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Abstract

With the rise of AIGC technologies, particularly
diffusion models, highly realistic fake images that
can deceive human visual perception has become
feasible. Consequently, various forgery detection
methods have emerged. However, existing meth-
ods treat the generation process of fake images as
either a black-box or an auxiliary tool, offering
limited insights into its underlying mechanisms.
In this paper, we propose Spatio-Temporal Dis-
tribution Fitting Deviation (STD-FD) for AIGC
forgery detection, which explores the generative
process in detail. By decomposing and recon-
structing data within generative diffusion models,
initial experiments reveal temporal distribution
fitting deviations during the image reconstruction
process. These deviations are captured through
reconstruction noise maps for each spatial seman-
tic unit, derived via a super-resolution algorithm.
Critical discriminative patterns, termed DFactors,
are identified through statistical modeling of these
deviations. Extensive experiments show that STD-
FD effectively captures distribution patterns in
AIGC-generated data, demonstrating strong ro-
bustness and generalizability while outperform-
ing state-of-the-art (SOTA) methods on major
datasets. The source code is available at this link.
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1. Introduction
With the rapid development of AIGC technologies (Cao
et al., 2023), substantial advancements have been made in
abstract concept and content generation. However, AIGC
also presents significant risks. While it revolutionizes pro-
duction methods and transforms industries such as media,
entertainment, e-commerce, and education, it also intro-
duces major security concerns, particularly in image forgery.
Previous studies (Zhao et al., 2023) have highlighted that
malicious actors can exploit AIGC to forge and manipu-
late images, making it increasingly difficult to verify the
authenticity of generated content. This undermines trust in
multimedia information and poses serious societal threats,
including financial fraud, misinformation, and identity theft.

The rapid advancement of AIGC generation technologies
has made effective forgery detection of new types of AIGC-
generated images an urgent challenge. Unlike traditional
forgery methods, which involve region manipulation, edit-
ing, or recreation, AIGC employs novel generative frame-
works, such as diffusion models. This shift renders con-
ventional forgery detection techniques, which are primar-
ily designed for GAN-based tasks, ineffective for identify-
ing forgery in diffusion-generated images. In response to
these challenges, recent studies have focused on designing
deepfake detection models specifically targeting diffusion-
generated images. These approaches (Sha et al., 2023; Corvi
et al., 2023b; Wang et al., 2023; Chen et al., 2024) primarily
rely on reconstruction errors between real and fake images,
treating reconstruction as an end-to-end tool for identifi-
cation. However, this strategy is highly sensitive to the
reconstruction model itself, with its properties significantly
influencing forgery detection performance. For instance, a
reconstruction model pre-trained on animal images may pro-
duce larger errors when applied to plant images, misclassify-
ing real plant images as fake. Furthermore, reconstruction-
based methods often treat the diffusion model’s generative
process as a black-box, limiting their ability to capture the
deeper mechanisms underlying fake image generation. By
focusing solely on reconstruction errors, these methods fail
to fully analyze the generative process, reducing their effec-
tiveness in detecting modern AIGC content.
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To address these limitations, we propose a novel approach
based on analyzing the distribution fitting of forged data
through the lens of generative diffusion models, which in-
volves stepwise decomposition and reconstruction. Specif-
ically, to effectively capture the differences in distribution
fitting across different semantic modules, we first employ a
superpixel algorithm to partition the image into minimal
units based on color and positional features from a 2D
spatial perspective. Next, a generative diffusion model is
adopted to obtain the distribution of stepwise decomposition
and reconstruction for each semantic unit. We then model
the distribution fitting deviation for each semantic unit to
extract fitting differences. Finally, these distribution fitting
deviations are aggregated to construct forgery identification
features, which achieve state-of-the-art performance using a
simple classifier. Our key contributions are as follows:

• We present a spatio-temporal distribution fitting frame-
work that extracts temporal change patterns of each
semantic block for AIGC forgery identification, offer-
ing a novel perspective on distribution fitting deviations
for future deepfake research.

• Building on the underlying decomposition and recon-
struction mechanisms of the diffusion process, discrim-
inant change patterns DFactor is devised to extract
fitting deviations of spatio-temporal distribution for
AIGC forgery identification.

• Extensive experiments demonstrate that the proposed
STD-FD achieves state-of-the-art performance in
forgery identification task and significantly improves
generalization capability in real-world scenarios.

2. Related Works
2.1. Forgery Technology

GAN-based and autoregressive models were pioneers in the
field of image generation, with notable products such as
BigGAN (Brock et al., 2018) and DALL·E (Open AI, 2023)
emerging during their development. However, limitations in
their control over generated content, along with stability and
complexity issues, paved the way for a new image genera-
tion paradigm: diffusion models. Denoising Diffusion Prob-
abilistic Models (DDPM) (Ho et al., 2020) demonstrated
promising generative quality, sparking a series of studies
on diffusion models. Subsequent research focused on en-
hancing structural design and improving sampling efficiency.
Later, the Latent Diffusion Model (LDM) (Rombach et al.,
2021) applied the diffusion process in latent space, signifi-
cantly improving diffusion model efficiency and introducing
text-conditioning capabilities through cross-attention mech-
anisms. LDM has since become a key driver in advancing
image generation technology, leading to the development

of prominent models such as Stable Diffusion (SD) (Stabil-
ity.ai, 2023) and Midjourney (Midjourney, 2022).

2.2. Image Forgery Identification

Initially, researchers focused on identifying clues for detect-
ing forged images in the spatial domain, such as color (Mc-
Closkey & Albright, 2018), saturation (McCloskey & Al-
bright, 2019), and blended boundaries (Li et al., 2020). How-
ever, as image generation technologies advanced, it became
increasingly difficult to construct reliable hand-crafted fea-
tures in the spatial domain. Additionally, images often un-
dergo multiple rounds of compression during transmission
across various streaming platforms, resulting in low-quality
images that obscure forgery artifacts. To address these chal-
lenges, researchers shifted towards exploring the frequency
domain for discriminative clues, leading to methods based
on different frequency bands (Li et al., 2021), scales (Wang
et al., 2022), and adaptive frequency feature extraction (Qian
et al., 2020a). While frequency-domain methods demon-
strate strong forgery detection performance in highly com-
pressed images, their effectiveness significantly decreases
when confronted with unknown forgery techniques.

Most of the aforementioned works were designed for GAN-
generated images. Although researchers (Corvi et al., 2023a;
Ricker et al., 2022) identified that spectral artifacts can arise
in diffusion-generated images, their effectiveness in detect-
ing fake images remains limited. To address this, researchers
are increasingly moving away from traditional clues used
for GAN-generated images and are seeking unique indica-
tors derived from the diffusion generation process itself. For
instance, DIRE (Wang et al., 2023) and SeDIE (Ma et al.,
2023) leveraged reconstruction errors from diffusion models
to detect fake diffusion-generated images. Building on this,
LaRE2 (Luo et al., 2024) and AEROBLADE (Ricker et al.,
2024) focused on reconstruction errors in the latent space
for detection. DRCT (Chen et al., 2024) employed recon-
struction results from both real and fake images, training a
classifier using contrastive learning loss.

However, these methods primarily rely on reconstruction
errors, which makes them highly susceptible to the influ-
ence of the pre-trained reconstruction model. If the training
domain of the reconstruction model differs from the detec-
tion domain (e.g., training on cat images but applying it
to detect forged images of dogs or even houses), real im-
ages may be misclassified as fake. The root cause of this
issue lies in treating reconstruction results as mere metrics
and using the diffusion reconstruction process only as an
auxiliary tool, without fully analyzing the underlying diffu-
sion mechanisms. This oversight prevents a comprehensive
understanding of the generative principles behind fake data.
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3. Preliminaries
In this section, we first define the key notations of the diffu-
sion model and outline its fundamental principles. Building
on this foundation, we then introduce the entry points of the
proposed STD-FD method, which delves into the underlying
mechanisms of the diffusion process.

3.1. Notations

In this section, we utilize the standard notations defined
by DDPM (Ho et al., 2020). The true data distribution
is represented as q(x0), while the latent variable model
approximates it as pθ(x0). The noise-prediction model, ϵθ,
is parameterized by weights θ.

The diffusion model comprises a T -step diffusion process
q(xt|xt−1) and a denoising process pθ(xt−1|xt) for 1 ≤
t ≤ T , which is defined as follows:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (2)

where xt refers to the diffusion result at timestep t, βt is
the noise factor at timestep t, I is the identity matrix, N
represents the normal distribution, indicating that the data
probabilities during both noise addition and denoising fol-
low a normal distribution. µθ and Σθ are the mean and
variance matrix of the denoising distribution respectively.
The forward sampling at time step t is given as follows:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (3)

where αt = 1−βt and ᾱt =
∏t

s=1 αs. αs denotes the noise
weighting coefficient at each diffusion timestep, controlling
the intensity of the noise added at each step.

3.2. Definitions

In this section, we follow the sampling process from
DDIM (Song et al., 2021) and explore the key aspects based
on distribution variations starting from the deterministic
sampling function itself.

The deterministic sampling function recovers original data
from noised input x0 at timestep t, which is defined as:

xt =
√
αtx0 +

√
1− αtϵ

(t)
θ (xt), (4)

where ϵ
(t)
θ (xt) is the noise predicted by the network at

timestep t.

In combination with the following equation:

x0 =
xt −

√
1− αtϵ

(t)
θ (xt)√

αt
, (5)

xt−1 =
√
αt−1x0+

√
1− αt−1 − σ2

t

1− αt
(xt −

√
αtx0)+σ2

t ϵt,

(6)

The final sampling formula (corresponding to Equation (12)
in the DDIM paper) is obtained as follows:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵ

(t)
θ (xt)√

αt

)
︸ ︷︷ ︸

“predicted x0”

+
√
1− αt−1 − σ2

t · ϵ
(t)
θ (xt)︸ ︷︷ ︸

“direction pointing to xt”

.

(7)

where σt is set to 0 to achieve a deterministic sampling
process, and thus the random noise term σ2

t ϵt is removed.

From Eq. (7), we observe that for any timestep xt−1 during
the sampling process, αt−1 is the known noise factor deter-
mined by the scheduling scheme. The unknown parameters
are “predicted x0” and “direction pointing to xt”. Further,
both parameters are derived from the same variable ϵ(t)θ (xt).
Therefore, the changes in the data and distribution during
the diffusion model’s sampling process are driven by noise
ϵ
(t)
θ (xt). As a result, STD-FD constructs the key represen-

tations of distributional variations by capturing distributed
noise ϵ

(t)
θ (xt) at each timestep of the sampling process.

4. Methodology
In this section, we first outline the extraction of spatio-
temporal distribution change patterns and the construction
of global discriminative factors. Next, the discrepancy de-
tection module is devised to identify spatio-temporal distri-
bution fitting deviation for forged image identification.

4.1. Spatio-Temporal Distribution Change Extraction

Noise Reshaping. As mentioned in the preliminaries,
we construct key representations that capture the changes
throughout the entire diffusion sampling process by tracking
distributed noise ϵ

(t)
θ (xt) at each timestep. ϵ

(t)
θ (xt) repre-

sents the noise added to x0 at each timestep, with a shape of
(C,H,W ). To facilitate the subsequent capture of spatial
and temporal information during the sampling process, we
convert ϵ(t)θ (xt) to image format, as shown in the following:

Norm(ϵ
(t)
θ (xt))=

ϵ
(t)
θ (xt)−min(ϵ

(t)
θ (xt))

max(ϵ
(t)
θ (xt))−min(ϵ

(t)
θ (xt))

× 255,

(8)
where Norm(·) performs the normalization and converts the
data into an image with values in the range [0, 255].

Spatial Information Capture. To capture the spatial in-
formation of the noise itself during the sampling process,
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Figure 1. Framework of the proposed STD-FD, which is composed of two stages: spatial-temporal information capture (a & b) and
discrepancy detection via distribution fitting deviation (c). In the first stage, temporal change information for each semantic block,
corresponding to the spatial superpixel, is firstly extracted (a). Then, we focus on extracting the DFactor, which can distinguish between
positive and negative samples during the sampling process. Next, global classification discriminative factors DFactor are constructed by
identifying key changing segments that differentiate between the two types of samples (b). Finally, based on the DFactor extracted from
the first stage, we perform distribution fitting deviation modeling on the data to be identified. Feature engineering is completed using
distance, correlation, and matching metrics (c). With the extracted feature Ak, a classifier is trained for forgery identification.

we employ the SLIC (Achanta et al., 2012) superpixel to
segment the image into minimal units based on color and
spatial features from a two-dimensional perspective of the
noise:

g(Norm(ϵ
(t)
θ (xt))) = {S1, S2, . . . , SK}, (9)

where g(·) denotes the application of the SLIC superpixel
segmentation on the input image, and the image is divided
into K segments.

Temporal Information Capture. We capture the temporal
information of ϵ(t)θ (xt) distribution changes from the dif-
fusion sampling process. For a sampling process with T
timesteps, block Sk contains intermediate sampling results
over T steps, i.e., [S1

k, S
2
k, . . . , S

T
k ]. We record the tempo-

ral variation of the ϵ
(t)
θ (xt) by calculating the SSIM (Wang

et al., 2004) between adjacent timesteps.

hk = {h1
k, h

2
k, . . . , h

T−1
k }, ht

k = SSIM(St
k, S

t+1
k ), (10)

where hk represents the temporal variation sequence of
ϵ
(t)
θ (xt) for the k-th image block, with a sequence length of
T − 1, where k ∈ {1, 2, ...,K}. SSIM(St

k, S
t+1
k ) denotes

the Structural Similarity calculated between St
k and St+1

k .

Extraction of Distribution Change Patterns. After cap-
turing the spatial and temporal information, for an image to
be analyzed, we can obtain [h1, h2, . . . , hk, . . . , hK ]. Each
hk represents the quantified time-series information of the
noise distribution changes in the k-th block.

We now need to extract the distribution change patterns
from each block. During the diffusion sampling process,
there exists a temporal deviation in distribution modeling be-
tween real and fake samples. This deviation is manifested as

anomalies in certain time segments during the sampling pro-
cess. Our current goal is to find such “anomalies” to serve
as the basis for distinguishing positive and negative samples
(Let’s call it the Discriminant Factor, DFactor). Therefore,
we have designed an algorithm to capture DFactor from
the time-series data that are crucial for classification.

Specifically, Hk is the set of time-series information of noise
distribution changes for the k-th block across all samples
(including positive and negative samples), with the corre-
sponding label set Yk. We need to generate a candidate
set of DFactor Ck (the specific steps for constructing the
candidate set will be detailed in Section 4.2). For Ck, we
first compute the weighted distance between each candidate
DFactor and the time series, then perform a weighted sum
of all distances to obtain the total distance of the time series.
We use GDTW (Greedy Dynamic Time Warping) to mea-
sure the distance; GDTW retains the nonlinear alignment
characteristics of DTW while employing a greedy strategy
to improve computational efficiency, making it suitable for
handling long time-series data. The formula for calculating
the weighted distance between each candidate DFactor
and the time series is as follows:

d(Ck, t) =

√√√√ J∑
j=1

((
C

path(j)
k · |wlocal|

)
− tpath(j)

)2
, (11)

where J is the length of the alignment path obtained by the
greedy algorithm. Cpath(j)

k and tpath(j) are the j-th matched
DFactor and time-series segment according to the greedy
alignment path, respectively. wlocal is the local timing fac-
tor within the DFactor, adjusting the importance of each
position within the DFactor.

Next, we perform a weighted sum of all distances to obtain
the total distance of the time series:
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D(t) =

M∑
m=1

Softmax (−d (Cm
k , t) · |wglobal|) ·

(d (Cm
k , t) · |wglobal|) ,

(12)

where M is the total number of candidates Cm
k . wglobal is

the global factor, adjusting the importance of different Cm
k .

Softmax assigns higher probabilities to larger values. By
applying a negative sign, candidate factors closer to the
current temporal data are given greater weight.

At this point, we have obtained the distance between each
candidate DFactor and the time series (including both pos-
itive and negative samples). We construct a loss function
using KL divergence, and by minimizing the loss via gradi-
ent descent (maximizing the distance between positive and
negative samples), we achieve the extraction of the optimal
discriminative factors. The defined loss function is:

L = −
N∑

n=1

KL (N (µ+, σ+),N (µ−, σ−)) + χ, (13)

χ = α∥wlocal∥p + β∥wglobal∥p, (14)

where χ represents the sum of the local and global factors.
µ+, σ+ and µ−, σ− are the mean and standard deviation of
distances between positive and negative classes. wlocal and
wglobal are the local and global temporal factors, respectively.
α and β are regularization coefficients. p is the norm degree.

4.2. Discrepancy Detection via Distribution Fitting
Deviation

Candidate Discriminative Factors Generation. In Sec-
tion 4.2, we obtained the discriminative factors DFactork
that can distinguish between positive and negative samples.
We perform forgery identification based on the fitting devi-
ation between the data to be tested and the discriminative
factors. Specifically, we process the sample to be tested in
the same way as in Section 4.1 to obtain [h1, h2, . . . , hK ].

First, for each time series hk, we extract all subsequences
of length L to form the set SCOk and compute the initial
distance score D(scoi,k) of each subsequence relative to the
mean subsequence ¯scok. Then, we merge all subsequences
and corresponding distance scores into a global set SCO.

In the greedy algorithm, we iteratively select the subse-
quence sco∗ with the highest distance score from SCO,
add it to the candidate set C, and update the distance scores
D(sco) of the remaining subsequences to encourage diver-
sity among candidates. We repeat this process until we
obtain M candidate DFactork. The final set C contains
candidate DFactork for subsequent analysis.

Identification Feature Construction. After obtaining the
candidate discriminative factors for each block of the sam-
ple to be tested, we construct features by comparing the
candidate discriminative factors of each block with the best
discriminative factors of the corresponding block. Specif-
ically, for the candidate discriminative factors {ck} of the
k-th block of the sample and the discriminative factors
{DFactork} of the k-th block, we construct features {Ak}
based on distance, matching degree, and correlation. Then,
we concatenate the features {Ak} from the K blocks to
form the forgery discrimination features of the data.

Specifically, for each block k (k = 1, 2, . . . ,K), we have
the candidate discriminative factor ck of the sample, and
the discriminative factor DFactork obtained from training.
Based on the distance, matching degree, and correlation
between ck and DFactork, we compute the feature vector
Ak as follows:

Ak = [dist(ck, ak), match(ck, ak), corr(ck, ak)] , (15)

Where dist(ck, ak), match(ck, ak), and corr(ck, ak) repre-
sent the distance, matching degree, and correlation between
ck and ak, respectively.

Then, we concatenate the feature vectors Ak of all K blocks
to form the forgery discrimination feature vector A:

A = [A1, A2, . . . , AK ] . (16)

Using the above feature vector A, a forgery identification
classifier is trained. During the testing phase, the feature
vector of the test image is input into the classifier for forgery
identification.

5. Experiments
In this section, we present a detailed evaluation of the per-
formance of STD-FD across three parts. Specifically, we
first provide comprehensive experimental settings. Next,
we compare the performance of STD-FD with detection
methods, including SOTA approaches, on multiple datasets.
Then, we conduct experimental analyses of the generaliza-
tion performance of STD-FD.

5.1. Experimental Setup

Datasets and Evaluation Metrics. We evaluate the pro-
posed method using the GenImage (Zhu et al., 2023) and
Deepfacegen (Bei et al., 2024) datasets. GenImage com-
prises 1,331,167 real images and 1,350,000 generated im-
ages. The generated images are sourced from 8 different
generative model. In our research, we follow the official
dataset split, allocating 2,581,167 images for training and re-
serving the remaining 100,000 images for validation. Deep-
FaceGen is a facial forgery dataset that includes both video
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Figure 2. Performance comparisons on Deepfacegen (AUC, %).
The radar chart on the left illustrates the detection performance of
STD-FD compared to other methods, with solid lines representing
the comparison methods and a dashed line representing STD-FD.
The bar chart on the right presents the average AUC across 12
subsets for each method, where solid-edged bars indicate the com-
parison methods, and dashed-edged bars represent STD-FD.

and image modalities. We selected facial forgery data gen-
erated using novel prompt-guided forgery methods. These
methods encompass a total of 12 approaches based on both
diffusion and autoregressive models, using either text-to-
image or image-to-image modalities. Consistent with the
evaluation metrics established in the benchmark paper, we
adopt Accuracy (ACC) and Area Under the Curve (AUC)
as our performance measures.

Implementation Details. XGBoost (Chen & Guestrin,
2016) is employed as the classifier. In the identification
feature construction phase, Euclidean distance and Dynamic
Time Warping (DTW) are adopted to measure the similarity
between the candidate discriminative factors and the optimal
discriminative factors. For match rate-based methods, trend
match rate (using sign matching) is applied, while Pearson
correlation and template matching (NCC) are employed for
correlation-based methods. The experiments are conducted
on two GeForce RTX 4090 GPU (24GB VRAM).

5.2. Comparison with SOTAs

Deepfacegen Benchmark. In this section, we compare our
method with several mainstream and state-of-the-art gener-
ated image detection methods, including Xception (Chollet,
2017), EfficientNet-B0 (Tan & Le, 2020), F3-Net (Qian
et al., 2020b), RECCE (Cao et al., 2022), DNADet (Yang
et al., 2022), DIRE (Wang et al., 2023), DRCT (Chen et al.,
2024), UnivFD (Ojha et al., 2023), NPR (Tan et al., 2024a),
and FreqNet (Tan et al., 2024b). Following the evaluation
protocol of DeepFaceGen, our proposed method, STD-FD,
was trained and tested in the same manner as the compar-
ison methods on both real data and data generated by 12
different forgery methods, including DALL·E (Open AI,
2023) and SD (Stable Diffusion) (Stability.ai, 2023). The
dataset was split into training, validation, and test sets in
a ratio of 7:1:2. The results, shown in Figure 2, indicate
that STD-FD achieved the best performance across all 12

Figure 3. Performance comparisons on Genimage (ACC, %). The
radar chart on the left illustrates the detection performance of STD-
FD compared to 12 other methods, with solid lines representing the
comparison methods and a dashed line representing STD-FD. The
bar chart on the right presents the average ACC across 8 subsets
for each method, where solid-edged bars indicate the comparison
methods, and dashed-edged bars represent STD-FD.

subsets. Notably, the improvement was most significant in
the subsets where distinguishing between real and fake im-
ages was particularly challenging, such as those generated
by DALL·E 1, DALL·E 3, Midjourney, and Wenxin.

Overall, STD-FD achieved AUC exceeding 90% across
all subcategories of forged data, with an average AUC of
94.90% (detailed results are in Table 9 in the Appendix).

Genimage Benchmark. To further validate the effective-
ness of STD-FD, we conducted comparisons following the
same experimental protocol as GenImage. We compared
our method with 12 forgery detection models, including
CNNSpot (Wang et al., 2020), F3Net (Qian et al., 2020b),
CLIP/RN50 (Radford et al., 2021), GramNet (Liu et al.,
2020), De-fake (Sha et al., 2023), Conv-B (Liu et al., 2022),
Swin-T (Liu et al., 2021), UnivFD (Ojha et al., 2023),
DIRE (Wang et al., 2023), PathCraft (Zhong et al., 2023),
AIDE (Yan et al., 2024), and DRCT (Chen et al., 2024). All
identification methods were trained on the SDv1.4 subset
of GenImage. Specifically, STD-FD and the comparison
methods were trained on SDv1.4 and evaluated on differ-
ent testing subsets. This benchmark poses a significant
challenge, as the overall accuracy is closely tied to the cross-
generator generalization ability of the identification methods.
The comparative results in Figure 3 show that all methods
achieve very high identification accuracies on the SDv1.4,
SDv1.5, and Wukong subsets. However, a noticeable drop in
accuracy (ACC) can be observed across other subsets such
as Midjourney, ADM, GLIDE, VQDM, and BigGAN, par-
ticularly for non-diffusion-based generators like BigGAN.
In contrast, STD-FD demonstrated superior performance
on these challenging subsets. Even on BigGAN, which is
based on GAN architectures, STD-FD achieved the best
results. This can be attributed to the DFactor extraction pro-
cess of STD-FD, which spans both the temporal and spatial
domains, enabling excellent generalization performance by
distinguishing between positive and negative samples.
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Table 1. Generalization Performance Comparison on Genimage Subsets with Mainstream and SOTA Methods. Each value represents
(Score1 / Score2), where Score1 denotes the ACC trained and tested on the current subset, and Score2 denotes the average ACC trained
on the current subset and tested on other subsets.

Method Midjourney SDv1.4 SDv1.5 ADM GLIDE Wukong VQDM BigGAN
DIRE 99.5/72.6 99.7/68.8 99.7/68.8 99.2/67.9 99.8/52.2 99.7/68.1 99.9/51.9 100/50.1
Defake 98.8/78.7 99.8/81.5 100/82.3 98.7/82.5 99.8/73.1 99.3/75.6 99.1/82.0 98.7/76.6
PatchCraft 90.1/81.1 89.5/81.3 90.1/81.3 90.4/79.3 90.6/80.4 92.6/79.3 90.3/74.9 80.9/73.7
AIDE 98.9/86.0 99.7/84.9 99.6/84.0 95.3/79.1 97.6/81.8 98.8/80.4 92.3/83.0 96.3/81.7
DRCT 99.9/89.3 95.5/86.6 96.8/89.1 95.1/81.8 96.6/83.8 99.6/84.4 94.3/82.4 98.8/84.0
STD-FD 99.9/91.9 99.9/90.8 100/89.8 99.5/84.7 100/85.9 100/86.3 99.7/84.4 100/86.9

Figure 4. Results (ACC, % ) of cross-validation on different training and testing subsets. For each generator, we train a model and test
it on all 8 generators. (a) illustrates the generalization performance of our proposed method, STD-FD, across different subsets of the
GenImage dataset, while (b-d) present the generalization results of the sota models.

In summary, STD-FD achieves the highest ACC in five out
of eight identification subsets, and its average ACC sur-
passes that of existing forgery identification methods. This
highlights the consistent effectiveness of STD-FD (detailed
results are provided in Table 10 in the Appendix).

5.3. Generalization Performance

To validate the generalizability of the STD-FD, we designed
two experimental scenarios: one focusing on constructing
data from previously unseen fake forgery methods (i.e.,
methods not present in the model’s training data), and the
other examining cases where the pre-trained reconstruction
model is mismatched with the target recognition task (e.g.,
as previously mentioned, training a model on cat images but
applying it to detect forged dog or even house images).

Addressing Unknown Forgery Methods. Following the
generalization performance evaluation setup in (Luo et al.,
2024), we evaluate the performance of our model on the
GenImage dataset by training on one subset and testing
on all eight subsets. The experimental results of STD-FD
are compared with the baseline model DIRE and the top
four models currently ranked on GenImage. As shown in
Table 1, STD-FD achieves the best generalization perfor-
mance across all eight subsets compared to the competing

Table 2. Results (AUC, % ) of Mismatch Between Pre-trained
Model and Identification Target. The evaluation follows Deepface-
gen Benchmark , identification methods are trained and tested on
deepfacegen consisting of real data and forged data generated by
12 prompt-guided methods.

Method \ Pre-trained Dataset Cat Horse Bedroom
DIRE (Wang et al., 2023) 73.01 65.45 55.04
DRCT (Chen et al., 2024) 74.48 68.78 67.62

STD-FD (ours) 92.78 92.45 92.77

algorithms. Moreover, the detailed comparison with the
current SOTA models, DRCT (Fig 4 (b)), demonstrates that
identification metrics inevitably decline when confronted
with unknown forgery methods different from the training
data. However, compared to the SOTA method on Gen-
Image, DRCT, STD-FD maintains superior generalization
ability. This can be attributed to STD-FD’s comprehensive
extraction of classification features that distinguish real and
fake data across both temporal and spatial domains. The
approach of modeling the distribution fitting deviation be-
tween real and fake data exhibits excellent generalization.

Mismatch Between Pre-trained Model and Identifica-
tion Target. As mentioned in the Introduction, existing
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Table 3. Identification performance (ACC,%) when choosing different classifiers. STD-FD with different classifiers are trained on SDv1.4
and evaluated on different testing subsets.

Classifier Midjourney SDv1.4 SDv1.5 ADM GLIDE Wukong VQDM BigGAN Avg.
LR 91.41 99.99 99.98 80.07 88.84 95.82 89.76 79.84 90.71
RF 93.37 99.98 98.24 81.18 87.79 95.29 91.68 81.03 91.07
SVM 92.45 99.98 99.01 81.57 89.80 95.43 91.55 80.88 91.33
Xgb 93.76 99.99 99.45 81.64 90.31 96.41 92.74 81.79 92.01

forgery detection methods based on reconstruction errors
exhibit a catastrophic drop in performance when the data
type for forgery detection is inconsistent with the pre-trained
reconstruction model. For example, reconstruction models
pre-trained on animals may exhibit larger reconstruction er-
rors when applied to plants, causing real plant images to be
misclassified as fake. Therefore, we conduct generalization
experiments under such scenarios for STD-FD. Specifically,
we use the LSUN bedroom, LSUN cat, and LSUN horse
pre-trained reconstruction models provided by (Dhariwal
& Nichol, 2024), and compare the generalization perfor-
mance with two reconstruction error-based detection meth-
ods, DIRE and DRCT. The evaluation follows Deepfacegen
Benchmark, involving training and testing on 12 prompt-
guided forgery datasets. The experimental results, as shown
in Table 2, reveal a catastrophic drop in generalization per-
formance for the reconstruction error-based methods, while
STD-FD maintains high generalization capability. Notably,
the AUC scores for STD-FD remain above 92% under the
cat, horse, and bedroom pre-training scenarios, demonstrat-
ing that STD-FD is not significantly affected by the training
scenarios of the pre-trained reconstruction models.

6. Ablation Study
Influence of Classifier. We evaluated STD-FD with classi-
fiers beyond XGBoost (XGB), including Logistic Regres-
sion (LR), Random Forest (RF), and Support Vector Ma-
chine (SVM), using the Genimage Benchmark setup. Re-
sults in Table 3 show that classifier choice has minimal
impact, with the average AUC exceeding 90% across all
classifiers, further confirming STD-FD’s robustness.

Influence of Sampling Step. To evaluate the effect of
sampling timesteps on STD-FD, we conduct experiments
on four challenging subsets of DeepFaceGen with sampling
timesteps T set to 5, 10, 20, and 50. Figure 5 show that the
AUC scores of STD-FD consistently exceed 90% across all
timestep settings, confirming the method’s robustness.

Influence of Post-Processing. To assess the resilience of
STD-FD against post-processing, we follow the experimen-
tal setup from (Wu et al., 2023), applying resizing and JPEG
compression to images. Using the same setup as in the “In-
fluence of Sampling Step” part, the results in Table 4 show
that STD-FD consistently achieves AUC scores above 90%,

Figure 5. Performance (AUC,%) on four challenging subsets of
DeepFaceGen when choosing different sampling timestep T .

Table 4. Performance (AUC,%) when choosing different post-
processings on four challenging subsets of DeepFaceGen.

Post-Processing Dataset Subset

Scale QF DALL·E 1 DALL·E 3 Midjourney Wenxin
0.50 - 91.45 91.25 94.01 93.22
0.75 - 91.51 91.20 94.01 93.51
1.00 - 91.45 91.20 94.01 93.48
1.25 - 91.57 91.20 93.78 94.01
1.50 - 91.62 91.07 94.11 93.78

- 60 90.96 90.97 93.87 93.11
- 70 90.87 91.04 93.87 93.45
- 80 91.03 91.43 93.87 93.21
- 90 91.45 91.54 93.95 93.07
- 100 91.45 91.20 94.01 93.48

with fluctuations under 1%, demonstrating its robustness
against various post-processing strategies.

Influence of Spatial and Temporal Modules. Given the
inherent temporal structure of the STD-FD network, we
focus on ablating the spatial module. In the DeepFaceGen
benchmark setup, when superpixel segmentation is omitted,
the AUC drops from 94.90% to 91.12%, but performance
remains superior to other state-of-the-art methods. This un-
derscores the importance of the spatial module and demon-
strates the effectiveness of the temporal module’s feature
extraction in providing a robust engineering solution.

Influence of Adversarial Attacks. We selected
FGSM (Goodfellow et al., 2015), PGD (Madry et al.,
2017), C&W (Carlini & Wagner, 2016), and Black-Box
attacks (Guo et al., 2019), based on STD-FD’s feature mod-
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Table 5. Performance (AUC,%) when facing different attacks. on
four challenging subsets of DeepFaceGen.

Attack Type DALL·E 1 DALL·E 3 Midjourney Wenxin Average
Raw 91.45 91.20 94.01 93.48 92.53
FGSM 85.01 86.21 88.64 90.21 87.51
PGD 84.21 85.01 84.65 87.02 85.22
C&W 83.89 84.45 85.63 88.32 85.57
Black-Box 86.64 87.32 90.22 89.56 88.43

eling and classifier attributes. Using data-based adversarial
attacks from the preliminary DeepFaceGen experiments, we
observed that, although STD-FD’s performance decreased
from the original 93.48%, the worst performance (85.22%
under PGD) still showed a drop of less than 7%, maintaining
a high overall AUC.

Influence of Adversarial Perturbations. Following the
same experimental settings described in the Influence of
Adversarial Attacks section, we conducted additional ex-
periments specifically focusing on adversarial perturbations
during the diffusion sampling process. Concretely, adversar-
ial noise (with L2-norm strengths of [0.01, 0.03, 0.05]) was
injected at each timestep of the reverse diffusion process
(20 steps in total). Under these adversarial conditions, the
performance fluctuates within approximately 2.5%, demon-
strating that the STD-FD identification mechanism remains
robust against targeted sampling attacks.

Table 6. Performance (AUC,%) when facing adversarial perturba-
tions on four challenging subsets of DeepFaceGen.

Perturbation DALL·E 1 DALL·E 3 Midjourney Wenxin Performance
0.05 88.01 89.98 93.84 92.57 -2.5%
0.03 89.56 90.43 93.56 93.62 -1.8%
0.01 91.67 91.42 92.90 90.42 -2.0%
Original 91.45 91.20 94.01 93.48 Baseline

Influence of Block Parameters K. We performed an ab-
lation study varying the number of superpixel blocks K
from the baseline setting K=10. The performance variation
across different K values is within approximately 1.08%.
It’s noteworthy that selecting a larger value of K does not
always yield better results. Superpixel methods inherently
suggest an optimal clustering number based on image con-
tent. In facial forgery scenario, the recommended K ensures
effective semantic consistency; significantly deviating from
this value negatively affects pixel-level semantic coherence
and impairs spatio-temporal decoupling during diffusion
sampling.

7. Conclusion
In this paper, we introduce STD-FD, a novel approach
that uncovers the generative mechanisms behind AIGC-
generated fake images, particularly those produced by dif-
fusion models. STD-FD systematically explores the tem-

Table 7. Performance (AUC,%) when facing different K blocks on
four challenging subsets of DeepFaceGen.

K DALL·E 1 DALL·E 3 Midjourney Wenxin Performance
1 90.46 90.11 92.89 92.67 -1.08%
5 91.45 90.87 93.76 94.01 -0.01%
10 91.45 91.20 94.01 93.48 Baseline
15 91.89 91.01 93.45 92.93 -0.23%
20 92.45 90.89 93.87 91.54 -0.37%

poral distribution deviations during image reconstruction.
By leveraging superpixel-based semantic segmentation, we
model these deviations as spatio-temporal DFactor across
different semantic modules. Extensive experiments demon-
strate the effectiveness of STD-FD, proving its robustness
and generalizability. Future work will focus on developing
an end-to-end framework to uncover additional distinctive
spatio-temporal patterns for AIGC forgery detection.
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−Appendix−
STD-FD: Spatio-Temporal Distribution Fitting Deviation for

AIGC Forgery Identification

In the appendix, we first present the detailed pseudocode
of STD-FD (A) to facilitate a better understanding of the
method. To further illustrate the key issues addressed by
STD-FD and its design philosophy, we provide an exam-
ple analysis (B). We then analyze the actual runtime and
resource usage of STD-FD (C). Finally, the Detailed Exper-
imental Results section presents the comprehensive results
of the main benchmark experiments (D).

A. STD-FD Pseudo-code
To further clarify the implementation process of STD-FD,
we provide the core code for its key steps in addition to the
open-source code. Specifically, algorithms 1 and 2 detail
the generation and selection process of the critical spatio-
temporal modeling factor, DFactor, in STD-FD.

Algorithm 1 Learning Discriminative Factor
Input: Hk, Yk, Ck

Output: Top N discriminative factors
1: Initialize empty list DFactors
2: for each candidate c in Ck do
3: Initialize timing factors wlocal, wglobal
4: for iter = 1 to MaxIterations do
5: i. Compute distances:
6: Distances =

M∑
m=1

Softmax (−d (Cm
k , t) · |wglobal|)

× (d (Cm
k , t) · |wglobal|)

7: ii. Compute loss:

8: Loss = −
N∑

n=1
KL (N (µ+, σ+), N (µ−, σ−))

+α∥wlocal∥p + β∥wglobal∥p
9: iii. Update timing factors: (wlocal, wglobal)

10: end for
11: Add (c, wlocal, wglobal, Loss) to DFactors
12: end for
13: Sort DFactors by Loss
14: return top N discriminative factors

We include a formalized, abstract definition of DFactor in
the final version to provide a clear conceptual paradigm ben-
eficial to the research community. Formally, the definition
of DFactor is as follows.

Algorithm 2 Candidate Discriminative Factors Generation
Input: Time series data {hk}Ni=1, shapelet length L, num-

ber of candidates M
Output: Candidate shapelet set C = {cj}Mj=1

1: Initialize an empty candidate set C ← ∅
2: for each time series hk do
3: a. Extract all subsequences of length

L: SCOi = {scoi,k | scoi,k =
[hi,k, hi,k+1, . . . , hi,k+L−1], k = 1, 2, . . . ,Ki}

4: b. Compute the mean subsequence: ¯scoi =
1

Ki

Ki∑
k=1

scoi,k

5: c. Initialize distance scores:
6: for each subsequence scoi,k ∈ Si do
7: D(scoi,k) = ∥scoi,k − ¯scoi∥2
8: end for
9: end for

10: Merge all subsequences and distance scores:

SCO =
N⋃
i=1

SCOi, D(sco) for all sco ∈ SCO

11: for j = 1 to M do
12: a. Select the subsequence with the highest distance

score:
sco∗ = arg max

sco∈SCO
D(sco)

13: b. Add sco∗ to the candidate set: C ← C ∪ {sco∗}
14: c. Update distance scores:
15: for all unselected subsequences sco ∈ SCO do
16: D(sco)← D(sco) + ∥sco− sco∗∥2
17: end for
18: d. Mark sco∗ as selected: D(sco∗)← −∞
19: end for
20: return the candidate set C

DFactor represents a feature vector derived from diffusion-
based spatio-temporal decoupling, characterizing the vari-
ation patterns of specific categories. Specifically, DFactor
partitions spatio-temporal information into K distinct classes
based on feature similarity. Within each class, DFactor en-
codes variation patterns across superpixel regions during
sampling. Consequently, these K classes of DFactors consti-
tute a feature pattern library. For downstream classification
tasks, relevant vectors obtained via identical spatio-temporal
decoupling processes can be matched against this library to
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achieve precise classification.

These principles can be formalized by the following equa-
tion:

L = −g (S1 ( DFactor 1, T1) , . . . , SK ( DFactor K , TK)) ,
(17)

whereL quantifies the dissimilarity among samples across K
categories with respect to their DFactors. Si ( DFactor i, Ti)
represents the set of distances related to a specific class Ti
.The function g(·) takes K finite sets as input and outputs a
scalar value indicating the overall dissimilarity among these
sets.

B. Example Analysis
To better illustrate the STD-FD method, we conduct an
example analysis in this section. Specifically, we address
three core questions related to the conceptualization, design,
and implementation of STD-FD through detailed examples.
These questions are: (1) Q1: Why is temporal information
introduced? (2) Q2: Why is spatial information extraction
necessary? (3) Q3: Why use superpixels for segmentation?

Q1: Why is temporal information introduced? Through
the truncation reconstruction process, we found that the re-
construction process is a dynamic changing process, and the
number of steps and the amount of noise added have a signif-
icant impact on the reconstruction results. As shown in the
Figure 6, when the reconstruction process is not truncated
(i.e., with 20 time steps), it does not reflect the optimal point
of the real and fake image reconstruction error. The optimal
point may exist in the middle of the denoising process (as
indicated by the pink box). Simply using the reconstruc-
tion results to judge the difference between positive and
negative samples is incomplete. Therefore, we propose the
introduction of temporal information.

Q2&Q3: Why is spatial information introduced, and why
use superpixels for segmentation

We provide an intermediate process diagram for the de-
noising sampling process of normal and forged samples.
Without the guidance of external prompts, the deterministic
denoising process is essentially the process in which the
diffusion model reconstructs the image through noise dis-
tribution. As shown in the figure 7, during the sampling
process, noise is actually fitting the shapes and distributions
of different semantic subjects. For example, some noise is
used to construct the background information of the image,
while other noise is used to construct the face and body.
This leads us to consider two issues:

1.The degree of variation across different regions of the
image is not the same. If spatial information is not re-
fined through segmentation, crucial information in small

changes will be overlooked. For example, in the figure
above, the background of the real sample occupies a large
proportion, but its variation is much smaller than that of
facial features. Without block-based detailed modeling and
analysis, the weight of facial changes in smaller regions
would be low and might even be ignored.

2.If the image is rigidly divided into blocks, the spatial
correlation information will be lost. For example, if we
divide fake samples into blocks with fixed proportions, the
background and the body of the woman will overlap. As
seen in the image, the noise distribution changes differently
for these two subjects. This is clearly inappropriate, so
we adopted the superpixel segmentation algorithm, which
creates internally self-correlated image blocks based on
semantic information such as color, position, and contrast.

Table 8. Running Time and GPU Usage Comparisions.

Detection Method Running Time GPU Usage
Xception 250ms 5010MiB
EfficientNet 193ms 3580MiB
F3Net 274ms 5100MiB
Conv-B 267ms 4995MiB
DIRE 365ms 4084MiB
STD-FD 272ms 2253MiB

C. Runtime and Resource Usage
We compare the runtime and memory usage of STD-FD
with common baselines. Images are resized to 224×224
with batchsize of 32, and reconstruction-based methods
used 20 denoising steps. Experiments are conducted on
a Silver 4310 CPU and an NVIDIA A40 GPU. As shown
in Table 8, even when considering the data reconstruction
time, STD-FD’s running time remains comparable to that of
conventional network architectures. Furthermore, it demon-
strates a significant advantage in terms of GPU usage, which
can be attributed to the exceptional feature engineering em-
ployed in our method. Even with the use of simple classi-
fiers such as logistic regression (LR), the model achieves
outstanding performance results.

D. Detailed Experimental Results
In this section, we provide the detailed experimental re-
sults referenced in the main text. Specifically, Table 9 and
Table 10 present the results of STD-FD compared to all eval-
uation methods across all data subsets in the DeepFaceGen
Benchmark and GenImage Benchmark experiments.
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Figure 6. Truncated display of image reconstruction. It can be seen that the time step with the largest difference between the real and false
samples does not exist in the result, but in the middle time step in the pink box.

Figure 7. The visualization of noise map results during the image reconstruction process.
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Table 9. Performance of Various Algorithms across Generators

Generator Xception Efficientnet F3net RECCE DNADet Freqnet DIRE DCRT UnivFD NPR STD-FD (ours)
Midjourney 77.01 79.52 81.65 87.64 93.44 85.69 87.01 89.78 88.67 89.01 94.36
DALL·E 1 75.45 81.74 84.73 83.25 85.62 84.25 86.65 89.91 87.64 89.54 91.21
DALL·E 3 86.59 88.41 87.23 89.17 83.90 87.13 87.84 88.05 89.21 89.41 90.01
Wenxin 86.87 84.34 89.28 92.13 91.60 91.98 92.84 92.72 90.01 92.35 92.90
SD1 87.64 86.83 90.95 89.83 92.40 90.94 92.35 93.56 90.01 90.12 93.77
SDXLR 84.13 93.46 86.40 90.46 89.03 89.40 88.61 89.51 89.01 88.64 93.50
OJ 89.72 89.00 92.72 96.90 94.04 93.08 91.28 92.45 88.01 90.28 97.05
pix2pix 83.42 77.61 81.21 89.71 88.52 88.66 89.01 91.51 89.54 89.30 92.34
SD2 87.79 85.91 89.11 95.43 92.70 90.92 89.54 90.41 91.45 90.01 96.71
SDXL 86.06 87.65 91.43 96.75 92.28 92.61 91.54 91.01 90.01 89.87 97.05
VD 85.02 83.84 89.52 95.67 89.21 96.55 98.78 94.25 89.68 91.01 100
DF-GAN 95.42 96.71 93.45 93.54 94.22 97.11 90.32 92.54 95.01 98.88 100
Average 85.42 86.25 88.14 91.70 90.58 90.69 90.69 90.48 91.30 89.85 94.90

Table 10. Comparison of Methods Across Various Forgery Generators Accuracy (ACC, % ) comparisons of our STD-FD and other
generated image detectors. All methods were trained on GenImage/SDv1.4 and evaluated on different testing subsets.

Method Midjourney SDv1.4 SDv1.5 ADM GLIDE Wukong VQDM BigGAN Avg.
CNNSpot 84.92 99.88 99.76 53.48 53.80 99.68 55.50 49.93 74.62
F3Net 77.85 98.99 99.08 51.20 54.87 97.92 58.99 49.21 73.51
CLIP/RN50 83.30 99.97 99.89 54.55 57.37 99.52 57.90 50.00 75.31
GramNet 73.68 98.85 98.79 51.52 55.38 95.38 55.15 49.41 72.27
De-fake 79.88 99.86 99.62 68.62 71.57 98.42 78.43 74.37 84.73
Conv-B 83.55 99.99 99.92 51.75 56.27 99.91 58.41 50.00 74.98
Swin-T 62.11 99.99 99.88 49.85 67.62 99.01 62.28 57.63 74.79
UnivFD 91.46 96.41 96.14 58.07 73.40 94.53 67.83 57.72 79.45
DIRE 50.40 99.99 99.92 52.32 67.23 99.98 50.10 49.99 71.24
PatchCraft 79.00 89.50 89.30 77.30 78.40 89.30 83.70 72.40 82.30
AIDE 79.38 99.74 99.76 78.54 91.82 98.65 80.26 66.89 86.88
DRCT 91.50 95.01 94.41 79.42 89.18 94.67 90.03 81.67 89.49
STD-FD (ours) 93.76 99.99 99.45 81.64 90.31 96.41 92.74 81.79 92.01
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