et al. (2019) (Upper Bound)
MLM+NSP 939 962 884 80.1 69.5 \ 249 66.5 63.5 479 49.1
BASE
MLM 87.6 88.0 87.6 881 88.0 470 711 747 742 731
S+R 87.5 87.8 88.0 879 88.0 | 47.0 69.7 744 739 725
First Char 87.7 873 873 876 877|477 709 741 732 715
ASCII 878 88.0 88.1 882 88.1 | 49.0 708 75.0 754 729
Random 87.6 877 877 880 878|459 705 747 745 720

Table 1: Accuracy on surface information probing tasks for layers 1, 3, 6, 9, and 12 of each model.

Syntactic information tasks: TreeDepth tests if
the representations preserve information about the
hierarchical structure of a sentence, by predicting
the depth of its parse tree. TopConst predicts the
top constituents of the parse tree of a sentence.

Semantic information tasks: SubjNum predicts
if the subject of the main clause is singular or plural.
ObjNum tests if the direct object of the main clause
is singular or plural.

4 Experiments & Results

4.1 Experimental Setup

Models We pre-train BERT-BASE (Devlin et al.,
2019) models by replacing MLLM and the next sen-
tence prediction (NSP) objectives, with one of the
linguistically or non-linguistically motivated pre-
training tasks (§2).3

Pre-training Data  All models are pre-trained on
the BookCorpus (Zhu et al., 2015) and English
Wikipedia from Hugging Face.* The text is tok-
enized using Byte-Pair-Encoding (Sennrich et al.,
2016), resulting to a total of 2.7 billion tokens.

Pre-training Details Due to limited computa-
tional resources, each model is pre-trained for 5
days using two NVIDIA Tesla V100 (SXM2 -
32GB). We use a batch size of 32 for BASE, and 64

3For completeness, we also pre-train two smaller model
architectures, MEDIUM and SMALL, from (Turc et al., 2019)
as in Yamaguchi et al. (2021). The MEDIUM model has 8
hidden layers and 8 attention heads. The SMALL model has
4 hidden layers and 8 attention heads. Both, MEDIUM and
SMALL, models have feed-forward layers of size 2048 and
hidden layers of size 512. More hyperprameter details can be
found in Appendix A

*https://github.com/huggingface/
datasets

for MEDIUM and SMALL. We optimize the models
using Adam (Kingma and Ba, 2014).°

4.2 Probing Results

Surface information Table 1 shows results for
the two surface information probing tasks (SentLen
and WC), using the representations from the five
BERT-BASE models as inputs to the LR model.
We first observe that the predictive performance
of models trained on the representations learned
using non-linguistically motivated objectives (e.g.
First Char, ASCII, Random), are comparable to
those trained on representations learned with lin-
guistically motivated objectives (e.g. MLM). For
example using representations from layer 12 on the
SentLen probing task, representations learned with
the non-linguistically motivated ASCII pre-training
objective achieve the best performance with 88.1%,
while the model pre-trained with the First Char
learned representations achieves the lowest perfor-
mance with 87.7%.

Syntactic information Similar to the surface in-
formation probing tasks, the results of the syntactic
probing tasks in Table 2 show that the performance
of models trained on representations learned with
linguistically motivated objectives is very similar
to ones trained on non-linguistically learned repre-
sentations. For instance, in the TreeDepth probing
task using representation from layer 1, the differ-
ence between the highest accuracy and the lowest
accuracy is just 0.7%. In the TopConst probing
task, both the model pre-trained using S+R and
the model pre-trained using ASCII achieve the best

SWe also include results from fine-tuning models on the
General Language Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2018) in Appendix B, examining their
performance on downstream tasks.


https://github.com/huggingface/datasets
https://github.com/huggingface/datasets

TreeDepth TopConst
1 3 6 9 12 ] 1 3 6 9 12

Major. 17.9 5.0

BASE - Devlin et al. (2019) (Upper Bound)
MLM+NSP 359 397 413 385 347 | 636 715 833 831 765

BASE - Five Days Pre-training

MLM 31.6 312 31.7 309 31.6 | 67.8 68.1 685 69.1 68.7
S+R 314 320 316 316 314 | 678 693 694 689 68.6
First Char  31.1 31.5 322 316 31.6 | 67.6 683 687 0685 682
ASCII 31.3 315 312 314 314 | 679 693 69.0 68.8 684
Random 31.8 313 317 316 316 | 678 688 685 068.6 684

Table 2: Accuracy on syntactic information probing tasks for layers 1, 3, 6, 9, and 12 of each model.

SubjNum ObjNum
1 3 6 9 12 | 1 3 6 9 12

Major. 50.0 50.0

BASE - Devlin et al. (2019) (Upper Bound)
MLM+NSP  77.6 820 881 876 840 | 767 803 820 818 787

BASE - Five Days Pre-training

MLM 68.0 67.5 67.7 677 684 | 649 656 647 649 650
S+R 680 67.8 68.1 680 679 | 653 644 637 645 64.6
First Char 689 684 684 689 689 | 635 642 643 640 63.7
ASCII 68.6 68.7 678 676 679 | 635 628 633 625 629
Random 68.1 67.8 678 679 683 | 642 63.6 634 639 633

Table 3: Accuracy on semantic information probing tasks for layers 1, 3, 6, 9, and 12 of each model.

performance in layer 3 with 69.3%.

Semantic information We also note similar pat-
terns in the results of the semantic information
probing tasks in Table 3. Both types of pre-trained
models achieve similar performance when probing
for semantic information. For example, the model
pre-trained using First Char achieves an accuracy
of 68.9% while the model pre-trained with MLM
achieves 68.4% in the SubjNum probing task using
the representation of the last layer.

In general, similar behavior can also be observed
for all layers and the two smaller model architec-
tures, MEDIUM and SMALL. The full results of the
probing tasks can be found in appendix C.

5 Discussion

Theoretically, LMs with dummy or non-
linguistically motivated objectives would be
expected to perform drastically worse than LMs
pre-trained using MLM in both downstream tasks
and linguistic capabilities. However, our results
show that both types of LMs have surprisingly

comparable performance (after fine-tuning in
downstream tasks) and linguistic capabilities
(after probing them) using the same training data,
architecture and training scheme. We speculate
that the pre-training data, and the size of the
models have more impact on the effectiveness of
LMs than the pre-training objectives. Furthermore,
the comparable performance of the objectives in
probing suggests that these models learn word
co-occurrence information from pre-training
(Sinha et al., 2021; Yamaguchi et al., 2021) and
that the objectives may have a little effect.

6 Conclusions

In this work, we compared the linguistic capabili-
ties of LMs. Surprisingly, our results show that pre-
training with linguistically motivated objectives
obtain similar performance to dummy objectives.
This suggests that the data and the size of the model
could be more influential than the objectives them-
selves in language modeling. In future work, we
plan to extend our experiments into other languages
and probing tasks.
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Appendices
A Hyperparameter Details

We implement the models using PyTorch (Paszke
et al., 2019) and the Transformers library (Wolf
et al., 2020). We use maximum 10 epochs for
BASE and MEDIUM, and 15 epochs for SMALL. We
also use a learning rate of 1e-4 for MLM. 5e-5 for
BASE First Char, S + R, and ASCII. 5e-6 for BASE
Random. le-4 for SMALL and MEDIUM First Char,
ASCII and Random. We also use weight decay of
0.01, attention dropout of 0.1, 10000 warmup steps.
We also use le-8 Adam ¢, 0.9 Adam 3; and 0.999
Adam [Ss.

B Results on GLUE

We use the GLUE benchmark (Wang et al., 2018)
to fine-tune each model using up to 20 epochs
with early stopping. For each fine-tuning task,
we test using five different seeds and report the
average. Table 4 shows the performance of each
model on 8 different fine-tuning tasks. We report
matched accuracy for MNLI task, Matthews cor-
relation for CoL A task, Spearman correlation for
STS-B task, accuracy for MRPC task, F1 scores
for QQP task, and accuracy for all other tasks.
The WNLI task is disregarded following Aroca-
Ouellette and Rudzicz (2020). The results on
GLUE for the re-implemented models with MLM,
Shuffle + Random and First Char pre-training tasks
are in line with the results reported by Yamaguchi
et al. (2021).

C Results of each Probing Task

Figures 1 to 6 show the performance of all model
architectures for each of the 6 probing tasks.



Pre-training task MNLI QNLI QQP RTE SST MRPC CoLA STS | GLUE Avg.
BASE - 40 Epochs Pre-training (Upper Bound)

MLM + NSP 83.8 90.8 87.8 699 919 85.0 58.9 89.3 | 82.1 (0.4)
BASE - Five Days Pre-training
MLM 79.9 88.3 86.0 603 90.2 81.9 52.9 85.0 78.1 (0.3)
Shuffle + Random 79.8 88.7 864 658 879 86.7 58.2 86.6 80.0 (0.1)
First Char 78.1 86.1 85.2 553 885 81.5 43.7 82.8 75.2 (0.7)
ASCII 75.4 83.6 83.5 577 876 81.5 37.5 79.4 73.3(0.3)
Random 69.7 78.3 778 544 820 70.9 17.4 25.0 59.4 (0.4)
MEDIUM - Five Days Pre-training
MLM 78.9 86.2 859 59.8 89.5 82.7 44.8 84.3 76.5 (0.6)
Shuffle + Random 78.7 87.4 85.8 643 873 85.3 52.7 85.6 78.4 (0.5)
First Char 76.4 84.9 84.9 551 875 81.4 38.4 82.4 73.9 (0.4)
ASCII 75.1 83.9 839 59.1 875 81.5 39.1 79.4 73.7 (0.4)
Random 73.3 82.6 82.9 575 86.2 80.2 33.3 78.6 71.8 (0.5)
SMALL - Five Days Pre-training
MLM 76.2 85.1 849 59.1 88.6 81.7 36.3 84.2 74.5 (0.2)
Shuffle + Random 76.5 85.7 853 58.1 864 80.7 46.6 83.8 75.4 (0.1)
First Char 74.6 84.0 84.3 550 875 78.2 31.7 80.5 72.0 (0.4)
ASCII 73.0 81.7 83.2 574 850 77.1 32.9 77.8 71.0 (0.3)
Random 71.3 82.1 83.0 57.8 857 74.3 27.6 78.0 70.0 (0.2)

Table 4: Results on GLUE dev sets with standard deviations over five runs in parentheses. Bold values denote the
best performance across each GLUE task and GLUE Avg. for each model setting.
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Figure 1: Results of the Sentence Length (SentLen) probing task
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Figure 2: Results of the Word Content (WC) probing task
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Figure 3: Results of the Tree Depth (TreeDepth) probing task
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Figure 4: Results of the Top Constituent (TopConst) probing task
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Figure 5: Results of the Subject Number (SubjNum) probing task
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Figure 6: Results of the Object Number (ObjNum) probing task
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