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Abstract

Several pre-training objectives, such as masked001
language modeling (MLM), have been pro-002
posed to pre-train language models (e.g. BERT)003
with the aim of learning better language repre-004
sentations. However, to the best of our knowl-005
edge, no previous work so far has investigated006
how different pre-training objectives affect007
what BERT learns about linguistics properties.008
We hypothesize that linguistically motivated009
objectives (e.g. MLM) should help BERT to010
acquire better linguistic knowledge compared011
to using non-linguistically motivated objectives,012
i.e. hard for humans to guess the association013
between the input and the label to be predicted.014
To this end, we pre-train BERT with two lin-015
guistically motivated objectives and three non-016
linguistically motivated ones. We then probe017
for linguistic characteristics encoded in the rep-018
resentation of the resulting models. We find019
strong evidence that there is no actual differ-020
ences in probing performance between the rep-021
resentations learned by the two different types022
of objectives. These surprising results ques-023
tion the dominant narrative of linguistically in-024
formed pre-training.1025

1 Introduction026

The most popular way to pre-train a transformer-027

based (Vaswani et al., 2017) language model (LM),028

e.g. BERT (Devlin et al., 2019), is by optimizing a029

masked language modeling (MLM) objective. The030

MLM task was inspired by the Cloze Task (Taylor,031

1953), where humans were asked to guess omitted032

words in a sentence using its context, knowledge033

of syntax and other skills. The premise is that such034

an objective will guide a LM to encode linguistic035

information.036

Apart from MLM, different types of objectives037

have been recently proposed. Yang et al. (2019)038

introduced a pre-training objective based on token039

order permutations. Clark et al. (2020) proposed040

1Code will be made publicly available.

a Replaced Token Detection pre-training task, that 041

uses the output of a small MLM to corrupt the in- 042

put by replacing some of the tokens. It then trains 043

a discriminative model to predict if a token has 044

been replaced or not. Aroca-Ouellette and Rudzicz 045

(2020) explored various sentence and token-level 046

auxiliary pre-training tasks (e.g. sentence ordering, 047

term-frequency prediction), as better alternatives to 048

the next sentence prediction (NSP) auxiliary task 049

originally used to train BERT. Lan et al. (2020) 050

introduced the sentence-order prediction task that 051

focuses on the inter-sentence coherence, by predict- 052

ing if two contiguous sentences have been swapped 053

or not. Iter et al. (2020) proposed another inter- 054

sentence pre-training task, that helps LMs to en- 055

code discourse relationships between sentences us- 056

ing contrastive learning. Yamaguchi et al. (2021) 057

showed that a non-linguistically intuitive task (i.e. 058

masked first character prediction) can effectively 059

be used for pre-training. 060

Meanwhile, several studies have explored how 061

well and to what extent LMs learn linguistic in- 062

formation. This is usually examined using prob- 063

ing tasks, i.e. simple classification tasks that test 064

the LM’s encodings for a single linguistic fea- 065

ture such as grammatical information. It has been 066

found through probing that BERT encodes syn- 067

tactic (Tenney et al., 2019; Liu et al., 2019; Mi- 068

aschi and Dell’Orletta, 2020; Hewitt and Manning, 069

2019; Jawahar et al., 2019) and semantic informa- 070

tion (Ettinger, 2020; Jawahar et al., 2019; Tenney 071

et al., 2019). However, Hall Maudslay and Cot- 072

terell (2021) argue that BERT’s syntactic abilities 073

may have been overestimated. 074

In this paper, we hypothesize that linguistically 075

motivated objectives (e.g. MLM) should help 076

BERT to acquire better linguistic knowledge com- 077

pared to using dummy or non-linguistically moti- 078

vated objectives, i.e. tasks that are hard for humans 079

to guess the association between the input and the 080

label to be predicted. To this end, we seek to an- 081
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swer the following research question: How does082

the pre-training objective affect what LMs learn083

about the English language?084

Our findings challenge the MLM status quo,085

showing that pre-training with dummy, non-086

linguistically informative objectives (§2) results087

in models with similar linguistic capabilities, as088

measured by standard probing benchmarks (§3).089

These surprising results (§4) suggest that careful090

analysis of how LMs learn is critical to further im-091

prove language modeling (§5).092

2 Pre-training Objectives093

We experiment with five different pre-training ob-094

jectives. Two of them are considered linguistically095

motivated while the rest are not.096

2.1 Linguistically Motivated Objectives097

Masked Language Modeling (MLM): We use098

MLM as our first linguistically motivated pre-099

training objective. First introduced by Devlin et al.100

(2019), MLM randomly chooses 15% of the tokens101

from the input sentence and replaces 80% of them102

with a [MASK] token, 10% with a random token,103

and 10% remain unchanged.104

Manipulated Word Detection (S+R): We also105

experiment with a simpler linguistically motivated106

objective, where the model selects and replaces107

10% of input tokens with shuffled tokens from108

the same input sequence. Concurrently, it selects109

and replaces another 10% of input tokens with ran-110

dom tokens from the vocabulary (Yamaguchi et al.,111

2021).112

2.2 Non-Linguistically Motivated Objectives113

We assume that tasks that are hard for humans (such114

as a completely random prediction task) will make115

less likely the deeper layers of BERT (i.e. closer to116

the output layer) to acquire meaningful information117

about language. We also hypothesize that layers118

closer to the input might learn word co-occurrence119

information (Sinha et al., 2021).120

Masked First Character Prediction (First Char):121

For our first non-linguistically motivated pre-122

training objective, we use the masked first char-123

acter prediction introduced by Yamaguchi et al.124

(2021). In this task, the model predicts only the125

first character of the masked token (e.g. ‘[c]at’ and126

‘[c]omputer’ belong to the same class). The model127

predicts the first character as one of 29 classes, in- 128

cluding the English alphabet and digit, punctuation 129

mark, and other character indicators. 130

Masked ASCII Codes Summation Predic- 131

tion (ASCII): We also propose a new non- 132

linguistically motivated pre-training objective, 133

where the model has to predict the summation of 134

the ASCII code values of the characters in a masked 135

token. To make this harder and keep the number of 136

classes relatively small, we define a 5-way classi- 137

fication task by taking the modulo 5 of the ASCII 138

summation: V = [
∑

i ascii(chari)]%5. Guess- 139

ing the association between the input and such la- 140

bel, is an almost impossible task for a human. 141

Masked Random Token Classification (Ran- 142

dom): Finally, we propose a completely random 143

objective where we mask 15% of the input tokens 144

and we assign each masked token a class from 0 to 145

4 randomly for a 5-way classification similar to the 146

ASCII task. We assume that a model pre-trained 147

with a random objective should not be able to learn 148

anything meaningful about linguistic information. 149

3 Probing Tasks 150

Probing tasks (Adi et al., 2016; Conneau et al., 151

2018; Hupkes et al., 2018) are used to explore in 152

what extent linguistic properties are captured by 153

LMs. A model is normally trained, using the repre- 154

sentations of a language model, to predict a specific 155

linguistic property. If it achieves high accuracy, it 156

implies that the LM encodes that linguistic prop- 157

erty. In this work, we use six standard probing tasks 158

introduced by Conneau et al. (2018) to examine the 159

representation output for each layer of the different 160

LMs we pre-train. These tasks probe for surface, 161

syntactic and semantic information (i.e. two tasks 162

per linguistic category). The dataset for each prob- 163

ing task contains 100k sentences for training, 10k 164

sentences for validation and another 10k sentences 165

for testing.2 We train a logistic regression (LR) 166

classifier for each probing task by only tuning the 167

L2 regularization strength (Conneau et al., 2018). 168

Surface information tasks: SentLen aims for 169

correctly predicting the number of words in a sen- 170

tence. WC tests if the representations preserve 171

information about the original words in a sentence 172

by predicting which word the sentence contains out 173

of 1000 words. 174

2The datasets are all publicly available by Conneau and
Kiela (2018).
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SentLen WC

1 3 6 9 12 1 3 6 9 12

Major. 20.0 0.5

BASE - Devlin et al. (2019) (Upper Bound)

MLM+NSP 93.9 96.2 88.4 80.1 69.5 24.9 66.5 63.5 47.9 49.1

BASE

MLM 87.6 88.0 87.6 88.1 88.0 47.0 71.1 74.7 74.2 73.1
S+R 87.5 87.8 88.0 87.9 88.0 47.0 69.7 74.4 73.9 72.5
First Char 87.7 87.3 87.3 87.6 87.7 47.7 70.9 74.1 73.2 71.5
ASCII 87.8 88.0 88.1 88.2 88.1 49.0 70.8 75.0 75.4 72.9
Random 87.6 87.7 87.7 88.0 87.8 45.9 70.5 74.7 74.5 72.0

Table 1: Accuracy on surface information probing tasks for layers 1, 3, 6, 9, and 12 of each model.

Syntactic information tasks: TreeDepth tests if175

the representations preserve information about the176

hierarchical structure of a sentence, by predicting177

the depth of its parse tree. TopConst predicts the178

top constituents of the parse tree of a sentence.179

Semantic information tasks: SubjNum predicts180

if the subject of the main clause is singular or plural.181

ObjNum tests if the direct object of the main clause182

is singular or plural.183

4 Experiments & Results184

4.1 Experimental Setup185

Models We pre-train BERT-BASE (Devlin et al.,186

2019) models by replacing MLM and the next sen-187

tence prediction (NSP) objectives, with one of the188

linguistically or non-linguistically motivated pre-189

training tasks (§2).3190

Pre-training Data All models are pre-trained on191

the BookCorpus (Zhu et al., 2015) and English192

Wikipedia from Hugging Face.4 The text is tok-193

enized using Byte-Pair-Encoding (Sennrich et al.,194

2016), resulting to a total of 2.7 billion tokens.195

Pre-training Details Due to limited computa-196

tional resources, each model is pre-trained for 5197

days using two NVIDIA Tesla V100 (SXM2 -198

32GB). We use a batch size of 32 for BASE, and 64199

3For completeness, we also pre-train two smaller model
architectures, MEDIUM and SMALL, from (Turc et al., 2019)
as in Yamaguchi et al. (2021). The MEDIUM model has 8
hidden layers and 8 attention heads. The SMALL model has
4 hidden layers and 8 attention heads. Both, MEDIUM and
SMALL, models have feed-forward layers of size 2048 and
hidden layers of size 512. More hyperprameter details can be
found in Appendix A

4https://github.com/huggingface/
datasets

for MEDIUM and SMALL. We optimize the models 200

using Adam (Kingma and Ba, 2014).5 201

4.2 Probing Results 202

Surface information Table 1 shows results for 203

the two surface information probing tasks (SentLen 204

and WC), using the representations from the five 205

BERT-BASE models as inputs to the LR model. 206

We first observe that the predictive performance 207

of models trained on the representations learned 208

using non-linguistically motivated objectives (e.g. 209

First Char, ASCII, Random), are comparable to 210

those trained on representations learned with lin- 211

guistically motivated objectives (e.g. MLM). For 212

example using representations from layer 12 on the 213

SentLen probing task, representations learned with 214

the non-linguistically motivated ASCII pre-training 215

objective achieve the best performance with 88.1%, 216

while the model pre-trained with the First Char 217

learned representations achieves the lowest perfor- 218

mance with 87.7%. 219

Syntactic information Similar to the surface in- 220

formation probing tasks, the results of the syntactic 221

probing tasks in Table 2 show that the performance 222

of models trained on representations learned with 223

linguistically motivated objectives is very similar 224

to ones trained on non-linguistically learned repre- 225

sentations. For instance, in the TreeDepth probing 226

task using representation from layer 1, the differ- 227

ence between the highest accuracy and the lowest 228

accuracy is just 0.7%. In the TopConst probing 229

task, both the model pre-trained using S+R and 230

the model pre-trained using ASCII achieve the best 231

5We also include results from fine-tuning models on the
General Language Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2018) in Appendix B, examining their
performance on downstream tasks.
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TreeDepth TopConst

1 3 6 9 12 1 3 6 9 12

Major. 17.9 5.0

BASE - Devlin et al. (2019) (Upper Bound)

MLM+NSP 35.9 39.7 41.3 38.5 34.7 63.6 71.5 83.3 83.1 76.5

BASE - Five Days Pre-training

MLM 31.6 31.2 31.7 30.9 31.6 67.8 68.1 68.5 69.1 68.7
S+R 31.4 32.0 31.6 31.6 31.4 67.8 69.3 69.4 68.9 68.6
First Char 31.1 31.5 32.2 31.6 31.6 67.6 68.3 68.7 68.5 68.2
ASCII 31.3 31.5 31.2 31.4 31.4 67.9 69.3 69.0 68.8 68.4
Random 31.8 31.3 31.7 31.6 31.6 67.8 68.8 68.5 68.6 68.4

Table 2: Accuracy on syntactic information probing tasks for layers 1, 3, 6, 9, and 12 of each model.

SubjNum ObjNum

1 3 6 9 12 1 3 6 9 12

Major. 50.0 50.0

BASE - Devlin et al. (2019) (Upper Bound)

MLM+NSP 77.6 82.0 88.1 87.6 84.0 76.7 80.3 82.0 81.8 78.7

BASE - Five Days Pre-training

MLM 68.0 67.5 67.7 67.7 68.4 64.9 65.6 64.7 64.9 65.0
S+R 68.0 67.8 68.1 68.0 67.9 65.3 64.4 63.7 64.5 64.6
First Char 68.9 68.4 68.4 68.9 68.9 63.5 64.2 64.3 64.0 63.7
ASCII 68.6 68.7 67.8 67.6 67.9 63.5 62.8 63.3 62.5 62.9
Random 68.1 67.8 67.8 67.9 68.3 64.2 63.6 63.4 63.9 63.3

Table 3: Accuracy on semantic information probing tasks for layers 1, 3, 6, 9, and 12 of each model.

performance in layer 3 with 69.3%.232

Semantic information We also note similar pat-233

terns in the results of the semantic information234

probing tasks in Table 3. Both types of pre-trained235

models achieve similar performance when probing236

for semantic information. For example, the model237

pre-trained using First Char achieves an accuracy238

of 68.9% while the model pre-trained with MLM239

achieves 68.4% in the SubjNum probing task using240

the representation of the last layer.241

In general, similar behavior can also be observed242

for all layers and the two smaller model architec-243

tures, MEDIUM and SMALL. The full results of the244

probing tasks can be found in appendix C.245

5 Discussion246

Theoretically, LMs with dummy or non-247

linguistically motivated objectives would be248

expected to perform drastically worse than LMs249

pre-trained using MLM in both downstream tasks250

and linguistic capabilities. However, our results251

show that both types of LMs have surprisingly252

comparable performance (after fine-tuning in 253

downstream tasks) and linguistic capabilities 254

(after probing them) using the same training data, 255

architecture and training scheme. We speculate 256

that the pre-training data, and the size of the 257

models have more impact on the effectiveness of 258

LMs than the pre-training objectives. Furthermore, 259

the comparable performance of the objectives in 260

probing suggests that these models learn word 261

co-occurrence information from pre-training 262

(Sinha et al., 2021; Yamaguchi et al., 2021) and 263

that the objectives may have a little effect. 264

6 Conclusions 265

In this work, we compared the linguistic capabili- 266

ties of LMs. Surprisingly, our results show that pre- 267

training with linguistically motivated objectives 268

obtain similar performance to dummy objectives. 269

This suggests that the data and the size of the model 270

could be more influential than the objectives them- 271

selves in language modeling. In future work, we 272

plan to extend our experiments into other languages 273

and probing tasks. 274
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Appendices432

A Hyperparameter Details433

We implement the models using PyTorch (Paszke434

et al., 2019) and the Transformers library (Wolf435

et al., 2020). We use maximum 10 epochs for436

BASE and MEDIUM, and 15 epochs for SMALL. We437

also use a learning rate of 1e-4 for MLM. 5e-5 for438

BASE First Char, S + R, and ASCII. 5e-6 for BASE439

Random. 1e-4 for SMALL and MEDIUM First Char,440

ASCII and Random. We also use weight decay of441

0.01, attention dropout of 0.1, 10000 warmup steps.442

We also use 1e-8 Adam ϵ, 0.9 Adam β1 and 0.999443

Adam β2.444

B Results on GLUE445

We use the GLUE benchmark (Wang et al., 2018)446

to fine-tune each model using up to 20 epochs447

with early stopping. For each fine-tuning task,448

we test using five different seeds and report the449

average. Table 4 shows the performance of each450

model on 8 different fine-tuning tasks. We report451

matched accuracy for MNLI task, Matthews cor-452

relation for CoLA task, Spearman correlation for453

STS-B task, accuracy for MRPC task, F1 scores454

for QQP task, and accuracy for all other tasks.455

The WNLI task is disregarded following Aroca-456

Ouellette and Rudzicz (2020). The results on457

GLUE for the re-implemented models with MLM,458

Shuffle + Random and First Char pre-training tasks459

are in line with the results reported by Yamaguchi460

et al. (2021).461

C Results of each Probing Task462

Figures 1 to 6 show the performance of all model463

architectures for each of the 6 probing tasks.464
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Pre-training task MNLI QNLI QQP RTE SST MRPC CoLA STS GLUE Avg.

BASE - 40 Epochs Pre-training (Upper Bound)

MLM + NSP 83.8 90.8 87.8 69.9 91.9 85.0 58.9 89.3 82.1 (0.4)

BASE - Five Days Pre-training

MLM 79.9 88.3 86.0 60.3 90.2 81.9 52.9 85.0 78.1 (0.3)
Shuffle + Random 79.8 88.7 86.4 65.8 87.9 86.7 58.2 86.6 80.0 (0.1)
First Char 78.1 86.1 85.2 55.3 88.5 81.5 43.7 82.8 75.2 (0.7)
ASCII 75.4 83.6 83.5 57.7 87.6 81.5 37.5 79.4 73.3 (0.3)
Random 69.7 78.3 77.8 54.4 82.0 70.9 17.4 25.0 59.4 (0.4)

MEDIUM - Five Days Pre-training

MLM 78.9 86.2 85.9 59.8 89.5 82.7 44.8 84.3 76.5 (0.6)
Shuffle + Random 78.7 87.4 85.8 64.3 87.3 85.3 52.7 85.6 78.4 (0.5)
First Char 76.4 84.9 84.9 55.1 87.5 81.4 38.4 82.4 73.9 (0.4)
ASCII 75.1 83.9 83.9 59.1 87.5 81.5 39.1 79.4 73.7 (0.4)
Random 73.3 82.6 82.9 57.5 86.2 80.2 33.3 78.6 71.8 (0.5)

SMALL - Five Days Pre-training

MLM 76.2 85.1 84.9 59.1 88.6 81.7 36.3 84.2 74.5 (0.2)
Shuffle + Random 76.5 85.7 85.3 58.1 86.4 80.7 46.6 83.8 75.4 (0.1)
First Char 74.6 84.0 84.3 55.0 87.5 78.2 31.7 80.5 72.0 (0.4)
ASCII 73.0 81.7 83.2 57.4 85.0 77.1 32.9 77.8 71.0 (0.3)
Random 71.3 82.1 83.0 57.8 85.7 74.3 27.6 78.0 70.0 (0.2)

Table 4: Results on GLUE dev sets with standard deviations over five runs in parentheses. Bold values denote the
best performance across each GLUE task and GLUE Avg. for each model setting.
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Figure 1: Results of the Sentence Length (SentLen) probing task
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Figure 2: Results of the Word Content (WC) probing task
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Figure 3: Results of the Tree Depth (TreeDepth) probing task
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Figure 4: Results of the Top Constituent (TopConst) probing task

9



1 3 6 9 12
Layer

40

50

60

70

80

Ac
cu

ra
cy

Base

1 3 6
Layer

40

50

60

70

80

Ac
cu

ra
cy

Medium

1 3
Layer

40

50

60

70

80

Ac
cu

ra
cy

Small
Pretraining task

MLM
Shuffle + Random
First Char
ASCII
Random

Figure 5: Results of the Subject Number (SubjNum) probing task
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Figure 6: Results of the Object Number (ObjNum) probing task
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