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ABSTRACT

Gradient estimation in Stochastic Differential Equations is a critical challenge in
fields that require dynamic modeling of stochastic systems. While there have
been numerous studies on pathwise gradients, the calculation of expectations over
different realizations of the Brownian process in SDEs is occasionally not con-
sidered. Multilevel Monte Carlo offers a highly efficient solution to this problem,
greatly reducing the computational cost in stochastic modeling and simulation
compared to naive Monte Carlo. In this study, we utilized Neural Stochastic Dif-
ferential Equations as our stochastic system and demonstrated that the accurate
gradient could be effectively computed through the use of MLMC.

1 INTRODUCTION

Gradient estimation in the dynamic modeling of stochastic systems has always been a critical chal-
lenge in various fields. In these systems, calculating the gradient of underlying Stochastic Differ-
ential Equations (SDEs) requires consideration of different realizations of the Brownian process.
Despite extensive research on pathwise gradients, the calculation of expectations over different re-
alizations of the Brownian process in SDEs is occasionally overlooked.

This is where Multilevel Monte Carlo (MLMC) comes in as a highly effective solution to this prob-
lem. By greatly reducing the computational cost in stochastic modeling and simulation compared
to naive Monte Carlo (MC), it offers a more efficient way to estimate gradients. It has been shown
that to achieve an accuracy of ϵ, MC simulations would require a computational cost of O(ϵ−3).
However, with MLMC, this cost can be reduced to O(ϵ−2) under certain conditions (Giles, 2015),
making it a much more efficient solution for gradient estimation in SDEs.

In this study, we explore the use of Neural Stochastic Differential Equations (Neural SDEs) as a
stochastic system and demonstrate the effectiveness of the MLMC approach in accurately computing
the gradient. Also, we show that using MLMC not only reduces the computational cost compared
to naive MC simulations but also helps improve training in the LatentSDE model.

2 BACKGROUND

2.1 NEURAL SDES

SDEs are a generalization of ODEs, and Neural SDEs are often used to model the dynamics of
stochastic systems (Liu et al., 2019). They are defined as input-injected SDEs in either Itô or
Stratonovich forms. Our consideration of systems follows the structure in Kidger et al. (2021):

Z0 = ζθ(X), dZt = fθ (t,X,Zt) dt+ gθ (t,X,Zt) dWt, Yt = ℓθ (Zt) , (1)

where ζθ, fθ, and gθ are neural networks, and ℓθ is affine.

1



Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

The training process for Neural SDEs can be generalized by minimizing the expected objective,
L(Y ), over different realizations of the Brownian process Wt. It can be achieved by solving a
nonlinear program while optimizing parameters for the system, θ. We can write down the nonlinear
program constrained to the Neural SDE as equation 2.

min
θ

Ex [EW [L(Y )]]

s.t. dZt = fθ (t,X,Zt) dt+ gθ (t,X,Zt) dWt

Z0 = ζθ(X), Yt = ℓθ (Zt)

(2)

We can solve equation 2 via stochastic gradient descent, where we need to calculate d
dθEW [L(Y )]

(Bottou, 2010) and the SGD iteration has assumptions of L being Lipschitz such that
EW

[
d
dθL(Y )

]
= d

dθEW [L(Y )]. Therefore the exact gradient for the Neural SDE can be estimated
by calculating the expectation of pathwise gradients d

dθL(Y ) for each of the simulated independent
Brownian process.

2.2 PATHWISE GRADIENTS CALCULATION FOR SDES

There is an extensive amount of work on pathwise sensitivities analysis. The forward pathwise
approach is an intuitive pathwise gradient calculation method for SDEs (Gobet & Munos, 2005).
However, it scales poorly in computational cost with the number of parameters or state dimensions.
Giles & Glasserman (2006) proposed a discrete version of the backward adjoint sensitivity method,
which calculates the same value with the forward implementation but with computational savings.
The stochastic adjoint method (Li et al., 2020) resolved the memory burden by generalizing the
adjoint method to stochastic dynamics defined by SDEs to recover the value of the state zt.

2.3 MULTILEVEL MONTE CARLO

Giles (2008) proposed MLMC that reduces the order of complexity of MC simulations. When we
want to estimate EW

[
d
dθLL(Y )

]
, there is a sequence d

dθL0(Y ), . . . , d
dθLL−1(Y ), with increasing

accuracy and cost. Then, we can use equation 3 as an unbiased estimator for d
dθEW [LL(Y )].

EW

[
d

dθ
LL(Y )

]
= EW

[
d

dθ
L0(Y )

]
+

L∑
ℓ=1

EW

[
d

dθ
Lℓ(Y )− d

dθ
Lℓ−1(Y )

]
(3)

Theorem 2.1 (Complexity Theorem). For a real-valued random variable d
dθL(Y ), we let d

dθ L̂l(Ŷ )

be the corresponding approximation using the discretization at level l, i.e. with 2l steps of width
hl = 2−lT.

If there exists independent estimators Ûl of computational complexity Cl based on Ml samples
and there are positive constants α ≥ 1

2 min(1, β), β, c1, c2, c3, such that

A1 : E
[
Ûl

]
=

E
[

d
dθ L̂0(Ŷ )

]
if l = 0

E
[

d
dθ L̂l(Ŷ )− d

dθ L̂l−1(Ŷ )
]

if l > 0

A2 :

∣∣∣∣E [ d

dθ
L̂l(Ŷ )− d

dθ
L(Y )

)∣∣∣∣ ≤ c1h
α
l

A3 : V
[
Ûl

]
≤ c2h

β
l M

−1
l

A4 : Cl ≤ c3Mlh
−1
l

(4)

Then there is a constant c4 such that for any ϵ < e−1, there are values for L and
(Ml)l=0,...,L resulting in a multilevel estimator Û =

∑L
l=0 Ûl with a mean-square-error MSE =

E
[
(Û − E( d

dθL(Y )))2
]
< ϵ2 with a complexity C bounded by
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C ≤


c4ϵ

−2 if β > 1

c4ϵ
−2(log ϵ)2 if β = 1

c4ϵ
−2−(1−β)/α if 0 < β < 1

(5)

The theorem 2.1 (Burgos, 2014) shows its advantages in the convergence speed of Vl and guarantees
improved computational complexity compared to the standard Monte Carlo for stochastic simula-
tion, which we will discuss in detail in the next section.

3 MONTE CARLO ESTIMATION FOR EXACT GRADIENTS

3.1 COMPUTATIONAL COMPLEXITY OF STANDARD MONTE CARLO

Assume we want to estimate the gradient value V = EW

[
d
dθL(Y )

]
with an accuracy ϵ. Let L be

the Lipschitz loss function, and L(Y ) be the scalar loss we want to minimize. Note that we use
numerical solvers to compute the SDEs in equation 2. Those solvers, such as Euler or Milstein,
use the discretization scheme to approximate the solutions of the SDEs. Therefore we denote the
discretized approximation of V , as V̂ = EW

[
d
dθ L̂(Ŷ )

]
. Also let its Monte Carlo estimator as Ŝ =

1
M

∑M
i=1

d
dθ L̂(Ŷ )(i). We can write the mean square error(MSE) of the estimation as in equation 6

(Burgos, 2014).

E
[
(Ŝ − V )2

]
=

1

M
V(

d

dθ
L̂(Ŷ )) + (E

[
d

dθ
L̂(Ŷ )

]
− E

[
d

dθ
L(Y )

]
)2 (6)

The first term represents the variance of the estimator due to Monte Carlo sampling and the second
term represents the bias due to the discretization. With any solver with weak order of convergence
of 1, such as Milstein method (Milstein, 1994), we need O(ϵ−1) time steps and O(ϵ−2) samles to
achieve MSE O(ϵ2). Therefore, the total computational cost is C = O(ϵ−3)(Duffie & Glynn, 1995).

3.2 COMPUTATIONAL COMPLEXITY OF MULTILEVEL MONTE CARLO

By following the basic settings of MLMC and using discretization method to approximate the gra-
dient value, we can write the multilevel approximation of the gradient as

EW

[
d

dθ
LL(Y )

]
≈ EW

[
d

dθ
L̂L(Ŷ )

]
= EW

[
d

dθ
L̂0(Ŷ )

]
+

L∑
ℓ=1

EW

[
d

dθ
L̂ℓ(Ŷ )− d

dθ
L̂ℓ−1(Ŷ )

]
,

(7)

Also, we can define the multilevel estimators as

Û0 = M−1
0

M0∑
i=1

d

dθ
L̂0(Ŷ )(i)

Ûl = M−1
l

Ml∑
i=1

(
d

dθ
L̂l(Ŷ )(i) − d

dθ
L̂l−1(Ŷ )(i)

) (8)

Using the complexity theorem 2.1, we can get the computational complexity of MLMC by estimat-
ing the order of convergence α and β. This can be derived analytically with some assumptions as
in the theorem B.1. On the other hand, we can conduct simulation experiments to estimate the α

and β. In the experiments, we approximate Ûl with E
[

d
dθ L̂f − d

dθ L̂c

]
for computational efficiency,

where the fine discretizations L̂f uses Nf (l) = 2l fine time steps and the coarse discretizations L̂c

uses Nc(l) = 2l−1 (Burgos, 2014). Let our system be a Neural SDE as in equation 1 and Ml be the
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Table 1: Estimated Complexity

Estimator α β Complexity

Loss Value ≈ 1.00 ≈ 2.03 O(ϵ−2)
Gradient for fθ ≈ 0.97 ≈ 1.87 O(ϵ−2)
Gradient for gθ ≈ 0.97 ≈ 1.94 O(ϵ−2)
Gradient for z0 ≈ 0.97 ≈ 1.95 O(ϵ−2)

number of path simulations for each of the levels to estimate E
[
Ûl

]
and Vl = MlV

[
Ûl

]
. Also by

assuming

E
(
Ûl

)
= O (hα)

Vl = O
(
hβ
)
,

(9)

we can estimate the empirical bounds, which approximate the order of convergence, α and β, with

log2 E
[
Ûl

]
∼ α log2(h) ∼ −lα

log2 Vl ∼ β log2(h) ∼ −lβ.
(10)

The table 1 shows the α and β of our system after the experiments, and the figure B.2 shows the
values of E

[
Ûl

]
and Vl for different levels. We can compute the complexity C with 5 and conclude

that the total computational complexity is O(ϵ−2) for all gradients with respect to fθ, gθ, and z0.

4 EXPERIMENT RESULTS AND DISCUSSION

To compare the performance of various simulation methods in gradient calculation, we utilized the
Latent SDE from Li et al. (2020) as our evaluation method. We trained the Latent SDE on a 3D
Stochastic Lorenz Attractor process to confirm that the acquired posterior can accurately reproduce
the training data and that the obtained priors are not deterministic. (See C for details)

Figure 1: Training Loss: MC Simulation Comparison

Figure 4 shows that integrating MC simulations in the Latent SDE improves performance by accu-
rately calculating gradients. The training time per epoch is similar for both Latent SDE and MC
simulation, as parallelization is used to expand samples during training, which only increases mem-
ory complexity. However, by integrating MLMC, the computational cost of MC simulation is further
reduced. This means that Latent SDE in combination with MLMC achieves similar or even better
performance with less computational cost.
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A ADDITIONAL BACKGROUND

A.1 INTERCHANGE OF DIFFERENTIATION AND EXPECTATION FOR L

If the following equation is assumed to hold, then the pathwise derivative becomes an unbiased
estimator for the true gradient value.

EW

[
d

dθ
L(Y )

]
=

d

dθ
EW [L(Y )] (11)

The below assumptions(A1-A3) are sufficient to ensure that the equation 11 holds. Details of the
proofs can be found in Glasserman (2004).

• A1: At each θ, d
dθL(Yt) exists with probability 1, for all i = 1, . . . ,m.

• A2: d
dθL(Y ) exists with probability 1 and is given by

d

dθ
L(Y ) =

T∑
i=1

∂L
∂Yi

(Y (θ))
d

dθ
L(Yt)

• A3: There exists a constant kf such that for all x, y ∈ Rm

|L(x)− L(y)| ≤ kf∥x− y∥

A.2 STRONG ITO-TAYLOR APPROXIMATIONS

The theorem A.1 was first introduced in Kloeden & Platen (1992) to demonstrate the convergence
of strong Ito-Taylor approximations. This theorem has been modified from the version presented by
Burgos (2014).

Theorem A.1. We consider the case where Zt ∈ Rd and Wt is a 1-dimensional Brownian motion.
(fk)(k=1..d) and (gk)(k=1..d) are the different components of the coefficients f and g in the following
SDE: on [0, T ],

dZ(t) = f(Z, t)dt+ g(Z, t)dWt

We let

K0 =
∂

∂t
+

d∑
k=1

fk
∂

∂Zk
+

1

2

d∑
k,l=1

gkgl
∂2

∂Zk∂Zl

K1 =

d∑
k=1

gk
∂

∂Zk

(12)

Assuming that

• A1: f(Z, t) is C(1,1)
(
Rd × R+

)
and g(Z, t) is C(2,1)

(
Rd × R+

)
• A2: (uniform Lipschitz condition): there exists a constant C1 > 0 such that for all x, y ∈
Rd

∥f(y, t)− g(x, t)∥+ ∥f(y, t)− g(x, t)∥+
∥∥K1g(y, t)−K1g(x, t)

∥∥ ≤ C1∥y − x∥

• A3(linear growth bound): There exists a constant C2 such that for x ∈ Rd,

∥f(x, t)∥+ ∥K0f(x, t)∥+ ∥K1f(x, t)∥+ ∥g(x, t)∥+
∥K0g(x, t)∥+ ∥K1g(x, t)∥+ ∥K0K1g(x, t)∥+ ∥K1K1g(x, t)∥ ≤ C2(1 + |x|)

• A4(additional Lipschitz-like condition): there exists a constant C3 such that for all x ∈ Rd

and s, t ∈ R+, ∥g(x, t)− g(x, s)∥ ≤ C3(1 + |x|)
√

|t− s|
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Then for each m > 0,

E
(

sup
0<t<T

∥Zt∥m
)

< ∞

Using the Milstein discretisation
(
Ẑn

)
n=0,...,N

, we define the following continuous time interpolant

on each time step [tn, tn+1] (n = 0, . . . , N − 1) and each dimension k = 1, . . . , d as

ẐPk
(t) = Ẑnk

+ fk

(
Ẑn, tn

)
(t− tn) + gk

(
Ẑn, tn

)
(Wt −Wn)

+
1

2

(
k∑

l=1

gl
∂gk
∂Zl

(
Ẑn, tn

))(
(Wt −Wn)

2 − (t− tn)
)

then for each m > 0, there exists a constant Cm such that

E
(

sup
0<t<T

∥∥∥Zt − ẐP (t)
∥∥∥m) < Cmhm

and

E
(

sup
0<t<T

∥∥∥ẐP (t)
∥∥∥m) < Cm

Proof. See theorem 10.6.3 and corollary 10.6.4 in Kloeden & Platen (1992).

B DETAILS OF COMPUTATIONAL COMPLEXITY FOR MLMC

B.1 COMPLEXTY THEOREM

The theorem 2.1 was originally presented by Giles (2008) and later improved upon by Cliffe et al.
(2011). The version of the theorem that appears in this paper, which was taken from Burgos (2014),
replaces the original payoff, P , with d

dθL(Y ) to align with the notations used in our work.

B.2 DETAILS OF NUMERICAL SIMULATION

We constructed a minimal Neural SDE to evaluate the expected value and variance of the multilevel
estimator for computational complexity in our numerical experiments. In both figures, B.2, the term
Lf − Lc represents the multilevel estimator for the true loss value L. For the gradient estimators,
each of dLf/df − dLc/df , dLf/dg − dLc/dg, and dLf/dX0 − dLc/dX0 represents the estimator
for the gradient of the drift(f ), the diffusion(g), and the input to the SDE, X0, respectively.

Figure 2: Calculating E(Ûl) and Vl for Estimating Complexity
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B.3 ANALYTICAL DERIVATION OF COMPUTATIONAL COMPLEXITY

Theorem B.1. We consider an output of a stochastic system Zt on the time interval [0, T ] and a
smooth Lipschitz loss function L with a loss value of L(ZT ). We assume that Zt follows an Itô
process as described by equation 1, that the coefficients of the diffusion fθ and gθ satisfy conditions
A1 to A4 of theorem A.1, and that gθ > 0. Then, the multilevel estimators of the gradients with
respect to the loss L(ZT ) have an accuracy ϵ at a cost O(ϵ−2)

Proof. See chapter 4 in Burgos (2014).

C DETAILS ON EXPERIMENTS FOR LATENTSDE

The prior and the approximated posterior are parameterized using SDEs as

dZ̃t = h
(
Z̃t, t

)
dt+ g

(
Z̃t, t

)
dWt

dZt = f (Zt, t) dt+ g(Zt, t)dWt,
(13)

where h, f , and g are Lipschitz and both have same initial values of z0.

With prior and approximate posterior defined as in Equation 13, the latent SDE can be constructed as
outlined in 1. The KL divergence between the prior and approximate posterior, which both have the
same diffusion function, g, is finite and can be calculated by sampling paths from the approximate
posterior process, as shown in Li et al. (2020). The formula for the evidence lower bound (ELBO)
is

log(p(x1, x2, ..., xN |θ) ≥ EZt

[
N∑
i=1

log p (xti | zti)−
∫ T

0

1

2
|u (zt, t)|2 dt

]
,

where u : Rd × [0, T ] → Rm satisfies

σ(z, t)u(z, t) = hϕ(z, t)− hθ(z, t),

and the expectation is calculated based on the approximate posterior process that has been defined.
Other detailed explanations of the training process, such as the choice of optimizer and architecture
of latent SDE, can be found in Kidger (2022).

Algorithm 1 Latent SDE
Input: Data {xi}i=1,...,N and times {ti}i=1,...,N

z′0 = Encoder({xi})
µz0 , σz0 = Linear(z′0)
z0 ∼ N (µz0 , σz0)

{zi}, Dkl = SDESolve(f, h, g, z0, (t0 . . . tN ))

x̃i = Linear({zi}) for all i = 1, ..., N

Return: {x̃i}i=1...N

We trained on the dataset sampled from stochastic Lorenz attractor SDE defined as:

y ∼ N (0, I3×3)

dy1(t) = a1 (y2(t)− y1(t)) dt+ b1y1(t)dw(t)

dy2(t) = (a2y1(t)− y1(t)y3(t)) dt+ b2y2(t)dw(t)

dy3(t) = (y1(t)y2(t)− a3y3(t)) dt+ b3y3(t)dw(t),

(14)

with a1 = 10, a2 = 28, a3 = 8
3 , b1 = 0.1, b2 = 0.28, b3 = 0.3 following the work of Kidger (2022).

We obtained samples at intervals of 0.05 from time 0 to 2. To conform with the preprocessing
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techniques used in previous studies Li et al. (2020), we normalized the data by computing the mean
and standard deviation for each dimension. We then added Gaussian noise with a mean of zero and
a standard deviation of 0.01 to corrupt the data.
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