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Abstract

Large language models excel at solving complex tasks, owing to their hierarchical1

architecture that enables the implementation of sophisticated algorithms through2

layered computations. In this work, we study the interplay between model depth3

and data complexity using elementary cellular automata (ECA) datasets. We4

demonstrate empirically that, given a fixed parameter count, deeper networks5

consistently outperform shallower variants. Our findings reveal that complex ECA6

rules require a deeper model to emulate. Finally, analysis of attention score patterns7

elucidates why shallower networks struggle to effectively emulate complex rules.8

1 Introduction9

Large Language Models (LLMs) are undergoing rapid scaling [18, 3, 14, 1], with significant increases10

in training FLOPs, dataset size, and parameter count. As traditional trial-and-error approaches become11

computationally intractable at these scales, researchers increasingly rely on scaling laws [11, 8, 2] to12

optimize model architectures and training regimes without exhaustive empirical validation. However,13

the emergence of unforeseen capabilities beyond certain scale thresholds [22, 15] introduces additional14

complexity to performance forecasting, rendering predictive models increasingly challenging and15

potentially unreliable. In particular, the benefit of depth in model scaling remains unclear [2, 7],16

although it has been shown to be helpful in many cases [19, 17, 24].17

A significant factor contributing to the discrepancies observed in existing literature is the lack of18

systematic consideration of the interplay between data complexity and model architecture. To address19

this gap, our study investigates the impact of model depth concerning dataset complexity, utilizing20

Cellular Automata (CA) [20, 21, 6, 23] as controlled datasets. Specifically, we train GPT-like21

autoregressive models [4] of varying depths on Elementary Cellular Automata (ECA) [23] datasets,22

which offer the advantage of systematically controllable complexity [10, 23, 9] of data. This approach23

allows for a more rigorous examination of the relationship between model depth and data complexity,24

potentially reconciling inconsistencies in previous findings.25

2 Elementary Cellular Automata26

Elementary Cellular Automata (ECA) [23] are boolean-valued CA that live on a one-dimensional27

lattice. At each time step t, a given cell i in the lattice has a value si(t) ∈ {0, 1}. The state, which is28

the collection of all values in the lattice at time step t, is represented by a binary vector s(t) ∈ {0, 1}n,29

where n is the size of the lattice. The state at time step t+ 1 is completely determined by the state at30

time t, following a 3-to-1 boolean-valued map:31

si(t+ 1) = rI(si−1(t), si(t), si+1(t)) , (1)
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(a) Rule 2 (b) Rule 30 (c) Rule 110

Figure 1: Visualization of ECA with periodic boundary conditions, where black cells represent value
1 and white cells represent value 0. First row: τ = 1; Second row: τ = 3. This comparison illustrates
the diverse complexity patterns across different ECA classes and temporal scales.

where I = {0, 1, · · · , 255} for ECA1.32

The 256 Elementary Cellular Automata rules are categorized into four distinct classes based on their33

asymptotic behavior [23, 13]: (I) uniform, characterized by homogeneous final states; (II) periodic or34

stable, exhibiting regular patterns or fixed points; (III) chaotic, displaying aperiodic and seemingly35

random configurations; and (IV) complex, demonstrating localized structures reminiscent of Class II,36

but with intricate interactions.37

Inspired by Israeli and Goldenfeld [10], we also consider ECA with τ -step evolution, with τ ≥ 1:38

si((t+ 1)τ) = rτI (si−τ (t · τ), · · · , si(t · τ), · · · , si+τ (t · τ)) , (2)

where the τ -step evolution can be equivalently viewed as a 1-step evolution with a (2τ +1)-to-1 map39

described by a new rule rτI . Note that this does not mean a rule with a larger τ is harder than the one40

with a smaller τ . As the nature of rτI heavily depends on rI itself and also the τ choice [10].41

In this work, we focus on Rule 2, 30, and 110, which are representative of Classes II, III, and IV,42

respectively. Rule 30 is the hardest to predict out of those three rules for any τ , as it is known to43

exhibit chaotic behavior, and no simplification has been found for τ > 1. Rule 2 is the simplest44

since it always converges to some stable or periodic patterns. Rule 110 has an intermediate hardness45

[23, 10]. Figure 1 illustrates the spatiotemporal patterns generated by these rules with varying τ . We46

also show the rule icon which fully characterize the rules in Appendix B.47

3 Transformers Trained on ECA48

Training: We focus on ECA on a lattice size of n = 24 with periodic boundary conditions. We49

follow the standard train-test split where different initial conditions were used to generate those states.50

All training states are flattened into a sequence with the form vec(s(0), s(τ), · · · , s(ttrainτ)), with51

ttrain = 7, so the training context length is 192 for all τ values.52

Evaluation: We measure test performance in two different settings:53

(Eval 1) Next-token-prediction accuracy: Given a test sequence up to t time steps (24 · t tokens),54

we measure the next token prediction accuracy, averaged over all tokens.55

(Eval 2) Sequence-matching accuracy with length generalization: We give the sequences at times56

[t, t+1, ...t+6] and ask the model to predict for time step t+7. Repeating this for t = 1 to t = 8, the57

prediction is marked correct only if the model predicts all cells within the time step correctly. Note58

that in this case we test up to twice of the evolving steps for training, to check length generalization.59

1There are 23 = 8 possible patterns for a given triplet. A rule needs to decide, for each pattern, whether the
cell will be a 1 or a 0 in the next time step. So in total 28 = 256 possible rules.
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Figure 2: Depth vs τ phase diagrams for selected ECA rules: Test accuracy (Eval 1) on states
generated from unseen initial conditions. (a) Rule 2 exhibits consistent performance across all τ
due to its convergence to stable/periodic states, enabling arbitrary length generation. (b) The chaotic
nature of Rule 30 results in much worse accuracy for large τ .

Crucial role of model depth: In Figure 2, we demonstrate the correlation between model perfor-60

mance and the complexity of the three aforementioned ECA rules. It illustrates the performance of61

models across varying depths d and minimal evolving steps τ for each rule. To isolate the effect of62

depth, we maintain a constant number of non-embedding parameters N = 222(≈ 4.2M) across all63

models by adjusting the width accordingly. Additional experiments with N = 223(≈ 8.4M) and64

N = 224(≈ 16.8M), achieved by increasing model width, yielded qualitatively similar results, see65

Appendix C. Other details of these experiments, including training setups and hyperparameters, see66

in Appendix A.67

We measure the next token prediction accuracy (Eval 1) for the test set. For Rule 2, the model68

achieves perfect performance across all τ when the network depth d ≥ 3, demonstrating the simplicity69

of the rule and the capacity of the model to capture its dynamics fully. In contrast, for the more70

complex Rule 110, we observe a gradual degradation in model performance as τ increases, indicating71

the increased computational complexity and the necessity for deeper models to capture its behavior72

accurately. In contrast, for the chaotic Rule 30, the model can not do better than random guessing for73

τ ≥ 6, regardless of the depth.74

(a) Rule 2 (b) Rule 30 (c) Rule 110

Figure 3: Depth-τ phase diagrams for selected ECA rules with length generalization (Eval 2). (c)
Rule 110 demonstrates non-monotonic performance with respect to τ , reflecting the existence of
simplified descriptions for rτ110 at certain larger τ values.

Sequence length generalization: In Figure 3, we evaluate the length generalization ability beyond75

ttrain. For Rule 2, we observe robust length generalization for large τ values, attributable to its76

convergence to stable or periodic states, as we have demonstraed in panel (a) of Figure 1. This allows77

the model to achieve generalization by iteratively applying a few simple learned compositional rules.78

For small τ , the model does not perform as well in the length generalization. This is due to finite79

ttrain = 7 we used, where the dynamics have not converged to a stable and periodic pattern.80

In contrast, the chaotic nature of Rule 30 and the lack of simplified representations for larger τ results81

in rapid error propagation, making length generalization challenging for τ ≥ 3. This difficulty stems82

from the inability of the model to formulate a concise implementation of rτ30. The highly chaotic83
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Attend to 0 Attend to 1 Mark any 0
comes right 
after 1 locally

Correct attention
patterns for τ=3
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Figure 4: Attention scores of d = 3 and d = 5 models trained on Rule 30 with τ = 3. We feed the
sequence shown in Figure 1(b) τ = 3 panel to both models, which is not in the training set.

nature of Rule 30 and the irreducibility of rτ30 for τ > 1 [10] present two potential strategies for84

the model: (i) direct implementation of the complex rule for τ > 1, or (ii) composition of multiple85

smaller τ steps. The former approach necessitates a substantially larger training steps ttrain, while86

the latter relies more heavily on increased model depth. We believe in both cases, the model needs87

an extensive dataset to perform for large τ due to the difficulty of the task. Nevertheless, deeper88

architectures consistently outperform shallower ones for a given τ , highlighting the importance of89

model depth for implementing complex algorithms.90

Interestingly, Rule 110 exhibits non-monotonic length generalization performance with respect91

to τ for fixed network depths. This phenomenon likely arises from the existence of simplified92

representations of rτ110 for certain larger τ values, as suggested by Israeli and Goldenfeld [10]. Such93

simplified representations may facilitate more effective learning and generalization for those τ values.94

4 Interpretability95

In this section, by visualizing the attention score, we give some explanation on the necessity of a96

certain depth. We focus on models with depths d = 3 and d = 5, trained on Rule 30 with a minimal97

evolving step τ = 3. To make a reasonable prediction for this chaotic rule, a model must infer the98

underlying rule and apply it to a 7-cell collection {si−3(t), · · · , si+3(t)} to predict si((t+ 1)τ).99

In Figure 4, we selected heads from both models that might contribute non-trivially to the algorithm.100

We find in both cases, models use heads from lower layers to identify the information of 0 and 1. For101

d = 5 model, the layer 2 head correctly identifies the underlying data-generating process. This is102

done by only looking at 0s that come right after 1s within one iteration ahead. After intermediate103

layers process the information, the head from the last layer builds a correct attention pattern that104

mainly localizes around the 7-cell collection from the previous iteration. In contrast, the d = 3 model105

does not have enough space to process the information, resulting in a multi-purpose last layer head106

that fails to perform well. For unlisted heads, see Appendix D for more details.107

5 Discussion108

In this paper, we studied the importance of model depth for handling chaotic ECA rules. However, as109

we mentioned in the paper, there is more than one possibility for implementing a given ECA rule. We110

believe it is important to understand in more detail under what conditions a model would implement111

the same algorithm differently.112

Another interesting question would be how to extend this dataset to build connections with real-world113

settings. Here we list two possibilities while leaving the detailed research for the future: (i) mix114

different rules with varying complexity to emulate real-world settings; (ii) emulate real-language115

with Rule 110, which is Turing complete [5]. Then systematically study the translated “language”.116
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A Training Details178

Model All of our models have the same architecture design and initialization as GPT-2, where the179

only difference is we use rotary positional embedding [16].180

Optimization We train all of our models in Figures 2 and 3 using AdamW optimizer [12] with181

β1 = 0.9, β2 = 0.99, ϵ = 10−8 and batch size B = 256 for 50k steps. For each model we select182

learning rate η from {0.00003, 0.0001, 0.0003} and weight decay λ from {0.1, 1.0, 2.0}. We use a183

linear warmup and cosine decay scheduler, where the learning rate is linearly increased for the first184

5k steps from 0.01η, then cosine decayed to 0.1η at the end of training.185

Dataset We use a training set with Ntrain = 217 initial conditions, where the test set is the same size.186

The possible states generated, including initial conditions in the training (test) set, is 217 ∗ 16 = 221,187

where the total possible states for n = 24 lattice are 224. So, training and test sets each have 12.5%188

number of states out of the total possibilities, which leads to an ignorable overlap in training and test189

sets.190

B Rule Icons191

Rule icons demonstrate all eight fundamental 3-to-1 maps for τ = 1 ECA, see Figure 5.

(a) Rule 2

(b) Rule 30

(c) Rule 110

Figure 5: Rule icons for Rule 2, 3 and 110. Black cells represent 1 and white cells represent 0. One
should ignore the cells located at bottom left corners and bottom right corners for each icon, as we
are not considering boundary condition here.

192

C More Phase Diagrams193

In this section, we plot more phase diagrams with number of parameters N = 223 and N = 224. We194

see for chaotic rule, i.e. Rule 30, larger model performs better for small τ while at the same time195

suffers from overfitting for larger τ as the next-token prediction accuracy drops compared to the196

settings with N = 222.197

C.1 Next-token Prediction Accuracy (Eval 1)198

See Figures 6 and 7 for next-token prediction results.199

C.2 Length Generalization (Eval 2)200

See Figures 8 and 9 for length generalization results.201
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Figure 6: Depth vs τ phase diagrams for selected ECA rules: Test accuracy (Eval 1) on states
generated from unseen initial conditions. Same setting as Figure 2 while the number of parameters is
N = 223

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

d

88.24 88.16 88.13 88.09 88.11 88.25 88.33 88.29

91.87 91.33 91.11 90.78 90.95 91.99 92.44 92.19

98.57 98.69 98.56 98.38 98.49 98.29 97.83 97.95

99.92 99.90 99.88 99.86 99.79 99.80 99.73 99.81

100.00 99.99 99.99 99.98 99.98 99.98 99.98 99.99

100.00 100.00 100.00 100.00 100.00 100.00 99.99 100.00

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

50

60

70

80

90

100

(a) Rule 2

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

d

54.02 52.31 51.42 50.89 50.47 50.43 50.51 50.44

63.28 59.03 55.67 51.41 50.51 50.42 50.46 50.46

93.10 90.05 80.01 55.51 50.60 50.35 50.46 50.47

99.02 98.29 93.72 66.94 52.12 50.44 50.47 50.48

99.83 99.63 96.60 75.05 53.76 50.50 50.42 50.49

99.97 99.84 97.28 79.25 53.83 50.51 50.32 50.31

100.00 99.98 99.64 92.85 55.55 50.50 50.45 50.43

100.00 100.00 99.97 94.69 55.89 50.56 50.40 50.38

50

60

70

80

90

100

(b) Rule 30

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

d

60.92 60.33 59.70 59.61 59.26 59.16 59.12 58.71

67.16 65.37 63.87 62.72 60.31 60.00 60.47 59.94

93.89 91.16 87.77 81.62 66.99 66.36 66.15 64.40

99.46 98.32 97.80 94.86 81.03 89.67 81.55 71.35

99.93 99.73 99.32 98.59 97.29 98.56 96.51 94.84

99.99 99.95 99.88 99.67 99.55 99.08 99.11 98.87

100.00 99.98 99.98 99.96 99.91 99.77 99.67 99.56

100.00 100.00 99.99 99.98 99.92 99.92 99.79 99.76

50

60

70

80

90

100

(c) Rule 110

Figure 7: Depth vs τ phase diagrams for selected ECA rules: Test accuracy (Eval 1) on states
generated from unseen initial conditions. Same setting as Figure 2 while the number of parameters is
N = 224
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(c) Rule 110

Figure 8: Depth-τ phase diagrams for selected ECA rules with length generalization (Eval 2). Same
setting as Figure 3 while the number of parameters is N = 223
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Figure 9: Depth-τ phase diagrams for selected ECA rules with length generalization (Eval 2). Same
setting as Figure 3 while the number of parameters is N = 224
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D More Attention Scores202

D.1 d = 5203

We plot all attention score for all heads in Figure 10.204
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Figure 10: Attention scores for d = 5 models trained on Rule 30 with τ = 3. Most heads that were
not included in Figure 4 are doing nothing or playing similar roles to those that were selected. Only
the heads 3 and 4 in layer 4 seem to be different. However, most likely, they are not playing an
essential role as the former one is only looking at the first 0 after 1 for the whole sequence while the
latter one is only checking very local information. Note that there is a chance that layer 4 head 4 is
helping building a different algorithm.
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D.2 d = 3205

We plot all attention score for all heads in Figure 11.206
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Figure 11: Attention scores for d = 3 models trained on Rule 30 with τ = 3. Most heads that were
not included in Figure 4 are doing nothing or playing similar roles to those that were selected. We
find heads 2 and 3 in layer 3 similar to the head 4 in layer 4 of the d = 5 model, which again suggests
that the model needs a larger depth to perform well.
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